WorldWideScience

Sample records for reactors corrosion du

  1. Corrosion of magnesium and some magnesium alloys in gas cooled reactors; Corrosion du magnesium et de certains de ses alliages dans les piles refroidies par gaz

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Darras, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO{sub 2}: (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO{sub 2}, these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author)Fren. [French] On expose essentiellement les resultats d'etudes sur la corrosion du magnesium et de certains de ses alliages (Mg-Zr et Mg-Zr-Zn) dans l'air humide (cas de la pile G1) et dans le gaz carbonique (cas des piles G2, G3, EDF1, etc...). La temperature limite d'exposition du magnesium dans l'air humide sans risque de corrosion se situe a 350 deg. C; en effet l'oxydation a un caractere lineaire au-dessus de cette temperature, alors qu'elle atteint un palier et reste tres limitee au-dessous de 350 deg. C. Du point de vue de la corrosion, cette temperature limite d'emploi peut cependant etre elevee jusqu'a 500 deg. C si l'on introduit dans l'air humide de tres faibles teneurs de composes fluores. Dans le gaz carbonique sous pression, l'oxydation est beaucoup plus faible, meme jusqu'a 50g. C pour les trois materiaux: l'augmentation de poids atteint un palier d'autant plus eleve et ceci d'autant plus rapidement que la temperature est elle-meme plus elevee. Cependant, l'alliage Mg-Zr se comporte nettement mieux que le magnesium pur et surtout que l

  2. Corrosion of magnesium and some magnesium alloys in gas cooled reactors; Corrosion du magnesium et de certains de ses alliages dans les piles refroidies par gaz

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R.; Darras, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO{sub 2}: (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO{sub 2}, these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author)Fren. [French] On expose essentiellement les resultats d'etudes sur la corrosion du magnesium et de certains de ses alliages (Mg-Zr et Mg-Zr-Zn) dans l'air humide (cas de la pile G1) et dans le gaz carbonique (cas des piles G2, G3, EDF1, etc...). La temperature limite d'exposition du magnesium dans l'air humide sans risque de corrosion se situe a 350 deg. C; en effet l'oxydation a un caractere lineaire au-dessus de cette temperature, alors qu'elle atteint un palier et reste tres limitee au-dessous de 350 deg. C. Du point de vue de la corrosion, cette temperature limite d'emploi peut cependant etre elevee jusqu'a 500 deg. C si l'on introduit dans l'air humide de tres faibles teneurs de composes fluores. Dans le gaz carbonique sous pression, l'oxydation est beaucoup plus faible, meme jusqu'a 50g. C pour les trois materiaux: l'augmentation de poids atteint un palier d'autant plus eleve et ceci d'autant plus rapidement que la temperature est elle-meme plus elevee. Cependant, l

  3. Corrosion of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    Much operational experience and many experimental results have accumulated in recent years regarding corrosion of reactor materials, particularly since the 1958 Geneva Conference on the Peaceful Uses of Atomic Energy, where these problems were also discussed. It was, felt that a survey and critical appraisal of the results obtained during this period had become necessary and, in response to this need, IAEA organized a Conference on the Corrosion of Reactor Materials at Salzburg, Austria (4-9 June 1962). It covered many of the theoretical, experimental and engineering problems relating to the corrosion phenomena which occur in nuclear reactors as well as in the adjacent circuits

  4. Localized corrosion problems in water reactors

    International Nuclear Information System (INIS)

    Coriou, Henri.

    1977-01-01

    Main localized etching on the structure materials of water reactors are studied: stress corrosion on stainless steel 304 (B.W.R), stress corrosion, 'wall thinning' and denting of Inconel 600 vapor generator tubes (P.W.R.). Some mechanisms are examined and practical exemples in reactors are described. Various possible cures are presented [fr

  5. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  6. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  7. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor; Etude de la corrosion uniforme d'un alliage d'aluminium utilise comme gainage du combustible nucleaire du reacteur experimental Jules Horowitz

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  8. Magnox reactor corrosion - 10 years on

    International Nuclear Information System (INIS)

    Haines, N.F.

    1981-01-01

    The development of new and existing techniques for monitoring the extent of corrosion within the core of Magnox reactors is described. Access through standpipes, use of manipulators, bolt examination, measurement of surface oxide thickness and interfacial oxide, material sampling and crack detection and thread strain in bolts is considered. (U.K.)

  9. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  10. Corrosion and alteration of materials from the nuclear industry; La Corrosion et l'alteration des materiaux du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-07-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  11. Corrosion of copper by chlorine trifluoride; Corrosion du cuivre par le trifluorure de chlore

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF{sub 3} simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [French] Le travail a comporte une importante mise au point des appareillages et methodes d'essai, en vue de pouvoir effectuer differentes mesures et observations sans contaminer les echantillons, ni polluer ce gaz hautement reactif. Une purification poussee du trifluorure de

  12. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  13. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor; Etude des mecanismes et des cinetiques de corrosion aqueuse de l'alliage d'aluminium AlFeNi utilise comme gainage du combustible nucleaire de reacteurs experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M.

    2009-05-15

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  14. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  15. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  16. Corrosion problem in the CRENK Triga Mark II research reactor

    International Nuclear Information System (INIS)

    Kalenga, M.

    1990-01-01

    In August 1987, a routine underwater optical inspection of the aluminum tank housing the core of the CRENK Triga Mark II reactor, carried out to update safety condition of the reactor, revealed pitting corrosion attacks on the 8 mm thick aluminum tank bottom. The paper discuss the work carried out by the reactor staff to dismantle the reactor in order to allow a more precise investigation of the corrosion problem, to repair the aluminum tank bottom, and to enhance the reactor overall safety condition

  17. Corrosion problems in boiling water reactors and their remedies

    International Nuclear Information System (INIS)

    Rosborg, B.

    1989-01-01

    This article briefly presents current corrosion problems in boiling water reactors and their remedies. The problems are different forms of environmentally assisted cracking, and the remedies are divided into material-, environment-, and stress-related remedies. The list of problems comprises: intergranular stress corrosion cracking (IGSCC) in weld-sensitized stainless steel piping; IGSCC in cold-bent stainless steel piping; irradiation-assisted stress corrosion cracking (IASCC) in stainless alloys; IGSCC in high-strength stainless alloys. A prospective corrosion problem, as judged from literature references, and one which relates to plant life, is corrosion fatigue in pressure vessel steel, since the reactor pressure vessel is the most critical component in the BWR pressure boundary as regards plant safety. (author)

  18. Shadow corrosion evaluation in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Sanders, Ch.; Lysell, G.

    2000-01-01

    Post-irradiation examination has shown that increased corrosion occurs when zirconium alloys are in contact with or in proximity to other metallic objects. The observations indicate an influence of irradiation from the adjacent component as the enhanced corrosion occurs as a 'shadow' of the metallic object on the zirconium surface. This phenomenon could ultimately limit the lifetime of certain zirconium alloy components in the reactor. The Studsvik R2 materials test reactor has an In-Core Autoclave (INCA) test facility especially designed for water chemistry and materials research. The INCA facility has been evaluated and found suitable for shadow corrosion studies. The R2 reactor core containing the INCA facility was modeled with the Monte Carlo N-Particle (MCNP) code in order to evaluate the electron deposition in various materials and to develop a hypothesis of the shadow corrosion mechanism. (authors)

  19. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  20. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  1. Corrosion failure of a BWR embedded reactor containment liner

    International Nuclear Information System (INIS)

    Wegemar, B.

    2006-01-01

    Following sixteen fuel cycles, leakage through a BWR embedded reactor containment liner (carbon steel) was discovered. Leakage was located at a penetration for electrical conductors as a result of penetrating corrosion attack. During construction, porous cement structures and air pockets/cavities were formed due to erroneous injection of grout. Corrosion attacks on the CS steel liner were located at the relatively small, active surfaces in contact with the porous cement structure. The corrosion mechanism was supposed to be anodic dissolution of the steel liner in areas with insufficient passivation. The penetrations were restored according to original design requirements. (author)

  2. Corrosion degradation of materials in nuclear reactors and its control

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2016-01-01

    As in every industry, nuclear industry also faces the challenge of corrosion degradation due to the exposure of the materials to the working environment. The aggressiveness of the environment is enhanced by the presence of radiation and high temperature and high-pressure environment. Radiation has influence on both the materials (changes in microstructure and microchemistry) and the aqueous environment (radiolysis producing oxidizing conditions). A survey of all the light water reactors in the world showed that stress corrosion cracking (SCC) and flow accelerated corrosion (FAC) account for more than two third of all the corrosion degradation cases. This paper visits these two forms of corrosion in nuclear power plants and illustrates cases from Indian nuclear power plants. Remedial measures against these two forms of corrosion that are possible to be employed and the actual measures employed in Indian nuclear power plants are discussed. Key features of SCC in different types of nuclear power plants are discussed. Main reasons for irradiation assisted stress corrosion cracking (IASCC) are presented and discussed. The signature patterns of single and dual phase FAC captured from components replaced from Indian nuclear power plants are presented. The development of a correlation between the scallop size and rate of single phase FAC - based on the database developed in Indian nuclear power plants is presented. Based on these two forms of degradation in nuclear reactors, design of materials that would resist these forms of degradation is presented. (author)

  3. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  4. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    International Nuclear Information System (INIS)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking

  5. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2003-01-01

    This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and the evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage. A large database on corrosion of aluminium clad materials has been generated from the CRP and the SRS corrosion surveillance programme. An evaluation of these data indicates that the most important factors contributing to the corrosion of the aluminium are: (1) High water conductivity (100-200 μS/cm); (2) Aggressive impurity ion concentrations (Cl - ); (3) Deposition of cathodic particles on aluminium (Fe, etc.); (4) Sludge (containing Fe, Cl - and other ions in concentrations greater than ten times the concentrations in the water); (5) Galvanic couples between dissimilar metals (stainless steel-aluminium, aluminium-uranium, etc); (6) Scratches and imperfections (in protective oxide coating on cladding); (7) Poor water circulation. These factors operating both independently and synergistically may cause corrosion of the aluminium. The single most important key to preventing corrosion is maintaining good

  6. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  7. Irradiation-accelerated corrosion of reactor core materials

    International Nuclear Information System (INIS)

    Bartels, David; Was, Gary; Jiao, Zhijie

    2012-09-01

    The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, but also applies to most all other GenIV concepts. Of these four drivers, the combination of radiation and corrosion presents a unique and extremely challenging environment for materials, for which an understanding of the fundamental science is essentially absent. Irradiation can affect corrosion or oxidation in at least three different ways. Radiation interaction with water results in the decomposition of water into radicals and oxidizing species that will increase the electrochemical corrosion potential and lead to greater corrosion rates. Irradiation of the solid surface can produce excited states that can alter corrosion, such as in the case of photo-induced corrosion. Lastly, displacement damage in the solid will result in a high flux of defects to the solid-solution interface that can alter and perhaps, accelerate interface reactions. While there exists reasonable understanding of how corrosion is affected by irradiation of the aqueous environment, there is little understanding of how irradiation affects corrosion through its impact on the solid, whether metal or oxide. The reason is largely due to the difficulty of conducting experiments that can measure this effect separately. We have undertaken a project specifically to separate the several effects of irradiation on the mechanisms of corrosion. We seek to answer the question: How does radiation damage to the solution-oxide couple affect the oxidation process differently from radiation damage to either component alone? The approach taken in this work is to closely compare corrosion accelerated by (1) proton irradiation, (2) electron irradiation, and (3) chemical corrosion potential effects alone, under typical PWR operating conditions at 300 deg. C. Both 316 stainless steel and zirconium are to be studied. The proton

  8. Corrosion particles in the primary coolant of VVER-440 reactors

    International Nuclear Information System (INIS)

    Vajda, N.; Molnar, Z.; Macsik, Z.; Szeles, E.; Hargittai, P.; Csordas, A.; Pinter, T.; Pinter, T.

    2010-01-01

    Corrosion and activity build-up processes are of major concern in ageing and life-extension of nuclear power reactors. Researches to study the migration of radioactive corrosion particles have been initiated at Paks Nuclear Power Plant (NPP), Hungary in order to better understand the corrosion of the primary circuit surfaces, the transport and activation of the particles of corrosion origin and their deposition on in-core and out-of-core surfaces. Radioactive corrosion particles were collected from the primary coolant and the steam generator surfaces of the 4 reactor units and subjected to detailed microanalytical and radioanalytical investigations. Scanning electron microscopy and energy dispersive X-ray microanalysis (SEM-EDX) were used to study the morphology and the composition of the matrix elements in the particles and the deposited corrosion layers. Particles identified by SEM-EDX were re-located under optical microscope by means of a coordinate transformation algorithm and were separated with a micromanipulator for further studies. Activities of γ emitting radionuclides were determined by high resolution γ spectrometry, and those of β decaying isotopes were measured by liquid scintillation (LS) spectrometry after radiochemical processing. High sensitivity of the nuclear measuring techniques allowed us to determine the low activity concentrations of the long-lived radionuclides, i.e. 60 Co, 54 Mn, 63 Ni, 55 Fe in the individual particles. Finally, high resolution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) was applied to determine the ultralow concentrations of Co, Fe, Ni in the same particles. Specific activities of 60 Co/Co, 54 Mn/Fe, 55 Fe/Fe and 63 Ni/Ni were derived from the measured activity and concentration data. Specific activities of the radioactive corrosion products reveal the history of activity buildup processes in the particle. Typically, Fe-Cr-Ni oxide particles formed as a result of corrosion of the steel

  9. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Frid, W.; Karlberg, G.; Sundvall, S.B.

    1982-01-01

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 150 0 C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 150 0 C were very high. AA 5052 alloy was the best material

  10. Some corrosion effects of the aluminum tank surface of Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh

    1995-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the TRIGA-MARK-II reactor installed in 1963 with a nominal power of 250 kW. Reconstruction and upgrading of this reactor to nominal power of 500 kW had been completed in the end of 1983. The reactor was commissioned in the beginning of March 1984. The aluminum reactor tank and some components of the former reactor are more than 30 year old. The good quality of reactor water minimized the total corrosion rate of reactor material surface. But some local corrosion had been found out at the tank bottom especially in water stagnant areas. The corrosion processes could be due to the electrochemical reactions associated with different metals and alloys in the reactor water and keeping in touch with the surface of aluminum reactor tank. (orig.)

  11. Stress corrosion cracking of equipment materials in domestic pressurized water reactors and the relevant safety management

    International Nuclear Information System (INIS)

    Sun Haitao

    2015-01-01

    International and domestic research and project state about stress corrosion cracking of nuclear equipments and materials (including austenitic stainless steel and nickel based alloys) in pressurized water reactor are discussed, and suggestions on how to prevent, mitigate ana deal with the stress corrosion cracking issues in domestic reactors are given in this paper based on real case analysis and study ondomestic nuclear equipment and material stress corrosion cracking failure. (author)

  12. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  13. Corrosion of aluminum alloys in a reactor disassembly basin

    International Nuclear Information System (INIS)

    Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

    1992-01-01

    This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl - , NO 3 - and SO 4 - are controlled to the parts per million level and basin water conductivity is currently 170--190 μmho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 μmho/cm

  14. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  15. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  16. Measurement and regulation of the level of a homogeneous plutonium reactor; Mesure et regulation du niveau d'un reacteur homogene au plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Berger, F; Bertrand, J

    1958-12-01

    Reactivity depends strongly on disturbances of the level of the plutonium solution In the homogeneous reactor. Proserpine has a small cylindrical core, 250 mm diameter, and 10 liters volume. With a view to reducing the dangers due to corrosion and contamination, the solution level in the core is raised by pneumatic pressure. The level is stabilized by means of a regulating system. During critical experiments the variations of the level are less than one hundredth part of a millimeter. (author) [French] Les variations du niveau de la solution de plutonium dans le reacteur homogene Proserpine ont une grosse influence sur la reactivite, car le coeur est petit (10 litres de solution dans un cylindre de diametre 250 mm). En vue de reduire les dangers dus a la corrosion et a la contamination, la commande du volume liquide est pneumatique. Nous avons realise la stabilite du niveau par une regulation qui, dans les essais en regime critique, limite les variations du plan liquide a une fraction de centieme de millimetre. (auteur)

  17. Consequences of corrosion of the high flux reactor channels

    International Nuclear Information System (INIS)

    1987-01-01

    The effects of corrosion can increase the probability of the channel losing its seal. In case of a slow leak, the phenomena happening can be considered as quasi-static. The closing of the safety valve takes place even before the leak water reaches the level of the exit window. In case of a fast leak in the case of helium filled channels, the dynamic effects are limited to the front part of the plug. As for the back part of the plug and the housing/safety valve unit, the consequences of a fast leak can be assimilated to those of a slow leak. This paper evaluates the results of an incident such as this for the reactor and the surrounding experimental zones

  18. Study of hydrogen migration produced during the corrosion of PWR reactors fuel cans in zircaloy 4 and zirconia; Etude du transport de l`hydrogene produit lors de la corrosion des gaines d`elements combustibles des reacteurs a eau sous pression dans la zircone et le zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Aufore, L

    1997-12-12

    The corrosion of Zircaloy-4-claddings by water from the primary circuit of nuclear power plant goes hand in hand with the release of hydrogen which penetrates the oxide and then the metal. This work focuses on the mechanisms of hydrogen transport in oxide and in metal. Hydrogen transport in oxide is studied on the basis of corrosion tests performed in the autoclave at 360 deg C. These tests are performed on Zircaloy-4 claddings under different chemical conditions (pure water, and pure water with lithium hydroxide). The distribution of hydrogen in oxide film is measured by SIMS. Hydrogen profiles in the oxide are dependent on the oxide microstructure and vary with oxidation time. These observations are confirmed by experiments in which some samples, previously oxidized in the autoclave, are immersed in heavy water. In the oxide layer, two zones are observed: one external porous zone and one internal dense zone. Deuterium diffusion coefficients in dense oxide are determined using SIMS profiles and Fischer diffusion model. Hydrogen transport in metal is also studied by means of gas-phase permeation experiments. These are set up at different temperature (400-500 deg. C) and under different hydrogen pressures and make it possible to determine the hydrogen diffusion coefficients in a Zircaloy-4 cladding under experimental conditions. All these results lead us to discuss of hydrogen transport evolution in cladding during oxidation. A model taking into account hydrogen transport in oxide and in metal, and the hydrides precipitations is proposed. (author) 110 refs.

  19. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  20. Microbiologically influenced corrosion in the service water system of a test reactor

    International Nuclear Information System (INIS)

    Subba Rao, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    This paper addresses the biofouling and corrosion problems in the service water system of a test reactor. Results of microbiological, electron microscopic and chemical analyses of water and deposit samples indicate the role of bacteria in the corrosion process. The primary role played by iron oxidising bacteria is emphasised. (author). 7 refs., 2 figs., 1 tab

  1. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  2. A flow reactor for the flow supercritical water oxidation of wastes to mitigate the reactor corrosion problem

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1994-01-01

    We have designed a flow tube reactor for supercritical water oxidation of wastes that confines the oxidation reaction to the vicinity of the axis of the tube. This prevents high temperatures and reactants as well as reaction products from coming in intimate contact with reactor walls. This implies a lessening of corrosion of the walls of the reactor. We display numerical simulations for a vertical reactor with conservative design parameters that illustrate our concept. We performed our calculations for the destruction of sodium nitrate by ammonium hydroxide In the presence of supercritical water, where the production of sodium hydroxide causes corrosion. We have compared these results with that for a horizontal set-up where the sodium hydroxide created during the reaction ends up on the floor of the tube, implying a higher probability of corrosion

  3. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  4. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  5. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de

    1995-01-01

    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  6. Corrosion surveillance for research reactor spent nuclear fuel in wet basin storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1999-01-01

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the ''Atoms for Peace'' program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on ''Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water'' and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the Receiving Basin for Offsite Fuels (RBOF) at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993

  7. Assessment of corrosion and fatigue damage to light water reactor metal containments

    International Nuclear Information System (INIS)

    Sinha, U.P.; Shah, V.N.; Smith, S.K.

    1991-01-01

    This paper presents a generic procedure for estimating aging damage, evaluating structural integrity, and identifying mitigation activities for safe operation of boiling water reactor (BWR) Mark I metal containments and ice-condenser type pressurized water reactor (PWR) cylindrical metal containments. The mechanisms of concern that can cause aging damage to these two types of containments are corrosion and fatigue. Assessment of fatigue damage to bellows is also described. Assessment of corrosion and fatigue damage described in this paper include: containment design features that are relevant to aging assessment, several corrosion and fatigue mechanisms, inspection of corrosion and fatigue damage, and mitigation of damage caused by these mechanisms. In addition, synergistic interaction between corrosion and fatigue is considered. Possible actions for mitigating aging include enhanced inspection methods, maintenance activities based on operating experience, and supplementary surveillance programs. Field experience related to aging of metal containments is reviewed. Finally, conclusions and recommendations are presented

  8. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.

    2004-12-01

    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  9. Some in-reactor loop experiments on corrosion product transport and water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Allison, G.M.

    1978-01-01

    A study of the transport of activated corrosion products in the heat transport circuit of pressurized water-cooled nuclear reactors using an in-reactor loop showed that the concentration of particulate and dissolved corrosion products in the high-temperature water depends on such chemical parameters as pH and dissolved hydrogen concentration. Transients in these parameters, as well as in temperature, generally increase the concentration of suspended corrosion products. The maximum concentration of particles observed is much reduced when high-flow, high-temperature filtration is used. Filtration also reduces the steady-state concentration of particles. Dissolved corrosion products are mainly responsible for activity accumulation on surfaces. The data obtained from this study were used to estimate the rate constants for some of the transfer processes involved in the contamination of the primary heat transport circuit in water-cooled nuclear power reactors

  10. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  11. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  12. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  13. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation; Inhibition de la corrosion du magnesium chauffe dans l'air humide, par fluoruration superficielle

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Darras, R; Leclercq, D [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [French] La temperature limite (350 deg. C) de resistance du magnesium a la corrosion par l'air humide, peut etre elevee jusque 490-500 deg. C par la formation d'une couche fluoruree superficielle. Deux procedes permettent d'obtenir ce resultat: l'atmosphere corrodante peut etre additionnee d'acide fluorhydrique a une concentration aussi faible que 0,003 mg/litre, a la pression atmospherique, ou bien le magnesium peut etre traite a froid, avant exposition a la corrosion, dans une solution aqueuse diluee d'acides nitrique et fluorhydrique. Dans les deux cas, la protection est assuree, meme pour de tres longues durees d'exposition: plusieurs milliers d'heures. (auteur)

  14. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation; Inhibition de la corrosion du magnesium chauffe dans l'air humide, par fluoruration superficielle

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R.; Darras, R.; Leclercq, D. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [French] La temperature limite (350 deg. C) de resistance du magnesium a la corrosion par l'air humide, peut etre elevee jusque 490-500 deg. C par la formation d'une couche fluoruree superficielle. Deux procedes permettent d'obtenir ce resultat: l'atmosphere corrodante peut etre additionnee d'acide fluorhydrique a une concentration aussi faible que 0,003 mg/litre, a la pression atmospherique, ou bien le magnesium peut etre traite a froid, avant exposition a la corrosion, dans une solution aqueuse diluee d'acides nitrique et fluorhydrique. Dans les deux cas, la protection est assuree, meme pour de tres longues durees d'exposition: plusieurs milliers d'heures. (auteur)

  15. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  16. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  17. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  18. Corrosion of research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Bendereskaya, O.S.; De, P.K.; Haddad, R.; Howell, J.P.; Johnson, A.B. Jr.; Laoharojanaphand, S.; Luo, S.; Ramanathan, L.V.; Ritchie, I.; Hussain, N.; Vidowsky, I.; Yakovlev, V.

    2002-01-01

    A significant amount of aluminium-clad spent nuclear fuel from research and test reactors worldwide is currently being stored in water-filled basins while awaiting final disposition. As a result of corrosion issues, which developed from the long-term wet storage of aluminium-clad fuel, the International Atomic Energy Agency (IAEA) implemented a Co-ordinated Research Project (CRP) in 1996 on the 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water'. The investigations undertaken during the CRP involved ten institutes in nine different countries. The IAEA furnished corrosion surveillance racks with aluminium alloys generally used in the manufacture of the nuclear fuel cladding. The individual countries supplemented these racks with additional racks and coupons specific to materials in their storage basins. The racks were immersed in late 1996 in the storage basins with a wide range of water parameters, and the corrosion was monitored at periodic intervals. Results of these early observations were reported after 18 months at the second research co-ordination meeting (RCM) in Sao Paulo, Brazil. Pitting and crevice corrosion were the main forms of corrosion observed. Corrosion caused by deposition of iron and other particles on the coupon surfaces was also observed. Galvanic corrosion of stainless steel/aluminium coupled coupons and pitting corrosion caused by particle deposition was observed. Additional corrosion racks were provided to the CRP participants at the second RCM and were immersed in the individual basins by mid-1998. As in the first set of tests, water quality proved to be the key factor in controlling corrosion. The results from the second set of tests were presented at the third and final RCM held in Bangkok, Thailand in October 2000. An IAEA document giving details about this CRP and other guidelines for spent fuel storage is in pres. This paper presents some details about the CRP and the basis for its extension. (author)

  19. Investigation of corrosion of materials of the irradiation device in the RA reactor

    International Nuclear Information System (INIS)

    Zaric, M.; Mance, A.; Vlajic, M.

    1963-12-01

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO 2 loop for samples cooling [sr

  20. A new model for the in-reactor corrosion of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B [University of Toronto, ON (Canada). Centre for Nuclear Engineering

    1997-02-01

    Previous models for the in-reactor corrosion of zirconium alloys have assumed that the mechanism is a completely solid-state diffusion process, determined by the growth and breakdown of the protective oxide film. In-reactor kinetics have been related to out-reactor kinetics with the oxide-metal interface temperature calculated from effects of heat flux. Recent experimental results have suggested that oxide dissolution and reprecipitation may be a major process leading to the formation of thick porous oxide films in-reactor. The model described here is based on the dissolution of primary recoil tracks in the oxide as the primary process distinguishing in-reactor from out-reactor corrosion. The consequences of such a model would be a very different microscopic morphology of in-reactor and out-reactor thick films, a significant irradiation effect on non-heat transfer surfaces, and a change in the kinetics of the overall process. This model should be equally applicable to PWR and BWR water chemistries because of the amphoteric nature of ZrO{sub 2}, and the effects of LiOH should operate by an essentially identical mechanism. A reciprocal rate equation should fit these processes and with additive terms seems capable of accommodating all water chemistry effects, except for discontinuous processes such as nodular corrosion. (author). 60 refs, 6 figs.

  1. A new model for the in-reactor corrosion of zirconium alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Previous models for the in-reactor corrosion of zirconium alloys have assumed that the mechanism is a completely solid-state diffusion process, determined by the growth and breakdown of the protective oxide film. In-reactor kinetics have been related to out-reactor kinetics with the oxide-metal interface temperature calculated from effects of heat flux. Recent experimental results have suggested that oxide dissolution and reprecipitation may be a major process leading to the formation of thick porous oxide films in-reactor. The model described here is based on the dissolution of primary recoil tracks in the oxide as the primary process distinguishing in-reactor from out-reactor corrosion. The consequences of such a model would be a very different microscopic morphology of in-reactor and out-reactor thick films, a significant irradiation effect on non-heat transfer surfaces, and a change in the kinetics of the overall process. This model should be equally applicable to PWR and BWR water chemistries because of the amphoteric nature of ZrO 2 , and the effects of LiOH should operate by an essentially identical mechanism. A reciprocal rate equation should fit these processes and with additive terms seems capable of accommodating all water chemistry effects, except for discontinuous processes such as nodular corrosion. (author). 60 refs, 6 figs

  2. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1992-01-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. Based on a comprehensive literature study concerning this theme, it has been attempted to identify the individual stages of the activity build-up and to classify their importance. The following areas are discussed in detail: The origins of the corrosion products and of cobalt-59 in the reactor feedwaters; the consolidation of the cobalt in the fuel pins deposits (activation); the release and transport of cobalt-60; the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarized. 90 refs, figs and tabs

  3. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  4. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  5. Nouvelles Techniques d'Intervention sur la Corrosion des Armatures du Béton Armé

    CERN Document Server

    Colloca, C

    1999-01-01

    Les principaux dégâts constatés dans les armatures passives du béton armé sont la corrosion généralisée et la corrosion locale. Ces dégradations sont provoquées soit par la carbonatation du béton soit par le contact avec l'eau pure ou l'eau chargée de chlorures pénétrant dans les pores et dans les fissures de surface. Ce document présente de nouvelles techniques d'intervention, fondées sur d'anciens principes, introduites pour le traitement électrochimique des zones altérées liées aux différentes conditions. La réalcalinisation (dans le cas de béton carbonaté) permet d'augmenter le pH du béton et de rétablir un niveau de basicité garantissant la passivation de l'armature. La désalification (dans le cas de béton entamé par les chlorures) provoque l'élimination des ions chlorure à travers la surface du béton. Les avantages de ces traitements, par rapport aux anciennes techniques, sont appréciables si l'on considère la durée d'exécution et leur coût moins élevé.

  6. High temperature electrochemistry related to light water reactor corrosion

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Balog, Janos; Schiller, Robert

    2004-01-01

    The present work deals with corrosion problems related to conditions which prevail in a WWER primary circuit. We had a two-fold aim: (A) electrochemical methods were applied to characterise the hydrothermally produced oxides of the cladding material (Zr-1%Nb) of nuclear fuel elements used in Russian made power reactors of WWER type, and (B) a number of possible reference electrodes were investigated with a view to high temperature applications. (A) Test specimens made of the cladding material, Zr-1%Nb, were immersed into an autoclave, filled with an aqueous solution typical to a WWER primary circuit, and were treated for different periods of time up to 28 weeks. The electrode potentials were measured and electrochemical impedance spectra (EIS) were taken regularly both as a function of oxidation time and temperature. This rendered information on the overall kinetics of oxide growth. By combining in situ and ex situ impedance measurements, with a particular view of the temperature dependence of EIS, we concluded that the high frequency region of impedance spectra is relevant to the presence of oxide layer on the alloy. This part of the spectra was treated in terms of a parallel CPE||R ox equivalent circuit (CPE denoting constant phase element, R ox ohmic resistor). The CPE element was understood as a dispersive resistance in terms of the continuous time random walk theory by Scher and Lax. This enabled us to tell apart electrical conductance and oxide growth with a model of charge transfer and recombination within the oxide layer as rate determining steps. (B) Three types of reference electrodes were tested within the framework of the LIRES EU5 project: (i) external Ag/AgCl, (ii) Pt/Ir alloy and (iii) Pd(Pt) double polarised active electrode. The most stable of the electrodes was found to be the Pt/Ir one. The Ag/AgCl electrode showed good stability after an initial period of some days, while substantial drifts were found for the Pd(Pt) electrode. EIS spectra of the

  7. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  8. Rôle des bactéries sulfurogènes dans la corrosion du fer Involvment of Sulfidogenic Bacteria in Iron Corrosion

    Directory of Open Access Journals (Sweden)

    Marchal R.

    2006-12-01

    Full Text Available Cet article fait le point sur les connaissances concernant l'implication des bactéries sulfurogènes dans la corrosion des aciers au carbone. Après la description de quelques cas récents tirés de l'industrie pétrolière, la physiologie des bactéries sulfurogènes qui jouent le rôle principal dans le mécanisme de la corrosion anaérobie d'origine bactérienne est examinée. La participation des bactéries productrices d'H2S à la constitution de biofilms est une condition importante à la manifestation des phénomènes de corrosion. Les différentes hypothèses de mécanismes décrites par la littérature sont passées en revue. Indépendamment du rôle physicochirnique joué par les sulfures de fer, non couvrants, bons conducteurs électriques, il en ressort que l'acidification résultant du métabolisme cellulaire est un facteur crucial, non seulement en termes d'électrochimie, mais également en termes de croissance microbienne. L'acidification métabolique explique vraisemblablement la fourniture des ions ferreux pour le micro-organisme dans un environnement chargé d'ions sulfures et finalement la persistance de son activité physiologique dans un micro environnement riche en H2S. The involvement of sulfidogenic bacteria in the corrosion of carbon steel is reviewed. After a brief description of some recent cases drawn from the petroleum industry, the physiology of the sulfidogenic bacteria which plays the most important role in the mechanism of anaerobic bacterial corrosion is examined. The involvement of H2S-producing bacteria to the biofilm formation is a prerequisite for biocorrosion. The hypothetical mechanisms described in the literature are reviewed. Regardless of the physicochemical role played by iron sulfides, which have been shown to be non-covering and to have good properties of electric conductivity, the acidification arising from cellular metabolism has been found to be an important parameter, not only in terms of

  9. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    International Nuclear Information System (INIS)

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1989-01-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid, and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS, carbon steel (CS) 1018 and A508, and heat-treated alloy 600 were suspended in recirculating mixtures of two or more combinations of citric acid, oxalic acid, and EDTA at temperatures of 90 C or 117 C for 22 hours. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosiveness of the solutions to nuclear reactor materials, particularly types 304 SS and 410 SS

  10. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  11. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  12. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  13. Corrosion surveillance programme for Latin American research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Haddad, R.; Ritchie, I.

    2002-01-01

    The objectives of the IAEA sponsored Regional Technical Co-operation Project for Latin America (Argentina, Brazil, Chile, Mexico, and Peru) are to provide the basic conditions to define a regional strategy for managing spent fuel and to provide solutions, taking into consideration the economic and technological realities of the countries involved. In particular, to determine the basic conditions for managing research reactor spent fuel during operation and interim storage as well as final disposal, and to establish forms of regional cooperation in the four main areas: spent fuel characterization, safety, regulation and public communication. This paper reports the corrosion surveillance activities of the Regional Project and these are based on the IAEA sponsored co-ordinated research project (CRP) on 'Corrosion of research reactor Al-clad spent fuel in water'. The overall test consists of exposing corrosion coupon racks at different spent fuel basins followed by evaluation. (author)

  14. Corrosion and protection of spent Al-clad research reactor fuel during extended wet storage

    International Nuclear Information System (INIS)

    Ramanathan, Lalgudi V.

    2009-01-01

    A variety of spent research reactor fuel elements with different fuel meats, geometries and 235 U enrichments are presently stored under water in basins throughout the world. More than 90% of these fuels are clad in aluminum (Al) or its alloy and are susceptible to corrosion. This paper presents an overview of the influence of Al alloy composition, galvanic effects (Al alloy/stainless steel), crevice effects, water parameters and synergism between these parameters as well as settled solids on the corrosion of typical Al alloys used as fuel element cladding. Pitting is the main form of corrosion and is affected by water conductivity, chloride ion content, formation of galvanic couples with rack supports and settled solid particles. The extent to which these parameters influence Al corrosion varies. This paper also presents potential conversion coatings to protect the spent fuel cladding. (author)

  15. Modelling and numerical simulation of the corrosion product transport in the pressurised water reactor primary circuit

    International Nuclear Information System (INIS)

    Marchetto, C.

    2002-05-01

    During operation of pressurised water reactor, corrosion of the primary circuit alloys leads to the release of metallic species such as iron, nickel and cobalt in the primary fluid. These corrosion products are implicated in different transport phenomena and are activated in the reactor core where they are submitted to neutron flux. The radioactive corrosion products are afterwards present in the out of flux parts of primary circuit where they generate a radiation field. The first part of this study deals with the modelling of the corrosion: product transport phenomena. In particular, considering the current state of the art, corrosion and release mechanisms are described empirically, which allows to take into account the material surface properties. New mass balance equations describing the corrosion product behaviour are thus obtained. The numerical resolution of these equations is implemented in the second part of this work. In order to obtain large time steps, we choose an implicit time scheme. The associated system is linearized from the Newton method and is solved by a preconditioned GMRES method. Moreover, a time step auto-adaptive management based on Newton iterations is performed. Consequently, an efficient resolution has been implemented, allowing to describe not only the quasi-steady evolutions but also the fast transients. In a last step, numerical simulations are carried out in order to validate the new corrosion product transport modelling and to illustrate the capabilities of this modelling. Notably, the numerical results obtained indicate that the code allows to restore the on-site observations underlining the influence of material surface properties on reactor contamination. (author)

  16. Electrochemical investigations for understanding and controlling corrosion in nuclear reactor materials

    International Nuclear Information System (INIS)

    Gnanamoorthy, J.B.

    1998-01-01

    Electrochemical techniques such as potentiodynamic polarization have been used at the Indira Gandhi Centre for Atomic Research at Kalpakkam for understanding and controlling the corrosion of nuclear reactor materials such as austenitic stainless steels and chrome-moly steels. Results on the measurements of critical potentials for pitting and crevice corrosion of stainless steels and their weldments and of laser surface modified stainless steels in aqueous chloride solutions are discussed. Investigations carried out to correlate the degree of sensitization in types 304 and 316 stainless steels, measured by the electrochemical potentiokinetic reactivation technique, with the susceptibility to intergranular corrosion and intergranular stress corrosion cracking have been discussed. The stress corrosion cracking behaviour of weldments of type 316 stainless steel was studied in a boiling solution of a mixture of 5 M NaCl and 0.15 M Na 2 SO 4 acidified to give a pH of 1.3 by monitoring of the open circuit potential with time as well as by anodic polarization. Interesting information could also been obtained on the microbiologically influenced corrosion of type 304 stainless steels in a fresh water system by carrying out cyclic potentiodynamic polarization measurements as well as by monitoring the open circuit potential measurements with exposure time. Since secondary phases present (or developed during thermal ageing) in stainless steels have a significant influence on their corrosion behaviour, the estimation of these secondary phases by electrochemical methods has also been discussed. (author)

  17. The Pegase reactor loops; Les boucles du reacteur Pegase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    After 4 years operation, experimentation and maintenance of the gas loops built especially for the nuclear fuel testing reactor Pegase, it appears desirable not only to gather together in a single document the essential characteristics and particularities of these devices and of their associated equipment, but also to give the reasons for the technical modifications and the way in which they were carried out; this is done here by the persons themselves who were responsible, day after day, for operating these loops. This essentially practically experience thus complements the careful research and preliminary testing carried out on these loops or on their prototypes. It should be of interest to those who deal with problems concerned with the design or operation of irradiation loops in experimental reactors or of similar equipment. (authors) [French] Apres 4 annees de fonctionnement, d'experimentation et d'entretien sur les boucles a gaz, construites specialement pour le reacteur d'essai des combustibles nucleaires Pegase, il a paru souhaitable non seulement de rassembler dans un meme document les caracteristiques et les particularites essentielles de ces dispositifs et des appareillages qui leur sont associes, mais aussi d'y preciser les raisons et les modalites des mises au point techniques, apportees par ceux qui, jour apres jour pendant cette periode, ont eu la charge de mettre en oeuvre ces boucles. Cette experience essentiellement pratique complete donc les etudes minutieuses et les essais preliminaires de ces boucles ou de leurs prototypes. Elle doit etre de quelque interet pour ceux qui sont confrontes aux problemes de conception ou d'exploitation de boucles d'irradiation dans des reacteurs experimentaux ou des dispositifs analogues. (auteurs)

  18. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  19. Evaluation of nitrogen containing reducing agents for the corrosion control of materials relevant to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Padma S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Mohan, D. [Department of Chemistry, Anna University, Chennai, Tamilnadu (India); Chandran, Sinu; Rajesh, Puspalata; Rangarajan, S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Velmurugan, S., E-mail: svelu@igcar.gov.in [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2017-02-01

    Materials undergo enhanced corrosion in the presence of oxidants in aqueous media. Usually, hydrogen gas or water soluble reducing agents are used for inhibiting corrosion. In the present study, the feasibility of using alternate reducing agents such as hydrazine, aqueous ammonia, and hydroxylamine that can stay in the liquid phase was investigated. A comparative study of corrosion behavior of the structural materials of the nuclear reactor viz. carbon steel (CS), stainless steel (SS-304 LN), monel-400 and incoloy-800 in the oxidizing and reducing conditions was also made. In nuclear industry, the presence of radiation field adds to the corrosion problems. The radiolysis products of water such as oxygen and hydrogen peroxide create an oxidizing environment that enhances the corrosion. Electrochemical studies at 90 °C showed that the reducing agents investigated were efficient in controlling corrosion processes in the presence of oxygen and hydrogen peroxide. Evaluation of thermal stability of hydrazine and its effect on corrosion potential of SS-304 LN were also investigated in the temperature range of 200–280 °C. The results showed that the thermal decomposition of hydrazine followed a first order kinetics. Besides, a change in electrochemical corrosion potential (ECP) was observed from −0.4 V (Vs SHE) to −0.67 V (Vs SHE) on addition of 5 ppm of hydrazine at 240 °C. Investigations were also made to understand the distribution behavior of hydrogen peroxide and hydrazine in water-steam phases and it was found that both the phases showed identical behavior. - Highlights: • Hydrazine was found to be a promising reducing agent for oxidant control. • In presence of hydrazine corrosion potential of SS304 LN was well below −230 mV. • SS304LN could be protected from IGSCC by hydrazine addition. • Thermal and radiation stability of hydrazine at 285 °C was found satisfactory.

  20. Modeling of liquid-metal corrosion/deposition in a fusion reactor blanket

    International Nuclear Information System (INIS)

    Malang, S.; Smith, D.L.

    1984-04-01

    A model has been developed for the investigation of the liquid-metal corrosion and the corrosion product transport in a liquid-metal-cooled fusion reactor blanket. The model describes the two-dimensional transport of wall material in the liquid-metal flow and is based on the following assumptions: (1) parallel flow in a straight circular tube; (2) transport of wall material perpendicular to the flow direction by diffusion and turbulent exchange; in flow direction by the flow motion only; (3) magnetic field causes uniform velocity profile with thin boundary layer and suppresses turbulent mass exchange; and (4) liquid metal at the interface is saturated with wall material. A computer code based on this model has been used to analyze the corrosion of ferritic steel by lithium lead and the deposition of wall material in the cooler part of a loop. Three cases have been investigated: (1) ANL forced convection corrosion experiment (without magnetic field); (2) corrosion in the MARS liquid-metal-cooled blanket (with magnetic field); and (3) deposition of wall material in the corrosion product cleanup system of the MARS blanket loop

  1. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    Laboratory experiments performed at Brookhaven National Laboratory have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of approximately 3.5mm per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant-lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. (author)

  2. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs

  3. Mitigation of stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Cowan, R.L. II

    1980-01-01

    Intergranular stress corrosion cracking (IGSCC) has occurred in a statistically small number of weld heat affected zones (HAZ) of 304 SS piping in BWR's. A range of mitigating actions have been developed and qualified that provide viable engineering solutions to the unique aspects of (1) operating plants, (2) plants under various stages of construction, and (3) future plants. This paper describes the technical development of each mitigating concept, relates it to the fundamental causal factors for IGSCC, and discusses its applicability to operating, in-construction and new BWR's. 31 refs

  4. Electrochemical corrosion potential monitoring in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Hettiarachchi, S.; Hale, D.H.; Law, R.J.

    1998-01-01

    The electrochemical corrosion potential (ECP) is defined as the measured voltage between a metal and a standard reference electrode converted to the standard hydrogen electrode (SHE) scale. This concept is shown schematically in Figure 1. The measurement of ECP is of primary importance for both evaluating the stress corrosion cracking susceptibility of a component and for assuring that the specification for hydrogen water chemistry, ECP < -230 mV, SHE is being met. In practice, only a limited number of measurement locations are available in the BWR and only a few reference electrode types are robust enough for BWR duty. Because of the radiolysis inherent in the BWR, local environment plays an important role in establishing the ECP of a component. This paper will address the strategies for obtaining representative measurements, given these stated limitations and constraints. The paper will also address the ECP monitoring strategies for the noble metal chemical addition process that is being implemented in BWRs to meet the ECP specification at low hydrogen injection rates. (author)

  5. Corrosion of research reactor aluminium-clad spent fuel in water-chemical and microbiological influenced

    International Nuclear Information System (INIS)

    Maksin, T.N.; Dobrijevic, R.P.; Idjakovic, Z.E.; Pesic, M.P.

    2002-01-01

    Spent fuel resulting from 25 years of operating research reactor RA at the Vinca Institute is presently all stored in the temporary spent fuel storage pool. It has been left in the ambient temperature and humidity for more then fifteen years so intensive corrosion processes were notice. We have spent fuel pools under control, after first research coordination meeting (RCM), of the first CRP, by monitoring of physical and chemical parameters of water in the pools, including temperature, pH-factor, electrical conductivity, mass concentration of corrosion products in the water and mud, mass concentration of relevant ions etc. The rack of standard corrosion coupons, was given at that time, has been in poor quality water for six years. We pick up rack assembly from basin and analysed. The results of this investigation are present in this article. (author)

  6. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  7. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  8. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  9. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  10. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  11. Corrosion Damage in Penetration Nozzle and Its Weldment of Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Lim, Yun Soo; Kim, Joung Soo; Kim, Hong Pyo; Hwang, Seong Sik; Yi, Young Sun; Kim, Dong Jin; Jung, Man Kyo

    2003-07-01

    The recent status on corrosion damage of reactor vessel head (RVH) penetration nozzles at primary water reactors (PWRs), including control rod drive mechanism (CRDM) and thermocouple nozzles, was investigated. The studies for primary water stress corrosion cracking (PWSCC) characteristics of Alloy 600 and Alloy 182/82 were reviewed and summarized in terms of the crack initiation and crack growth rate. The studies on the boric acid corrosion (BAC) of low alloy steels were also included in this report. PWSCC was found to be the main failure mechanism of RVH CRDM nozzles, which are constituted with Alloy 600 base metal and Alloy 182 weld filler materials. Alloy 600 and Alloy 182/82 are very susceptible to intergranular SCC in the PWR environments. The PWSCC crack initiation and growth features in the fusion zone of Alloy 182/82 were strongly dependant on solidification anisotropy during welding, test temperature, weld heat, mechanical loading, stress relief heat treatment, cold work and so on. BAC of low alloy steels is a wastage phenomenon due to general corrosion occurring on the over-all surface area of material. Systematic studies, concerned with structural integrity of RVH penetration nozzles as well as improvement of PWSCC resistance of nickel-based weld metals in the simulated PWR environment, are needed

  12. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  13. Constant load and constant displacement stress corrosion in simulated water reactor environments

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1987-02-01

    The stress corrosion behaviour of selected water reactor constructional materials, as determined by constant load or constant displacement test techniques, is reviewed. Experimental results obtained using a very wide range of conditions have been collected in a form for easy reference. A discussion is given of some apparent trends in these data. The possible reasons for these trends are considered together with a discussion of how the observed discrepancies may be resolved. (author)

  14. Investigation and evaluation of stress-corrosion cracking in piping of light water reactor plants

    International Nuclear Information System (INIS)

    1979-01-01

    In 1975, a Pipe Cracking Study Group, established by the United States Nuclear Regulatory Commission (USNRC), reviewed intergranular stress-corrosion cracking (IGSCC) in Bioling Water Reactors (BWRs) and issued a report. During 1978, IGSCC was reported for the first time in large-diameter piping (> 20 in.) in a BWR in Germany. This discovery, together with the reported questions concerning the interpretation of ultrasonic inspections, led to the activation of a new Pipe Crack Study Group (PCSG) by USNRC. The charter of the new PCSG was expanded: (1) to include review of potential for stress-corrosion cracking in Pressurized Water Reactors (PWRs) as well as BWRs, (2) to examine operating experience in foreign reactors relevant to IGSCC, and (3) to study five specific questions. The PCSG limited the scope of the study to BWR and PWR piping runs and safe ends attached to the reactor pressure vessel. Not considered were components such as the reactor pressure vessel, pumps, valves, steam generators, large steam turbines, etc. Throughout this report, as well as in the title, the safe ends are arbitrarily defined as piping

  15. The formation, composition and structure of corrosion products in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Rummery, T.E.

    1978-01-01

    To gain a better understanding of the formation and transport of corrosion products in CANDU-PHW power reactors, and the role played by these products in the generation and subsequent fixation of radioactive species, we have examined in detail several surfaces removed from the Douglas Point Generating Station (Douglas Point, Ontario). Results are given for the surface of the primary-side of a Monel-400 boiler tube, and surfaces of carbon steel piping at the inlet and outlet of the boiler. The experimental techniques that were used included sequential acid stripping, X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The corrosion products on the Monel-400 were mainly nickel, copper, nickel oxide and nickel-deficient nickel ferrite and varied in composition and quantity as a function of both distance from the boiler inlet, and depth in the corrosion layer. The radioactive cobalt ( 60 Co) content was localized in 'streaks' deposited in the straight sections of the boiler tube, but distributed uniformly over the whole surface in the downstream bend section. The material covering the carbon steel surface comprised three phases: magnetite, aluminosilicate particles at the outermost surface, and a mixed cation spinel phase uniformly distributed over the surface at the corrosion film-water interface. The formation, composition and structure of the corrosion products are discussed. (author)

  16. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  17. Process for dissolving the radioactive corrosion products from internal surfaces in nuclear reactors

    International Nuclear Information System (INIS)

    Brown, W.W.

    1976-01-01

    This invention concerns a process for dissolving in the coolant flowing in a reactor the radioactive substances from the corrosion of the internal surfaces of the reactor to which they cling. When a reactor is operating, the fission occurring in the fuel generates gases and fission substances, such as iodine 131 and 133, cesium 134 and 137, molybdenum 99, xenon 133 and activates the structural materials of the reactor such as nickel by giving off cobalt 58 and similar substances. Under this invention an oxygen rich solution is injected in the reactor coolant after the temperature and pressure reduction stage, during the preparation prior to refuelling and repairs. The oxygen in the solution speeds up the release of cobalt 58 and other radioactive substances from the internal surfaces of the reactor and their dissolving in the oxygenated cold coolant at the start of the cooling procedures of the installation. This allows them to be removed by an ion exchanger before the reactor is emptied. By utilising this process, about half a day may be gained in refuelling time when this has to be done once a week [fr

  18. Factors governing particulate corrosion product adhesion to surfaces in water reactor coolant circuits

    International Nuclear Information System (INIS)

    1979-03-01

    Gravity, van der Waals, magnetic, electrical double layer and hydrodynamic forces are considered as potential contributors to the adhesion of particulate corrosion products to surfaces in water reactor coolant circuits. These forces are renewed and evaluated, and the following are amongst the conclusions drawn; adequate theories are available to estimate the forces governing corrosion product particle adhesion to surfaces in single phase flow in water reactor coolant circuits. Some uncertainty is introduced by the geometry of real particle-surface systems. The major uncertainties are due to inadequate data on the Hamaker constant and the zeta potential for the relevant materials, water chemistry and radiation chemistry at 300 0 C; van der Waals force is dominant over the effect of gravity for particles smaller than about 100 m; quite modest zeta potentials, approximately 50mV, are capable of inhibiting particle deposition throughout the size range relevant to water reactors; for surfaces exposed to typical water reactor flow conditions, particles smaller than approximately 1 m will be stable against resuspension in the absence of electrical double layer repulsion; and the magnitude of the electrical double layer repulsion for a given potential depends on whether the interaction is assumed to occur at constant potential or constant change. (author)

  19. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  20. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L.; Hure, J.; Saint-James, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); Le peintre [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    'eau sous pression a une temperature voisine de 280 deg. C, la vitesse de circulation atteint 6 m/s. On etudie, du point de vue de la corrosion, les resultats obtenus, sur des gaines en aluminium, en attachant beaucoup d'attention aux phenomenes de cavitation susceptibles de causer de graves degats dans certaines circonstances particulieres. Apres avoir mis au point un dispositif d'electrode en verre pouvant supporter des pressions elevees les auteurs ont fait des recherches concernant les materiaux susceptibles de fonctionner comme electrode d'hydrogene et capables de resister convenablement a la corrosion par l'eau a 200 deg. C. Diverses possibilites ont ete examinees: electrodes de verres speciaux, de quartz, metallique, a membrane etc. On donne les resultats des differents essais et les limites pratiques d'utilisation. (auteur)

  1. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L; Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod, [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); peintre, Le [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    voisine de 280 deg. C, la vitesse de circulation atteint 6 m/s. On etudie, du point de vue de la corrosion, les resultats obtenus, sur des gaines en aluminium, en attachant beaucoup d'attention aux phenomenes de cavitation susceptibles de causer de graves degats dans certaines circonstances particulieres. Apres avoir mis au point un dispositif d'electrode en verre pouvant supporter des pressions elevees les auteurs ont fait des recherches concernant les materiaux susceptibles de fonctionner comme electrode d'hydrogene et capables de resister convenablement a la corrosion par l'eau a 200 deg. C. Diverses possibilites ont ete examinees: electrodes de verres speciaux, de quartz, metallique, a membrane etc. On donne les resultats des differents essais et les limites pratiques d'utilisation. (auteur)

  2. Corrosion of aluminium-clad spent fuel at RA research reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Dobrijevic, R.; Idjakovic, Z.

    2003-01-01

    Almost 95% of all spent fuel elements of the RA research reactor in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, are stored in 30 aluminium barrels and about 300 stainless steel channel-holders in the temporary spent fuel storage water pool. The first activities of sludge and water samples, taken from the pool, were measured in 1996-1997 and were followed by analysis of chemical composition of samples. Visual inspections of fuel elements in some stainless steel tubes and of the fuel channels stored in the reactor core have shown that some deposits cover aluminium cladding. Stains and surface discoloration are noted on many of the spent fuel elements that were examined visually during the core unloading and inspections carried out in 1979 - 1984. Some of water samples, taken from pool, about a 150 stainless steel tubes and 16 barrels have shown very high 137-Cs activity compared to low activity measured in pool water. It was concluded that aluminium cladding of the fuel elements was penetrated due to corrosion process. Study on influence of water corrosion processes in the RA reactor storage pool was started within the framework of the IAEA CRP 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water' in 2002. The first test rack with various aluminium and stainless steel coupons, supplied by the IAEA, was immersed in the pool already in 1996. New racks were immersed in 2002 and 2003. The rack immersed in 1996 was taken out from the pool in 2002 and the rack immersed in 2002 was taken out in 2003. Results of the examination of these racks, carried out according to the strategy and the protocol, proposed by the IAEA, are described in this paper. (author)

  3. Corrosion of magnesium and some magnesium alloys in gas cooled reactors

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.

    1958-01-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO 2 : (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO 2 , these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author) [fr

  4. Corrosion of aluminium-clad spent fuel in LVR-15 research reactor storage facilities. Final report

    International Nuclear Information System (INIS)

    Splichal, K.; Berka, J.; Keilova, E.

    2006-03-01

    The corrosion of the research reactor aluminium clad spent fuel in water was investigated in two storage facilities. The standard racks were delivered by the IAEA and consisted of two aluminium alloys AA 6061 and Szav-1 coupons. Bimetallic couples create aluminium alloy and stainless steel 304 coupons. Rolled and extruded AA 6061 material was also tested. Single coupons, bimetallic and crevice couples were exposed in the at-reactor basin (ARB) and the high-level wastage pool (HLW). The water chemistry parameters were monitored and sedimentation of impurities was measured. The content of impurities of mainly Cl and SO 4 was in the range of 2 to 15 μg/l in the HLW pool; it was about one order higher in ARB. The Fe content was below 2 μg/l for both facilities. After two years of exposure the pitting was evaluated as local corrosion damage. The occurrence of pits was evaluated predominantly on the surfaces of single coupons and on the outer and inner surfaces of bimetallic and crevices coupons. No correlation was found between the pitting initiation and the type of aluminium alloys and rolled and extruded materials. In bimetallic couples the presence of stainless coupons did not have any effect on local corrosion. The depth of pits was lower than 50 μm for considerable areas of coupons and should be compared with the results of other participating institutes. (author)

  5. Some investigations on the pitting attack of magnesium and its alloys; Contribution a l'etude de la corrosion par piqures du magnesium et de ses alliages

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-01

    The pitting attack of magnesium and its alloys has been studied by means of potentio-kinetic polarisation curves; the following parameters have been considered: structural state and composition of the metal, chloride concentration and pH of the medium. The electrochemical data obtained demonstrate that when pH = 12, a localized corrosion might appear as soon as a 10{sup -3} M NaCl concentration is reached; on the other hand, when pH = 13, a much higher concentration (five times) has no effect. In the same conditions, the coupling of magnesium with various noble materials (graphite, platinum, 18/10 stainless steel) also dramatically increases its susceptibility to pitting, but only when chloride ions are present in the solution. Usual corrosion tests have confirmed these electrochemical results. A micrographic study of the pits has shown that their morphology is connected with the metallurgical state of the specimens. (author) [French] La corrosion par piqures du magnesium est etudiee a l'aide des courbes de polarisation potentiocinetiques en fonction des parametres suivants etat structural et composition du metal, concentration en chlorure et pH de la solution. De ces mesures electrochimiques on deduit qu'a pH 12, des la concentration 10{sup -3} M en NaCl, il existe un risque de corrosion localisee, tandis qu'a pH 13 une concentration cinq fois plus forte doit etre sans effet. Dans les memes conditions on montre que le couplage du magnesium avec differents elements nobles (graphite, platine, acier inoxydable 18/10) accroit fortement sa susceptibilite a l'attaque par piqures, excepte dans les solutions exemptes d'ions chlorures. Des essais classiques de corrosion dans les differentes solutions envisagees precedemment confirment les resultats de cette etude electrochimique. L'examen micrographique des piqures montre que leur morphologie est liee a l'etat metallurgique des echantillons. (auteur)

  6. Measurement of the thermal utilisation factor of the reactor G1; Mesure du facteur d'utilisation thermique du reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Roullier, F; Schmitt, A P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The thermal utilisation factor of the lattice of the reactor G1 has been measured by applying the autoradiographic technique to thin detectors irradiated in the cell. The experimental apparatus is described, and the results compared with those obtained by calculation based on various formulae. The results of the study of the thermal flux distribution in a cell containing a thorium rod of the same diameter as the uranium rods in the lattice are also given. The precision of the measurements is discussed. Value found: f diameter 26 = 0.8949 {+-} 0,005. (author) [French] Le facteur d'utilisation thermique du reseau du reacteur G1 a ete mesure en appliquant la technique de l'autoradiographie a des detecteurs minces irradies dans la cellule. Les dispositifs experimentaux sont decrits et les resultats sont compares a ceux obtenus par le calcul a partir de diverses formules. Les resultats de l'etude de la distribution du flux thermique dans une cellule contenant une barre de thorium de meme diametre que les barres d'uranium du reseau sont egalement indiques. La precision des mesures est discutee. Valeur trouvee: f diametre 26 = 0,8949 {+-} 0,005. (author)

  7. Electrochemical aspects on corrosion in Swedish reactor containments; Elektrokemiska aspekter paa korrosion i svenska reaktorinneslutningar

    Energy Technology Data Exchange (ETDEWEB)

    Ullberg, Mats [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)

    2006-10-15

    Post-stressed concrete is used in all Swedish nuclear reactor containments. Steel in concrete is normally protected from corrosion by the highly alkaline pore solution in concrete. A passive film develops on the surface of steel in contact with the pore solution. However, corrosion may still occur under special circumstances. It is therefore desirable to monitor the corrosion status of the containment. A review of the corrosion experience with steel in concrete strongly suggests that the potential problem of most concern for the Swedish reactor containments is cavity formation during grouting of tendons and of penetrations in the containment wall. Cavities break the contact between alkaline grout and steel. Corrosion is then possible, provided the relative humidity is high enough. Normal methods for inspection of the corrosion status of steel reinforcement in concrete are not applicable to very heavy structures like reactor containments. Since inspections are difficult to carry out, it is important that they be focused on the most susceptible portions of the containment. This report is an attempt to assemble potentially useful background information. The original intention was to focus on electrochemical methods of investigation. When it was realized that the potential use of electrochemical methods was limited, the scope of the review was broadened. The present as well as previous investigations indicate that nondestructive testing of grouted tendons is the outstanding problem in the condition assessment of Swedish nuclear reactor containments. Grouted tendons are also used in a very large number of bridges built since the early 1950s. The experience gained in connection with bridges has therefore been investigated. The need for a testing method for grouted tendons in bridges has long been strongly felt and development work has been in progress since the early 1970-ies, for example within the Strategic Highway Research Project in the Unite States. Potential

  8. Preliminary assessment of stress corrosion cracking of nickel based alloy 182 in nuclear reactor environment

    International Nuclear Information System (INIS)

    Lima, Luciana Iglesias Lourenco; Bracarense, Alexandre Queiroz; Schvartzman, Monica Maria de Abreu Mendonca; Quinan, Marco Antonio Dutra

    2010-01-01

    Stress corrosion crack (SCC) in a primary circuit of a nuclear pressurized water reactor consists of a degradation process in which aggressive media, stress and material susceptibility are present. Over the last thirty years, SCC has been observed in dissimilar metal welds. This study presents a comparative work between the SCC in the alloy 182 filler metal weld in two different hydrogen concentrations (25 e 50 cm 3 H 2 /kg H 2 O) in primary water. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT test indicated that the material is more susceptible to SCC at 25 cm 3 H 2 /kg H 2 O. (author)

  9. Stress corrosion cracking studies of reactor pressure vessel steels. Final report

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.

    1996-10-01

    The objective of this project was to perform a critical review of the information available in open literature on stress corrosion cracking of reactor pressure vessel materials in simulated light-water-reactor (LWR) conditions, develop a test procedure for conducting stress corrosion crack growth experiments in simulated LWR environments, and conduct a test program in an effort to duplicate some of the data available from the literature. The authors concluded that stress corrosion crack growth has been observed in pressure vessel steels under laboratory test conditions. The composition of the water in most cases where growth was observed is outside of the composition specified for operating conditions. Crack growth was observed in the experiments performed in this program, and it was intermittent. The cracking would start and stop for no apparent reason. In most instances, it would not restart without the change of some external variable. In a few instances, it restarted on its own. Crack growth rates as high as 3.6 x 10 -9 m/sec were observed in pressure vessel steels in high-purity water with 8 ppm oxygen. These high crack growth rates were observed for extremely short bursts in crack extension. They could not be sustained for crack growth extensions greater than a few tenths of a millimeter. From the results of this project it appears highly unlikely that stress corrosion cracking will be observed in operating nuclear plants where the coolant composition is maintained within water chemistry guidelines. However, more work is needed to better define the contaminations that cause crack growth. The crack growth rates are so high and the threshold values for crack nucleation are so low that the conditions causing them need to be well defined and avoided

  10. High temperature filtration of radioactivable corrosion products in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Dolle, L.

    1976-01-01

    A effective limitation to the deposition of radioactive corrosion products in the core of a reactor at power operation, is to be obtained by filtering the water of the primary circuit at a flow rate upper than 1% of the coolant flow rate. However, in view of accounting for more important release of corrosion products during the reactor start-up and also for some possible variations in the efficiency of the system, it is better that the flow rate to be treated by the cleaning circuit is stated at 5%. Filtration must be effected at the temperature of the primary circuit and preferably on each loop. To this end, the feasibility of electromagnetic filtration or filtration through a deep bed of granulated graphite has been studied. The on-loop tests effected on each filter gave efficiencies and yields respectively upper than 90% and 99% for magnetite and ferrite particles in suspension in water at 250 deg C. Such results confirm the interest lying in high temperature filtration and lead to envisage its application to reactors [fr

  11. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  12. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    International Nuclear Information System (INIS)

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented

  13. Corrosion damage to the aluminum tank liner of the U.S. Geological Survey TRIGA Reactor

    International Nuclear Information System (INIS)

    Perryman, R.E.; Millard, H.T. Jr.; Rusling, D.H.; Heifer, P.G.; Smith, W.L.

    1988-01-01

    During a routine maintenance small holes at the side of the tank of the reactor, penetrating the tank liner were discovered. Apparently the corrosion was acting from the back side of the tank forming the holes. The NRC was promptly notified and routine operations were suspended. Further investigation lead to the discovery of 74 holes, most of which were less than 1/8 inch in diameter with a few as large as 1/4 inch diameter. The results of an examination of the plate cut from the side of the tank correlated the absence of tar coating with the presence of numerous corrosion pits and craters. Along the welds in the corroded areas, parallel corrosion troughs existed on either side of the weld. Most of the pits and craters were too small to be detected by ultrasonic survey. In order to remedy the physical problem and be able to resume the reactor operation, a short-term strategy was adopted which involved covering the 74 holes with aluminum patches coated with epoxy. Reactor operations were resumed and over the next month four new holes were found and four patches applied. An inspection conducted after four months of operation found 28 new holes and the rate of leakage of water from the tank had increased to about 0.7 l/h. Because the rate of formation of holes seemed to be accelerating and the time required for maintenance was becoming unacceptable, it was decided to cease operation of the reactor until long-term repairs could be made. A new aluminum tank liner will be installed within the existing tank. A 2-inch wide annular void will then exist between the new and old liners. A pump will be installed inside the new liner to prevent the ground water from contacting it. The top of the void will be shielded to reduce the exposure to neutrons and gamma rays scattered from areas near the reactor. The reactor will be reinstalled at the bottom of the new liner on a plate which can be levelled from a distance of 10 feet

  14. Evolution of processing of GE fuel clad tubing for corrosion resistance in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.D. [GE Nuclear Energy, Wilmington, NC (United States); Adamson, R.B. [GE Nuclear Energy, Wilmington, NC (United States); Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Plaza-Meyer, E. [GE Nuclear Energy, Wilmington, NC (United States); Proebstle, R.A. [GE Nuclear Energy, Wilmington, NC (United States); White, D.W. [GE Nuclear Energy, Wilmington, NC (United States)

    1996-05-01

    The current modification of the primary GE in-process solution-quench heat treatment, an (alpha+beta) solution-quench carried out at a tube diameter requiring only two subsequent reduction and anneal cycles, is applicable to Zr barrier fuel clad tubing, to non-barrier fuel clad tubing, and to the TRICLAD tubing product. A combination of good in-reactor corrosion performance and degradation resistance is anticipated for these products, based on knowledge of metallurgical characteristics and supported by the demonstrated performance capability of the Zircaloy-2 materials used. (orig.)

  15. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  16. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  17. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    International Nuclear Information System (INIS)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N.

    2001-01-01

    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  18. Reactor thread-joint metal with corrosion resistant coating material low cycle fatigue

    International Nuclear Information System (INIS)

    Gorynin, V.I.; Kondratyev, S.Yu.

    1991-01-01

    The results of test carried out show that the Ni-P plating which was thermally treated in inert medium, provide the dependence of the reactor equipment studs in the high-concentrated medium of leakage for a period of up to 3000 hours. The Al and aluminized platings of the studs made of steel 38 KhN 3 MFA don't provide their corrosion dependence in the reactor medium. Cr plating provides the dependence during 500 hours. The reported test allows to recommend Ni-P plating to depend the studs in the conditions of the effect of the high-concentrated leakage medium, containing KOH, H 3 BO 3 and NaCl. (author)

  19. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Keith J., E-mail: leonardk@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Stevens, Jacqueline N. [AREVA Inc., Lynchburg, VA (United States); Busby, Jeremy T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-11-15

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In the present work, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. The cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  20. Study of the dynamic behaviour of the reactor Rapsodie; Etude du comportement dynamique de la pile rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Abdon, R; Chaigne, M [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    . The investigation of the control, carried out on analog computer, served to determine the different possible means of starting and changing the conditions of the reactor as well as its automatic control. The calculations were examined in the totality by the construction of a training simulator composed of a board similar to the control board of the reactor, all of whose commands (reactivity and flows) work on an analogue computer which resolves in the real time the dynamic equations of the reactor and which reproduces simultaneously all the parameters representing the state of the installation (power, period, temperatures, etc. ) in the case of various incidents as well as under normal conditions of functioning. (authors) [French] On sait que le developpement des reacteurs surgenerateurs a neutrons rapides pose des problemes nouveaux d'une part dans les domaines mecanique et thermique et d'autre part en ce qui concerne leur comportement dynamique et leur surete. La pile RAPSODIE a ete l'objet de tres nombreuses etudes dynamiques effectuees sur machines analogiques et digitales, pour deux versions du combustible (metal et oxyde). Apres elaboration des modeles mathematiques representatifs de l'ensemble de l'installation (bloc pile et circuit de refroidissement) tant du point de vue neutronique que du point de vue thermodynamique, on a mis au point les schemas analogiques et les codes digitaux utilisables pour mener a bien les simulations d'incidents, de conduite et de stabilite du reacteur. On s'est attache, par rapport aux methodes habituelles a obtenir une precision plus grande, par un decoupage en zones plus fines, par l'emploi de formulations plus representatives du systeme reel, voire solubles analytiquement. Les etudes d'incidents ont ete effectuees par voie analogique pour l'ensemble de l'installation et par voie digitale pour l'etude du bloc pile seul ou de l'installation fonctionnant avec un seul circuit thermique. Un programme complementaire special - qui, a

  1. Inspection indications, stress corrosion cracks and repair of process piping in nuclear materials production reactors

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; West, S.L.; Nelson, D.Z.

    1991-01-01

    Ultrasonic inspection of Schedule 40 Type 304 stainless steel piping in the process water system of the Savannah River Site reactors has provided indications of discontinuities in less than 10% of the weld heat affected zones. Pipe sections containing significant indications are replaced with Type 304L components. Post removal metallurgical evaluation showed that the indications resulted from stress corrosion cracking in weld heat-affected zones and that the overall weld quality was excellent. The evaluation also revealed weld fusion zone discontinuities such as incomplete penetration, incomplete fusion, inclusions, underfill at weld roots and hot cracks. Service induced extension of these discontinuities was generally not significant although stress corrosion cracking in one weld fusion zone was noted. One set of UT indications was caused by metallurgical discontinuities at the fusion boundary of an extra weld. This extra weld, not apparent on the outer pipe surface, was slightly overlapping and approximately parallel to the weld being inspected. This extra weld was made during a pipe repair, probably associated with initial construction processes. The two nearly parallel welds made accurate assessment of the UT signal difficult. The implications of these observations to the inspection and repair of process water systems of nuclear reactors is discussed

  2. Prediction of Outside Surface Aluminium Tank Corrosion on TRIGA Mark - IIResearch Reactor Bandung

    International Nuclear Information System (INIS)

    Soedardjo

    2000-01-01

    The prediction of outside surface aluminium tank corrosion on researchreactor design which coated by epoxy paint, has been assessed. The new TRIGAMark - II Bandung research reactor tank design separated by 3 section arebottom, middle and upper section then inserted into the existing old reactor.The separation carried out caused by the space constraint on top of old tank,so that the novel tank impossible inserted into old tank all at once. Thespace between novel and old tank is 10 mm. After bottom and middle section oftank welded then followed by epoxy painting and inserted partially into oldtank. From then on the middle and upper section welded and followed by epoxypainting then inserted into old tank. Based on prediction result, that theroot cause of corrosion would be took place on welding and on imperfectlyepoxy painting area. The outside surface novel tank would be generated by thereaction between imperfectly epoxy painting area and the highly basecondition on cement grout that available on novel and old tank gap. (author)

  3. Stress corrosion cracking of zircaloy. The use of laboratory data to predict in-reactor behaviour

    International Nuclear Information System (INIS)

    Miller, A.K.; Ocken, H.

    1981-01-01

    Pellet-cladding interaction (PCI) can lead to failure of the Zircaloy tubing used as cladding in water-cooled reactors. Many investigations have shown that the mechanism directly responsible for such fuel rod failures is stress corrosion cracking (SCC) of Zircaloy tubing. Laboratory studies have yielded extensive data on the time-to-failure (tsub(f)) behaviour of Zircaloy tubing specimens as a function of such important variables as the applied hoop stress (σ sub(h)), the iodine concentration (I 2 ), the temperature (T) and the fluence (F). These data have been used to predict the response of Zircaloy tubing exposed in-reactor. A typical approach is to fit laboratory data to obtain an empirical equation for tsub(f) in terms of the variables identified above. The question can then be posed as to whether it is appropriate to use such an empirical expression for predicting in-reactor behaviour. This paper describes the approach which has been taken in modelling the SCC process. It first reviews the experimental observations upon which the model is based. A summary of the key features of the model is then presented. The model's capabilities, emphasizing those predictions that are independent of data used to evaluate empirical constants, are briefly discussed. Finally, it is shown how the model can be used to predict important differences between the response of tubing specimens exposed in the laboratory and the response of large quantities of tubing exposed in-reactor

  4. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  5. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  6. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  7. Mitigation of intergranular stress corrosion cracking in RBMK reactors. Final report of the programme's steering committee

    International Nuclear Information System (INIS)

    2002-09-01

    In 2000 the IAEA initiated an Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK Reactors to assist countries operating RBMK reactors in addressing the issue in austenitic stainless steel 300 mm diameter piping. Intergranular stress corrosion cracking of austenitic stainless steel piping in BWRs has been a major safety concern since the early seventies. Similar degradation was found in RBMK reactor piping in 1997. Early in 1998 the IAEA responded to requests for assistance from RBMK operating countries on this issue through activities organized in the framework of Technical Co-operation Department regional projects and the Extrabudgetary Programme on the Safety of WWER and RBMK Nuclear Power Plants. Results of these activities were a basis for the formulation of the objective and scope of the Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK reactors ('the Programme'). The scope of the Programme included in-service inspection, assessment, repair and mitigation, and water chemistry and decontamination. The Programme was pursued by means of exchange of experience, formulation of guidance, transfer of technology, and training, which will assist the RBMK operators to address related safety concerns. The Programme implementation relied on voluntary extrabudgetary financial contributions from Japan, Spain, the United Kingdom and the USA, and on in kind contributions from Finland, Germany and Sweden. The Programme was implemented in close co-ordination with ongoing national and bilateral activities and major inputs to the Programme were provided through the activities of the Swedish International Project Nuclear Safety and of the US DOE International Nuclear Safety Program. The RBMK nuclear power plants in Lithuania, Russian Federation and Ukraine hosted most of the Programme activities. Support of these Member States involved in the Programme was instrumental for its successful completion in

  8. Corrosion of zirconium alloys in nuclear reactors: A model for irradiation induced enhancement by local radiolysis in the porous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lemaignan, C; Salot, R [CEA/DRN/DTP, CENG-SECC, Grenoble (France)

    1997-02-01

    An analysis has been undertaken of the various cases of local enhancement of corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic {beta}{sup -} is present leading to a local energy deposition rate higher than the core average. This suggests that the local transient radiolytic oxidizing species produced in the coolant by the {beta}{sup -} particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, and in front of Pt inserts or Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionizing species like {alpha} from Ni-rich alloys and fission products in homogeneous reactors. Due to the changes induced by the irradiation intensity on the concentration of the radiolytic species, the coolant chemistry, that controls the boundary conditions for oxide growth, has to be analyzed with respect to the local value of the energy deposition rate. An analysis has been undertaken which shows that, in a porous media, the water is exposed to a higher intensity than bulk water. This leads to a higher concentration of oxidizing radiolytic species at the root of the cracks of the porous oxide, and increases the corrosion rate under irradiation. This mechanism, deduced from the explanation proposed for localized irradiation enhanced corrosion, can be extended to the whole reactor core, where the general enhancement of Zr alloys corrosion under irradiation could be attributed to the general radiolysis in the porous zirconia. (author). 18 refs, 3 figs, 3 tabs.

  9. Construction of the core of the 'heavy water-gas' reactor EL 4; Structures du coeur du reacteur 'eau- lourde-gaz EL 4'

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J L; Foulquier, H; Thome, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    problem of thermal insulation around a zirconium alloy liner tube. The neutron absorption equivalent is about 1, 1 mm of Al, and the mean loss around 2 p. 100 of the thermal power of the reactor. The methods proposed have proved practicable as a result of important research and developments on automatic remote control for all the operations which make up the sequences of mounting, demounting and repairing of the construction components. In particular the possibilities opened up by the new techniques of welding tubes from the inside have been extended to other problems connected with the assembling of a reactor. (authors) [French] Le coeur de ce reacteur est constitue par une cuve contenant l'eau lourde, cuve traversee d'une serie de tubes de force dans lesquels circule le gaz caloporteur sous pression de 60 at. Les specifications de depart qui ont joue un role important dans la conception de ces structures concernent des aspects de securite de fonctionnement (chargement du combustible par les deux faces du reacteur, remplacement des structures sur les deux faces du reacteur), des necessites neutroniques (absorption des structures minimum, pas du reseau, diametre des tubes de force) et des considerations thermiques (temperature de sortie 500 C). Ces specifications ont entraine une disposition horizontale des tubes de force et des problemes d'encombrement tres delicats qui ont elimine (pour les dimensions d'EL 4) toute possibilite de recourir a des compensateurs de dilatation sur les tubes de force. II s'ensuit un dessin de cuve semi-rigide dans lequel les tubes de force contribuent pour une part importante a la resistance mecanique de l'ensemble en jouant le role de tirant, d'ou des contraintes elevees sur les jonctions et tubes de force (et le choix des alliages de zirconium). Les structures comprennent le tube de force, les jonctions, l'isolement thermique et le tube de guidage. On expose brievement les moyens d'essais mis en oeuvre et les performances de ces diverses

  10. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  11. Contribution to the study of corrosion of zirconium and zircaloy-2 in superheated steam at 400 deg C (105 kg /cm{sup 2}); Contribution a l'etude de la corrosion du zirconium et du zircaloy-2 dans la vapeur d'eau surchauffee a 400 deg C (105 kg /cm{sup 2})

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Gauduchau, J; Grall, L; Hure, J; Pelras, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The corrosion kinetics of zircaloy-2 in water and steam at temperatures between 300 deg. C and 400 deg. C are represented by a curve sharply divided into two stages separated by a so-called transition point. After a first period of decreasing corrosion rate there follows a second period with much faster kinetics in which the speed is constant. After carrying out a methodical study of the corrosion of 'zircaloy-2 in the form of sheets and tubes. We have demonstrated, at 400 deg. C in steam, a systematic anomaly which appears at the transition point. The curve presents three quite distinct points; after the first period a fast corrosion is observed, followed by a third period at a slower speed. This leads us to believe that there may be not a single point but a transition zone, separating two types of kinetic behaviour and corresponding to modifications in the properties of the oxide layer. After this readjustment period a new corrosion law is established, lasting a considerable time, the corrosion speed being slower than that indicated so far. A study of the morphology of the oxide films which develop under these conditions has demonstrated the special part played by mechanical, physical and metallurgical factors in the case of zirconium. Deep penetration of oxide can thus show up on the inner wall of hammer-hardened tubes. Simultaneously a very considerable hydride formation occurs in the metal. (author) [French] La cinetique de corrosion du zircaloy-2 dans l'eau et la vapeur a des temperatures comprises entre 300 et 400 deg. C est representee par une courbe a deux periodes separees par un point singulier appele point de transition. A une premiere periode a vitesse de corrosion decroissante, succede une deuxieme periode a cinetique beaucoup plus rapide dont la vitesse est constante. Apres une etude systematique de la corrosion du zircaloy-2 sous forme de toles et de tubes, nous avons mis en evidence a 400 deg. C, dans la vapeur, une anomalie systematique qui se

  12. In-reactor fuel cladding external corrosion measurement process and results

    International Nuclear Information System (INIS)

    Thomazet, J.; Musante, Y.; Pigelet, J.

    1999-01-01

    Analysis of the zirconium alloy cladding behaviour calls for an on-site corrosion measurement device. In the 80's, a FISCHER probe was used and allowed oxide layer measurements to be taken along the outer generating lines of the peripheral fuel rods. In order to allow measurements on inner rods, a thin Eddy current probe called SABRE was developed by FRAMATOME. The SABRE is a blade equipped with two E.C coils is moved through the assembly rows. A spring allows the measurement coil to be clamped on each of the generating lines of the scanned rods. By inserting this blade on all four assembly faces, measurements can also be performed along several generating lines of the same rod. Standard rings are fitted on the device and allow on-line calibration for each measured row. Signal acquisition and processing are performed by LAGOS, a dedicated software program developed by FRAMATOME. The measurements are generally taken at the cycle outage, in the spent fuel pool. On average, data acquisition calls for one shift per assembly (eight hours): this corresponds to more than 2500 measurement points. These measurements are processed statistically by the utility program SAN REMO. All the results are collected in a database for subsequent behaviour analysis: examples of investigated parameters are the thermal/hydraulic conditions of the reactors, the irradiation history, the cladding material, the water chemistry This analysis can be made easier by comparing the behaviour measurement and prediction by means of the COROS-2 corrosion code. (author)

  13. Detection of stress corrosion cracks in reactor pressure vessel and primary coolant system anchor studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1987-01-01

    Under Electric Power Research Institute (EPRI) contract No. 2179-2, southwest Research Institute is continuing work on the use of the cylindrically guided wave technique (CGWT) for inspecting stud bolts. Also being evaluated is the application of the CGWT to the inspection of reactor coolant pump shafts. Data have been collected for stud bolts ranging from 16 to 112 inches (40.6 to 285 cm) in length, and from 1 to 4.5 inches (2.54 to 11.4 cm) in diameter. For each bolt size, tests were conducted to determine the smallest detectable notch, the effect of thread noise, and the amount of detectable simulated corrosion. The ratio of reflected longitudinal signals to mode-converted signals was analyzed with respect to bolt diameter, bolt length, and frequency parameters. The results of these test showed the following: (1) The minimum detectable notch in the threaded region was approximately 0.05 inch (1.3 mm) for all stud bolts evaluated. (2) Thread noise could easily be detected, but the level of noise was below the minimum detectable notch signal. (3) For carbon steel, optimum transducer frequency was 5 MHz, using a transducer whose face had an impedance that matched the steel surface. (4) Simulated corrosion of 15% reduced diameter could be detected

  14. Corrosion product deposition on fuel element surfaces of a boiling water reactor

    International Nuclear Information System (INIS)

    Orlov, A.

    2011-01-01

    Over the last decade the problem of corrosion products deposition on light water reactor fuel elements has been extensively investigated in relation to the possibility of failures caused by them. The goal of the present study is to understand in a quantitative way the formation of such kind of deposits and to analytically understand the mechanism of formation and deposition with help of the quasi-steady state concentrations of a number of 3d metals in reactor water. Recent investigations on the complex corrosion product deposits on a Boiling Water Reactor (BWR) fuel cladding have shown that the observed layer locally presents unexpected magnetic properties. The buildup of magnetic corrosion product deposits (crud) on the fuel cladding of the BWR, Kernkraftwerk Leibstadt (KKL) Switzerland has hampered the Eddy-current based measurements of ZrO 2 layer thickness. The magnetic behavior of this layer and its axial variation on BWR fuel cladding is of interest with respect to non-destructive cladding characterization. Consequently, a cladding from a BWR was cut at elevations of 810 mm, where the layer was observed to be magnetic, and of 1810 mm where it was less magnetic. The samples were subsequently analyzed using electron probe microanalysis (EPMA), magnetic analysis and X-ray techniques (μXRF, μXRD and μXAFS). Both EPMA and μXRF have shown that the observed corrosion deposit layer which is situated on the Zircaloy corrosion layer consists mostly of 3-d elements’ oxides (Fe, Zn, Ni and Mn). The distribution of these elements within the investigated layer is rather complex and not homogeneous. The main components identified by 2D μXRD mapping inside the layer were hematite and spinel phases with the common formula (M x Fe y )[M (1-x) Fe (2-y) ]O 4 , where M = Zn, Ni, Mn. With μXRD it was clearly shown that the cell parameter of analyzed spinel is different from the one of the pure endmembers (ZnFe 2 O 4 , NiFe 2 O 4 and MnFe 2 O 4 ) proving the existence of

  15. Inhibition between 350 and 500 deg. C of the corrosion of magnesium by damp air; Inhibition entre 350 et 500 deg. C de la corrosion du magnesium par l'air humide

    Energy Technology Data Exchange (ETDEWEB)

    Darras, Raymond; Caillat, Roger [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    It has been demonstrated that the formation of a fluoride layer on the surface of magnesium by either dry or wet methods raises the temperature to which it resists corrosion in damp air from 350 to 490 deg. C. This protection effect could lead to a revision of the Pilling and Bedworth rule. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, sitting of 19 October 1959 [French] Il a ete montre que la formation d'une couche fluoree a la surface du magnesium, soit par voie seche, soit par voie humide, permet d'elever de 350 a 490 deg. C la temperature jusqu'a laquelle il resiste a la corrosion dans l'air humide. Cet effet protecteur pourrait conduire a revoir la regle de Pilling et Bedworth. Reproduction d'un article publie dans les 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, seance du 19 octobre 1959.

  16. Studies on dissolution characteristics of simulated corrosion products on pressurized water reactor primary coolant loops. Pt.2: Cobalt simulated corrosion product

    International Nuclear Information System (INIS)

    Li Shan; Zhou Xianyu

    1997-01-01

    The studies on the dissolution characteristics of simulated corrosion product of cobalt on pressurized water reactor primary coolant loops in aqueous solution of citric acid, hydrogen peroxide and citric acid-hydrogen peroxide have been performed. The results show that the portion of the dissolved simulated corrosion product of cobalt in citric acid aqueous solution clearly increases with a rise in citric acid concentration and is ten times above the corresponding value of iron. The portion of the products that dissolve is the largest at pH 3.00 in the pH range of 2.33∼4.50 and at 70 degree C in the range of 60∼80 degree C. It is shown that the portion of the dissolved simulated corrosion product of cobalt in hydrogen peroxide aqueous solution is smaller than the corresponding value in citric acid, and that the portion of the dissolved simulated corrosion product of cobalt in aqueous solution of hydrogen peroxide-citric acid is larger than the corresponding value in single citric acid aqueous solution

  17. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Leber, H.J.

    2012-01-01

    Highlights: ► Corrosion fatigue in austenitic stainless steels under light water reactor conditions. ► Identification of major parameters of influence on initiation and short crack growth. ► Critical system conditions for environmental reduction of fatigue initiation life. ► Comparison with the environmental factor (F env ) approach. - Abstract: The corrosion fatigue initiation and short crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water reactor and pressurised water reactor primary water conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. The special emphasis was placed to the behaviour at low corrosion potentials and, in particular, to hydrogen water chemistry conditions. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental reduction and acceleration of fatigue initiation life and subsequent short crack growth, respectively, are discussed and summarised. The observed corrosion fatigue behaviour is compared with the fatigue evaluation procedures in codes and regulatory guidelines.

  18. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  19. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  20. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR)

    International Nuclear Information System (INIS)

    Fuentes C, P.

    2003-01-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O 2 ; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  1. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  2. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  3. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  4. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    International Nuclear Information System (INIS)

    Lister, D.

    2002-01-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  5. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    Science.gov (United States)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-12-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  6. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  7. Corrosion study of heat exchanger tubes in pressurized water cooled nuclear reactors by conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Homonnay, Z.; Kuzmann, E.; Varga, K.; Nemeth, Z.; Szabo, A.; Rado, K.; Schunk, J.; Tilky, P.; Patek, G.

    2005-01-01

    Nuclear energy production tends to return into the focus of interest because of the constantly increasing energy need of the world and the green house effect problems of the strongest competitor oil or gas based power plants. In addition to the construction of new nuclear power plants, lifetime extension of the existing ones is the most cost effective investment in the energy business. However, feasibility and safety issues become very important at this point, and corrosion of the construction materials should be carefully investigated before decision on a potential lifetime extension of a reactor. 57 Fe-Conversion Electron Moessbauer Spectroscopy (CEMS) is a sensitive tool to analyze the phase composition of corrosion products on the surface of stainless steel. The upper ∼300 nm can be investigated due to the penetration range of conversion electrons. The corrosion state of heat exchanger tubes from the four reactor units of the Paks Nuclear Power Plant, Hungary, were analyzed by several methods including CEMS. The primary circuit side of the tubes was studied on selected samples cut out from the heat exchangers during regular maintenance. Cr- and Ni-substituted magnetite, sometimes hematite, amorphous Fe-oxides/oxyhydroxides as well as the signal of bulk austenitic steel of the tubes were detected. The level of Cr- and Ni-substitution in the magnetite phase could be estimated from the Moessbauer spectra. Correlation between earlier decontamination cycles and the corrosion state of the heat exchangers was sought. In combination with other methods, a hybrid structure of the surface oxide layer of several microns was established. It is suggested that previous AP-CITROX decontamination cycles can be responsible for this structure which makes the oxide layer mobile. This mobility may be responsible for unwanted corrosion product transport into the reactor vessel by the primary coolant.

  8. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  9. Operating Experience with the BR-5 Reactor; Experience acquise aupres du reacteur BR-5; Opyt ehkspluatatsii reaktora BR-5; Experiencia practica con el reactor BR-5

    Energy Technology Data Exchange (ETDEWEB)

    Lejpunskij, A. I.; Kazachkovskij, O. D.; Pinkhasik, M. S.; Aristarkhov, N. N.; Karpov, A. V.; Larin, E. P.; Efimov, I. A.

    1963-10-15

    The paper discusses the carrying-out of repair and maintenance work on the radioactive liquid-metal circuit of the BR-5 fast neutron reactor. Attention is also given to problems of reactor operation after achievement of the planned 2% fuel burn-up with some disturbance of leak-tightness in individual fuel elements. An account is given of experience in discharging the active section, examining the condition and leak-tightness of the fuel elements, and decontaminating the equipment and piping of the first radioactive circuit after reaching 5% fuel burn-up. (author) [French] Dans ce memoire les auteurs decrivent l'execution des reparations et des travaux d'entretien dans le circuit radioactif liquide-metal du reacteur a neutrons rapides BR-5. Ils etudient egalement les problemes lies au fonctionnement du reacteur au taux de combustion de 2% prevu avec quelques defauts d'etancheite dans des elements combustibles particuliers. Ils decrivent le dechargementen zone active et examinent les conditions d'etancheite des elements combustibles. Ainsi que la decontamination de l'appareillage et des tuyauteries du premier circuit radioactif apres avoir atteint un taux de combustion de 5%. (author) [Spanish] En la memoria se examinan los problemas planteados por el mantenimiento del circuito radiactivo de metal liquido del reactor de neutrones rapidos BR-5. Se tratan cuestiones relacionadas con la explotacion del reactor una vez alcanzado el grado de combustion de 2%, previsto en el proyecto y luego de producirse ciertas alteraciones de la densidad de determinados elementos combustibles. Se describen la experiencia adquirida durante la descarga del cuerpo del reactor, las investigaciones del estado general y de la hermeticidad de los elementos combustibles y las operaciones de descontaminacion de la instalacion y de las tuberias del circuito radiactivo primario despues de alcanzado un grado de combustion de 5%. (author) [Russian] V doklade rassmatrivayutsya voprosy proizvodstva

  10. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.

    1999-01-01

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  11. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor

    International Nuclear Information System (INIS)

    Wintergerst, M.

    2008-01-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  12. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  13. Some particular aspects of control in nuclear power reactors; Quelques aspects particuliers du controle dans les piles atomiques de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pupponi, J [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    There are still many problems in the field of measurement and control of neutron flux. The present studies in connexion with high flux reactors contribute to the solution of these problems which concern specialists in reactor control. The present state of this investigation and the results of different studies carried out in France by the C A and the EDF are pointed out: A - In the nuclear instrumentation field, work is at present devoted to the technologies used to develop detectors and cables, which have to work at high temperature and in a high {gamma} background; fast electronic techniques are applied to fission counters to measure low neutron fluxes in a high {gamma} background (10 Rh). B - In the control and safety field, there is a real need for studies on the behaviour of reactors in the subcritical state. This increases the margin of security during restarts when poison effects must be overcome The perturbations due to control rod movements necessitate a new organisation of power level safety and control assemblies, in connexion with thermal or activation measurements. Two methods of fast start-up are described. They are related to the fission rate measurement as a function of time. This is done either continuously by a constant and high reactivity change, or step by step. The application of automatic techniques to detector motion seems to give the answer to control and safety in normal start-up. C - The scope of these studies covers the methods used for the control of E.D.F. 3, which are described. (authors) [French] La mesure et le controle du flux neutronique dans les piles de puissance posent encore de nombreux problemes. Les etudes actuellement entreprises dans le domaine des piles a haut flux, doivent apporter une contribution importante a la solution de ces problemes qui interessent les specialistes du controle des piles de puissance. On analyse l'etat actuel de ces etudes et on donne les resultats des differents travaux effectues en France, dans

  14. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  15. Stress corrosion cracking of iron-nickel-chromium alloys in primary circuit environment of PWR-type reactors

    International Nuclear Information System (INIS)

    Boursier, Jean-Marie

    1993-01-01

    Stress corrosion cracking of Alloy 600 steam generator tubing is a great concern for pressurized water reactors. The mechanism that controls intergranular stress corrosion cracking of Alloy 600 in primary water (lithiated-borated water) has yet to be clearly identified. A study of stress corrosion cracking behaviour, which can identify the main parameters that control the cracking phenomenon, was so necessary to understand the stress corrosion cracking process. Constant extension rate tests, and constant load tests have evidenced that Alloy 600 stress corrosion cracking involves firstly an initiation period, then a slow propagation stage with crack less than 50 to 80 micrometers, and finally a rapid propagation stage leading to failure. The influence of mechanical parameters have shown the next points: - superficial strain hardening and cold work have a strong effect of stress corrosion cracking resistance (decrease of initiation time and increase of crack growth rate), - strain rate was the most suitable parameter for describing the different stage of propagation. The creep behaviour of alloy 600 has shown an increase of creep rate in primary water compared to air, which implies a local interaction plasticity/corrosion. An assessment of the durations of the initiation and the propagation stages was attempted for the whole uniaxial tensile tests, using the macroscopic strain rate: - the initiation time is less than 100 hours and seems to be an electrochemical process, - the durations of the propagation stage are strongly dependent on the strain rate. The behaviour in high primary water temperature of Alloys 690 and 800, which replace Alloy 600, was studied to appraise their margin, and validate their choice. Then the last chapter has to objective to evaluate the crack tip strain rate, in order to better describe the evolution of the different stages of cracking. (author) [fr

  16. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  17. Prospects for the Use of Plutonium in Reactors; Prospective d'Utilisation du Plutonium dans les Reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Fossoul, E.; Haubert, P. [BELGONUCLEAIRE (Belgium); Hirschberg, D.; Morlet, E. [International Business Machines of Belgium, Bruxelles (Belgium)

    1967-09-15

    The introduction, at an increasing rate, of power reactors using slightly enriched uranium will inevitably lead to the production of considerable quantities of plutonium over the next decade. Fast reactors will not be capable of absorbing this material before 1980. The question thus arises of whether one should store the plutonium far future use in fast reactors, recycle it in existing thermal reactors, or try to sell it. The problem has been studied for an electric power generating system that does not foresee selling the plutonium produced by its reactors and does not buy plutonium outside, which enables a good approximation to be made and eliminates the major unknown quantity represented by the future market price of plutonium. Assuming within this system a programme that provides for the construction of power reactors of a given type and capacity at specific dates, the utilization of the plutonium produced can be optimized by linear programming techniques so as to minimize the discounted total cost of the power generated over a given period. A later stage consists in optimizing, by various techniques, not only the utilization but also the production of plutonium by appropriate selection of the power reactor types to be constructed. (author) [French] L'implantation, a un rythme croissant, de centrales nucleaires a uranium legerement enrichi entrainera la production ineluctable d'une quantite importante de plutonium au cours de la prochaine decennie. Les reacteurs a neutrons rapides ne seront capables d'absorber cette production qu'apres 1980. La question se pose donc de savoir s'il est preferable de stocker le plutonium en vue de son utilisation ulterieure dans les reacteurs a neutrons rapides plutot que de le recycler dans les reacteurs actuels a neutrons thermiques ou d'essayer de le vendre. Ce probleme a ete etudie dans le cadre d'un systeme de production d'energie electrique qui ne prevoirait pas la vente du plutonium produit par ses reacteurs nucleaires ni

  18. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Groenwall, B; Ljungberg, L; Huebner, W; Stuart, W

    1966-08-15

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 {mu}g/cm{sup 2}). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in

  19. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    International Nuclear Information System (INIS)

    Groenwall, B.; Ljungberg, L.; Huebner, W.; Stuart, W.

    1966-08-01

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 μg/cm 2 ). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in caustic

  20. Current and future research on corrosion and thermalhydraulic issues of HLM cooled reactors and on LMR fuels for fast reactor systems

    International Nuclear Information System (INIS)

    Knebel, J.U.; Konings, R.J.M.

    2002-01-01

    Heavy liquid metals (HLM) such as lead (Pb) or lead-bismuth eutectic (Pb-Bi) are currently investigated world-wide as coolant for nuclear power reactors and for accelerator driven systems (ADS). Besides the advantages of HLM as coolant and spallation material, e.g. high boiling point, low reactivity with water and air and a high neutron yield, some technological issues, such as high corrosion effects in contact with steels and thermalhydraulic characteristics, need further experimental investigations and physical model improvements and validations. The paper describes some typical HLM cooled reactor designs, which are currently considered, and outlines the technological challenges related to corrosion, thermalhydraulic and fuel issues. In the first part of the presentation, the status of presently operated or planned test facilities related to corrosion and thermalhydraulic questions will be discussed. First approaches to solve the corrosion problem will be given. The approach to understand and model thermalhydraulic issues such as heat transfer, turbulence, two-phase flow and instrumentation will be outlined. In the second part of the presentation, an overview will be given of the advanced fuel types that are being considered for future liquid metal reactor (LMR) systems. Advantages and disadvantages will be discussed in relation to fabrication technology and fuel cycle considerations. For the latter, special attention will be given to the partitioning and transmutation potential. Metal, oxide and nitride fuel materials will be discussed in different fuel forms and packings. For both parts of the presentation, an overview of existing co-operations and networks will be given and the needs for future research work will be identified. (authors)

  1. Use of cadmium in solution in the EL 4 reactor moderator irreversible fixing of cadmium on the metallic surfaces; Utilisation du cadmium en solution dans le moderateur du reacteur EL 4 - fixation irreversible du cadmium sur les surfaces metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Croix, O; Paoli, O; Lecomte, J; Dolle, L; Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the framework of research into the poisoning of the EL-4 reactor by cadmium sulphate, measurements have been made by two different methods of the residual amounts of cadmium liable to be fixed irreversibly on the surfaces in contact with the heavy water. A marked influence of the pH has been noticed. The mechanism of the irreversible fixing is compatible with the hypothesis of an ion-exchange in the surface oxide layer. In a sufficiently wide range of pH the cadmium thus fixed causes very little residual poisoning. The stability of the cadmium sulphate solutions is however rather low in the conditions of poisoning. (authors) [French] Dans le cadre des etudes sur l'empoisonnement du reacteur EL-4 par le sulfate de cadmium, les quantites residuelles de cadmium susceptibles de se fixer irreversiblement sur les parois que mouillerait l'eau lourde, ont ete mesurees experimentalement par deux methodes differentes. On observe une influence nette du pH. Le mecanisme de la fixation irreversible est compatible avec l'hypothese d'un echange d'ions dans la pellicule d'oxyde superficielle. Dans des limites suffisamment larges de pH, la cadmium ainsi fixe n'occasionne pas d'empoisonnement residuel important. La stabilite des solutions de sulfate de cadmium dans les conditions de l'empoisonnement est cependant mediocre. (auteurs)

  2. Corrosion of X18H9T steel after 25 years of operation in steam water environments of the VK-50 reactor

    International Nuclear Information System (INIS)

    Filyakin, G.V.; Shamardin, V.E.; Goncharenko, Yu.D.; Kazakov, V.A.

    2004-01-01

    This paper presents the results from testing a VK-50 reactor measuring channel, removed from the reactor after 25 years of operation without signs of integrity loss. Metallography and electron microscopy as well as Auger spectroscopy of elemental composition were carried out. Intergranular corrosion is revealed in a base metal of the measurement channel tube at the core bottom level. A network of non-through, mainly longitudinal cracks of intergranular nature are located at the level of top and center of the core as well as directly under the reactor cover. The investigation results enable us to draw a conclusion that corrosion damage rate of the channel material depends on axial coolant density in the core. The neutron irradiation impact may be provocative but not chief factor for increasing the base metal sensitivity to intergranular corrosion and corrosion cracking. (authors)

  3. Radiation hazards due to activated corrosion and neutron sputtering products in fusion reactor coolant and tritium breeding fluids

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1985-01-01

    The accumulation of radioactive corrosion and neutron sputtering products on the surfaces of components in fusion reactor coolant and tritium breeding systems can cause significant personnel access problems. Remote maintenance techniques or special treatment may be required to limit the amount of radiation exposure to plant operational and maintenance personnel. A computer code, RAPTOR, has been developed to estimate the transport of this activated material throughout a fusion heat transfer and/or tritium breeding material loop. A method is devised which treats the components of the loop individually and determines the source rates, deposition and erosion rates, decay rates, and purification rates of these radioactive materials. RAPTOR has been applied to the MARS and Starfire conceptual reactor designs to determine the degree of the possible radiation hazard due to these products. Due to the very high corrosion release rate by HT-9 when exposed to LiPb in the MARS reactor design, the radiation fields surrounding the primary system will preclude direct contact maintenance even after shutdown. Even the removal of the radioactive LiPb from the system will not decrease the radiation fields to reasonable levels. The Starfire primary system will exhibit radiation fields similar to those found in present pressurized water reactors. (orig.)

  4. Corrosion of Structural Materials in Liquid Metals Used as Fast Reactor Coolants

    International Nuclear Information System (INIS)

    Balbaud-Célérier, F.; Courouau, J.L.; Martinelli, L.

    2013-01-01

    Conclusions: • Thermodynamic data give the stable state of the system, the compounds susceptible to form but no information on the kinetics of the process; • Need to perform corrosion tests in controlled conditions of temperature, chemistry, hydrodynamics; • Comparison of the materials behaviour: first selection of materials, optimisation of the composition; • Fundamental work on the understanding of the corrosion process to develop corrosion models and predictive laws to guarantee the long term behaviour

  5. Using half-cell potential measurement to access the severity of corrosion in reinforced concrete structures in Gentilly-2 reactor building

    International Nuclear Information System (INIS)

    Picard, S.; Kadoum, N.; Poirier, F.

    2009-01-01

    The half-cell potential technique has been used to assess the corrosion in the reactor's building ring beam of the Gentilly-2 nuclear power plant. It is a non-destructive technique based on the ASTM C 876 Standard. Corrosion is the result of a difference of potential between anodic and cathodic zones within the re-bars network and these potential differences are measured in the half-cell potential technique. Time exposure is the leading factor and we recommend the installation of permanent electrodes of reference in strategic areas. The results show a low corrosion activity level on 98% of the investigated surface and no severe corrosion potential reading has been registered. Furthermore the exercise shows that the repair technique has no influence on the corrosion activity of the steel network. Since most of the readings are located in the low corrosion activity level (from 0 to -100 mV), it illustrates that there is heterogeneity of the corrosion activity within the ring beam. We recommend a system to monitor the evolution of the corrosion phenomena in real time. The installation of reference electrodes positioned in some ring beam strategic areas is a simple and accurate way of monitoring the corrosion activity of the steel in the structure. In the case where an evolution in higher level is noted in the corrosion activity, it would be possible to act and prevent any further degradation of the structure

  6. Corrosion Behaviour of Mg Alloys in Various Basic Media: Application of Waste Encapsulation of Fuel Decanning from UNGG Nuclear Reactor

    Science.gov (United States)

    Lambertin, David; Frizon, Fabien; Blachere, Adrien; Bart, Florence

    The dismantling of UNGG nuclear reactor generates a large volume of fuel decanning. These materials are based on Mg-Zr alloy. The dismantling strategy could be to encapsulate these wastes into an ordinary Portland cement (OPC) or geopolymer (aluminosilicate material) in a form suitable for storage. Studies have been performed on Mg or Mg-Al alloy in basic media but no data are available on Mg-Zr behaviour. The influence of representative pore solution of both OPC and geopolymer with Mg-Zr alloy has been studied on corrosion behaviour. Electrochemical methods have been used to determine the corrosion densities at room temperature. Results show that the corrosion densities of Mg-Zr alloy in OPC solution is one order of magnitude more important than in a geopolymer solution environment and the effect of an inhibiting agent has been undertaken with Mg-Zr alloy. Evaluation of corrosion hydrogen production during the encapsulation of Mg-Zr alloy in both OPC and geopolymer has also been done.

  7. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  8. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  9. Corrosion in the aluminum containment tank at the Nuclear Center of Mexico TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Mota, Juan Ramon

    1986-01-01

    The reactor developed a leak inside the exposure room discovered when it was opened for a routine inspection. This leak started to diminish immediately after it was found and disappeared completely in 2.5 months. The hydrostatic tests of the exposure room cooling water pipes and of the primary cooling system suction pipe proved that piping do not have leaks. A portion of the total volume of water was drained from the pool to conduct an inspection on the aluminum liner. Penetrant dye tests were initiated over welded Joints and walls. Welded Joints were all found to be in good condition but a total of 35 indications were reported on walls and concentrated on two main areas. A vacuum system was used to test for leakage. Seven indications were found to be perforations that crossed through the wall, fifteen indications did not cross through the wall but required repair and the rest were superficial irregularities. For the inspection of surfaces that remained covered by water, two methods were used. One was a television camera that was adapted to be used under water and hooked to a monitor and a videorecorder for close up inspection of the walls. The other consisted of submarine still color photography performed by divers. The evaluation of these inspections concluded that out of the 10 areas previously identified, only one presented the kind of problem that required repair. The last inspection performed was that using ultrasound techniques. Irregularities found did not require complete replacement of the aluminum liner. The repair procedures included the welding of aluminum plates over damaged areas and the injection of an effective insulating material (resin) to stop the corrosion mechanism

  10. Spent nuclear fuel project recommended reaction rate constants for corrosion of N-Reactor fuel

    International Nuclear Information System (INIS)

    Cooper, T.D.; Pajunen, A.L.

    1998-01-01

    The US Department of Energy (DOE) established the Spent Nuclear Fuel Project (SNF Project) to address safety and environmental concerns associated with deteriorating spent nuclear fuel presently stored in the Hanford Site's K Basins. The SNF Project has been tasked by the DOE with moving the spent N-Reactor fuel from wet storage to contained dry storage in order to reduce operating costs and environmental hazards. The chemical reactivity of the fuel must be understood at each process step and during long-term dry storage. Normally, the first step would be to measure the N-fuel reactivity before attempting thermal-hydraulic transfer calculations; however, because of the accelerated project schedule, the initial modeling was performed using literature values for uranium reactivity. These literature values were typically found for unirradiated, uncorroded metal. It was fully recognized from the beginning that irradiation and corrosion effects could cause N-fuel to exhibit quite different reactivities than those commonly found in the literature. Even for unirradiated, uncorroded uranium metal, many independent variables affect uranium metal reactivity resulting in a wide scatter of data. Despite this wide reactivity range, it is necessary to choose a defensible model and estimate the reactivity range of the N-fuel until actual reactivity can be established by characterization activities. McGillivray, Ritchie, and Condon developed data and/or models that apply for certain samples over limited temperature ranges and/or reaction conditions (McGillivray 1994, Ritchie 1981 and 1986, and Condon 1983). These models are based upon small data sets and have relatively large correlation coefficients

  11. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  12. The control equipment of the Melusine II reactor; L'equipement de controle du reacteur Melusine II

    Energy Technology Data Exchange (ETDEWEB)

    Cordelle, M; Delcroix, V; Denis, P; Gariod, R

    1963-07-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [French] Melusine II, reacteur de faible puissance destine a l'etude du coeur de Siloe a diverge au Centre d'Etudes Nucleaires de Grenoble, le 23 mai 1962, son tableau de controle etudie et realise dans ce Centre est le premier en France a etre entierement transistorise. Les premiers mois de fonctionnement ont justifie l'espoir mis dans la nouvelle electronique pour ameliorer la stabilite et la surete de fonctionnement. L'article decrit la conception du controle et donne les principales caracteristiques des chaines de mesure et des actions sur la reactivite. (auteurs)

  13. Proposed method of the modeling and simulation of corrosion product behavior in the primary cooling system of fast breeder reactors

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    2011-01-01

    Radioactive corrosion products (CP) are main cause of personal radiation exposure during maintenance without fuel failure in FBR plants. In order to establish the techniques of radiation dose estimation for worker in radiation-controlled area, Program SYstem for Corrosion Hazard Evaluation code 'PSYCHE' has been developed. The PSYCHE is based on the Solution-Precipitation model. The CP transfer calculation using the Solution-Precipitation model needs a fitting factor for the calculation of the precipitation of CP. This fitting factor must be determined based on the measured values in reactors that have operating experience. For this reason, the inability to make accurate predictions for reactor without measured values is a major issue. In this study, in addition to existing Solution-Precipitation model in PSYCHE, a transfer-model of CP species in particle form was applied to calculations of CP behavior in the primary cooling system of fast breeder reactor MONJU. Based on the calculated results, we estimated the contribution of CP deposition in the particle-form. It was suggested that the improved model including transfer-model of CP species in particle-form could be used for evaluation of CP transfer and radiation-source distribution in place of conventional Solution-Precipitation model with fitting factor in the PSYCHE. Moreover, it was predicted that CP particles would tend to be deposited in region with high-flow rate of coolant. (author)

  14. Radiation Corrosion of in-reactor and nuclear Waste Canister overpack Materials

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    The effect of γ-radiation on the corrosion processes in aqueous environments has been reviewed, with particular emphasis on radiolysis of aqueous solutions and its effect on the corrosion mechanisms. A potentially critical feature of the corrosion environment would be the presence of a high γ-radiation field which could have a significant effect on corrosion processes. The radiation of an aqueous solution causes radiolysis of the water to produce a variety of products, such as H, OH, H 2 , O 2 , H 2 O 2 , etc. The radiolysis products would alter its redox chemistry, which could change the kinetics of both the initiation and propagation of corrosion processes. Similar, though not necessarily identical, effects are expected at a metal/solution interface. The possibility of different interactions at the interface is particularly relevant in determining the effects of radiation on corrosion processes. This review is divided into two section in terms of the action of radiation on: (1) the aqueous environment and (2) the corrosion process. The first part of this review focuses on the effects of γ-radiation on radiolysis of the aqueous environments, and the effects of γ-radiation on the metallic corrosion processes will be discussed later

  15. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  16. Evaluation of aluminum pit corrosion in oak ridge research reactor pool by quantitative imaging and thermodynamic modeling

    International Nuclear Information System (INIS)

    Jang, Ping-Rey; Arunkumar, Rangaswami; Lindner, Jeffrey S.; Long, Zhiling; Mott, Melissa A.; Okhuysen, Walter P.; Monts, David L.; Su, Yi; Kirk, Paula G.; Ettien, John

    2007-01-01

    The Oak Ridge Research Reactor (ORRR) was operated as an isotope production and irradiation facility from March 1958 until March 1987. The US Department of Energy permanently shut down and removed the fuel from the ORRR in 1987. The water level must be maintained in the ORRR pool as shielding for radioactive components still located in the pool. The U.S. Department of Energy's Office of Environmental Management (DOE EM) needs to decontaminate and demolish the ORRR as part of the Oak Ridge cleanup program. In February 2004, increased pit corrosion was noted in the pool's 6 mm (1/4'')-thick aluminum liner in the section nearest where the radioactive components are stored. If pit corrosion has significantly penetrated the aluminum liner, then DOE EM must accelerate its decontaminating and decommissioning (D and D) efforts or look for alternatives for shielding the irradiated components. The goal of Mississippi State University's Institute for Clean Energy Technology (ICET) was to provide a determination of the extent and depth of corrosion and to conduct thermodynamic modeling to determine how further corrosion can be inhibited. Results from the work will facilitate ORNL in making reliable disposition decisions. ICET's inspection approach was to quantitatively estimate the amount of corrosion by using Fourier - transform profilometry (FTP). FTP is a non-contact 3- D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, the system is capable of determining the height (depth) distribution of the target surface, thus reproducing the profile of the target accurately. ICET has previously demonstrated that its FTP system can quantitatively estimate the volume and depth of removed and residual material to high accuracy. The results of our successful initial deployment of a submergible FTP system into the ORRR pool are reported here as are initial thermodynamic

  17. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  18. Analysis of stress intensity factors for a new mechanical corrosion specimen; Analyse du facteur d`intensite de contrainte pour une nouvelle eprouvette de mecanique corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B; Crouzet, D; Le Hong, S

    1996-03-01

    Electricite de France is conducting a research program to determine corrosion cracking rates in the steam generators Alloy 600 tubes of the primary system. The objective is to correlate the cracking rates with the specimen stress intensity factor K{sub I}. One of the samples selected for the purpose of this study is the longitudinal notched specimen TEL (TEL: ``Tubulaire a Entailles Longitudinales``). This paper presents the analysis of the stress intensity factor and its experimental validation. The stress intensity factor has been evaluated for different loads using 3D finite element calculations with the Hellen-Parks and G({theta}) methods. Both crack initiation and propagation are considered. As an assessment of the method, the numerical simulations are in good agreement with the fatigue crack growth rates measured experimentally for TEL and compact tension (CT) specimens. (authors). 8 refs., 6 figs., 2 tabs.

  19. Construction of an external electrode for determination of electrochemical corrosion potential in normal operational conditions of an BWR type reactor for hot cells

    International Nuclear Information System (INIS)

    Aguilar T, J.A.; Rivera M, H.; Hernandez C, R.

    2001-01-01

    The behavior of the corrosion processes at high temperature requires of external devices that being capable to resist a temperature of 288 Centigrade and a pressure of 80 Kg/cm 2 , to give stable and reproducible results of some variable and resisting physically and chemically the radiation. The external electrode of Ag/AgCl fulfils all the requirements in the determination of the electrochemical corrosion potential under normal operational conditions of a BWR type reactor in hot cells. (Author)

  20. Some equipment for graphite research in swimming pool reactors; Quelques dispositifs d'etude du graphite dans les piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M; Arragon, Ph; Dupont, G; Gentil, J; Tanis, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [French] Les dispositifs d'irradiation decrits servent aux etudes relatives a la filiere des reacteurs a uranium naturel, moderes au graphite et refroidis par le gaz carbonique. Ils sont generalement concus pour etre utilises dans des piles piscines. L'accent a ete mis sur: - l'utilisation au maximum du volume d'irradiation, - le recours aux solutions technologiques les plus simples, - la standardisation de certaines parties constitutives. Cette standardisation impose un usinage precis et un montage soigne, lesquels sont egalement necessaires lorsqu'on doit obtenir une temperature d'irradiation relativement basse alors que l'echauffement nucleaire est important. Enfin, la conception de ces dispositifs est valable pour irradier d'autres materiaux non fissiles ou fissiles. (auteurs)

  1. Two further years of operation of the reactor G1 (july 1958 - july 1960); Deux nouvelles annees de fonctionnement du reacteur G1. (juillet 1958 - Juillet 1960)

    Energy Technology Data Exchange (ETDEWEB)

    Mathot, P; Bauzit, J; Cante, R; Hebrard, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The aim of the present report is to present certain observations and to give the results obtained during the period from july the 1{sup st} 1958 to july the 1{sup st} 1960. The main operations carried out during this period were, chronologically: - From july the 5{sup th} to october the 18{sup th} 1958: preparation and execution of the first annealing of the graphite. - From dec. the 15{sup th} 1958 to july the 15{sup th} 1959: a discharging campaign which resulted in the complete renewal of the fuel elements. During the monthly stoppages of this campaign, it was possible to make certain observations concerning the packing of the graphite, while at the same time measurements of the temperature of the element cans were made at an increased number of points. - From september the 25{sup th} 1959 to december the 9{sup th} 1959: preparation and execution of the second annealing. At the end of the annealing, the thorium lattice was modified and extra thermocouples were installed for measuring the temperature of the body of the graphite. An apparatus was built for measuring the radial flux. - From december the 9{sup th} 1959 to july 1960: a continuous operation campaign, with a minimum of stoppages. The experimental results are re-assembled, independently of their chronological order, under three main headings which describe the reactors history: - continuous operation, - discharges, - annealing of the reactor. (author) [French] Le but du present rapport est d'exposer certaines observations faites et les resultats obtenus au cours de la periode du 1{sup er} juillet 1958 au 1{sup er} juillet 1960. Cette periode a ete marquee chronologiquement par les operations essentielles suivantes: - du 5 juillet au 18 octobre 1958: preparation et execution du premier recuit du graphite. - du 15 decembre 1958 au 15 juillet 1959: campagne de dechargement entrainant un renouvellement total des cartouches de combustibles. Au cours des arrets mensuels de cette campagne, certaines

  2. Irradiation and corrosion behaviour of cadmium aluminate, a burnable poison for light water reactors

    International Nuclear Information System (INIS)

    Hattenbach, K.; Ahlf, J.; Hilgendorff, W.; Zimmermann, H.U.

    1979-01-01

    In quest of a cadmium containing material for use as burnable poison cadmium aluminate seemed promising. Therefore irradiation and corrosion experiments on specimens of cadmium aluminate in a matrix of aluminia were performed. Irradiation at 575 K and fast fluences up to 10 25 m -2 showed the material to have good radiation resistance and low swelling rates. Cadmium pluminate was resistant to corrosion attack in demineralized water of 575K. (orig.) [de

  3. Modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    International Nuclear Information System (INIS)

    Aly, Omar Fernandes

    2006-01-01

    One of the main failure mechanisms that cause risks to pressurized water reactors is the primary water stress corrosion cracking (PWSCC) occurring in alloys. It can occurs, besides another places, at the control reactor displacement mechanism nozzles. It is caused by the joint effect of tensile stress, temperature, susceptible metallurgical microstructure and environmental conditions of the primary water. These cracks can cause accidents that reduce nuclear safety by blocking the rod's displacement and may cause leakage of primary water, reducing the reactor's life. In this work it is proposed a study of the existing models and a modeling proposal to primary water stress corrosion cracking in these nozzles in a nickel based Alloy 600. It is been superposed electrochemical and fracture mechanics models, and validated using experimental and literature data. The experimental data were obtained at CDTN-Brazilian Nuclear Technology Development Center, in a recent installed slow strain rate testing equipment. In the literature it is found a diagram that indicates a thermodynamic condition for the occurrence of some PWSCC sub modes in Alloy 600: it was used potential x pH diagrams (Pourbaix diagrams), for Alloy 600 in high temperature primary water (300 deg C till 350 deg C). Over it, were located the PWSCC sub modes, using experimental data. It was added a third parameter called 'stress corrosion strength fraction'. However, it is possible to superpose to this diagram, other parameters expressing PWSCC initiation or growth kinetics from other models. Here is the proposition of the original contribution of this work: from an original experimental condition of potential versus pH, it was superposed, an empiric-comparative, a semi-empiric-probabilistic, an initiation time, and a strain rate damage models, to quantify respectively the PWSCC susceptibility, the failure time, and in the two lasts, the initiation time of stress corrosion cracking. It was modeling from our

  4. Recent improvements in the filtration of corrosion products in high temperature water and application to reactor circuits

    International Nuclear Information System (INIS)

    Darras, R.; Dolle, L.; Chenouard, J.; Laylavoix, F.

    1977-01-01

    The nature and physico-chemical behavior of corrosion products released by structural materials into high temperature water flowing in power reactor circuits have been investigated in test loops and different power plants. The results improve more particularly the knowledge of probable rate constants governing their disappearance through deposition of crud on the fuel cladding. It appears that a considerable limitation of radioactivity transportation in the primary circuit components of pressurized water reactors is in a general way only possible through extraction of the corrosion products by filtration at a rate adequate to minimize the amount of crud deposited in the core. This extraction rate has been estimated; its magnitude implicates a filtration operating on the high temperature water in the primary circuit which allows the necessary high flows. The application of magnetic and electromagnetic so as deep granular graphite bed filters has been studied. The results concerning efficiencies and limiting yields at high temperatures are given. Estimates concerning technological feasibility and corresponding investments are discussed

  5. Some loop experiments in the NRX reactor to study the corrosion of mild steel by flowing water at 90oF

    International Nuclear Information System (INIS)

    Allison, G.M.

    1956-11-01

    This work was undertaken to find the water conditions necessary for minimum corrosion in the mild steel thermal shield recirculating systems in NRX and NRU. This report contains the chemical and corrosion results obtained by operating three mild steel loops in which water at 85-95 o F was recirculated through test sections located in J-rod positions in the NRX reactor. Lowest corrosion rates were found when the water was maintained at pH 10.5 with or without oxygen being present. In both cases the corrosion was general in nature and no pitting occurred. At pH 7 with oxygen present in the water severe pitting took place and the corrosion rate was several times higher than similar conditions without oxygen in the water. Under oxygen-free conditions the corrosion product was Fe 3 O 4 . At pH 7 and with 3-5 ppm of O 2 in the water the corrosion product was a mixture of Fe 3 O 4 and γ-Fe 2 O 3 . At high pH with oxygen present Fe 3 O 4 predominated with some traces of Fe 2 O 3 . The systems tested may he listed in order of increasing corrosiveness: High pH with or without O 2 in the water 2 present and continual purification 2 present and no purification or pH control 2 present. (author)

  6. Stress field determination in an alloy 600 stress corrosion crack specimen; Determination du champ de contraintes dans une eprouvette de corrosion sous contrainte de l`alliage 600

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends.

  7. Gamma spectrum measurement in a swimming-pool-type reactor; Mesure du spectre {gamma} d'une pile piscine

    Energy Technology Data Exchange (ETDEWEB)

    Pla, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    After recalling the various modes of interaction of gamma rays with matter, the authors describe the design of a spectrometer for gamma energies of between 0.3 and 10 MeV. This spectrometer makes use of the Compton and pair-production effects without eliminating them. The collimator, the crystals and the electronics have been studied in detail and are described in their final form. The problem of calibrating the apparatus is then considered ; numerous graphs are given. The sensitivity of the spectrometer for different energies is determined mainly for the 'Compton effect' group. Finally, in the last part of the report, are given results of an experimental measurement of the gamma spectrum of a swimming-pool type reactor with new elements. (author) [French] Apres un rappel des differents modes d'interaction des rayons gamma avec la matiere, nous decrivons la conception d'un spectrometre pour les energies gamma s'etendant de 0,3 a 10 MeV. Ce spectrometre utilise les effets Compton et creation de paires sans les eliminer. Le collimateur, les cristaux et l'electronique sont entierement etudies et decrits dans leur realisation definitive. Ensuite, le probleme de l'etalonnage de l'appareil est envisage; de nombreuses courbes sont donnees. La sensibilite du spectrometre pour les differentes energies est determinee principalement pour le groupe ''effet Compton''. Enfin, les resultats d'une experience de mesure du spectre gamma d'une pile piscine avec elements neufs sont donnes dans la derniere partie. (auteur)

  8. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  9. Description of the french graphite reactor and of the experiments performed in 1956; Presentation du premier reacteur a graphite francais et des experiences effectuees en 1956

    Energy Technology Data Exchange (ETDEWEB)

    Bussac, J; Leduc, C; Zaleski, C P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    This paper is an introduction to the experiments performed on the G1 reactor, experiments fully described in the papers following (670 'B to P'). The main results are given together with some comments. The neutronic parameters of the core, a description of the most important structures, and a few words of the tests leading to normal operation of the reactor under load complete our survey. (author) [French] Ce rapport presente les experiences qui furent faites sur le reacteur G1 et dont la description en detail fait l'objet des rapports suivants (670 'B a P'). Les principaux resultats sont fournis ici et commentes. On trouvera en outre les caracteristiques neutroniques du coeur actif de la pile, une description des principales installations et une mention des essais qui ont conduit au fonctionnement normal du reacteur en puissance. (auteur)

  10. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  11. Detection of stress corrosion cracks and wastage in reactor pressure vessels and primary coolant system studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1986-01-01

    Over the last few years, nuclear plants have experienced stud bolt failures due to stress corrosion cracking and corrosion wastage. Many of these stud bolts were over 1 m long and had no heater hole. The use of conventional longitudinal wave inspection for bolts longer than 1 m has shown inconsistent results. A nondestructive testing technique was needed to inspect the stud bolts in place. The cylindrically guided wave technique was developed to inspect stud bolts of various lengths (up to 3 m) and various diameters. This technique is based on the fact that an ultrasonic wave traveling in a long cylinder becomes guided by the geometry of the cylinder. The wave begins to spread in the cylinder as interaction with the outer wall produces mode conversions. A large number of model stud bolts were tested to verify that the cylindrically guided wave technique could be used to detect crack-like defects and simulated corrosion wastage. This work shows that the cylindrically guided wave technique can be used on a wide variety of stud bolt configurations, and that the technique can be used to effectively detect the two most common modes of stud bolt failure (corrosion cracking and corrosion wastage) at early stages of development

  12. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  13. Influence du taux d'humidité et de traitements de surface (laser et implantations d'ions) sur la corrosion atmosphérique de matériaux utilisés en connectique (nickel doré)

    Science.gov (United States)

    Perrin, C.; Simon, D.

    1999-07-01

    suppress the porosities of the gold layer. These treatments lead to a remarkable improvement of the corrosion resistance of the material. La première partie de ce travail est une étude qualitative et quantitative de la corrosion d'un matériau utilisé en connectique, constitué de laiton recouvert d'un dépôt de nickel électrochimique de 5 μm et d'un dépôt d'or de 0,4 μm ou de 1 μm. Les essais de corrosion ont été conduits dans de l'air synthétique humide (taux d'humidité variable entre 15 % et 90 %) contenant de faibles quantités de NO2 (0,2 vpm), SO2 (0,2 vpm), Cl2 (0,01 vpm). Le comportement du matériau en fonction du taux d'humidité a été étudié. Les résultats obtenus montrent que les produits de corrosion croissent sous forme d'amas bien localisés. Ces amas sont constitués principalement de nitrates, sulfates, chlorures et hydroxydes de nickel et de zinc. La quantité de produits formés et la proportion de sulfates croissent avec le taux d'humidité. En revanche, le rapport zinc/nickel croît lorsque le taux d'humidité diminue. Nous avons identifié les composés formés, essentiellement grâce à une méthode développée au laboratoire associant la microgravimétrie, la chromatographie ionique et l'absorption atomique, et également par analyse X. Ces études ont montré que la protection du nickel par l'or exige un dépôt d'or parfaitement étanche. Il semble que très souvent les porosités responsables de l'apparition d'une corrosion traversent à la fois la couche d'or et de nickel, entraînant l'attaque du zinc par corrosion galvanique. Les analyses effectuées au MEB ont permis de montrer qu'il existait probablement dans ces porosités des composés organiques liés à l'élaboration de ces couches et que lors de l'attaque galvanique du nickel et du zinc, le carbone est rejeté à la périphérie des amas. La quantité de carbone présent dans la couche a pu être déterminée par des analyses nucléaires réalisées au Van De Graaff

  14. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    International Nuclear Information System (INIS)

    Taheri, Mitra; Motta, Arthur; Marquis, Emmanuelle

    2016-01-01

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  15. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Mitra [Drexel Univ., Philadelphia, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  16. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab

  17. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab.

  18. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  19. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor

    International Nuclear Information System (INIS)

    Wintergerst, M.

    2009-05-01

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  20. RAPK-7. code for calculating mass transfer and corrosion products activation in the circulation loops of water-cooled reactors

    International Nuclear Information System (INIS)

    Mikhaylov, A.V.; Moryakov, A.V.; Nikitin, A.V.

    2012-09-01

    The RAPK-7 code was developed to simulate formation of non-irradiated and activated corrosion products, their transport and deposition on inner surfaces of primary components and in primary coolant of water-cooled reactors during their operation on power and after shutdown. The key feature of this code is its particular emphasis on the contamination of circulation loops by radioactive corrosion products of reactor which operates on variable modes. Such reactors typically are: research reactors and their experimental loops, naval nuclear power systems, etc. It's typical for such reactors to have repeated (over the campaign) and frequent variations in power (activating neutron fluxes), thermal-physical, hydrodynamic and other parameters of coolant, intensive water mass exchange between the circulation loop and the pressuriser, etc. The processes of mass-transfer are described by the RAPK-7 code with the use of models similar to those employed by the COTRAN and PACTOLE codes. The circulation circuit is broken down into computation areas. The user will then set the concentrations of water chemistry adjusting additives (alkali, boric acid, ammonia, hydrogen), as well as parameters in each area, such as wall temperature, coolant flow core temperature, pressure, flow rate, velocity, the radial component of coolant flowrate and activating neutron flux density. All the above parameters can be set as time-dependent step functions (bar charts), with independent time steps for each of them. The number of computation areas, the number of time dependencies and the level of detail in their description are limited by computer capabilities only. A 'brake' mode with a single-step change of the required set of parameters is provided to allow for jump-type events, such as replacement of contaminated components with clean ones during core refueling or repairs, emergency injection of boric acid, water mass exchange between the circulation circuit and the pressuriser, etc

  1. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    International Nuclear Information System (INIS)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-01-01

    Highlights: ► Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. ► The new media ceramics used as fillers in electrobath of micro-electrolysis. ► Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. ► This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers – CCF, and Anode Ceramic-corrosion-cell Fillers – ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 °C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD Cr and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m −3 and 936.3 kg m −3 , 1245.0 kg m −3 and 1420.0 kg m −3 , respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3–4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD cr and cyclohexanone were removed.

  2. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Yue, Qinyan, E-mail: qyyue58@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Li, Jinze [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. Black-Right-Pointing-Pointer The new media ceramics used as fillers in electrobath of micro-electrolysis. Black-Right-Pointing-Pointer Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. Black-Right-Pointing-Pointer This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 Degree-Sign C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD{sub Cr} and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m{sup -3} and 936.3 kg m{sup -3}, 1245.0 kg m{sup -3} and 1420.0 kg m{sup -3}, respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD{sub cr} and cyclohexanone were removed.

  3. An overview of stress corrosion in nuclear reactors from the late 1950s to the 1990s

    International Nuclear Information System (INIS)

    Bush, S.H.; Chockie, A.D.

    1996-02-01

    This report examines the problems that US and certain foreign reactors have experienced with intergranular and transgranular stress corrosion cracking. Included is a review of the failure modes and mechanisms, various corrective measures, and the techniques available to detect and size the cracks. The information has been organized into four time periods: late 1950s to mid 1960s; mid 1960s to 1975; 1975 to 1985; and 1985 to 1991. The key findings concerning BWRs are: Corrective actions have led to a substantial reduction of IGSCC; Control of carbon levels - through use of ELC or NG grades of austenitic stainless steels - should minimize IGSCC; Control of residual stresses, particularly with IHSI, greatly reduces the incidence of IGSCC; Hydrogen water treatment controls the oxygen and should limit IGSCC; The problem with furnace-sensitized safe ends is well recognized and should not recur; In most cases, severe circumferential SCC should lead to detectable leakage so that leak-before-break can be identified; IGSCC of austenitic stainless steels can occur in all pipe sizes from smallest to largest, especially when stress, sensitization, and oxygen are all present. In the case of PWRs, it is clear that the incidents of primary water stress corrosion cracking appear to be increasing. Cases containing steam generators, austenitic stainless steels, and Inconels have been known for years. Now it is occurring in safe ends and piping at very low oxygen levels. Secondary side water chemistry must be controlled to prevent SCC in PWRs. 18 refs

  4. Simulation of radioactive corrosion product in primary cooling system of Japanese sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    2012-01-01

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54 Mn and 60 Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54 Mn was estimated to constitute approximately 20% and 60 Co approximately 40% in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO. (author)

  5. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  6. Liquid distribution in trickle-bed reactor; Distribution du liquide en reacteur a lit ruisselant

    Energy Technology Data Exchange (ETDEWEB)

    Marcandelli, C.; Wild, G. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Lamine, A.S. [CNRS-Universite de Paris-Nord, Lab. d' Ingenierie des Materiaux et des Hautes Pressions, 93 - Villetaneuse (France); Bernard, J.R. [Elf Antar France, Centre de Recherche Elf de Solaize, 69 - Solaize (France)

    2000-07-01

    The aim of this study is to develop techniques to qualify the efficiency of liquid distribution in trickle-bed reactors, using cold mockups. The experimental setup consists mainly in a 0.3-m-ID packed-bed column with three different plates used to vary the quality of inlet liquid distribution. Liquid distribution has been qualified using several techniques: global pressure drop measurements, global RTD (Residence-Time Distribution) of the liquid, local heat transfer probes, capacitance tomography, collector at the bottom of the reactor with nine equal zones. The bed pressure drop and the overall external liquid saturation decrease when the maldistribution increases; quantitative information is however difficult to obtain this way. Global RTD of the liquid allows quantifying of the average liquid distribution in the bed. The local thermal sensors give an indication of local liquid velocity and indicate possible local maldistribution of the liquid (scale mm) even when global distribution is good. Concerning the results obtained with the collector, a maldistribution index is defined ranging from 0 (ideal distribution) to 1 (worst possible distribution), and the influence of the different operating parameters (gas and liquid velocities, particle shape) is discussed. (authors)

  7. Economic Effect on the Plutonium Cycle of Employing {sup 235}U in Fast Reactor Start-Up; Incidence Economique du Demarrage des Reacteurs Rapides a l'Aide d'Uranium-235 sur le Cycle du Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Van Dievoet, J.; Egleme, M.; Hermans, L. [BELGONUCLEAIRE, Bruxelles (Belgium)

    1967-09-15

    factors, inventory factors) from one cycle to another, with a comparative study of the use of {sup 235}U in thermal and fast reactors, variations in the discounted fuel cycle costs from one cycle to another, and weight and characteristics of the recycled fuel, of the additional fuel required and of excess fuel. (author) [French] Le memoire presente les premiers resultats d'une etude entreprise dans le cadre d'un contrat d'association Euratom-Belgique et destinee a evaluer l'interet de l'alimentation de reacteurs rapides en uranium-235. Plusieurs possibilites se presentent pour le demarrage d'un reacteur rapide a l'aide d'uranium-235. 1. Le reacteur peut etre alimente en permanence avec de l'uranium enrichi, le plutonium produit servant a demarrer et a alimenter d'autres reacteurs; dans ce cas, l'uranium est recycle dans le reacteur en y ajoutant de l'uranium enrichi. 2. Le plutonium produit dans le reacteur peut etre partiellement recycle dans celui-ci, ainsi que l'uranium; dans ce cas, le reacteur se transforme progressivement en un reacteur au plutonium. Ces deux cas peuvent etre combines pour un reacteur a plusieurs zones d'enrichissement, ou l'on peut appliquer simultanement les deux politiques a des zones differentes, c'est-a-dire: alimenter, par exemple, la zone interne en uranium enrichi et recycler le plutonium dans la zone externe. Le mode de traitement du combustible irradie rend egalement le probleme complexe, selon que l'on traite ensemble ou separement le coeur et les couvertures axiales; de meme, pour un reacteur a plusieurs zones d'enrichissement, celles-ci peuvent etre traitees ensemble ou separement. Les calculs sont effectues a l'aide d'un code de calcul utilisant, pour lavpartie relative aux caracteristiques des reacteurs successifs, les coefficients d'equivalence definis par Baker and Ross et, pour la partie economique, la methode du cout actualise du cycle du combustible. Dans la premiere phase des travaux, une analyse approcheedu phenomene a ete

  8. The Behavior of Corrosion Products in Sampling Systems under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, Hans-Peter

    1977-08-15

    A high pressure loop has been used to simulate sampling systems employed under BWR conditions. The reliability of the sampling method was studied in a series of six test runs. A variety of parameters that are thought to influence the reliability of the sampling was investigated. These included piping geometry, water oxygen content, flow, temperature and temperature gradients. Amongst other things the results indicate that the loss by deposition of iron containing corrosion products does not exceed 50 %; this figure is only influenced to a minor extent by the above mentioned parameters. The major part of the corrosion products thus deposited is found along the first few meters of the piping and cooler coil. A moderate prolongation of a pipe which is already relatively long should thus be incapable of producing a major influence on the sampling error

  9. Reactor fuel cladding tube with excellent corrosion resistance and method of manufacturing the same

    International Nuclear Information System (INIS)

    Okuda, Takanari; Kanehara, Mitsuo; Abe, Katsuhiro; Nishimura, Takashi.

    1995-01-01

    The present invention provides a fuel cladding tube having an excellent corrosion resistance and thus a long life, and a suitable manufacturing method therefor. Namely, in the fuel cladding tube, the outer circumference of an inner layer made of a zirconium base alloy is coated with an outer layer made of a metal more corrosion resistant than the zirconium base alloy. Ti or a titanium alloy is suitable for the corrosion resistant metal. In addition, the outer layer can be coated by a method such as vapor deposition or plating, not limited to joining of the inner layer material and the outer layer material. Specifically, a composite material having an inner layer made of a zirconium alloy coated by the outer material made of a titanium alloy is applied with hot fabrication at a temperature within a range of from 500 to 850degC and at a fabrication rate of not less than 5%. The fabrication method includes any of extrusion, rolling, drawing, and casting. As the titanium-base alloy, a Ti-Al alloy or a Ti-Nb alloy containing Al of not more than 20wt%, or Nb of not more than 20wt% is preferred. (I.S.)

  10. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  11. Probabilistic methods for evaluation of erosion-corrosion wall thinning in french pressurized water reactors

    International Nuclear Information System (INIS)

    Ardillon, E.; Bouchacourt, M.

    1994-04-01

    This paper describes the application of the probabilistic approach to a selected study section having known characteristics. The method is based on the physico-chemical model of erosion-corrosion, the variables of which are probabilized. The three main aspects of the model, namely the thermohydraulic flow conditions, the chemistry of the fluid, and the geometry of the installation, are described. The study ultimately makes it possible determine: - the evolution of wall thinning distribution, using the power station's measurements; - the main parameters of influence on the kinetics of wall thinning; - the evolution of the fracture probabilistic of the pipe in question. (authors). 10 figs., 7 refs

  12. Development of an Alternative Corrosion Inhibitor for the Storage of Advanced Gas-Cooled Reactor Fuel

    International Nuclear Information System (INIS)

    Standring, P.N.; Hands, B.J.; Morgan, S.; Brooks, A.

    2015-01-01

    Sellafield Lt. currently stores AGR fuel in sodium hyrodxide dosed pool water to pH 11.5 to prevent susceptible AGR fuel from failing due to inter-granular attack. The exception to the above storage practice is Thorp Receipt and Storage (TR&S) where an AGR reprocessing buffer is stored in demineralised water as the expected storage durations were short term (up to 5 years). With the extended shut-down of Thorp, storage durations have increased and this has prompted a re-evaluation of the AGR storage regime in TR&S. The use of sodium hydroxide is not feasible due to a compatibility issue with aluminum components used in LWR storage furniture. The implementation process adopted by Sellafield Ltd in developing an alternative corrosion inhibitor for spent AGR fuel is outlined. The two stranded approach evaluates the impact of candidate corrosion inhibitors on fuel integrity and on plant and processes. The development studies in support of the fuel integrity strand are reported. Candidate inhibitors were first evaluated inactively in terms of their ability to arrest propagating corrosion, radiation stability, compatibility with aluminium and environmental impact. Sodium Nitrate was concluded to be the most promising inhibitor. Sodium nitrate was subsequently tested with active AGR brace material. These studies involved the use of bespoke test equipment and techniques. The studies demonstrated that propagating corrosion could be arrested using 10 ppm nitrate and showed that the resultant nitrate film required relatively high chloride concentrations to break it down over the study duration of 60 days. The development studies to date have provided the confidence that sodium nitrate has the potential to be an effective inhibitor for AGR fuel. The final phase of the fuel integrity strand involves a Lead Container Study using whole AGR pins. A staged approach is being adopted in the study programme where proceeding to a more onerous study is not progressed until positive

  13. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    International Nuclear Information System (INIS)

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-01-01

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature

  14. Autoadaptive Emailtest AZ90 for corrosion monitoring of glass-lined reactors

    International Nuclear Information System (INIS)

    Jean-Marie, H.

    1993-01-01

    In the Chemical and Pharmaceutical Industry, glass-lined vessels often contain very corrosive and harmful products. To prevent major problems such as batch contamination, leakages or explosions, it is important to detect as soon as possible a failure of the glass-lining. The well-known electrolytic method of detection has been improved by using a permanent comparison of a reference current passing between these electrodes and a defect in the glass-lining. This is made possible with the microprocessorized glass-guard to detect a leak rate independent of the product conductivity, to be self monitoring and to give an evaluation of the conductivity

  15. Some loop experiments in the NRX reactor to study the corrosion of mild steel by flowing water at 90{sup o}F

    Energy Technology Data Exchange (ETDEWEB)

    Allison, G. M.

    1956-11-15

    This work was undertaken to find the water conditions necessary for minimum corrosion in the mild steel thermal shield recirculating systems in NRX and NRU. This report contains the chemical and corrosion results obtained by operating three mild steel loops in which water at 85-95{sup o}F was recirculated through test sections located in J-rod positions in the NRX reactor. Lowest corrosion rates were found when the water was maintained at pH 10.5 with or without oxygen being present. In both cases the corrosion was general in nature and no pitting occurred. At pH 7 with oxygen present in the water severe pitting took place and the corrosion rate was several times higher than similar conditions without oxygen in the water. Under oxygen-free conditions the corrosion product was Fe{sub 3}O{sub 4}. At pH 7 and with 3-5 ppm of O{sub 2} in the water the corrosion product was a mixture of Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}. At high pH with oxygen present Fe{sub 3}O{sub 4} predominated with some traces of Fe{sub 2}O{sub 3}. The systems tested may he listed in order of increasing corrosiveness: High pH with or without O{sub 2} in the water < water at pH 7 with no O{sub 2} present and continual purification < water with no O{sub 2} present and no purification or pH control < water at pH 7 with 3-5 ppm of O{sub 2} present. (author)

  16. Effects of neutron radiation and residual stresses on the corrosion of welds in light water reactor internals

    International Nuclear Information System (INIS)

    Schaaf, Bob van der; Gavillet, Didier; Lapena, Jesus; Ohms, Carsten; Roth, Armin; Dyck, Steven van

    2006-01-01

    After many years of operation in Light Water Reactors (LWR) Irradiation Assisted Stress Corrosion Cracking (IASCC) of internals has been observed. In particular the heat-affected zone (HAZ) has been associated with IASCC attack. The welding process induces residual stresses and micro-structural modifications. Neutron irradiation affects the materials response to mechanical loading. IASCC susceptibility of base materials is widely studied, but the specific conditions of irradiated welds are rarely assessed. Core component relevant welds of Type 304 and 347 steels have been fabricated and were irradiated in the High Flux Reactor (HFR) in Petten to 0.3 and 1 dpa (displacement per atom). In-service welds were cut from the thermal shield of the decommissioned BR-3 reactor. Residual stresses, measured using neutron diffraction, ring core tests and X-ray showed residual stress levels up to 400 MPa. Micro-structural characterization showed higher dislocation densities in the weld and HAZ. Neutron radiation increased the dislocation density, resulting in hardening and reduced fracture toughness. The sensitization degree of the welds, measured with the electrochemical potentio-dynamic reactivation method, was negligible. The Slow Strain Rate Tensile (SSRT) tests, performed at 290 deg. C in water with 200 ppb dissolved oxygen, (DO), did not reveal inter-granular cracking. Inter-granular attack of in-service steel is observed in water with 8 ppm (DO), attributed not only to IASCC, but also to IGSCC from thermal sensitization during fabrication. Stress-relieve annealing has caused Cr-grain boundary precipitation, indicating the sensitization. The simulated internal welds, irradiated up to 1.0 dpa, did not show inter-granular cracking with 8 ppm DO. (authors)

  17. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study; Influence de l'irradiation et de la presence du lithium sur la nature cristallographique de la zircone dans le cadre de l'etude de la corrosion du zircaloy 4 en milieu reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, C

    1999-07-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr{sup n+-}, Ar{sup n+}) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  18. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study; Influence de l'irradiation et de la presence du lithium sur la nature cristallographique de la zircone dans le cadre de l'etude de la corrosion du zircaloy 4 en milieu reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, C

    1999-07-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr{sup n+-}, Ar{sup n+}) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  19. Modeling the initiation of Primary Water Stress Corrosion Cracking in nickel base alloys 182 and 82 of Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Wehbi, Mickael

    2014-01-01

    Nickel base welds are widely used to assemble components of the primary circuit of Pressurized Water Reactors (PWR) plants. International experience shows an increasing number of Stress Corrosion Cracks (SCC) in nickel base welds 182 and 82 which motivates the development of models predicting the time to SCC initiation for these materials. SCC involves several parameters such as materials, mechanics or environment interacting together. The goal of this study is to have a better understanding of the physical mechanisms occurring at grains boundaries involved in SCC. In-situ tensile test carried out on oxidized alloy 182 evidenced dispersion in the susceptibility to corrosion of grain boundaries. Moreover, the correlation between oxidation and cracking coupled with micro-mechanical simulations on synthetic polycrystalline aggregate, allowed to propose a cracking criterion of oxidized grain boundaries which is defined by both critical oxidation depth and local stress level. Due to the key role of intergranular oxidation in SCC and since significant dispersion is observed between grain boundaries, oxidation tests were performed on alloys 182 and 82 in order to model the intergranular oxidation kinetics as a function of chromium carbides precipitation, temperature and dissolved hydrogen content. The model allows statistical analyses and is embedded in a local initiation model. In this model, SCC initiation is defined by the cracking of the intergranular oxide and is followed by slow and fast crack growth until the crack depth reaches a given value. Simplifying assumptions were necessary to identify laws used in the SCC model. However, these laws will be useful to determine experimental conditions of future investigations carried out to improve the calibration used parameters. (author)

  20. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  1. Evaluation of Corrosion of the Dummy ''EE'' Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    International Nuclear Information System (INIS)

    Brower, Jeffrey Owen; Glazoff, Michael Vasily; Eiden, Thomas John; Rezvoi, Aleksey Victor

    2016-01-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and ''horseshoeing'' defects were readily observable on the surface of the several YA-type fuel elements (these are ''dummy'' plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth ''S'' curve, was represented by a series temperature rise ''humps,'' which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In the case

  2. The use and evolution of the CEA research reactors; Utilisation et evolution des reacteurs de recherche du C.E.A

    Energy Technology Data Exchange (ETDEWEB)

    Rossillon, F; Chauvez, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    organic liquids under irradiation. The equipments of Melusine are now being modernized. Siloe, another swimming-pool reactor, has been operating at 15 MW since the end of 1963. The performances achieved constitute a considerable progress in the field of swimming-pool reactors, since the fluxes obtained with Siloe are in the same order of magnitude than those which needed till now a tank type structure, whose numerous disadvantages in the fitting of experiments are well known. Siloe will be used mostly in the study of structural materials, graphites, refractory fissile materials, and for solid state physics. The reactor Pegase, in service in the Cadarache Nuclear Centre since 1963, is intended solely for testing full-scale fuel elements of EDF and EL 4 types. The current programme, for the eight loops of the reactor, covers the elements for the reactors EDF 2, EDF 3 and EL 4. New loops are in the course of being studied for the fuel elements of the EDF 4 and EDF 5 reactors. The general line of the CEA programmes has shown up the considerable need for fast neutron irradiations. The reactor Osiris which is in the course of being constructed will serve to complement the CEA's equipment in this field and at the same time fill the gap which will be left in the near future in the Centre de Saclay by the closing down of EL 2. Osiris is a light water reactor whose special structure will allow it to function at 50 MW without the disadvantages usually associated with the presence of a heavy waterproof tank. This reactor, which should be put into service in 1966, is mainly intended for the investigation of structural materials, graphite and refractory fuels; it will also serve to increase the production of high specific activity isotopes, and to develop activation analysis techniques. (authors) [French] Les auteurs examinent successivement les differents reacteurs de recherche en service dans les Centres du Commissariat a l'Energie Atomique. Ils retracent brievement l'histoire de ces

  3. Investigation of corrosion of materials of the irradiation device in the RA reactor; Ispitivanje korozije materijala uredjaja za ozracivanje na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, M; Mance, A; Vlajic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO{sub 2} loop for samples cooling. [Serbo-Croat] Uredjaji za ozracivanje u vertikalnim kanalima reaktora RA, bice napravljeni od legura aluminjuma. Prema propisima o unosenju materijala u RA reaktor materijali se moraju prethodno ispitati i sa stanovista korozije. Ispitivane su korozione pojave na cetiri aluminjumske legure sa i bez kontakta sa nerdjajucim celikom. Prvi deo ovog rada tretira pitanje korozije legura aluminijuma u vodi gravimetrijskim i elektrohemijskim metodama. Koriscena je bidestilovana voda na temperaturi do 100 deg C. Drugi deo se odnosi na ispitivanje ponasanja legura aluminijuma u gasovitom ugljen dioksidu pod uslovima eksperimenta. Drugi deo istrazivanja izvrsen je za potrebe izgradnje glave petlje nezavisnog kola za hladjenje uzoraka gasovitim CO{sub 2}.

  4. Transport of radioactive corrosion products in primary system of sodium-cooled fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Hasegawa, Masanori; Maegawa, Yoshiharu; Miyahara, Shinya

    2011-01-01

    Radioactive corrosion products (CP) are primary cause of personal radiation exposure during maintenance work at FBR plants with no breached fuel. The PSYCHE code has been developed based on the Solution-Precipitation model for analysis of CP transfer behavior. We predicted and analyzed the CP solution and precipitation behavior of MONJU to evaluate the applicability of the PSYCHE code to MONJU, using the parameters verified in the calculations for JOYO. From the calculation result pertaining to the MONJU system, distribution of 54 Mn deposited in the primary cooling system over 20 years of operation is predicted to be approximately 7 times larger than that of 60 Co. In particular, predictions show a notable tendency for 54 Mn precipitation to be distributed in the primary pump and cold-leg. The calculated distribution of 54 Mn and 60 Co in the primary cooling system of MONJU agreed with tendencies of measured distribution of JOYO. (author)

  5. Investigation on analytical method for the transfer behavior of corrosion product (CP) in the fast breeder reactors

    International Nuclear Information System (INIS)

    Matsuo, Youichirou; Sasaki, Shinji

    2013-05-01

    Radioactive corrosion products (CPs) are main cause of personal radiation exposure during maintenance work without fuel failure in FBR plants. The most important CP species are 54 Mn and 60 Co. The deposited radioactive CPs cause radiation fields near the piping and components, and the CPs contribute to the radiation exposure of the plant-worker. In this review, firstly, the collected knowledge about CP transfer behavior in the fast reactor are reviewed and analyzed. Secondly, the existing analytical methods to evaluate CP transfer behavior are investigated, issues of which and their solutions are extracted and discussed. Finally, examples of the calculated results by the improved analytical method are described. The provided conclusions are as follows; (1) Collected knowledge on CP transfer behavior. CP generation is mainly due to the dissolution of CP from hot reactor core constitution materials to hot sodium. On the core materials, particle-formed structure was confirmed. The evidence of CP precipitation in the low temperature part of the primary cooling system and the lower part of reactor core was provided. Similarly, the evidence of CP particle deposition in the same domain was also provided. (2) Extracted issues on analytical methods of CP transfer and proposed solutions. In the past, radioactivity caused by CP deposition on the piping and the core materials surface is confirmed. Subsequently, analytical models were developed based on the distribution of the CPs in the reactor coolant systems and the out-pile sodium loop test. The local high radiation dosage (such as elbow part) was observed by the radiation measurement. However, this behavior cannot be evaluated by the existing model, and it is considered necessary to take into account the transfer of CP particle. (3) The recent trend of the CP behavioral analysis method. Novel CP particle generation, transfer and deposition models were developed based on existing knowledge on CP behavior. The developed

  6. Propagation of cracks by stress corrosion in conditions of BWR type reactor

    International Nuclear Information System (INIS)

    Merino C, F.J.; Fuentes C, P.

    2004-01-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  7. Incoloy 800 stands up to radiation and corrosion in high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Incoloy 800 has been selected for heat exchangers in helium cooled nuclear reactor prototypes for exposure to 350 to 800 0 C helium and high temperature high purity water and steam. 304H stainless steel used in heat exchangers in original design cracked in the superheater area, bellows and tubing after static pressure tests but before exposure to steam. Residual stress, chlorides, and oxygen were deduced to have caused the failures

  8. Dosimetry techniques of thermal neutrons and {gamma} radiation in reactor cores; Techniques de dosimetrie des neutrons thermiques et du rayonnement {gamma} dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, J; Draganic, I; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Chemical studies under radiation done in the reactor cores require to be followed by dosimetry. When the irradiations are done in the reflector, one can limit to the measure of the {gamma} and the neutron radiation. For the dosimetry of the {gamma} radiation, a dosimeter of ferrous sulfate is convenient until doses of about 10{sup 6} rep. The use of aired oxalic acid solutions permits to reach 10{sup 7} rep. The dosimetry of thermal neutrons has been made with solutions of cobalt sulphate or paper filter impregnated with this salt. The total chemical effect of the {gamma} and of the slow neutrons radiation is obtained with solutions of ferrous sulfate added with lithium sulphate. (M.B.) [French] Les etudes de chimie sous radiation faites dans les piles exigent d'etre suivies par dosimetrie. Lorsque les irradiations sont effectues dans le reflecteur, on peut se limiter a doser le rayonnement {gamma} et les neutrons. Pour la dosimetrie du rayonnement {gamma}, un dosimetre a sulfate ferreux convient jusqu'a des doses d'environ 10{sup 6} rep. L'emploi de solutions aerees d'acide oxalique permet d'atteindre 10{sup 7} rep. La dosimetrie des neutrons thermiques a ete faite avec des solutions de sulfate de cotalt ou du papier filtre impregne de ce sel. L'effet chimique total du rayonnement {gamma} et des neutrons lents est obtenu avec des solutions de sulfate ferreux additionne de sulfate de lithium. (M.B.)

  9. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  10. CHECWORKS integrated software for corrosion control

    International Nuclear Information System (INIS)

    Schefski, C.; Pietralik; Hazelton, T.

    1997-01-01

    CHECWORKS, a comprehensive software package for managing Flow-Accelerated Corrosion (FAC, also called erosion-corrosion and flow-assisted corrosion) concerns, is expanding to include other systems and other aspects of corrosion control in CANDU reactors. This paper will outline CHECWORKS applications at various CANDU stations and further plans for CHECWORKS to become a code for comprehensive corrosion control management. (author)

  11. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    International Nuclear Information System (INIS)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  12. Improving Corrosion Behavior in SCWR, LFR and VHTR Reactor Materials by Formation of a Stable Oxide

    International Nuclear Information System (INIS)

    Motta, Arthur T.; Comstock, Robert; Li, Ning; Allen, Todd; Was, Gary

    2009-01-01

    The objective of this study is to understand the influence of the alloy microstructure and composition on the formation of a stable, protective oxide in the environments relevant to the SCWR and LFR reactor concepts, as well as to the VHTR. It is proposed to use state-of-the art techniques to study the fine structure of these oxides to identify the structural differences between stable and unstable oxide layers. The techniques to be used are microbeam synchrotron radiation diffraction and fluorescence, and cross-sectional transmission electron microcopy on samples prepared using focused ion beam.

  13. Corrosion product behaviour in the primary circuit of the KNK nuclear reactor facility

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1976-01-01

    During nuclear operation of the KNK facility from 1972 until September 1974 the composition and behaviour of radionuclides occuring in the primary circuit were investigated. Besides traces of 140 Ba/ 140 La, no fission product activity was detectable in the KNK primary circuit. The fuel element purification from sodium deposits (prior to transport to the reprocessing plant) did not yield any indication of a fuel element failure during KNK-I operation. The activity inventory of the primary loop was exclusively made up of activated corrosion products and 22 Na. The main activity was due to 65 Zn, followed by 54 Mn, 22 Na, sup(110m)Ag, 182 Ta, 60 Co and 124 Sb. It was found that the sorption of 65 Zn and 54 Mn on crucibles made from nickel was condiserably higher than on vessels made from other materials. This observation was confirmed both in tests with material samples from the primary circuit and for disks of gate valves of the primary circuit. sup(110m)Ag did hardly exhibit any sorption effects and had been dissolved largely homogeneously in the hot primary coolant. In the first primary cold trap which was removed from the circuit after some 20,000 hours of operation, only 65 Zn and 54 Mn were detected in addition to traces of 60 Co and 182 Ta. (author)

  14. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  15. Evaluation of the corrosion, reactivity and chemistry control aspects for the selection of an alternative coolant in the secondary circuit of sodium fast reactors

    International Nuclear Information System (INIS)

    Brissonneau, L.; Simon, N.; Balbaud-Celerier, F.; Courouau, J.L.; Martinelli, L.; Grabon, V.; Capitaine, A.; Conocar, O.; Blat, M.

    2009-01-01

    Full text of publication follows: Sodium Fast Reactors are promising fourth generation reactors as they can contribute to reduce resource demand in uranium and considerably reduce waste level due to their fast spectrum. However, progress can be obtained for these reactors on the investment cost and on safety improvement. To achieve these goals, one of the innovative solutions consists in eliminating the reaction of sodium with water in the steam generators, by replacing the sodium in the secondary circuit by another coolant. A work group composed of experts from CEA, Areva NP and EdF was in charge to evaluate several alternative coolants as Heavy Liquid Metals (HLM), nitrate salts and hydroxide mixtures, through a multi-criteria analysis. Three important criteria for the selection of one coolant are its 'Interactions with the structures', and its 'chemistry control', and 'Reactivity with fluids' which are strongly correlated. The assessment, mainly based on the state-of-art from published literature on these points, is detailed in this paper. The mechanisms of corrosion of steels by the HLM depend on the oxygen content. For Pb-Bi, it has been modelled for oxidation and release domains. The corrosion of steels by nitrate salts presents similarity with the oxidation induced by HLM. The highly corrosive hydroxide mixture requires the use of nickel base alloys, for which oxidation and mass transfer are nevertheless significant. The HLM requires a fine regulation of oxygen content, through measurements and control systems, both to prevent lead oxide precipitation at high level and release corrosion at low level. Nitrate salts decompose into nitrites at sufficiently high temperature, which might induce pressure build-up in the circuit. The hydroxides must be kept under reducing atmosphere to lower the corrosion rate. Though these coolants are relatively inert to air and water, one of the main drawbacks of HLM and nitrate salts are their reactivity with sodium. Bismuth

  16. Use of oxygen dosing to prevent flow accelerated corrosion in British Energy's Advanced Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Quirk, G.P.; Woolsey, I.S.; Rudge, A.

    2010-01-01

    Flow accelerated corrosion (FAC) was recognized as major threat to the carbon steel feed and economizer tubing of the once-through boilers of the UK's Advanced Gas-cooled Reactors (AGRs) following the observation of FAC damage of the boiler inlet orifice assemblies at two plants in 1977, and subsequent review of the likelihood of further damage elsewhere within the boilers of all AGRs. In most cases, replacement of susceptible tubing was not feasible; due to the inaccessibility of the boiler components within the reactor concrete pressure vessel. Preventing further FAC damage within the boilers therefore had to rely largely on changes to the boiler feedwater chemistry. Following extensive research programs carried out in the late 1970s and early 1980s two main feedwater chemistry regimes were adopted to suppress FAC in different AGRs. The four units found to be at greatest risk of FAC damage adopted an oxygen dosed All Volatile Treatment (AVT) regime during commissioning, while four other units retained the original deoxygenated ammonia dosed AVT regime, but with an increased feedwater pH. The deoxygenated ammonia dosed chemistry regime was also adopted in four AGR units subsequently built, which used 1%Cr0.5%Mo feed and economizer tubing in their once-through boilers. The oxygen dosed AVT chemistry regime adopted in four units having helical once-through boilers has proved highly effective in preventing FAC, with no evidence of damage after around 150,000 hours of operation. However, FAC damage was eventually found in some of the other units operating with a deoxygenated feedwater chemistry regime, in spite of having adopted an elevated feedwater pH. These units have now successfully converted to an oxygen dosed AVT feedwater chemistry regime to prevent further FAC damage, with the result that all 14 AGR reactors now operate with variants of the original oxygen dosed feedwater chemistry regime developed during the 1980s. The paper outlines the development of

  17. Temperature and radiolytic corrosion effects on the chlorine behaviour in nuclear graphite: consequences for the disposable of irradiated graphite from UNGG reactors

    International Nuclear Information System (INIS)

    Vaudey, C.E.

    2010-10-01

    This work concerns the dismantling of the UNGG reactor which have produced around 23 000 t of graphite wastes that ave to be disposed of according to the French law of June 206. These wastes contain two long-lived radionuclides ( 14 C and 36 Cl) which are the main long term dose contributors. In order to get information about their inventory and their long term behaviour in case of water ingress into the repository, it is necessary to determine their location and speciation in the irradiated graphite after the reactor shutdown. This work concerns the study of 36 Cl. The main objective is to reproduce its behaviour during reactor operation. For that purpose, we have studied the effects of temperature and radiolytic corrosion independently. Our results show a rapid release of around 20% 36 Cl during the first hours of reactor operation whereas a much slower release occurs afterwards. We have put in evidence two types of chlorine corresponding to two different chemical forms (of different thermal stabilities) or to two locations (of different accessibilities). We have also shown that the radiolytic corrosion seems to enhance chlorine release, whatever the irradiation dose. Moreover, the major chemical form of chlorine is inorganic. (author)

  18. Fission and corrosion product behaviour in liquid metal fast breeder reactors (LMFBRs)

    International Nuclear Information System (INIS)

    1993-02-01

    It is intended that this review will be useful not only to scientists but also to those concerned with design, day-to-day operation of plant, with liquid metal fast breeder reactors (LMFBRs), safety and decommissioning. Because of this, the review has been widened to include not only the mass transfer behaviour of the various radionuclides in experimental and operating systems, but also the monitoring of the various species, the methods of measurement and the development of methods to control the build-up of the more important long half-life species in operating plants. The information used in the review has been taken from open literature sources to provide an up-to-date presentation of the behaviour of the various isotopes in LMFBRs. 172 refs, 14 figs, 22 tabs

  19. Stress corrosion cracking of L-grade stainless steels in boiling water reactor (BWR) plants

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Fukuda, Toshihiko; Yamashita, Hironobu

    2004-01-01

    L-grade stainless steels as 316NG, SUS316L and SUS304L have been used for the BWR reactor internals and re-circulation pipes as SCC resistant materials. However, SCC of the L-grade material components were reported recently in many Japanese BWR plants. The detail investigation of the components showed the fabrication process such as welding, machining and surface finishing strongly affected SCC occurrence. In this paper, research results of SCC of L-grade stainless steels, metallurgical investigation of core shrouds and re-circulation pipings, and features of SCC morphology were introduced. Besides, the structural integrity of components with SCC, countermeasures for SCC and future R and D planning were introduced. (author)

  20. Stainless steels in boiling water reactors. Corrosion problems and possible solutions

    International Nuclear Information System (INIS)

    Combrade, P.; Desestret, A.; Leroy, F.; Coriou, H.

    1977-01-01

    In boiling water reactors, the heat-carrying water may have an up to 0.1 or even 0.2 ppm oxygen content, which can make it highly agressive at operating temperature for stainless steels subject to high physical stresses. Several metallurgical solutions can be considered, and in particular the use of stainless steels having a mixed austenitic-ferritic structure or of standard austenitic steels (18.10 or 18.10 Mo, such as AISI 304 and 316) with carefully controlled carbon and alloy element contents. The behavior of these steels during prolonged tests in water at 288 0 C with a 30 and even 100 ppm oxygen content turned out to be quite satisfactory [fr

  1. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  2. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER); Susceptibilidad a la corrosion bajo esfuerzo de barras de acero inoxidable AISI 321 y 12X18H10T en ambientes utilizados en reactores VVER

    Energy Technology Data Exchange (ETDEWEB)

    Matadamas C, N

    1996-12-31

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H{sub 3}BO{sub 3} Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author).

  3. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  4. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  5. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials

    International Nuclear Information System (INIS)

    Thompson, L.D.

    1981-02-01

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H 2 /5 Pa CO/5 Pa CH 4 / 2 O (500 μatm H 2 /50 μatm CO/50 μatm CH 4 / 2 O) at 900 0 C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables

  6. Corrosion problems in the aluminum tank of the reactor of Mexico

    International Nuclear Information System (INIS)

    Mazon, R.

    1995-01-01

    The contention developed a leak that was found on March 15th 1985 in a routine inspection to the exposure room. The maximum water leak reached almost 5 liters per hour, it started to diminish until it disappeared completely two months later. It is believed that the holes were blocked by particles in suspension that were introduced to the primary system during the leaking tests. Immediately after the finding of the leak an inspection, testing and repair program was established. Hydrostatic tests to the primary cooling system and cooling system of the exposure room piping showed that the problem was the aluminum liner and not the piping. In order to have the possibility of inspecting the walls of the tank, the pool was drained from its 7.49 m of water down to 3.6 m of depth. At this point the reactor operation stopped and the inspection work started. Previously gamma radiation doses were evaluated using TLD crystals and was determined that 3.6 m of water column gave 0.1 mR/hr of gamma radiation doses at the surface. (orig./HP)

  7. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  8. Neutron flux determinations in the reactors G2 and G3 during operation; Releves du flux neutronique dans les reacteurs G2 et G3 en puissance

    Energy Technology Data Exchange (ETDEWEB)

    Boulinier, C; Faurot, P; Sagot, M; Teste du Bailler, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    After demonstrating the sensitivity of the distribution of power in a production reactor to a deformation caused by dissymmetries of reactivity in the reactor, the authors describe the method of neutron flux determination devised for the reactors G2 and G3 under working conditions; the detector used is a tungsten or nickel wire, the {gamma} activity of which is measured with an ionisation chamber. Several flux determinations are given as examples to illustrate the sensitivity of the method. (author) [French] Apres avoir mis en evidence la sensibilite de la repartition de la puissance dans un reacteur de production a une deformation provoquee par de faibles dissymetries de reactivite dans le reacteur, les auteurs decrivent la methode de releve du flux neutronique mise au point pour les reacteurs G2 et G3 en puissance; le detecteur utilise est un fil de tungstene ou de nickel dont l'activite {gamma} est mesuree a l'aide d'une chambre d'ionisation. Quelques releves de flux illustrant la sensibilite de la methode sont donnes a titre d'exemple. (auteur)

  9. Contribution to the study on the flow rate adjustment for gas cooled power reactors (1964); Contributiom a l'etude de reglage du debit pour les reacteurs industriels refroidis par gaz (1964)

    Energy Technology Data Exchange (ETDEWEB)

    Milliot, B. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1961-06-15

    1. This original study firstly defines the problem of the adjustment of the coolant flow rate in a reactor channel as a function of the corresponding heat transfer equations and of the local and temporal neutron flux. The necessity of such an adjustment is pointed out and the modifying parameters are studied. An adjustment study using the envelope of the possible flux curves is developed. A short study on the technology and the economical advantage of this adjustment is presented. Some measurements, made on G-1 and G-2, show the precision one can obtain from adjustment apparatus itself as well as from the complete reactor adjustment system. 2. Evolution of nuclear properties of fuel in an heterogeneous thermal reactor. In the first port of this paper, the phenomena of fuel evolution have been mainly pointed out. Now a bibliographical study more qualitatively than quantitatively has been done. This survey specifies the present theories and relates to a real effective cross section and also yields to the bases of such a nuclear calculation. (author) [French] 1. Cette etude originale definit d'abord le probleme du reglage du debit de refrigerant dans un canal de reacteur en fonction de la formulation du calcul des performances thermodynamiques de ce canal et des variations du flux neutronique dans l'espace et le temps. La necessite du reglage est ensuite mise en evidence et les parametres le modifiant sont etudies. Une methode de reglage, basee sur l'emploi d 'une courbe enveloppe des courbes de flux possibles, est donnee. Une breve etude de la technologie et des incidences economiques du reglage est presentee. Des mesures effectuees sur les reacteurs G-1 et G-2 montrent la precision que l'on peut attendre des dispositifs de reglage comme du reglage d'ensemble du reacteur lui-meme. 2. Evolution des proprietes nucleaires du combustible dans un reacteur heterogene a neutrons thermiques. Les phenomenes d'evolution du combustible

  10. Contribution to the study on the flow rate adjustment for gas cooled power reactors (1964); Contributiom a l'etude de reglage du debit pour les reacteurs industriels refroidis par gaz (1964)

    Energy Technology Data Exchange (ETDEWEB)

    Milliot, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1961-06-15

    1. This original study firstly defines the problem of the adjustment of the coolant flow rate in a reactor channel as a function of the corresponding heat transfer equations and of the local and temporal neutron flux. The necessity of such an adjustment is pointed out and the modifying parameters are studied. An adjustment study using the envelope of the possible flux curves is developed. A short study on the technology and the economical advantage of this adjustment is presented. Some measurements, made on G-1 and G-2, show the precision one can obtain from adjustment apparatus itself as well as from the complete reactor adjustment system. 2. Evolution of nuclear properties of fuel in an heterogeneous thermal reactor. In the first port of this paper, the phenomena of fuel evolution have been mainly pointed out. Now a bibliographical study more qualitatively than quantitatively has been done. This survey specifies the present theories and relates to a real effective cross section and also yields to the bases of such a nuclear calculation. (author) [French] 1. Cette etude originale definit d'abord le probleme du reglage du debit de refrigerant dans un canal de reacteur en fonction de la formulation du calcul des performances thermodynamiques de ce canal et des variations du flux neutronique dans l'espace et le temps. La necessite du reglage est ensuite mise en evidence et les parametres le modifiant sont etudies. Une methode de reglage, basee sur l'emploi d 'une courbe enveloppe des courbes de flux possibles, est donnee. Une breve etude de la technologie et des incidences economiques du reglage est presentee. Des mesures effectuees sur les reacteurs G-1 et G-2 montrent la precision que l'on peut attendre des dispositifs de reglage comme du reglage d'ensemble du reacteur lui-meme. 2. Evolution des proprietes nucleaires du combustible dans un reacteur heterogene a neutrons thermiques. Les phenomenes d'evolution du combustible tiennent une place importante dans l

  11. Burnup determination of power reactor fuel elements by gamma spectrometry; Determination par spectrometrie {gamma} du taux d'irradiation des elements combustibles des reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Jastrzeb, M; Boisliveau, S; Boyer, R; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report describes a method for determining by {gamma} spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of {gamma} rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by {gamma} spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors) [French] Ce rapport expose une methode de determination par spectrometrie {gamma} du taux d'irradiation et de la puissance specifique des elements combustibles irradies dans les reacteurs de puissance. Une installation simple utilisant un detecteur d'iodure de sodium et un selecteur multicanaux mesure le spectre en energie du rayonnement {gamma} emis par les produits de fission. Afin d'extraire du spectre une quantite proportionnelle au taux de combustion, il faut: - isoler une activite specifique a un emetteur, - donner la meme importance aux fissions survenues dans l'uranium et le plutonium, - prendre en compte la decroissance radioactive pendant et apres l'irradiation. Les mesures ont porte sur une centaine d'elements combustibles et les taux de combustion obtenus par spectrometrie {gamma} sont compares aux resultats des analyses chimiques. Des mesures preliminaires montrent que l'utilisation d'un detecteur de germanium augmente considerablement la precision des resultats, en raison de son excellente resolution. (auteurs)

  12. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  13. Spatial flux instabilities, and their control in the graphite gas power reactors; Les instabilites spatiales du flux et leur controle dans les reacteurs de puissance graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Cailly, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Radial-azimuthal and axial spatial flux instabilities in graphite-gas reactors are studied by means of an analytical approach. Results are checked with those which are given by two dimensional (r, z and r, {theta}) kinetic models programmed for an IBM 7094 computer. At least, conclusions on the control of instabilities obtained from these models are reported. (author) [French] Les instabilites spatiales du flux dans les reacteurs graphite-gaz, radiales et azimutales d'une part, axiales d'autre part, sont etudiees au moyen d'une formulation analytique. Les resultats sont confrontes avec ceux que fournissent des modeles cinetiques a deux dimensions (r, z et r, {theta}) programmes sur IBM 7094. On donne enfin les conclusions relatives au controle de ces instabilites que ces modeles ont permis de degager. (auteur)

  14. Behaviour of heavy water in nuclear reactors of the CEA; Comportement de l'eau lourde dans les piles du C.E.A

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Dirian, G; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    In the two heavy water reactors of the CEA: Zoe and P-2, we do: A) the supervision of the isotopic composition of the heavy water; B) the supervision of gases released by the decomposition of the heavy water under radiation, and to their recombination; C) periodic analyses of impurities. (M.B.) [French] Dans les deux piles a eau lourde du Commissariat a l'Energie Atomique: Zoe et P 2, nous effectuons: A) la surveillance de la composition isotopique de l'eau lourde; B) la surveillance des gaz degages par la decomposition de l'eau lourde sous radiation, et a leur recombinaison; C) des analyses periodiques d'impuretes. (M.B.)

  15. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jagielo, Bryan J. [Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States); Iverson, William I. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois at Urbana-Champaign, Champaign, IL (United States); Bhan, Chi Bum [Argonne National Lab. (ANL), Argonne, IL (United States); Pusan National Univ., Busan (Korea, Republic of); Soppet, William S. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin M. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Nuclear reactors in the United States account for roughly 20% of the nation's total electric energy generation, and maintaining their safety in regards to key component structural integrity is critical not only for long term use of such plants but also for the safety of personnel and the public living around the plant. Early detection of damage signature such as of stress corrosion cracking, thermal-mechanical loading related material degradation in safety-critical components is a necessary requirement for long-term and safe operation of nuclear power plant systems.

  16. Construction of a model of the process of accumulation of radionuclides of corrosion products on the equipment in nuclear power plants with boiling-water reactors

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    1985-01-01

    This paper addresses the problem of corrosion of the structural materials of the reactor loop. This problem can be solved by constructing physical models of the process of accumulation of radionuclides on the equipment at nuclear power plants and by constructing the analytical apparatus for describing them. These models are presented here, and allow the analyzing of the effect of separate states and thermophysical factors, determination of the basic factors, and the ability to foresee in timely fashion the water state and structural measures required to lower the rate of growth and to decrease the amount of radionuclides deposited on the equipment in the nuclear power plant

  17. Influence of localized plasticity on Stress Corrosion Cracking of austenitic stainless steel. Application to IASCC of internals reactor core vessels

    International Nuclear Information System (INIS)

    Cisse, Sarata

    2012-01-01

    The surface conditions of the 316L screw connecting vessel internals of the primary circuit of PWR (pressurized water reactor) corresponds to a grinding condition. These screws are affected by the IASCC (Irradiation Assisted Stress Corrosion Cracking). Initiation of cracking depends on the surface condition but also on the external oxidation and interactions of oxide layer with the deformation bands. The first objective of this study is to point the influence of surface condition on the growth kinetic of oxide layer, and the surface reactivity of 304, 316 stainless steel grade exposed to PWR primary water at 340 C. The second objective is to determine influence of strain localization on the SCC of austenitic stainless steels in PWR primary water. Indeed, the microstructure of irradiated 304, 316 grades correspond to a localized deformation in deformation bands free of radiation defects. In order to reproduce that microstructure without conducting irradiations, low cycle fatigue tests at controlled stain amplitude are implemented for the model material of the study (A286 austenitic stainless steel hardened by the precipitation of phase γ'Ni3(Ti, Al)). During the mechanical cycling (after the first hardening cycles), the precipitates are dissolved in slip bands leading to the localization of the deformation. Once the right experimental conditions in low cycle fatigue obtained (for localized microstructure), interactions oxidation / deformation bands are studied by oxidizing pre deformed samples containing deformation bands and non deformed samples. The tensile tests at a slow strain rate of 8 x 10 -8 /s are also carried out on pre deformed samples and undeformed samples. The results showed that surface treatment induces microstructural modifications of the metal just under the oxide layer, leading to slower growth kinetics of the oxide layer. However, surface treatment accelerates development of oxides penetrations in metal under the oxide layer. As example, for

  18. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  19. Prévision de l'épaisseur du film passif d'un acier inoxydable 316L soumis au fretting corrosion grâce au Point Defect Model, PDM Predicting the steady state thickness of passive films with the Point Defect Model in fretting corrosion experiments

    Directory of Open Access Journals (Sweden)

    Geringer Jean

    2013-11-01

    Full Text Available Les implants orthopédiques de hanche ont une durée de vie d'environ 15 ans. Par exemple, la tige fémorale d'un tel implant peut être réalisée en acier inoxydable 316L ou 316LN. Le fretting corrosion, frottement sous petits déplacements, peut se produire pendant la marche humaine en raison des chargements répétés entre le métal de la prothèse et l'os. Plusieurs investigations expérimentales du fretting corrosion ont été entreprises. Cette couche passive de quelques nanomètres, à température ambiante, est le point clef sur lequel repose le développement de notre civilisation, selon certains auteurs. Ce travail vise à prédire les épaisseurs de cette couche passive de l'acier inoxydable soumis au fretting corrosion, avec une attention spécifique sur le rôle des protéines. Le modèle utilisé est basé sur le Point Defect Model, PDM (à une échelle microscopique et une amélioration de ce modèle en prenant en compte le processus de frottement sous petits débattements. L'algorithme génétique a été utilisé pour optimiser la convergence du problème. Les résultats les plus importants sont, comme démontré avec les essais expérimentaux, que l'albumine, la protéine étudiée, empêche les dégradations de l'acier inoxydable aux plus faibles concentrations d'ions chlorure ; ensuite, aux plus fortes concentrations de chlorures, un temps d'incubation est nécessaire pour détruire le film passif. Some implants have approximately a lifetime of 15 years. The femoral stem, for example, should be made of 316L/316LN stainless steel. Fretting corrosion, friction under small displacements, should occur during human gait, due to repeated loadings and un-loadings, between stainless steel and bone for instance. Some experimental investigations of fretting corrosion have been practiced. As well known, metallic alloys and especially stainless steels are covered with a passive film that prevents from the corrosion and degradation

  20. Influence of microstructure on stress corrosion cracking susceptibility of alloys 600 and 690 in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Kergaravat, J.F.

    1996-01-01

    The mechanism(s) responsible for the stress corrosion cracking (SCC) of Alloy 600 steam generator tubes of pressurized water reactors remain misunderstood in spite of numerous studies on the subject. This failure mode presents several experimental similarities with intergranular creep fracture of austenitic stainless steels. As far as intergranular creep fracture is concerned, grain boundary sliding (GBS) was proved to favor failure. The aim of this work is to check the role played by GBS during SCC. It takes into account chemical (chromium content) and microstructural parameters (grain size, precipitation distribution and density). Therefore, to get a complete set of micro-structurally different samples, we have prepared solution annealed specimens (1100 deg C, 20 min., water quenched) from industrial tubes of Alloys 600 and 690. Each specimen was crept at 500 deg C (400 MPa), 430 deg C (425 MPa) and 360 deg C (475 MPa). Before testing, every sample were engraved with a 7 μm wide fiducial grid. This grid has allowed us to measure GBS after creep testing. GBS was observed for industrial and solution annealed samples for the three testing temperatures. GBS amplitude depends'on chromium content: for micro-structurally identical specimens, Alloy 600 exhibits more GB strain than Alloy 690. It also strongly depends on grain boundary precipitation characteristics: carbide free boundaries slide more easily. During in situ straining experiments performed in a transmission electronic microscope, GBS was evidenced at 320 deg C for Alloy 600 industrial samples. It consists in grain boundary dislocation motion in the interface plane. These dislocations originate from perfect dislocations gliding in the grain interior, encountering grain boundary and spreading in it. Metallic intergranular carbides provide strong obstacles to GBS so stress enhancements arise against them. These stress enhancements are released by micro-twin emission. Constant extension rate tensile tests were

  1. Materials Reliability Program Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H. [Framatome ANP, Inc., Lynchburg, VA (United States); Fyfitch, S. [Framatome ANP, Inc., Lynchburg, VA (United States); Scott, P. [Framatome ANP, SAS, Paris (France); Foucault, M. [Framatome ANP, SAS, Le Creusot (France); Kilian, R. [Framatome ANP, GmbH, Erlangen (Germany); Winters, M. [Framatome ANP, GmbH, Erlangen (Germany)

    2004-03-01

    Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. Repairs and replacements have generally utilized wrought Alloy 690 material and its compatible weld metals (Alloy 152 and Alloy 52), which have been shown to be very highly resistant to PWSCC in laboratory experiments and have been free from cracking in operating reactors over periods already up to nearly 15 years. It is nevertheless prudent for the PWR industry to attempt to quantify the longevity of these materials with respect to aging degradation by corrosion in order to provide a sound technical basis for the development of future inspection requirements for repaired or replaced component items. This document first reviews numerous laboratory tests, conducted over the last two decades, that were performed with wrought Alloy 690 and Alloy 52 or Alloy 152 weld materials under various test conditions pertinent to corrosion resistance in PWR environments. The main focus of the present review is on PWSCC, but secondary-side conditions are also briefly considered.

  2. Materials Reliability Program Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111)

    International Nuclear Information System (INIS)

    Xu, H.; Fyfitch, S.; Scott, P.; Foucault, M.; Kilian, R.; Winters, M.

    2004-01-01

    Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. Repairs and replacements have generally utilized wrought Alloy 690 material and its compatible weld metals (Alloy 152 and Alloy 52), which have been shown to be very highly resistant to PWSCC in laboratory experiments and have been free from cracking in operating reactors over periods already up to nearly 15 years. It is nevertheless prudent for the PWR industry to attempt to quantify the longevity of these materials with respect to aging degradation by corrosion in order to provide a sound technical basis for the development of future inspection requirements for repaired or replaced component items. This document first reviews numerous laboratory tests, conducted over the last two decades, that were performed with wrought Alloy 690 and Alloy 52 or Alloy 152 weld materials under various test conditions pertinent to corrosion resistance in PWR environments. The main focus of the present review is on PWSCC, but secondary-side conditions are also briefly considered

  3. Silicium influence on the resistance of Al-Fe alloys to corrosion by water at high temperature; Influence du silicium sur la resistance d'alliages aluminium-fer a la corrosion par l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L; Hauptman, A; Hure, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A range of alloys which addition contents are 0,3 to 0,6 per cent of iron and 0,06 to 0,4 per cent of silicium were tested to corrosion between 250 and 300 deg. C, in demineralized water. Micrographic results were connected with thermal treatments and compositions. Silicium act a luckless part, particularly in solid solution, and iron offset this action precipitating it in ternary compounds Al-Fe-Si. This produce as a consequence a consummation of iron. This one is essential in quantity which permit to precipitate Al{sub 3}Fe which presence is necessary to have good resistance to corrosion. (author) [French] Une gamme d'alliages dont les teneurs en fer sont de 0,3 a 0,6 pour cent et en silicium de 0,06 pour cent a 0,4 pour cent a ete soumise a la corrosion entre 250 et 300 deg. C dans l'eau demineralisee. On a lie les resultats micrographiques aux traitements thermiques et aux compositions. Le silicium joue un role nefaste surtout en solution solide et le fer contrebalance cette action en le precipitant dans des composes ternaires Al-Fe-Si. Ceci se traduit par une consommation de fer. Celui-ci est indispensable en quantite permettant de precipiter Al{sub 3}Fe dont la presence est necessaire pour avoir une bonne resistance a la corrosion. (auteur)

  4. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water

    International Nuclear Information System (INIS)

    Yamazaki, Seiya; Lu Zhanpeng; Ito, Yuzuru; Takeda, Yoichi; Shoji, Tetsuo

    2008-01-01

    The effect of prior deformation on stress corrosion cracking (SCC) growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water environment is studied. The prior deformation was introduced by welding procedure or by cold working. Values of Vickers hardness in the Alloy 600 weld heat-affected zone (HAZ) and in the cold worked (CW) Alloy 600 materials are higher than that in the base metal. The significantly hardened area in the HAZ is within a distance of about 2-3 mm away from the fusion line. Electron backscatter diffraction (EPSD) results show significant amounts of plastic strain in the Alloy 600 HAZ and in the cold worked Alloy 600 materials. Stress corrosion cracking growth rate tests were performed in a simulated pressurized water reactor primary water environment. Extensive intergranular stress corrosion cracking (IGSCC) was found in the Alloy 600 HAZ, 8% and 20% CW Alloy 600 specimens. The crack growth rate in the Alloy 600 HAZ is close to that in the 8% CW base metal, which is significantly lower than that in the 20% CW base metal, but much higher than that in the as-received base metal. Mixed intergranular and transgranular SCC was found in the 40% CW Alloy 600 specimen. The crack growth rate in the 40% CW Alloy 600 was lower than that in the 20% CW Alloy 600. The effect of hardening on crack growth rate can be related to the crack tip mechanics, the sub-microstructure (or subdivision of grain) after cross-rolling, and their interactions with the oxidation kinetics

  5. Qualification of the Darwin code for the studies of the fuel cycle relative to the boiling water reactors; Qualification du formulaire Darwin pour les etudes du cycle du combustible pour les reacteurs a eau bouillante

    Energy Technology Data Exchange (ETDEWEB)

    Allais, V

    1998-03-01

    This thesis was carried out in the framework of fuel cycles studies in partnership with COGEMA; the aim is to determine physics parameters characterising Boiling Reactor Assemblies. Those reactors Firstly distinguish themselves from Pressurised Water Reactor by the boiling of the moderator in the core and secondary by the strong neutronics heterogeneity due to complex design. The diphasic mixture formed is characterised by the void fraction parameter. The loss of information, and neutronic studies characteristics of Boiling Water Reactors led us to make preliminary studies having in view to quantify the void fraction impact on the isotopics evolution. Studies on neutronics influence of assemblies and control rods from the immediate environment allows to define the cluster size to describe. The radial description optimisation with APOLLO-2 is necessary to improve the calculation performance and to reduce the errors coming from the modelization. The following points were studied: pellet radial discretization, clustering of cells characterized by a similar behaviour, options in flux spatial calculation (interface current formalism), self-shielding optimisation (specific to each isotopes). The three dimensional modelization with CRONOS-2 and the simplified accounting of the thermohydraulics / neutronics coupling done by a procedure developed and written during this thesis, allow an evaluation of axial distribution of void fraction, power and burn-up during the irradiation. The comparison with experimental analytic results of complete assembly and pin samples dissolutions allows the qualification of this procedure and confirms the necessity to take into account the void fraction axial variation during the evolution. The application of an automatic coupling with the DARWIN cycle code will allow a precise burnup calculation to be utilized in an industrial procedure. (author)

  6. Study of gas-solid contact in an ultra-rapid reactor for cumene catalytic cracking; Etude du contact gaz-solide dans un reacteur a co-courant descendant par la mise en oeuvre du craquage catalytique du cumene

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J

    1996-11-05

    Few studies have been carried out on the notion of gas-solid contact in ultra-rapid reactors. Both gas and solid move in the reactor and the contact can be directly estimated when using a chemical reaction such as cumene cracking. It`s a pure and light feedstock whose kinetics can be determined in a fixed bed. The study was carried out on a downflow ultra-rapid reactor (ID = 20 mm, length = 1 m) at the University of Western Ontario. It proved that the quench and the ultra-rapid separation of gas and solid must be carefully designed in the pilot plant. Cumene conversion dropped when reducing gas-solid contact, which led to push the temperature over 550 deg. C and increase the cat/oil ratio at 25 working at solid mass fluxes below 85 kg/m{sup 2}.s. Change of selectivity at very short residence time were also observed due to deactivation effects. Experiments made by Roques (1994) with phosphorescent pigments on the Residence Time Distribution of solids gave Hydrodynamic data on a cold flow copy of the pilot plant. Experiments made on packed bed gave kinetic data on the cracking of cumene. These data were combined to optimize a mono dimensional plug flow model for cumene cracking. (author)

  7. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961); Pile AQUILON. Durcissement du spectre des neutrons dans les barreaux d'uranium et calcul des fissions epithermiques (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Durand -Smet, R; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '{beta}' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors) [French] - Un certain nombre de mesures effectuees dans la pile Aquilon ont permis d'etablir la distribution fine des flux thermique et epithermique dans les barreaux d'uranium, et d'en deduire les variations du spectre des neutrons dans l'uranium, le terme {beta} du spectre de Wescott moyen dans le barreau et le nombre de fissions epithermiques. En annexe, il est propose une definition nouvelle du coefficient de multiplication infini, qui fait intervenir les parametres epithermiques. (auteurs)

  8. Determining a pool - type reactor fuel policy; Recherche d'une politique de gestion du combustible d'une pile piscine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-07-01

    Refuelling the 10 to 15 MW pool type reactor considered here will occur frequently (some 10 elements every 3 to 4 weeks). It is therefore necessary to determine the most economic fuel policy. This study proposes to define a strategy that will make it possible to decide on the number and characteristics of the shipment containers, as well as on the means of storage, so as to reduce the risks as much as possible should the basic parameters of the study vary. Among these parameters, the respective influence of which is investigated, chemical reprocessing costs play a vital part. Two examples of optimum fuel management are given according to whether the reprocessing charges applied are those of the old or of the 1961 U.S. AEC base charges for reprocessing highly enriched irradiated fuel. (authors) [French] Les renouvellements du combustible de la pile piscine de 10 a 15 MW consideree ici, seront frequents (quelques 10 elements toutes les 3 ou 4 semaines). Il est donc important de connaitre les meilleures conditions de gestion economique de ce combustible. Cette etude se propose de definir une strategie permettant de choisir le nombre et les caracteristiques des containers de transport, ainsi que les moyens de stockage, de facon a minimiser les risques si les parametres de base de l'etude varient. Parmi ces parametres dont l'influence respective est successivement examinee, le cout du traitement chimique joue un role fondamental. Deux exemples d'optimum de gestion sont donnes selon que le tarif de retraitement est conforme a l'ancien tarif de l'U.S. AEC ou au tarif 1961 de traitement des combustibles irradies tres enrichis. (auteurs)

  9. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment; Caracterisation par MET de fissures de corrosion sous contrainte d'alliages a base de nickel: influence de la teneur en chrome et de la chimie du milieu

    Energy Technology Data Exchange (ETDEWEB)

    Delabrouille, F

    2004-11-15

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  10. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment; Caracterisation par MET de fissures de corrosion sous contrainte d'alliages a base de nickel: influence de la teneur en chrome et de la chimie du milieu

    Energy Technology Data Exchange (ETDEWEB)

    Delabrouille, F

    2004-11-15

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  11. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  12. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  13. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  14. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2016-01-01

    Highlights: • Chloride effects on SCC crack growth in RPV steels under boiling water reactor conditions. • ppb-levels of chloride may result in fast SCC in normal water chemistry environment. • Much higher chloride tolerance for SCC in hydrogen water chemistry environment. • Potential long-term (memory) effects after severe and prolonged temporary chloride transients. - Abstract: The effect of chloride on the stress corrosion crack (SCC) growth behaviour in low-alloy reactor pressure vessel steels was evaluated under simulated boiling water reactor conditions. In normal water chemistry environment, ppb-levels of chloride may result in fast SCC after rather short incubation periods of few hours. After moderate and short-term chloride transients, the SCC crack growth rates return to the same very low high-purity water values within few 100 h. Potential long-term (memory) effects on SCC crack growth cannot be excluded after severe and prolonged chloride transients. The chloride tolerance for SCC in hydrogen water chemistry environment is much higher.

  15. Characterisation of the corrosion products of non-irradiated material test reactors fuel elements (MTR-FE)

    Energy Technology Data Exchange (ETDEWEB)

    Mazeina, L.; Curtius, H.; Fachinger, J. [Inst. for Safety Research and Reactor Technology, Research Centre Juelich (Germany)

    2003-07-01

    In a high concentrated Mg-rich brine a non-irradiated MTR-FE corroded. The formed corrosion products consists of an amorphous part and of hydrotalcites, which were identified as Mg-Al-hydrotalcites with chloride anions in the interlayer. (orig.)

  16. Information system of corrosion and mechanical properties for steels used in nuclear power plants with PWR reactors

    International Nuclear Information System (INIS)

    Lahodova, M.; Novotny, R.; Sajdl, P.

    1998-01-01

    This paper gives information about a new developed database system which contains information about chemical constitution of steels used in nuclear power plants. It enables to hold data from corrosion tests and allows to insert graphs and pictures into the form. This system is an application of MS Access. (orig.)

  17. Information system of corrosion and mechanical properties for steels used in nuclear power plants with PWR reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lahodova, M.; Novotny, R.; Sajdl, P. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Power Engineering

    1998-11-01

    This paper gives information about a new developed database system which contains information about chemical constitution of steels used in nuclear power plants. It enables to hold data from corrosion tests and allows to insert graphs and pictures into the form. This system is an application of MS Access. (orig.)

  18. Dynamic problems of power reactors and analogic devices; Les problemes dynamiques du reacteur de puissance et les machines analogiques

    Energy Technology Data Exchange (ETDEWEB)

    Braffort, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [French] L'essor de la physique nucleaire s'est accompagne de lourds developpements mathematiques. Les montages analogiques sont devenus particulierement utiles pour les calculs precis des parametres dont depend le fonctionnement d'un reacteur. Elles permettent entre autre l'etude des problemes cinetiques et surtout ''cybernetiques'' des reacteurs nucleaires. Il ne fait pas de doute que leur usage se generalisera, non seulement dans les laboratoires de calculs, les services d'etudes de servomecanismes, mais aussi pres des tableaux de commande des reacteurs eux-memes. (M.B.)

  19. Studies on solid-state physics carried out with the Saclay reactor (1962); Etudes de physique du solide realisees a la pile de Saclay (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Herpin, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This paper deals only with solid-state physics experiments carried out on outgoing beams: rather than giving a general review of the work performed, if refers to only a few of the most important studies or those nearest completion. These are being made with the experimental beams of the two Saclay reactors EL-2, with a central flux of 10{sup 13} n/cm{sup 2}, and - since 1958 - EL-3, whose central flux is equal ta 10{sup 14} n/cm{sup 2}. The experiments are being carried out by two separate groups of physicists, employing different techniques, namely neutron diffraction using a crystal spectrometer, and inelastic scattering using a time-of-flight spectrometer. (author) [French] Cet expose ne relate que des experiences de physique du solide faites sur des faisceaux sortis; plutot que de donner une revue de l'ensemble des travaux effectues, on ne cite que quelques etudes que l'on peut considerer comme plus essentielles ou mieux achevees. On utilise les faisceaux experimentaux des deux piles de Saclay, EL-2 dont le flux au centre est de 10{sup 13}n/cm{sup 2} et, depuis 1958, EL-3 pour laquelle il est egal a 10{sup 14} n/cm{sup 2}. Les experiences sont realisees par deux groupes de physiciens distincts, employant des techniques differentes, la diffraction des neutrons qui utilise un spectrometre a cristal, et la diffusion inelastique avec un spectrometre a temps de vol. (auteur)

  20. Evaluation on ultrasonic examination methods applied to Ni-base alloy weld including cracks due to stress corrosion cracking found in BWR reactor internal

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Kobayashi, Hiroyuki; Higuchi, Shinichi; Shimizu, Sadato

    2005-01-01

    A Ni-base alloy weld, including cracks due to stress corrosion cracking found in the reactor internal of the oldest BWR in Japan, Tsuruga unit 1, in 1999, was examined by three (3) types of UT method. After this examination, a depth of each crack was confirmed by carrying out a little excavation with a grinder and PT examination by turns until each crack disappeared. Then, the depth measured by the former method was compared with the one measured by the latter method. In this fashion, performances of the UT methods were verified. As a result, a combination of the three types of UT method was found to meet the acceptance criteria given by ASME Sec.XI Appendix VIII, Performance Demonstration for Ultrasonic Examination Systems-Supplement 6. In this paper, the results of the UT examination described above and their evaluation are discussed. (author)

  1. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  2. The physics design of EBR-II; Physique du reacteur EBR-II; Fizicheskij raschet ehksperimental'nogo reaktora - razmnozhitelya EVR-II; Aspectos fisicos del reactor EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W. B. [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    notamment l'introduction de taux de reactivite normaux et anormaux, les consequences des effets supposes de reactivite, a partir du comportement physique de l'alliage combustible et de la structure du reacteur, ainsi que par extrapolation des experiences faites sur TREAT au systeme EBR-II. Il examine le probleme de la fusion du coeur de EBR-II. (author) [Spanish] La memoria informa sobre los calculos del comportamiento estatico, dinamico y a largo plazo de la reactividad del reactor reproductor experimental EBR-II, asi como sobre los resultados y analisis de los experimentos criticos en seco del EBR-II y de los experimentos simulados en el reactor de potencia cero ZPR-III. Insiste particularmente en los problemas de fisica del reactor que, en la elaboracion del proyecto, siguen a la eleccion del modelo, pero preceden a la construccion y puesta en marcha del reactor. Presenta diversos analisis del reactor desde el punto de vista de la seguridad y formula consideraciones sobre la evaluacion de los riesgos y su influencia sobre el diseno del reactor. El trabajo explica tambien la manera de emplear los datos obtenidos en los experimentos arriba citados. Estos experimentos, su analisis y sus predicciones teoricas constituyen la base para determinar el comportamiento fisico del reactor. La memoria estudia detalladamente las limitaciones inherentes a la aplicacion de los datos experimentales al funcionamiento del reactor de potencia. Ello incluye datos precisos sobre as dimensiones del cuerpo, el enriquecimiento de la aleacion combustible, o de ambos factores; el establecimiento de una reactividad adecuada para el reactor funcionando o detenido, la determinacion de la variacion de los coeficientes de reactividad en funcion de la temperatura de funcionamiento y de la potencia generadora y detalles de la distribucion de la potencia y del flujo en diversos puntos de la estructura del reactor. La memoria expone tambien el problema general que supone transferir a la verdadera geometria

  3. Ab Initio investigation of chloroaqualead (II) complexes as possible corrosion products in Super Critical Water Cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    Anzelj, D.; Pye, C.C., E-mail: diki1979@hotmail.com, E-mail: cory.pye@smu.ca [Saint Mary' s University, Halifax, NS (Canada)

    2015-07-01

    One of the undesirable processes hindering development of Generation IV SCWR is the possibility of corrosion of construction material. Formation of corrosion products such as metal-ligand complexes is poorly understood both experimentally and computationally. It is essential to predict and control its water chemistry to ensure sustainability of SCWR. Pressurized and heated solutions are challenging for experimental research; computational method becomes an important research tool. A series of ab initio calculations of chloroaqualead (II) complexes have been performed at HF, MP2 and B3LYP levels of theory with CEP-121G, LANL2DZ, SDD basis sets for Pb and 6-31G*, 6-31+G*, 6-311+G* for water. (author)

  4. Ab Initio investigation of chloroaqualead (II) complexes as possible corrosion products in Super Critical Water Cooled Reactor (SCWR)

    International Nuclear Information System (INIS)

    Anzelj, D.; Pye, C.C.

    2015-01-01

    One of the undesirable processes hindering development of Generation IV SCWR is the possibility of corrosion of construction material. Formation of corrosion products such as metal-ligand complexes is poorly understood both experimentally and computationally. It is essential to predict and control its water chemistry to ensure sustainability of SCWR. Pressurized and heated solutions are challenging for experimental research; computational method becomes an important research tool. A series of ab initio calculations of chloroaqualead (II) complexes have been performed at HF, MP2 and B3LYP levels of theory with CEP-121G, LANL2DZ, SDD basis sets for Pb and 6-31G*, 6-31+G*, 6-311+G* for water. (author)

  5. Corrosion Induced Leakage Problem of the Radial Beam Port 1 of BAEC Triga Mark-II Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, A.; Salam, M. A.; Sarder, M. A.; Rahman, M. M.; Rahman, M.; Rahman, A.; Chowdhury, A. Z.; Uddin, M. S.; Haque, M. M.; Zulquarnain, M.A., E-mail: kalambaec@yahoo.com [Reactor Operation and Maintenance Unit, Atomic Energy Research Establishment (AERE), Dhaka (Bangladesh)

    2014-08-15

    The BAEC reactor has so far been operated as per the technical specifications and procedures laid down in the SAR of the research reactor. The BP leakage problem of the BAEC research reactor was an issue that could lead to a situation close to a LOCA. Therefore, the matter was handled carefully, taking all measures so that such an incident could be prevented. Assistance of agencies outside BAEC was taken for solving the problem. It is understood that the silicone rubber lining of the encirclement clamp may become damaged by neutron irradiation. Therefore, while designing the clamp, provisions were kept such that it can be dismantled and reinstalled again following lining replacement. As a moderately aged facility, the ageing management BAEC TRIGA research reactor deserves significant attention. BAEC, together with its strategic partners, are doing what is needed in this regard.

  6. Zircaloy-4 corrosion in PWR's

    International Nuclear Information System (INIS)

    Fyfitch, S.; Smalley, W.R.; Roberts, E.

    1985-01-01

    Zircaloy-4 waterside corrosion has been studied extensively in the nuclear industry for a number of years. Following the early crud-related corrosion failures in the Saxton test reactor, Westinghouse undertook numerous programs to minimize crud deposition on fuel rods in power reactors through primary coolant chemistry control. Modern plants today are operating with improved coolant chemistry guidelines, and crud deposition levels are very low in proportion to earlier experience. Zircaloy-4 corrosion under a variety of coolant chemistry, heat flux and exposure conditions has been studied extensively. Experience to date, even in relatively high coolant temperature plants, has indicated that -for both fuel cladding and structural components- Zircaloy-4 waterside corrosion performance has been excellent. Recognizing future industry trends, however, which will result in Zircaloy-4 being subjected to ever increasing corrosion duties, Westinghouse will continue accumulating Zircaloy-4 corrosion experience in large power plants. 13 refs.

  7. Determination of local boiling in light water reactors by correlation of the neutron noise; Determination de l'ebullition locale dans les reacteurs a eau legere par correlation du bruit neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The power limit of swimming-pool type reactors depends on the phenomenon of the appearance of burn-out. In order to determine this limit we have attempted to detect the local boiling which usually occurs before the burn out. Local boiling has been simulated by an electrically heated plate placed in the core of the reactor Siloette. The study of local boiling, which is based on the properties of the correlation functions for the neutron noise of detectors placed in the core, shows that a privileged frequency occurs in the power spectrum of the noise. It is intended in the future to determine the influence of various parameters on this characteristic frequency. (author) [French] La limitation de la puissance des reacteurs nucleaires de type piscine est due au phenomene d'apparition de 'burn out'. Pour determiner cette limitation, nous nous sommes proposes dans ce rapport de detecter l'ebullition locale qui apparait generalement avant le 'burn out'. L'ebullition locale a ete simulee par une plaque chauffee electriquement et placee dans le coeur du reacteur SILOETTE. L'etude de l'ebullition locale, qui est basee sur les proprietes des fonctions de correlation du bruit neutronique de detecteurs places clans le coeur, fait apparaitre une frequence privilegiee dans le spectre de puissance du bruit. On envisage dans l'avenir, de determiner l'influence des divers parametres sur cette frequence caracteristique. (auteur)

  8. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  9. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  10. Aluminium alloy containing iron and nickel. Influence of structure and composition on the corrosion behaviour in high temperature water; Alliages d'aluminium contenant du fer et du nickel. Influence de la structure et de la teneur sur la resistance a la corrosion par l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L; Hure, J; Roux, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The corrosion structures are determined on a series of aluminium (A{sub 9}) base alloys which contain a total Fe + Ni not superior to 3%. The tests are carried out to 5,000 hours in 350 deg. C deionized water in autoclave. The principal results were as follows: - For iron and nickel contents superior to 0,5%, the first factor is the distribution structure of insoluble intermetallic compounds: the particles must be as fine and randomly dispersed as possible. - The corrosion products developed on the surface may be subdivided in three distinct layers which total thickness tends rapidly towards a limit and stabilises itself. (author) [French] On a determine les structures de corrosion d'une gamme d'alliages a base d'aluminium A{sub 9} ayant une teneur Fe + Ni ne depassant pas 3%. Les essais ont ete effectues jusqu'a 5000 heures en autoclave a 350 deg. C dans l'eau demineralisee. Les resultats principaux sont les suivants: - Pour les teneurs superieures a 0,5 % en fer et en nickel, le facteur preponderant est la structure de repartition des composes intermetalliques en phase separee, qui doivent etre en particules aussi fines et uniformement reparties que possible. - Les produits de corrosion developpes en surface se subdivisent en trois couches distinctes dont l'epaisseur totale tend rapidement vers une limite et se stabilise. (auteur)

  11. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  12. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P. [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines

  13. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines comprennent la seismicite

  14. Operating Experience with the VERA Zero-Energy Fast Reactor; Fonctionnement du Reacteur VERA a Neutrons Rapides, de Puissance Zero; Opyt ehkspluatatsii reaktora VERA na bystrykh nejtronakh nulevoj moshchnosti; Experiencia Adquirida con el Reactor Rapido VERA de Potencia Nula

    Energy Technology Data Exchange (ETDEWEB)

    Weale, J. W.; McTaggart, M. H.; Goodfellow, H.; Paterson, W. J. [Atomic Weapons Research Establishment, Aldermaston (United Kingdom)

    1964-02-15

    The design of a two-halves zero-energy fast reactor is briefly described, particular emphasis being placed on those features which determine the practicability and precision of reactor physics measurements. The advantages and disadvantages of the design are discussed with reference to the two years' operating experience of the reactor. The following topics are dealt with: the experimental convenience of the lay-out and of the two halves design; the size and precision of the fuel pieces and the accuracy of location of the fuel elements; the effects of edge irregularities and heterogeneity of structure on the accuracy with which the critical mass of an 'ideal' equivalent assembly is determined; reproducibility of the critical condition after dismantling the assembly, or separating the two halves; variation of reactivity with separation of the halves, including effects of asymmetric loading; sensitivity of various counters, neutron source strength, use of an accelerator neutron source; speed of response of safety circuits and consequent restrictions on rate of assembly of the two halves; additional precautions necessary in using plutonium fuel; and notes on the accuracy of measurement of reactivity and on the practical limitations affecting various other reactor physics measurements. (author) [French] Les auteurs decrivent brievement ce modele de reacteur a neutrons rapides et de puissance zero construit en deux moities, en insistant particulierment sur les caracteristiques qui determinent la possibilites de faire des mesures relatives a la physique des reacteurs et la precision de ces mesures. Ils exposent les avantages et les inconvenients de ce modele compte tenu de l'experience acquise au cours des deux annees de fonctionnement du reacteur. Ils traitent les sujets suivants: interet pratique, au point de vue experimental, du plan de ce reacteur et de sa constitution en deux moities; dimension et precision des pieces de combustible et exactitude de l'emplacement des

  15. Blowing loop in the EL-4 reactor: CO{sub 2} flow control analogue study; Boucle de soufflage de la centrale EL-4 - regulation du debit CO{sub 2} - etude analogique

    Energy Technology Data Exchange (ETDEWEB)

    Chazal, G; Merle, J P; Guillemard, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Leroy, C; Robin, L; Jacquin, J C; Cornudet, A [Societe INDATOM, France (France)

    1966-07-01

    This report describes one study which contributed to the construction of the Monts d'Arree nuclear power station: EL-4. The reactor is cooled by a CO{sub 2} current provided by 3 turbo-blower groups. The priming vapour for the turbines is taken at the exit of the main CO{sub 2} - H{sub 2}O exchangers. The operation of EL 4 is based on a high degree of centralization of the controls which attributes an important role to the general regulation circuits. This general regulation includes in particular an internal blowing loop which controls the CO{sub 2} flow. The study of the control of this CO{sub 2} flow is made up of 3 parts: - analogue representation of the reactors cooling circuit and of the turbo blower unit. - first test campaign using the analogue computer describing the natural behaviour of the system in the absence of control. theoretical determination of the regulation factors; definition of the regulation using an analogue computer and second test campaign for recording the performances of the blowing loop. The 4. part of the report deals with the analogue study: analogue equations - development. (authors) [French] Ce rapport prend place parmi les etudes de realisation de la Centrale des Monts d'Arree EL-4. Le reacteur est refroidi par une circulation de CO{sub 2} assuree par 3 groupes turbosoufflantes. La vapeur d'entrainement des turbines est prelevee a la sortie des echangeurs principaux CO{sub 2} - H{sub 2}O. L'exploitation de EL-4 repose sur une centralisation poussee des moyens de controle-commande qui attribue un role essentiel aux circuits de regulation generale. Cette regulation generale comporte en particulier une boucle interne de soufflage qui realise un asservissement du debit de CO{sub 2}. L'etude de cette regulation du debit CO{sub 2} comprend 3 parties: - representation analogique du circuit de refroidissement du reacteur et de l'ensemble turbine-soufflante. - premiere campagne d'essais sur calculateur analogique decrivant le comportement

  16. Nodular Corrosion Characteristics of Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gil; Jeong, Y. H.; Park, S. Y.; Lee, D. J

    2003-01-15

    This study was reported the effect of the nodular corrosion on the nuclear reactor environmental along with metallurgical influence, also suggested experimental scheme related to evaluate nodular corrosion characteristics of Zr-1 Nb alloy. Remedial strategies against the nodular corrosion should firstly develop plan to assess the effect of the water quality condition (Oxygen, Hydrogen) as well as the boiling on the nodular corrosion, secondarily establish plan to control heat treatment process to keep a good resistance on nodular corrosion in Zr-1Nb alloy as former western reactor did.

  17. Evaluation of Corrosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey Owen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Eiden, Thomas John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rezvoi, Aleksey Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and “horseshoeing” defects were readily observable on the surface of the several YA-type fuel elements (these are “dummy” plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In

  18. Initial Operating Experience with the ''NPD'' Reactor; Experience recueillie pendant les premiers mois de fonctionnement du reacteur NPD; Pervyj opyt po ehkspluatatsii reaktora NPD; Experiencia inicial de funcionamiento del reactor NPD

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, L. G. [Hydro-Electric Power Commission of Ontario, Toronto, Ontario (Canada)

    1963-10-15

    Canada's first nuclear power station, the Nuclear Power Demonstration station (NPD), is intended to serve as a means of proof-testing the performance of the Canadian type of station using natural uranium as fuel and heavy water as moderator and coolant. It reached full power on 28 June 1962. Although designed for base-load operation it will, during the early stages, be operated part of the time on high-capacity.runs and part of the time on improvement periods. Progress has been favourable so far; the first high-capacity run of six weeks'duration yielded a capacity factor of 70%. Improvements already made have increased safety, improved performance and demonstrated potential methods of capital-cost reduction for future stations. For example, shaft seals on primary coolant pumps have been modified for better performance, freezer-type vapour recovery equipment has been replaced in favour of absorption columns to reduce heavy-water vapour loss, and flow limiters are being installed in sample lines to reduce losses of heavy water in the event of joint failures. During December 1962 two simultaneous leaks from the on-power refuelling machine led to an unusual sequence of events in which a considerable amount of hot high-pressure heavy water was spilled into the reactor vault where it suffered a slight downgrading in isotopic purity. It was upgraded and the reactor returned to operation by the end of the month. All safety devices operated correctly during the incident as did the provisions for containment of heavy water. (author) [French] La premiere centrale nucleaire du Canada, NPD, est une centrale de demonstration, qui doit servir a verifier les performances des reacteurs fonctionnant a l'uranium naturel et utilisant de l'eau lourde comme ralentisseur et comme fluide de refroidissement. Elle a atteint sa pleine puissance le 28 juin 1962 bien que concue pour etre exploitee comme centrale de base, elle fonctionnera au debut comme centrale d'appoint, ce qui permettra d

  19. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Gomez-Briceno, D.; Diego, G.

    2015-01-01

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  20. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  1. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  2. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  3. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  4. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    Energy Technology Data Exchange (ETDEWEB)

    Bu Lin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang Kun [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Zhao Qingliang, E-mail: zhql1962@yahoo.com.cn [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wei Liangliang; Zhang Jing; Yang Junchen [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-07-15

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD{sub 5}), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  5. Stress-assisted, microbial-induced corrosion of stainless steel primary piping and other aging issues at the Omega West Reactor

    International Nuclear Information System (INIS)

    Andrade, A.

    1995-01-01

    After the discovery of cooling system leak of about 284 liters per twenty-four (24) hour period, an investigation determined that the 76.2-cm diameter, 33.5-m long stainless-steel (304) OWR delay line was losing water at the same nominal rate. An excavation effort revealed that a circumferential crack, approximately 0.0025 cm in width, extended around the bottom half of the delay line. In addition, other evidence of what appeared to be microcracking and pitting that originated at random nucleated sites around the pipe were also found. Results of destructive analysis and nondestructive testing allowed Los Alamos staff to conclude that the direct cause for the main crack and other pitting resulted from stress-assisted, microbial-induced corrosion of the stainless steel primary piping. The results also indicated that microbial action from bacteria that are normally present in earth can be extremely harmful to stainless- steel piping under certain conditions. Other potential problems that could have also eventually led to a permanent shutdown of the OWR were discussed. These problems, although never encountered nor associated with the current shutdown, were identified in aging studies and are associated with: (1) the water-cooled, bismuth gamma-ray shield and, (2) the aluminum thermal column head seal that prevents reactor vessel water from entering into the graphite-filled thermal column

  6. Research on the mechanism of inhibition of stress corrosion cracking by water chemistry of nuclear reactor. JAERI's nuclear research promotion program, H10-004 (contact research)

    International Nuclear Information System (INIS)

    Shibata, Toshio; Haruna, Takumi; Fujimoto, Shinji; Zhang, Shenghan

    2000-09-01

    We have developed a slow strain rate testing apparatus combined with a CCD camera system for researching stress corrosion cracking of the materials in high temperature and high pressure water, like nuclear reactor environment. The features of the tensile testing apparatus are the following; pressure up to 100 kg/cm 2 , temperature up to 300degC, and cross head speed down to 10 -5 mm/min. In addition, initiation and propagation of the multiple crack appearing on the material surface in the water at high pressure and high temperature can be clearly observed through a sapphire window penetrating an autoclave. Using the apparatus, we investigated the effects of temperature and species of anion, SO 4 2- and B 4 O 7 2- on the crack initiation and propagation of sensitized 304 stainless steel. The following were revealed: in the sulfate solutions, crack initiation time decreased with increase in temperature from 100 to 250degC, while crack initiation frequency showed maximum at 150degC. In the borate solutions, however, no crack was found on the gauge section of the specimen at any temperatures. This indicates the borate can suppress the initiation of cracks. The effect of anion on the crack initiation may be explained by hardness of anion based on the hard and soft acids and bases concept and the passive film model. (author)

  7. The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment

    International Nuclear Information System (INIS)

    Xue He; Li Zhijun; Lu Zhanpeng; Shoji, Tetsuo

    2011-01-01

    Research highlights: → The affect of a single tensile overload on SCC growth rate is investigated. → A single tensile overload would produce a residual plastic strain in the SCC tip. → The residual plastic strain would decrease the plastic strain rate in the SCC tip. → A single tensile overload would cause crack growth rate retardation in the SCC tip. → SCC growth rate in the quasi-stationary crack tip is relatively lower. - Abstract: It has been found that a single tensile overload applied during constant load amplitude might cause crack growth rate retardation in various crack propagating experiments which include fatigue test and stress corrosion cracking (SCC) test. To understand the affecting mechanism of a single tensile overload on SCC growth rate of stainless steel or nickel base alloy in light water reactor environment, based on elastic-plastic finite element method (EPFEM), the residual plastic strain in both tips of stationary and growing crack of contoured double cantilever beam (CDCB) specimen was simulated and analyzed in this study. The results of this investigation demonstrate that a residual plastic strain in the region immediately ahead of the crack tips will be produced when a single tensile overload is applied, and the residual plastic strain will decrease the plastic strain rate level in the growing crack tip, which will causes crack growth rate retardation in the tip of SCC.

  8. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Toloczko, Mychailo [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Kruska, Karen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Bruemmer, Stephen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.

    2017-05-22

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.

  9. CO{sub 2} direct cycles suitable for AGR type reactors; Cycles directs de gaz carbonique applicables aux reacteurs du genre AGR

    Energy Technology Data Exchange (ETDEWEB)

    Maillet, E [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1967-10-01

    The perspectives given by the gas turbines under pressure, to build simple nuclear power plants and acieving significantly high yield, are specified. The CO{sub 2} is characterised by by good efficiency under moderate temperature (500 to 750 Celsius degrees), compactness and the simpleness of machines and the safe exploitation (supply, storage, relief cooling, thermosyphon). The revision of thermal properties of the CO{sub 2} and loss elements show that several direct cycles would fit in particular to the AGR type reactors. Cycles that would diverge a little from classical models and able to lead to power and heat generation can lead by simple means to the best results. Several satisfying solutions present for the starting up, the power regulation and the stopping. The nuclear power plant components and the functioning safety are equally considered in the present report. The conclusions stimulate the studies and realizations of carbon dioxide gas turbines in when approprite. [French] Les perspectives offertes par la turbine a gaz sous pression, pour construire des centrales nucleaires simples et de rendement progressivement eleve, se precisent actuellement. le CO{sub 2} se distingue par sa bonne efficacite a temperature moderee (500 a 750 degres celsius), la compacite et la simplicite des machines, et la surete qu'il apporte a l'exploitation ( approvisionnement, stockage, refroidissement de secours, thermosiphon). La revision des proprietes thermophysiques du CO{sub 2} et des elements de pertes montre que divers cycles directs conviendraient en particulier aux reacteurs agr ou derives. Des cycles s'ecartant peu des modeles classiques, et se pretant ulterieurement a la production simultanee d'electricite et de chaleur, peuvent conduire par des moyens simples aux meilleurs resultats d'ensemble. Plusieurs solutions satisfaisantes se presentent pour le demarrage, le reglage de la puissance et l'arret. Les composants de la centrale et la surete de fonctionnement sont

  10. Weld region corrosion during chemical cleaning of PWR [pressurized-water reactor] steam generators: Volume 2, Tests and analyses: Final report

    International Nuclear Information System (INIS)

    Barna, J.L.; Bozeka, S.A.; Jevec, J.M.

    1987-07-01

    The potential for preferential corrosion of steam generator weld regions during chemical cleaning using the generic SGOG solvents was investigated. The investigations included development and use of a corrosion assessment test facility which measured corrosion currents in a realistic model of the steam generator geometry in the vicinity of a specific weld during a simulated chemical dissolution of sludge consisting of essentially pure magnetite. A corrosion monitoring technique was developed and qualified. In this technique free corrosion rates measured by linear polarization techniques are added to corrosion rates calculated from galvanic current measured using a zero resistance ammeter to give an estimate of total corrosion rate for a galvanically corroding material. An analytic modeling technique was developed and proved useful in determining the size requirements for the weld region mockup used in the corrosion assessment test facility. The technique predicted galvanic corrosion rates consistent with that observed in a corrosion assessement test when polarization data used as model input were obtained on-line during the test. The test results obtained during this investigation indicated that chemical cleaning using the SGOG magnetite dissolution solvent can be performed with a small amount of corrosion of secondary side internals and pressure boundary welds. The maximum weld region corrosion measured during a typical chemical cleaning cycle to remove essentially pure magnetite sludge was about 8 mils. However, additional site specific weld region corrosion assessment testing and qualification will be required prior to chemical cleaning steam generators at a specific plant. Recommendations for site specific qualification of chemical cleaning processes and for use of process monitors and on-line corrosion instrumentation are included in this report

  11. Shadow Corrosion Mechanism of Zircaloy

    International Nuclear Information System (INIS)

    Ullberg, Mats; Lysell, Gunnar; Nystrand, Ann-Charlotte

    2004-02-01

    Local corrosion enhancement appears on zirconium-base alloys in-core in boiling water reactors when the zirconium alloy is in close proximity to another metal. The visual appearance often resembles a shadow of the other component. The phenomenon is therefore referred to as 'shadow corrosion'. Shadow corrosion has been known for more than 25 years. Mechanisms based on either galvanic corrosion or local radiolysis effects have been proposed as explanations. Both types of mechanism have seemed to explain some facets of the phenomenon. Normally, shadow corrosion is of no practical significance. However, an enhanced and potentially serious form of shadow corrosion was discovered in 1996. This discovery stimulated new experiments that fully supported neither of the longstanding theories. Thus, there is till now no generally accepted understanding of the shadow corrosion phenomenon. The aim of the present investigation was to analyse the available data and to identify, if possible, a plausible mechanism of shadow corrosion. It was found that the experimental evidence is, with a few exceptions, remarkably consistent with a galvanic mechanism. The main exception is that shadow corrosion may occur also when the two metals are nominally electrically insulated. One way to account for the main exception could be to invoke the effect of photoconductivity. Photoconductivity results when a semiconductor or an insulator is irradiated with photons of UV or higher energy. The photons elevate electrons from the valence band to the conduction band, thereby raising the electron conductivity of the solid. In particular, photoconductivity lowers the electrical resistance of the normally insulating oxide on zirconium base alloys. Photoconductivity therefore also has the potential to explain why shadow corrosion is only seen in, or in proximity to, a nuclear reactor core. The suggested mechanism of shadow corrosion can be tested in a reasonably simple experiment in a research reactor

  12. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control

    International Nuclear Information System (INIS)

    Gibilaro, M.; Massot, L.; Chamelot, P.

    2015-01-01

    The possibility of controlling the salt redox potential thanks to a redox buffer in the Molten Salt Fast Reactor was investigated, the goal was to limit the oxidation of the reactor structural material. Tests were performed in LiF-CaF 2 at 850 °C on two different redox couples to fix the salt potential, Eu(III)/Eu(II) and U(IV)/U(III), where the first one was used as inactive system to validate the methodology to be applied on the uranium system. A metallic reducing agent (Gd plate for Eu, and U plate for U system) was inserted in the salt, leading to a spontaneous reaction: Eu(III) and U(IV) were then reduced. Eu(III) was fully converted into Eu(II) with metallic Gd, validating the approach. On the U system, the U(IV)/U(III) ratio has to be set between 10 and 100 to limit the core material oxidation: addition of metallic U decreased the concentration ratio from the infinite to 1, showing the feasibility of the salt redox potential control with the U system

  13. Corrosion and alteration of materials from the nuclear industry

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-01-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  14. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    In the framework of comprehensive research work supporting the development of a Swedish concept for the disposal of highly radioactive waste and spent fuel, Studsvik has performed a significant number of spent fuel corrosion studies under a variety of different conditions. These experiments, performed between 1990 and 2002, covered a burnup range from 27 to 49 MWd/kgU, which was typical for fuel to be disposed at that time. As part of this work, the so called Series 11 tests were performed under oxidising conditions in synthetic groundwater with fuel samples from a rod irradiated in the Ringhals 1 Boiling Water Reactor (BWR). In the meantime, Swedish utilities tend to increase the discharge burnup of fuel operated in their reactors. This means that knowledge of spent fuel corrosion performance has to be extended to higher burnup as well. Therefore, a series of experiments has been started at Studsvik, aiming at extending the data base acquired in the Series 11 corrosion tests to higher burnup fuel. Fuel burnup leads to complex and significant changes in the composition and properties of the fuel. The transformed microstructure, which is referred to as the high burnup structure or rim structure in the outer region of the fuel, consists of small grains of submicron size and a high concentration of pores of typical diameter 1 to 2 mum. This structure forms in UO{sub 2} fuel at a local burnup above 50 MWd/kgU, as long as the temperature is below 1,000-1,100 deg C. The high burnup at the pellet periphery is the consequence of plutonium build-up by neutron capture in 238U followed by fission of the formed plutonium. The amount of fission products in the fuel increases more or less linearly with burnup, in contrast to alpha emitting actinides that increase above average. As burnup across a spent fuel pellet is not uniform, but increases towards the periphery, the radiation field is also larger at the pellet surface. At the same time, it is easier for water to access the

  15. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    International Nuclear Information System (INIS)

    Zwicky, Hans-Urs; Low, Jeanett; Ekeroth, Ella

    2011-03-01

    In the framework of comprehensive research work supporting the development of a Swedish concept for the disposal of highly radioactive waste and spent fuel, Studsvik has performed a significant number of spent fuel corrosion studies under a variety of different conditions. These experiments, performed between 1990 and 2002, covered a burnup range from 27 to 49 MWd/kgU, which was typical for fuel to be disposed at that time. As part of this work, the so called Series 11 tests were performed under oxidising conditions in synthetic groundwater with fuel samples from a rod irradiated in the Ringhals 1 Boiling Water Reactor (BWR). In the meantime, Swedish utilities tend to increase the discharge burnup of fuel operated in their reactors. This means that knowledge of spent fuel corrosion performance has to be extended to higher burnup as well. Therefore, a series of experiments has been started at Studsvik, aiming at extending the data base acquired in the Series 11 corrosion tests to higher burnup fuel. Fuel burnup leads to complex and significant changes in the composition and properties of the fuel. The transformed microstructure, which is referred to as the high burnup structure or rim structure in the outer region of the fuel, consists of small grains of submicron size and a high concentration of pores of typical diameter 1 to 2 μm. This structure forms in UO 2 fuel at a local burnup above 50 MWd/kgU, as long as the temperature is below 1,000-1,100 deg C. The high burnup at the pellet periphery is the consequence of plutonium build-up by neutron capture in 238 U followed by fission of the formed plutonium. The amount of fission products in the fuel increases more or less linearly with burnup, in contrast to alpha emitting actinides that increase above average. As burnup across a spent fuel pellet is not uniform, but increases towards the periphery, the radiation field is also larger at the pellet surface. At the same time, it is easier for water to access the

  16. Material irradiation techniques used in corrosion and wear analysis

    International Nuclear Information System (INIS)

    Tenreiro, Claudio

    1996-01-01

    Full text: Nuclear physics methods, applied to material analysis are discussed and some application examples are given. Experiments have been performed to study corrosion du to the presence of humidity and sulfur compounds. The use of resonant reactors allows the determination of depth profiles of H and S from structures located in particularly contaminated areas. The method provides a non destructive and quick way of estimating the effect of such elements in different types of structures, such as the ones used in high voltage transmission lines. Also the wear out rates in mechanical engine components having a difficult direct access, have been evaluated by proton activation analysis. The evaluation of the advantages of this method is being done. The effect of irradiation damage on superconducting high temperature ceramics was analyzed by the interaction of energetic alpha particles with high T c YBaCuO samples

  17. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  18. Material irradiation techniques used in corrosion and wear analysis; Irradiacion de materiales, tecnicas de estudios de corrosion y desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Tenreiro, Claudio [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: Nuclear physics methods, applied to material analysis are discussed and some application examples are given. Experiments have been performed to study corrosion du to the presence of humidity and sulfur compounds. The use of resonant reactors allows the determination of depth profiles of H and S from structures located in particularly contaminated areas. The method provides a non destructive and quick way of estimating the effect of such elements in different types of structures, such as the ones used in high voltage transmission lines. Also the wear out rates in mechanical engine components having a difficult direct access, have been evaluated by proton activation analysis. The evaluation of the advantages of this method is being done. The effect of irradiation damage on superconducting high temperature ceramics was analyzed by the interaction of energetic alpha particles with high T{sub c} YBaCuO samples.

  19. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  20. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  1. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  2. [Present conceptions of the C.E.A. concerning] the development of fast neutron reactors in France; [Les conceptions actuelles du C.E.A. concernant] la filiere des reacteurs a neutrons rapides en France

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G; Gaussens, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pasquer, R [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    1 - The position of fast neutron reactors in the French nuclear energy program. In developing a program based on natural uranium, France will have an important stock of plutonium rich in higher isotopes. The existence of this plutonium and of the depleted uranium arising from the same reactors, has, as a logical consequence, the use of both in fast neutron reactors. Justified by this short term interest, the achievement of fast neutron reactors does, moreover, provide for a future necessity. 2 - Description of a fast neutron central power station of 1000 MWe. We indicate the characteristics of a future fast neutron central power station, plutonium fuelled, and sodium cooled. However uncertain these characteristics may be, they constitute a necessary guide in the orientation of our work. 3 - Studies carried out up to the present time. We give an outline of those studies, often very preliminary, which have given the characteristics cited above. The principal technical areas taken up are the following: - Neutronics (critical masses, breeding ratios, enrichments, flattening of the neutron flux, coefficients of reactivity, reactivity changes as a function of irradiation). - Dynamics, control, and safety. - Technology (design of the core and vessel, of the sodium system, and of the fuel handling mechanisms). These technical studies are complemented by economic considerations. The choice of the optimum characteristics is related to the existence of power production programs, and, in these programs, to the existence of plutonium producing thermal reactors. It is shown how, in this context, the existence of plutonium should be taken into account, and, in addition which mechanisms relate the economics of this plutonium to the choice of the most important parameters of the breeder reactors. 4 - Prototype reactor. The interest in an intermediate stage consisting of a reactor of a power level of about 80 MWe is justified. Its essential characteristics are briefly presented

  3. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  4. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  5. Corrosion in the nuclear power industry

    International Nuclear Information System (INIS)

    Danko, J.C.

    1987-01-01

    This article reviews the major corrosion problems in light water reactors, the research on the corrosion mechanism(s), and the development of engineering solutions and their implementation. To understand the occurrence of corrosion problems, a brief historical perspective of the corrosion design basis of commercial light water reactors, boiling water, and pressurized water reactors is necessary. Although corrosion was considered in the plant designs, it was not viewed as a serious problem. This was based on the results of laboratory experiments and in-reactor tests that did not indicate any major corrosion problems with the materials selected for the plant construction. However, the laboratory tests did not necessarily reproduce the reactor operating conditions and the early in-reactor test did not fully represent the commercial reactor conditions in all cases, and, finally, the test times were indeed of short duration relative to the plant design lifetime of 40 years. Thus, the design basis for the materials selection was determined on the favorable but limited test data that were available, and corrosion limitations on component integrity were therefore not anticipated

  6. Hydrogen absorption mechanisms and hydrogen interactions - defects: implications to stress corrosion of nickel based alloys in pressurized water reactors primary water

    International Nuclear Information System (INIS)

    Jambon, F.

    2012-01-01

    Since the late 1960's, a special form of stress corrosion cracking (SCC) has been identified for Alloy 600 exposed to pressurized water reactors (PWR) primary water: intergranular cracks develop during the alloy exposure, leading, progressively, to the complete ruin of the structure, and to its replacement. The main goal of this study is therefore to evaluate in which proportions the hydrogen absorbed by the alloy during its exposure to the primary medium can be responsible for SCC crack initiation and propagation. This study is aimed at better understanding of the hydrogen absorption mechanism when a metallic surface is exposed to a passivating PWR primary medium. A second objective is to characterize the interactions of the absorbed hydrogen with the structural defects of the alloy (dislocations, vacancies...) and evaluate to what extent these interactions can have an embrittling effect in relation with SCC phenomenon. Alloy 600-like single-crystals were exposed to a simulated PWR medium where the hydrogen atoms of water or of the pressuring hydrogen gas were isotopically substituted with deuterium, used as a tracer. Secondary ion mass spectrometry depth-profiling of deuterium was performed to characterize the deuterium absorption and localization in the passivated alloy. The results show that the hydrogen absorption during the exposure of the alloy to primary water is associated with the water molecules dissociation during the oxide film build-up. In an other series of experiments, structural defects were created in recrystallized samples, and finely characterized by positron annihilation spectroscopy and transmission electron microscopy, before or after the introduction of cathodic hydrogen. These analyses exhibited a strong hydrogen/defects interaction, evidenced by their structural reorganization under hydrogenation (coalescence, migrations). However, thermal desorption spectroscopy analyses indicated that these interactions are transitory, and dependent on

  7. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  8. Position adopted by the government about the safety options of the EPR reactor project; Prise de position du gouvernement concernant les options de surete du projet de reacteur EPR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    On September 28, 2004, on behalf of the French ministers in charge of nuclear safety, the general director of nuclear safety and radiation protection addressed to the president of Electricite de France (EdF) a letter presenting the government's position about the safety options of the EPR (European Pressurized Reactor) project. On the basis of the examination carried out by the nuclear safety authority (ASN) and by the permanent group of reactor experts, the government has considered these options as satisfactory with respect to the safety improvement objectives. Therefore, the government requested EdF to comply with these technical rules for any future reactor development. This dossier includes: the letter of the government, the technical directives for the design and construction of the next generation of PWR-type reactors, the technical rules relative to the design of the main primary and secondary coolant circuits of PWR-type reactors, and the technical file about the safety of the EPR project reprinted from the 2003 report of nuclear safety and radiation protection authority. (J.S.)

  9. Corrosion problems of materials for mechanical, power and chemical engineering

    International Nuclear Information System (INIS)

    Bouska, P.; Cihal, V.; Malik, K.; Vyklicky, M.; Stefec, R.

    1988-01-01

    The proceedings contain 47 contributions, out of which 8 have been inputted in INIS. These are concerned with various corrosion problems of WWER primary circuit components and their testing. The factors affecting the corrosion resistance are analyzed, the simultaneous corrosion action of decontamination of steels is assessed, and the corrosion cracking of special steels is dealt with. The effects of deformation on the corrosion characteristics are examined for steel to be used in fast reactors. The corrosion potentials were measured for various steels. A testing facility for corrosion-mechanical tests is briefly described. (M.D.). 5 figs., 5 tabs., 25 refs

  10. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  11. A fly-wheel drive with controlled-torque clutch for a reactors cooling circuit pumps; Entrainement des pompes du circuit de refrigeration d'un reacteur par volant a embrayage sous couple controle

    Energy Technology Data Exchange (ETDEWEB)

    Riettini, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-15

    After a theoretical study on the slowing down of a centrifugal pump, the motion equations have been checked by means of experimental tests. In order to have important slowing down times (which is the case of the cooling pumps of a research reactor) it is necessary to add a fly-wheel. To prevent troubles when starting, a block pump-fly-wheel with clutch under controlled torque was developed. It is so possible to start the fly-wheel progressively without increasing too much power of the driving motor. (author) [French] Apres une etude theorique sur le mouvement de ralentissement d'une pompe centrifuge, les equations du mouvement ont ete verifiees par des essais pratiques. Pour obtenir des temps de ralentissement importants (cas des pompes de refrigeration d'un reacteur de recherche) il est necessaire d'y adjoindre un volant d'inertie. Pour eviter les inconvenients au demarrage, on a etudie un ensemble pompe-volant avec embrayage sous couple controle. Cette solution permet de lancer progressivement le volant sans augmentation appreciable de la puissance du moteur d'entrainement. (auteur)

  12. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Baek, B. J.; Park, S. Y. and others

    1999-08-01

    The overview of corrosion and hydriding behaviors of Zr-based alloy under the conditions of the in-reactor service and in the absence of irradiation is introduced in this report. The metallurgical characteristics of Zr-based alloys and the thermo-mechanical treatments on the microstructures and the textures in the manufacturing process for fuel cladding are also introduced. The factors affecting the corrosion of Zr alloy in reactor are summarized. And the corrosion mechanism and hydrogen up-take are discussed based on the laboratory and in-reactor results. The phenomenological observations of zirconium alloy corrosion in reactors are summarized and the models of in-reactor corrosion are exclusively discussed. Finally, the effects of irradiation on the corrosion process in Zr alloy were investigated mainly based on the literature data. (author). 538 refs., 26 tabs., 105 figs

  13. Corrosion in power engineering

    International Nuclear Information System (INIS)

    1988-03-01

    The proceedings contain the full texts of 25 papers of which 10 fall under the INIS Subject Scope. They concern the problems of corrosion in WWER type nuclear power plants. The topics include structural materials and equipment of the primary and the secondary circuits of nuclear power plants, components used in disposal of spent nuclear fuel, sodium valves for fast reactors and basic study of the properties of materials used in nuclear power. (Z.M.). 12 figs., 6 tabs., 46 refs

  14. Systemic model for the aid for operating of the reactor Siloe; Modelisation systeme pour l`aide a l`exploitation du reacteur de recherche Siloe

    Energy Technology Data Exchange (ETDEWEB)

    Royer, J.C.; Moulin, V.; Monge, F. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires; Baradel, C. [ITMI APTOR, 38 - Meylan (France)

    1995-12-31

    The Service of the Reactor Siloe (CEA/DRN/DRE/SRS), fully aware of the abilities and knowledge of his teams in the field of research reactor operating, has undertaken a project of knowledge engineering in this domain. The following aims have been defined: knowledge capitalization for the installation in order to insure its perenniality and valorization, elaboration of a project for the aid of the reactor operators. This article deals with the different actions by the SRS to reach the aims: realization of a technical model for the operation of the Siloe reactor, development of a knowledge-based system for the aid for operating. These actions based on a knowledge engineering methodology, SAGACE, and using industrial tools will lead to an amelioration of the security and the operating of the Siloe reactor. (authors). 13 refs., 7 figs.

  15. Effect of niobium element on the electrochemical corrosion behavior of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping, E-mail: wuyanping-2@126.com; Wu, Quanwen; Zhu, Shengfa, E-mail: zhushf-306@163.com; Pu, Zhen; Zhang, Yanzhi; Wang, Qinguo; Lang, Dingmu; Zhang, Yuping

    2016-09-15

    Depleted uranium (DU) has many military and civilian uses. However, its high chemical reactivity limits its application. The effect of Nb content on corrosion behavior of DU is evaluated by scanning Kelvin probe and electrochemical corrosion measurements. The Volta potential value of DU and U-2.5 wt% Nb is about the same level, the Volta potential value of U-5.7 wt% Nb has a rise of 370mV{sub SHE} in comparison with DU. The polarization current of U-5.7 wt% Nb alloy is about an order of magnitude of that of DU. The Nb{sub 2}O{sub 5} is the protective layer for the U-Nb alloys. The negative potential of Nb-depleted α phase is the main reason of the poor corrosion resistance of DU and U-2.5 wt% Nb alloy. - Highlights: • New method (scanning Kelvin probe) was used to study the corrosion property. • Three types of corrosion morphologies were found after potentiodynamic polarization. • The effect of impurity elements on corrosion property was mentioned. • The corrosion mechanism of DU and U-Nb alloys was discussed.

  16. Contribution to the optimization of the coupling of nuclear reactors to desalination processes; Contribution a l'optimisation du couplage des reacteurs nucleaires aux procedes de dessalement

    Energy Technology Data Exchange (ETDEWEB)

    Dardour, S

    2007-04-15

    This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)

  17. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  18. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  19. Ultrasonic testing of canning tubes in stainless steel of the EL 4 reactor; Controle par ultrasons des tubes de gaine en acier inoxydable du reacteur EL 4

    Energy Technology Data Exchange (ETDEWEB)

    Prot, A; Monnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    From all the methods possible for controlling thin cans the one chosen, for numerous reasons, vas that making use of ultrasonic techniques. A method has been developed which should make it possible to carry out a rapid and efficient industrial control of canning tubes, The reasons for the choice of the ultrasonic method are given in detail, together with the principles of the method and the actual control parameters. In the present state of our research, it should be possible to control at least 50 000 tubes a year. Improvements brought about in the details of the control technique itself should make it possible to increase this rate considerably. (authors) [French] Parmi toutes les methodes possibles de controle des gaines minces, le procede retenu pour de multiples raisons a ete celui faisant appel a la technique des ultrasons. Une methode a ete mise au point qui doit permettre un controle industriel rapide et efficace des tubes de gaine. Sont exposes en detail, les raisons du choix de la methode par ultrasons, les principes de cette methode et les parametres du controle proprement dit. Dans l'etat actuel de nos etudes la cadence devrait permettre le controle de 50000 tubes par an au minimum. Des ameliorations de detail portant sur la technique de controle elle-meme, doivent permettre d'accelerer tres notablement cette cadence. (auteurs)

  20. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  1. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  2. Fundamental approaches to predicting stress corrosion: 'Quantitative micro-nano' (QMN) approach to predicting stress corrosion cracking in water cooled nuclear plants

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2010-01-01

    This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.

  3. Processing Th C{sub 2} - UC{sub 2} fuel extracted from high temperature reactors HTGCR; Etude du traitement des combustibles Th C{sub 2} - UC{sub 2} issus de reacteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, C; Lessart, P; Pianezza, E; Verry, C; Villain, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The object of this investigation is solubilisation head-end (from crushing and grinding phase to non included first purification phase) of pulverulent ({sup 233}U/{sup 232}Th)C{sub 2} (200 - 500 microns diameter) contained in a graphite matrix extracted from a 4.10{sup 13} n.cm{sup -2}.s{sup -1} thermalized neutrons average flux with an irradiation of 80000 MWjT{sup -1} HTGCR reactor. After having succinctly described different bibliographic processes we have chosen the burn - leach of reactor fuel and graphite matrix containing it. The technology of burner is original in nuclear field and still more by utilizing ultra-sounds to intensify burning reaction and to minimize the weight of unburnables. The mixture of ThO{sub 2}, U{sub 3}O{sub 8}, and fission products oxides is solubilized by boiling HNO{sub 3} 13 M + HF 0.05 M. This process is profit-learning in a thorium recuperation and reprocessing point of view. In the contrary-case it would be interesting to consider a dry-process which would permit to separate solid ThF{sub 4} from gaseous UF{sub 6}. (authors) [French] Cette etude a pour objet le traitement initial de mise en solution ou 'head-end' (allant de la phase broyag-concassage a la phase de premiere purification exclue) d'un combustible ({sup 233}U/{sup 232}Th)C{sub 2} pulverulent (de 200 a 500 {mu} de diametre) contenu dans une matrice de graphite issu d'un reacteur HTGCR surgenerateur a neutrons thermiques de flux moyen 4. l0{sup 13} n.cm{sup -2}.s{sup -1} et taux d'irradiation 80000 MWjT{sup -1}. Apres exposition succincte des differents procedes bibliographiques decrits, nous avons finalement choisi le traitement par combustion-attaque ('Burn-Leach') du combustible et de la matrice etanche graphite qui le contient. La technologie du bruleur est originale dans le domaine nucleaire d'autant qu'elle utilise les ultra-sons pour ameliorer le rendement de la reaction de combustion et reduire au minimum le poids des imbrules. Le melange ThO{sub 2}, U{sub 3}O

  4. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  5. Heat transfer tests conducted on full-scale model, to investigate cooling conditions of EL.3 experimental reactor; Essais de transmission de chaleur sur maquette pour l'etude du refroidissement de la pile EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Butzbach, M; Domenjoud, M [Alsthom, 75 - Paris (France); Bousquet, M [Chantiers de l' Atlantique (France); Braudeau, M; Milliat, M [Electricite de France (EDF), 75 - Paris (France)

    1958-07-01

    For such high heat flux density as is released in the channels of EL3 reactor (2.10{sup 6} kcal/m{sup 2}h on the hottest point) cooling conditions have proved to be satisfactory, that is free from nucleate boiling. The arrangements provided for these tests and the technique used for measurements (of temperature particularly) are specified. Two fields have been investigated: in the former (forced convection without nucleate boiling) a good agreement is found with Colburn's formula. The influence of the ratio L/D is pointed out. The latter field is of forced convection with beginning of nucleate boiling; there the observed raise of the transfer coefficient has been shown occurring with some delay. (author)Fren. [French] A la valeur elevee prevue pour la densite de flux de chaleur (2.10{sup 6} kcal/m{sup 2}h au point le plus chaud) il est verifie que le refroidissement de la pile s'effectue normalement (sans ebullition de paroi). Les essais sont menes sur la maquette grandeur nature d'un canal d'EL3. Les dispositions relatives a la conduite des essais et a la technique des mesures (de temperature en particulier) sont precisees. Deux domaines sont etudies; pour t{sub p} < T{sub sat} (convection forcee sans ebullition de paroi) on constate un bon accord avec la formule de Colburn, avec toutefois l'influence du rapport L/D. Pour t{sub p} < T{sub sat} (debut d'ebullition) l'augmentation prevue du coefficient de transmission presente un certain retard. (auteur)

  6. Accident at the zero power reactor which happened on October 15 1958; Sur l'accident avec le reacteur de puissance zero du 15 octobre 1958

    Energy Technology Data Exchange (ETDEWEB)

    Savic, P [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1959-03-15

    During an experiment on the zero power heavy water reactor with natural uranium fuel in the Boris Kidric Institute of Nuclear Sciences, the reactor escaped control. Six staff members in the immediate surrounding of the bare assembly were exposed to high neutron and ionising irradiation. Other two employees who were at some bigger distance were exposed to doses higher than permitted. This paper deals with the circumstances that caused the accident, status of the dosimetry, control and alarm systems. Individual exposure doses were estimated according to the calculated neutron flux values obtained from measuring the activities of personal belongings made of gold and copper as well as radioactive phosphorous from urine.

  7. The processing and management of wastes from atomic reactors; Nouvelles installations industrielles du C.E.A. pour le traitement des dechets radioactifs liquides et solides

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P; Mestre, E; Bourdrez, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The policy concerning radioactive wastes studied by all Atomic Centres has led to various procedures which, while apparently numerous, come under a few standard headings. Whether the wastes are in the liquid or solid state their management depends on their physical and chemical nature. The procedure adopted is governed by three general principles: - determination of the most economical means possible of storage and processing by volume reduction; - conversion to a solid compact form; - complete acceptance of the accepted standards at all places and all times. In this communication all the standard solutions adopted and used by the various Centres of the Commissariat a l'Energie Atomique will be examined bearing in mind the preceding remarks. Particular mention will be made of the following: - For liquids, physical, chemical and physico-chemical processing - For solids, decontamination, volume reduction and long-term conditioning techniques. The different procedures for collecting and storing solid wastes before and after processing are also discussed. The paper ends with a brief review of the studies, both technical and economic, being pursued on this subject. (authors) [French] La gestion des dechets etudies par tous les Centres Atomiques a donne lieu a des solutions qui - bien que nombreuses en apparence - se ramenent a quelques solutions types, peu nombreuses. Qu'il s'agisse de dechets solides ou liquides, la nature physique et chimique des dechets conditionne leur mode de gestion. Celle-ci procede de trois principes generaux: - recherche du mode de stockage et de traitement aussi economique que possible par reduction de volume; - mise sous forme compacte solide; - garantie du respect des normes en tous lieux et en tous temps. Dans cette communication, nous examinons toutes les solutions types, compte tenu des remarques precedentes, qui ont ete adoptees et sont utilisees par les differents Centres du Commissariat a l'Energie Atomique. Nous rappelons en

  8. Detection of tritium in the CO{sub 2} of the reactors G2/G3 using gas chromatography; La detection du tritium par chromatographie gazeuse dans le CO{sub 2} des piles G2/G3

    Energy Technology Data Exchange (ETDEWEB)

    Guillermin, P; Rossi, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This gas-phase chromatographic method, based on the principle of the decomposition of a gas mixture into its pure constituents, makes it possible to identify and rapidly measure the tritium present in the heat-carrying fluid of the reactors G2/G3. The sensitivity limit corresponds to 5 x 10{sup -6} {mu}Ci/cm{sup 3} of tritiated gas, whereas the threshold reading of the D.C.C.A. is 10{sup -3} {mu}Ci/cm{sup 3} in the presence of {sup 41}A. This apparatus has interesting applications in the conditions where certain {beta} emitters (products of fission or of activation) interfere with the measurement of the tritium. It can easily be adapted to the detection of tritiated steam on condition that a reducing chemical treatment is applied for the atmospheric humidity. In fact, although this method is not as sensitive for the measurement of tritiated vapour as p-spectrometry in a scintillating medium, it may be set up very easily for measuring the C.M.A of tritium in air and is not affected by the presence of radio-active gases. (authors) [French] Cette methode de chromatographie en phase gazeuse, basee sur le principe de decomposition d'un melange gazeux en ses constituants purs, permet l'identification et la mesure rapide du tritium present dans le fluide caloporteur des piles G2/G3. La limite de sensibilite correspond a 5.10{sup -6} {mu}Ci/cm{sup 3} de gaz tritie, alors que le seuil de lecture du D.C.C.A. s'eleve a 10{sup -3} {mu}Ci/cm{sup 3} en presence de {sup 41}A. Cet appareillage presente un champ d'application interessant dans les domaines ou certains emetteurs {beta} (produits de fission ou d'activation) genent la mesure du tritium. Il peut s'adapter sans difficulte a la detection de la vapeur tritiee moyennant un traitement chimique reducteur de l'humidite atmospherique. En definitive, bien que cette methode ne soit pas aussi sensible pour la determination de la vapeur tritiee que la spectrometrie {beta} en milieu scintillant, elle permet de mesurer la C.M.A de

  9. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  10. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  11. Design of the Small Rods Forming the Fuel Element of the First Charge of the EL4 Reactor. Cladding Problems; Etude des crayons constituant l'element combustible du premier jeu d'EL4 - probleme de la gaine; Problema pokrytiya nebol'shikh steeknej, obrazushchikh toplivnyj ehlement pervoj zagruzki reaktora EL.4; Estudio de las barras que constituyen los elementos combustibles de la primera carga del reactor EL4 - el problema de las vainas

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, H.; Ringot, C.; Weisz, M. [Centre d' Etudes Nucleaires de Saclay (France)

    1963-11-15

    The fuel element for the first charge of EL4 makes use of stainless steel cans. The grade of steel chosen and the can thickness depend on the corrosion resistance and mechanical strength required. The operating stresses and temperatures are such that fabrication of a can lasting throughout the life of the fuel element calls for a highly resistant grade of steel, of thickness greater than 0.5 mm. When the can bears on the fuel as a result of creep, deformation in diametrical clearance may lead to ovalization and folding, while deformation in longitudinal clearance may cause buckling of the can. Numerous tests have been carried out on cans of thickness 0.3 and 0.4 mm to determine type of deformation as a function of clearance. To be certain of avoiding ovalization with the thicknesses proposed and to keep the internal temperature of the fuel as low as possible, the clearance must be reduced to zero in fabrication. (author) [French] L'element combustible du premier jeu EL4 utilise des gaines en acier inoxydable. Le choix de la nuance et de l'epaisseur de la gaine est lie a des considerations de tenue a la corrosion et de tenue mecanique. Les contraintes et les temperatures d'utilisation ne permettent pas de concevoir une gaine resistante pendant toute la vie de l'element combustible a moins d'utiliser une nuance tres resistante et d'epaisseur superieure a 0,5 mm. On admet que la gaine s'applique par fluage sur le combustible: la deformation dans les jeux diametraux peut conduire a la formation d'une ovalisation et d'un pli; la deformation dans les jeux longitudinaux peut conduire a des flambages de la gaine. De nombreux essais ont ete realises sur des gaines d'epaisseurs 0,3 et 0,4 mm pour connaitre le mode de deformation en fonction des jeux. Pour etre certain de ne jamais avoir d'ovalisation avec les epaisseurs envisagees, et pour avoir la temperature a coeur du combustible la plus basse possible, on est conduit a reduire a zero le jeu en fabrication. (author

  12. Effets de la radiolyse de l'air humide et de l'eau sur la corrosion de la couche d'oxyde du Zircaloy-4 oxydé

    OpenAIRE

    Guipponi , Claire

    2009-01-01

    Pas de résumé donné.; Les Colis Standards de Déchets Compactés (CSD-C) sont des déchets issus du retraitement des assemblages de combustibles nucléaires. Ils sont en partie constitués des gaines oxydées de Zircaloy-4. Ces pièces métalliques sont cisaillées avant d'être placées dans un étui en acier et compactées sous forme de galettes. Ces galettes contiennent des traces de produits d'activation, de produits de fission et d'actinides présents à la surface du Zircaloy-4 oxydé. Dans l'hypothèse...

  13. Stress corrosion cracking (Standard Astm G 30-90) in stainless steel 08X18H10T of swimming-pool that contain nuclear fuel in reactors V.V.E.R.-440

    International Nuclear Information System (INIS)

    Zamora R, L.; Herrera, V.

    1998-01-01

    The standard recommended practice for making and using 'U' bend stress corrosion test specimens; Designation G30-90 has been used as a laboratory tool to study the susceptibility of austenitic stainless steels and the other materials of test of intergranular stress corrosion cracking (IGSCC). The experiment has been development in a similar conditions of the chemical regime, the swimming-pool that containing nuclear fuel in borated water reactors VVER-440 in general this cladding by two films, one of carbon steel (04T26) and other with austenitic stainless steel 08X18HT (similar type 321) stabilized with titanium, the thickness of filler metals was to 4 to 8 mm. The specimens was prepare one plate with this characteristics, the welding was put in the part central with the following measurements of 160x15x5 mm. The specimens strips bent approximately 180 degrees around radius of curvature of R=14.5 mm and ε 1 = 17.2% and maintained in this plastically deformed condition during the test. And then preparing metallographically and exposure in environment of 12 and 40 gr./l of H 3 BO 3 70 Centigrade with or noting contaminants of NaCl. The results showed the initial cracks. (Author)

  14. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  15. Production and validation of nuclear data for reactor and fuel cycle applications; Production et validation des donnees nucleaires pour les applications reacteurs et cycle du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Trakas, C [Framatome ANP GmbH NBTT, Erlangen (Germany); Verwaerde, D [Electricite de France EDF, 75 - Paris (France); Toubon, H [Cogema, 78 - Velizy Villacoublay (France); and others

    2002-07-01

    The aim of this technical meeting is the improvement of the existing nuclear data and the production of new data of interest for the upstream and downstream of the fuel cycle (enrichment, fabrication, management, storage, transport, reprocessing), for the industrial reactors, the research reactors and the new reactor concepts (criticality, dimensioning, exploitation), for the instrumentation systems (external and internal sensors), the radioprotection, the residual power, the structures (neutron bombardment effect on vessels, rods etc..), and for the activation of steel structures (Fr, Ni, Co). The expected result is the collection of more reliable and accurate data in a wider spectrum of energies and temperatures thanks to more precise computer codes and measurement techniques. This document brings together the communications presented at this meeting and dealing with: the process of production and validation of nuclear data; the measurement facilities and the big international programs; the users needs and the industrial priorities; the basic nuclear data (BND) needs at Cogema; the expression and evaluation of BND; the evaluation work: the efficient cross-sections; the processing of data and the creation of activation libraries; from the integral measurement to the qualification and the feedback on nuclear data. (J.S.)

  16. Micro-reactor for heterogeneous catalysis. Application: hydrogen production from methyl-cyclohexane; Microreacteur pour la catalyse heterogene. Application: production d'hydrogene a partir du methylcyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M.; Pijolat, C. [Ecole des Mines de Saint Etienne, Centre SPIN (DMICC/LPMG/URA/CNRS-D2021), 42 - Saint Etienne (France); Meille, V.; Bellefon, C. de [Centre National de la Recherche Scientifique (CNRS/CPE), Lab. de Genie des Procedes Catalytiques, 69 - Villeurbanne (France); Pouteau, P.; Delattre, C. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2004-07-01

    First developed by the pharmaceutical industry to find new drugs (combinatorial analysis), the lab on chip is also extremely interesting for the catalysis field. This major interest comes from the miniaturize size and the high surface on volume ratio which lead to improve mass and heat transfer but also the safety in regards of industrial application. The use of micro-technology and the miniaturization of various systems such as micro-fuel cell is also a current field of activity. So for the future research the production of hydrogen is a point to develop in order to supply a micro-fuel cell. The aim of this work is to study and to realize an autonomous catalytic micro-reactor for hydrogen production from methyl-cyclohexane. For this reaction of dehydrogenation, the common catalyst is platinum supported on alumina. Consequently, the general objectives of this work are: 1)to develop a micro-reactor with its heaters, sensors...2)to deposit catalysts in the micro-reactor 3)to study the catalytic conversion of this system.

  17. Current status of studies on nodular corrosion

    International Nuclear Information System (INIS)

    Yasuda, Takayoshi; Kawasaki, Satoru; Echigoya, Hironori; Kinoshita, Yutaka; Kubota, Hiroyuki; Konishi, Takao; Yamanaka, Tuneyasu.

    1993-01-01

    The studies on nodular corrosion formed on the outer surface of BWR fuel cladding tubes were reviewed. Main factors affecting the corrosion behavior were material and environmental conditions and combined effect. The effects of such material conditions as fabrication process, alloy elements, texture and surface treatment and environmental factors as neutron irradiation, thermo-hydrodynamic, water chemistry, purity of the coolant and contact with foreign metals on the corrosion phenomena were surveyed. Out-of-reactor corrosion test methods and models for the corrosion mechanism were also reviewed. Suppression of the accumulated annealing temperature during tube reduction process improved the nodular corrosion resistance of Zircaloys. Improved resistance for the nodular corrosion was reported for the unirradiated Zircaloys with some additives. Detailed irradiation test under the BWR conditions is needed to confirm the trend. Concerning the environmental factors, boiling on the cladding surface due to heat flux reduces the nodular corrosion susceptibility, while oxidizing radical generated from dissolved oxygen accelerates the corrosion. Concerning corrosion mechanisms, importance of such phenomena as the depleted zone of alloying elements in zirconium matrix, reduction of H + to H 2 in oxide layer, electrochemical property of precipitates, crystallographic anisotropy of oxidation rates were revealed. (author) 59 refs

  18. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    International Nuclear Information System (INIS)

    Besch, O.A.; Yagnik, S.K.; Eucken, C.M.; Bradley, E.R.

    1996-01-01

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked

  19. Radiation-induced corrosion of stellite-6

    International Nuclear Information System (INIS)

    Behazin, M.; Wren, J.C.

    2012-09-01

    Stellite-6 is a Co-based (58%) alloy that is used for components that require high wear-resistance, such as valve facings and ball bearings in nuclear reactors. In the reactor core, stable 59 Co can be neutron activated by absorption of a neutron to become the radioactive isotope, 60 Co. The 60 Co that is created constitutes a safety hazard for plant workers who have to perform maintenance on the reactor. One of the operational and safety issues in a nuclear reactor is the potential corrosion of Co-based alloys and the introduction of dissolved Co ions into the reactor core. While the corrosion of Stellite-6 has been studied its corrosion behaviour with ionizing radiation present has not been well established. Corrosion kinetics depend on both the aqueous redox conditions and the physical and chemical nature of the alloy surface. The high radiation fields present in a reactor core will cause water to decompose to a range of redox-active species (both highly oxidizing (e.g., ·OH, H 2 O 2 ) and highly reducing (e.g., ·eaq - , ·O 2 - )). These species can significantly influence corrosion kinetics. The effect of γ-radiation on the corrosion of Stellite-6 at pH 10.6 was investigated at temperatures ≤ 150 deg. C. Since the corrosion rate depends strongly on the type of oxide that is present on the material surface, the focus of this corrosion study was to establish the mechanism by which radiolysis affects the nature of the oxide that is present on Stellite-6. The results show that γ-radiation (at a dose rate of 5.5 kGy.h -1 ) increases the corrosion potential on Stellite-6 from -0.7 VSCE to 0.12 VSCE . The corrosion potential without irradiation present is in a potential range where oxidation is limited to the formation of a Co (OH) 2 and CoCr 2 O 4 outer oxide layer on a pre-existing Cr 2 O 3 film. The corrosion potential with irradiation is in a potential range where further oxidation of Co (OH) 2 to CoOOH also occurs. However, since CoOOH is less soluble than

  20. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  1. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  2. Etude par spectroscopie d'impédance globale et locale de la corrosion du magnésium et des alliages de magnésium AZ91.

    OpenAIRE

    Galicia Aguilar , Gonzalo

    2006-01-01

    We have studied the microstructure influence on the corrosion behavior of two kinds of AZ91 magnesium alloy. The same qualitative electrochemical response has been explained taking into account that electrochemical techniques used (chronopotentiometry, voltametry and electrochemical impedance spectroscopy) involve a global answer of the whole surface metal.To overcome this problem, local electrochemical techniques have been used particularly local electrochemical impedance spectroscopy. In or...

  3. Preliminary study for extension and improvement on modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel M.; Schvartzman, Monica M.M.A.M.

    2009-01-01

    This study is for to extend, to improve the existing models, and to propose a local approach to assess the primary water stress corrosion cracking in nickel-based components. It is includes a modeling of new data for Alloy 182 and new considerations about initiation and crack growth according a developing method based on EPRI-MRP-115 (2004), and USNRC NUREG/CR-6964 (2008). The experimental data is obtained from CDTN-Brazilian Nuclear Technology Development Center, by tests through slow strain rate test (SSRT) equipment. The model conception assumed is a built diagram which indicates a thermodynamic condition for the occurrence of corrosion submodes in essayed materials, through Pourbaix diagrams, for Nickel Alloys in high temperature primary water. Over them, are superimposed different models, including a semi-empiric-probabilistic one to quantify the primary water stress corrosion cracking susceptibility, and a crack growth model. These constructed models shall be validated with the experimental data. This development aims to extent some of the models obtained to weld metals like the Alloy 182, and to improve the originals obtained according methodologies exposed in above referred reports. These methodologies comprise laboratory testing procedures, data collecting, data screening, modeling procedures, assembling of data from some laboratories in the world, plotting of results, compared analysis and discussion of these results. Preliminary results for Alloy 182 will be presented. (author)

  4. Preliminary study for extension and improvement on modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Omar F.; Mattar Neto, Miguel M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: ofaly@ipen.br, e-mail: mmattar@ipen.br; Schvartzman, Monica M.M.A.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)], e-mail: monicas@cdtn.br

    2009-07-01

    This study is for to extend, to improve the existing models, and to propose a local approach to assess the primary water stress corrosion cracking in nickel-based components. It is includes a modeling of new data for Alloy 182 and new considerations about initiation and crack growth according a developing method based on EPRI-MRP-115 (2004), and USNRC NUREG/CR-6964 (2008). The experimental data is obtained from CDTN-Brazilian Nuclear Technology Development Center, by tests through slow strain rate test (SSRT) equipment. The model conception assumed is a built diagram which indicates a thermodynamic condition for the occurrence of corrosion submodes in essayed materials, through Pourbaix diagrams, for Nickel Alloys in high temperature primary water. Over them, are superimposed different models, including a semi-empiric-probabilistic one to quantify the primary water stress corrosion cracking susceptibility, and a crack growth model. These constructed models shall be validated with the experimental data. This development aims to extent some of the models obtained to weld metals like the Alloy 182, and to improve the originals obtained according methodologies exposed in above referred reports. These methodologies comprise laboratory testing procedures, data collecting, data screening, modeling procedures, assembling of data from some laboratories in the world, plotting of results, compared analysis and discussion of these results. Preliminary results for Alloy 182 will be presented. (author)

  5. Stress corrosion of austenitic steels mono and polycrystals in Mg Cl{sub 2} medium: micro fractography and study of behaviour improvements; Corrosion sous contrainte de mono et polycristaux d`aciers inoxydables austenitiques en milieu MgCI{sub 2}: analyse microfractographique et recherche d`ameliorations du comportement

    Energy Technology Data Exchange (ETDEWEB)

    Chambreuil-Paret, A

    1997-09-19

    The austenitic steels in a hot chlorinated medium present a rupture which is macroscopically fragile, discontinuous and formed with crystallographic facets. The interpretation of these facies crystallographic character is a key for the understanding of the stress corrosion damages. The first aim of this work is then to study into details the micro fractography of 316 L steels mono and polycrystals. Two types of rupture are observed: a very fragile rupture which stresses on the possibility of the interatomic bonds weakening by the corrosive medium Mg Cl{sub 2} and a discontinuous rupture (at the micron scale) on the sliding planes which is in good agreement with the corrosion enhanced plasticity model. The second aim of this work is to search for controlling the stress corrosion by the mean of a pre-strain hardening. Two types of pre-strain hardening have been tested. A pre-strain hardening with a monotonic strain is negative. Indeed, the first cracks starts very early and the cracks propagation velocity is increased. This is explained by the corrosion enhanced plasticity model through the intensifying of the local corrosion-deformation interactions. On the other hand, a cyclic pre-strain hardening is particularly favourable. The first micro strains starts later and the strain on breaking point levels are increased. The delay of the starting of the first strains is explained by a surface distortion structure which is very homogeneous. At last, the dislocations structure created in fatigue at saturation is a planar structure of low energy which reduces the corrosion-deformation interactions, source of micro strains. (O.M.) 139 refs.

  6. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  7. Practical guide to dosimetry as applied in the research reactors of the Saclay and Grenoble nuclear research centers; Guide pratique de la dosimetrie mise en oeuvre dans les reacteurs de recherche du C.E.N./G et du C.E.N./S

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    Since the problems concerning neutron and gamma flux measurements which arise during irradiation experiments in the reactors in the Grenoble and Saclay Centres are of the same type, and since the solutions found are very often adopted in common, we have attempted to describe the methods we use at the present time. A brief description is given of the production of the detectors, the electronic apparatus; the formulae usually used for the interpretation of the measurements are given. A series of technical data cards give the most commonly used detector characteristics. These cards give the physical characteristics of the detectors, their nuclear constants, if any, the most suitable counting methods and the field of application. (authors) [French] Les problemes de mesures de flux de neutrons et de flux gamma qui se posent pour les experiences irradiees dans les reacteurs des Centres de Grenoble et de Saclay etant du meme type et les solutions trouvees, tres souvent adoptees en commun, nous avons cherche a decrire les methodes que nous pratiquons actuellement. On decrit tres brievement la fabrication des detecteurs, l'appareillage electronique; on rappelle les formules usuelles qui servent dans l'interpretation des mesures. Une serie de fiches techniques rassemble les caracteristiques des detecteurs les plus couramment utilises. Ces fiches indiquent les caracteristiques physiques des detecteurs, leurs constantes nucleaires s'il y a lieu, les methodes de comptage les mieux adaptees et le domaine d'utilisation. (auteurs)

  8. Study of the iron corrosion at the interface of different media (water, air) submitted to protons irradiation; Etude de la corrosion du fer a l'interface de differents milieux (eau, air) soumis a l'irradiation de protons

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, S

    2005-10-15

    During the deep geological disposal, stainless steel containers of the vitrified waste will be put in carbon steel overpacks. After the closing of the storage site, overpacks will be in contact with a humid air and a radioactive medium. After hundred years, overpacks could be in contact with water radiolysis in an anoxic medium. In this context, my PhD work is a fundamental study which is the understanding of the corrosion mechanisms of pure iron under proton irradiation. This corrosion is affected by the contact of iron with different atmospheres (air, nitrogen) and water. In the case of the atmospheric iron corrosion under irradiation, we have studied the influence of the proton beam flux. During this work, we have characterized the structure of the oxides formed at the iron surface. The structure formed does not correspond to iron oxides and hydroxides indexed. However, we have shown that the oxide structure is close to that of lepidocrocite and bernalite. Moreover, we have determined the oxygen diffusion coefficient in iron under irradiation and we have shown that the irradiation accelerates of 6 orders of magnitude the iron corrosion. In addition, the irradiations which were realized in different gas have put in evidence the negligible role of nitrates, and the importance of the O{sub 2}/H{sub 2}O coupling on the iron corrosion. Finally, we have shown the influence of the relative humidity, the maximum of the corrosion being observed for a relative humidity close to 45%. In the case of the iron corrosion in aqueous media under irradiation, the influence of the oxygen dissolved in water has been studied using a surface marker. We have put in evidence that the corrosion is twice more significant in aerated medium than in deaerated medium. Moreover, the influence of radicals has been shown. An irradiated sample is more corroded than a sample put in contact with a H{sub 2}O{sub 2} solution. Finally, the follow-up of the iron potential under irradiation have shown

  9. Corrosion of graphitic high temperature reactor materials in steam/helium mixtures at total pessures of 3-55 bar and temperatures of 900-1150 C (1173-1423K)

    International Nuclear Information System (INIS)

    Hinssen, H.K.; Loenissen, K.J.; Katscher, W.; Moormann, R.

    1993-03-01

    In course of accident examination for (HTR), experiments on the corrosion behavior of graphitic reactor materials in steam have been performed a total pressures of 3-55bar and temperatures of 900-1150 C (1173-1423K); these experiments and their evaluation are documented here. Reactor materials examined are the structure graphite V483T2 and the fuel element matrices A3-27 and A3-3. In all experiments, the steam partial pressure was 474mbar (inert gas helium). The dependence of reaction rates and density profiles on burn-off, total pressure and temperature has been examined. Experimental reaction rates depending on burn-off are fitted by theoretical curves, a procedure, which allows rate comparison for a well defined burn-off. Comparing rates as a function of total pressure, V483T2 shows a linear dependence on 1√p total , whereas for matrix materials a pressure independent rate was found for p total 4mm for A3-3. (orig.) [de

  10. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  11. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  12. Erosion-corrosion entrainment of iron-containing compounds as a source of deposits in steam generators used at nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2011-03-01

    The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.

  13. Integral validation of the effective beta parameter for the MOX reactors and incinerators; Validation integrale des estimations du parametre beta effectif pour les reacteurs Mox et incinerateurs

    Energy Technology Data Exchange (ETDEWEB)

    Zammit-Averlant, V

    1998-11-19

    {beta}{sub eff}, which represents the effective delayed neutron fraction, is an important parameter for the reactor nominal working as well as for studies of its behaviour in accidental situation. In order to improve the safety of nuclear reactors, we propose here to validate its calculation by using the ERANOS code with ERALIB1 library and by taking into account all the fission process physics through the {nu} energy dependence. To validate the quality of this calculation formalism, we calculated uncertainties as precisely as possible. The experimental values of {beta}{sub eff}, as well their uncertainties, have also been re-evaluated for consistency, because these `experimental` values actually contain a calculated component. We therefore obtained an entirely coherent set of calculated and measured {beta}{sub eff}. The comparative study of the calculated and measured values pointed out that the JEF2.2 {nu}{sub d} are already sufficient because the (E-C)/C are inferior to 3 % in average and in their uncertainly bars. The experimental uncertainties, even if lightly superior to those previously edited, remain inferior to the uncertainties of the calculated values. This allowed us to fit {nu}{sub d} with {beta}{sub eff}. This adjustment has brought an additional improvement on the recommendations of the {nu}{sub d} average values, for the classical scheme (thermal energy, fast energy) and for the new scheme which explains the {nu}{sub d} energy dependence. {beta}{sub eff}, for MOX or UOX fuel assemblies in thermal or fast configurations, can therefore be obtained with an uncertainty due to the nuclear data of about 2.0 %. (author) 110 refs.

  14. Evaluation of seawater corrosion of SSCs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the unit 1 to unit 4 of the Fukushima Daiichi Nuclear Power Plant, seawater was injected in reactor pressure vessels and spent fuel pools in order to cool nuclear fuel after the disaster of the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami. In fiscal 2012, overall plan of this project has been developed in consideration of corrosion events that might be assumed reactor pressure vessels, spent fuel pools and primary containment vessels of Fukushima Daiichi Nuclear Power Station that was designated to be as the 'Specified Nuclear Power Facilities'. In this project, crevice corrosion susceptibility of stainless steel, galvanic corrosion of aluminum alloy, and uniform corrosion of carbon steel piping will be evaluated. (author)

  15. Device of capturing for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Fukushima, Kimichika.

    1984-01-01

    Purpose: To increase the area of contact between the capturing materials for the radioactive corrosion products contained in the coolants and the coolants by producing stirred turbulent flows in the coolant flow channel of LMFBR type reactors. Constitution: Constituent materials for the nuclear fuel elements or the reactor core structures are activated under the neutron irradiation, corroded and transferred into the coolants. While capturing devices made of pure metal nickel are used for the elimination of the corrosion products, since the coolants form laminar flows due to the viscosity thereof near the surface of the capturing materials, the probability that the corrosion products in the coolants flowing through the middle portion of the channel contact the capturing materials is reduced. In this invention, rotating rolls and flow channels in which the balls are rotated are disposed at the upstream of the capturing device to forcively disturb the flow of the liquid sodium, whereby the radioactive corrosion products can effectively be captured. (Kamimura, M.)

  16. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  17. Corrosion problems of PWR steam generators

    International Nuclear Information System (INIS)

    Urbancik, L.; Kostal, M.

    Literature data are assessed on corrosion failures of steam generator tubes made of INCONEL 600 or INCOLOY 800. It was found that both alloys with high nickel content showed good stability in a corrosion environment while being sensitive to carbide formation on grain boundaries. The gradual depletion of chromium results from the material and corrosion resistance deteriorates. INCOLOY 800 whose chromium carbide precipitation on grain boundaries in pure water and steam is negligible up to 75O degC and which is not subject to corrosion attacks in the above media and in an oxidizing environment at a temperature to about 700 degC shows the best corrosion resistance. Its favourable properties were tested in long-term operation in the Peach Bottom 1 nuclear power plant where no failures due to corrosion of this material have been recorded since 1967. In view of oxygenic-acid surface corrosion, it is necessary to work in a neutral or slightly basic environment should any one of the two alloys be used for steam generator construction. The results are summed up of an analysis conducted for the Beznau I NOK reactor. Water treatment with ash-free amines can be used as prevention against chemical corrosion mechanisms, although the treatment itself does not ensure corrosion resistance of steam generator key components. (J.B.)

  18. Boric Acid Corrosion of Concrete Rebar

    Directory of Open Access Journals (Sweden)

    Yang L.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i borated water flowing in a simulated concrete crack, (ii borated water flowing over a concrete surface, (iii borated water that has reacted with concrete, and (iv 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS and linear polarization resistance (LPR probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or lesswhen the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  19. Optimization by simulation of the coupling between a sub-critical reactor and its spallation source. Towards a pilot reactor; Optimisation par simulation du couplage entre un reacteur sous-critique et sa source de spallation. Application a un demonstrateur

    Energy Technology Data Exchange (ETDEWEB)

    Kerdraon, D

    2001-10-01

    Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of {sup 99}Tc and {sup 129}I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required {sup 233}U proportion. (author)

  20. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  1. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  2. Corrosion testing of uranium silicide fuel specimens

    International Nuclear Information System (INIS)

    Bourns, W.T.

    1968-09-01

    U 3 Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300 o C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U 3 5i specimen which corrodes at less than 2 mg/cm 2 h in 300 o C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U 3 Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300 o C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  3. Corrosion testing of uranium silicide fuel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bourns, W T

    1968-09-15

    U{sub 3}Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300{sup o}C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U{sub 3}5i specimen which corrodes at less than 2 mg/cm{sup 2} h in 300{sup o}C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U{sub 3}Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300{sup o}C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  4. Speech by Prime Minister Francois Fillon. Visit of the Jules Horowitz experimental reactor works on the Commissariat a l'Energie et aux Energies Alternatives site. Cadarache, May 3, 2010; Discours du Premier ministre Francois FILLON Cadarache, lundi 3 mai 2010. Visite du chantier du Reacteur experimental Jules Horowitz sur le site du Commissariat a l'Energie Atomique et aux Energies Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In this speech, the French Prime Minister evokes the present context, the importance of strategic technologies, and the challenge of investing in these technologies within a context of reduction of public expenses. He comments the decision of his government to finance research and education activities in different domains, and more specifically in the energy sector with this fourth generation Jules Horowitz experimental reactor. He recalls that the nuclear sector has always been very important to the eyes of the successive French governments, and outlines how this reactor will contribute to reactor operational optimization, lifetime extension and safety, nuclear fuel development, etc.

  5. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  6. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  7. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  8. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  9. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  10. Determination of the Effectiveness of Control Rods in the VVER Reactor Fuel Assemblies; Determination de l'Efficacite des Barres de Reglage dans les Ensembles Combustibles du reacteur VVER; Opredelenie ehffektivnosti reguliruyushchikh sterzhnej v sborkakh reaktora VVEHR; Determinacion de la Eficacia de las Barras de Control en los Conjuntos de Elementos Combustibles del Reactor VVER

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. N.; Lunin, G. L.; Komissarov, L. V.; Kamyshan, A. N.; Halizev, V. I.; Andrianov, G. Ja.; Voznesenskij, V. A.; Kuz' micheva, V. A.; Lebedev, V. I. [Ordena Lenina Institut Atomnoj Energii Im. I.V. Kurchatova, Moskva, SSSR (Russian Federation)

    1964-06-15

    The paper describes experiments done in homogeneous mock-ups of the fuel assemblies from the VVER Reactor (at one level of enrichment) to determine the effectiveness of absorbing systems comprising shim fuel assemblies or water cavities and of absorbing rods clad in jackets made of differing materials. The paper also gives data on some experiments that have been done in mock-ups of assemblies with differing levels of enrichment. These experiments make it possible to verify the methods used in calculation and to evaluate the prospects of using them for heterogeneous reactors. (author) [French] Le memoire decrit les experiences qui ont ete faites pour determiner l 'efficacite des absorbants contenus dans les barres de compensation, l'effet cavitaire et l 'efficacite des absorbants gaines de materiaux divers, au moyen d'assemblages homogenes de cartouches de combustible du reacteur VVER (reacteur de puissance ralenti et refroidi a l 'eau ayant le meme taux d'enrichissement. On y trouve en outre des donnees sur certaines experiences executees a l 'aide d'assemblages de cartouches de combustible taux d'enrichissement differents. Ces travaux permettent de verifier la methode de calcul et d'evaluer ses possibilites d'application aux reacteurs non homogenes. (author) [Spanish] Se describen en la memoria experimentos para determinar la eficacia de los materiales absorbentes contenidos en las barras de compensacion, el efecto de cavitacion y la eficacia de los materiales absorbentes revestidos de diversos materiales, realizados con ayuda de los conjuntos homogeneos de elementos combustibles del reactor VVER (reactor de potencia moderado y refrigerado por agua) con un solo grado de enriquecimiento. Ademas, se exponen datos sobre los experimentos efectuados con ayuda de conjuntos de grados de enriquecimientos; variados. Tales experimentos permiten verificar el metodo de calculo teorico, utilizad o y evaluar la posibilidad de aplicarlo a los reactores no homogeneos. (author

  11. Improvements in zirconium alloy corrosion resistance

    International Nuclear Information System (INIS)

    Kilp, G.R.; Thornburg, D.R.; Comstock, R.J.

    1990-01-01

    The corrosion rates of a series of Zircaloy 4 and Zr-Nb alloys were evaluated in long-term (exceeding 500 days in some cases) autoclave tests. The testing was done at various conditions including 633 K (680 F) water, 633 K (650 F) water, 633 k (680 F) lithiated water (70 PPM/0.01 molal lithium), and 673 K (750 F) steam. Materials evaluated are from the following three groups: (1) standard Zircaloy 4; (2) Zircaloy 4 with tightened controls on chemistry limits and heat-treatment history; and (3) Zr-Nb alloys. To optimize the corrosion resistance of the Zircaloy 4 material, the effects of specific chemistry controls (tighter limits on nitrogen, oxygen, silicon, carbon and tin) were evaluated. Also the effects of the thermal history, as measured by integrated annealing of ''A'' time were determined. The ''A'' times ranged from 0.1x10 -18 (h) to 46x10 -18 (h). A material referred to as ''Improved Zircaloy 4'', having optimized chemistry and ''A'' time levels for reduced corrosion, has been developed and tested. This material has a reduced and more uniform corrosion rate compared to the prior Zircaloy 4 material. Alternative alloys were also evaluated for potential improvement in cladding corrosion resistance. ZIRLO TM material was chosen for development and has been included in the long-term corrosion testing. Demonstration fuel assemblies using ZIRLO cladding are now operating in a commercial reactor. The results for the various test conditions and compositions are reported and the relative corrosion characteristics summarized. Based on the BR-3 data, there is a ranking correspondence between in-reactor corrosion and autoclave testing in lithiated water. In particular, the ZIRLO material has significantly improved relative corrosion resistance in the lithiated water tests. Reduced Zircaloy-4 corrosion rates are also obtained from the tighter controls on the chemistry (specifically lower tin, nitrogen, and carbon; higher silicon; and reduced oxygen variability) and ''A

  12. The corrosion of depleted uranium in terrestrial and marine environments.

    Science.gov (United States)

    Toque, C; Milodowski, A E; Baker, A C

    2014-02-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm(-2) y(-1) and 2.5-48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area. Copyright © 2013. Published by Elsevier Ltd.

  13. Contribution of the characterization of radioactive surfaces after sodium corrosion

    International Nuclear Information System (INIS)

    Menken, G.; Holl, M.

    1978-01-01

    Since 1972 INTERATOM is performing sodium mass and activity transfer investigations in an SNR-corrosion mockup loop which allows to study the transport of activated corrosion products in the primary heat transfer system of a sodium cooled reactor. The loop simulates the temperature and flow conditions and the materials combination of the SNR 300. The mass transfer examinations were aimed at the determination of the following: the linear corrosion and deposition rates; the selective corrosion of the alloying elements; the transfer of activated corrosion products. The results of a number of corrosion runs will be used in the following contribution to characterize the contaminated and corroded surface layers of reactor components. The loop reached a total operation time of 12300 h while the cold trap temperature was changed between 105 deg. C and 165 deg. C in successive runs

  14. Void Reactivity Effects in the Second Charge of the Halden Boiling Water Reactor; Effets Cavitaires dans la Deuxieme Charge du Reacteur a Eau Lourde Bouillante de Halden (HBWR); Ehffekty pustotnoj reaktivnosti vo vtoroj zag HBWR; Effectos de Cavitacion en la Segunda Carga del Reactor de Agua Pesada Hirviente de Halden (HBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, J. E. [OECD Halden Reactor Project (Norway)

    1964-02-15

    nucleaire a des temperatures differentes du ralentisseur comprises entre 150 et 230 Degree-Sign C et, a la. temperature la plus elevee, pour des puissances allant jusqu'a 16 MW. Le coefficient cavitaire est une quantite qu'il importe de connaitre lorsqu'on veut determiner le comportement dynamique d'un reacteur a eau bouillante. Or, la determination theorique de cette quantite est difficile du fait qu'il faut connaitre en detail la repartition des cavites dans le coeur. Cette repartition dans les conditions de puissance ne se prete pas facilement a une determination experimentale de sorte que les experiences avec vide simule conviennent mieux pour verifier les calculs de physique des reacteurs portant sur les effets cavitaires. Les donnees de ces experiences ont ete comparees aux resultats theoriques. On a applique la theorie de la diffusion a deux groupes et on peut conclure qu'il y a bon accord entre la theorie et l'experience en ce qui concerne les perturbations dans les parametres du reseau pour un coefficient cavitaire egal a 1, tant aux basses qu'aux hautes temperatures. Toutefois, pour les valeurs intermediaires du coefficient cavitaire, l'accord est moins bon. Pour le calcul macroscopique de l'effet sur la reactivite, on utilise une theorie de perturbation. (author) [Spanish] La ebullicion que se produce en el interior de los canales refrigerantes de la segunda carga de combustible del reactor de agua pesada hirviente de Halden provoca efectos de cavitacion que afectan a la reactividad. Este efecto se ha medido tanto en experimentos con vacio simulado de potencia nula como en condiciones de regimen normal. Los experimentos con vacio simulado consistieron en medir las alteraciones de la reactividad al introducir hasta diversas profundidades tubos vacios de paredes delgadas, que se colocaron en distintas posiciones entre las piezas de union de un haz combustible de siete barras, practicamente identico a los que constituyen la segunda carga de combustible. Este

  15. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors

    International Nuclear Information System (INIS)

    Herrera, V.; Zamora R, L.

    1997-01-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  16. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    International Nuclear Information System (INIS)

    1984-08-01

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry

  17. Contribution to the study of the temperature reactivity coefficient for light water reactors; Contribution a l`etude du coefficient de temperature des reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Mounier, C.

    1994-05-01

    In this work, we looked for the error sources in the calculation of the isothermal temperature coefficient for light water lattices. We studied three fields implied: the nuclear data, the calculation methods and the temperature coefficient measurement. About the measurement, we pointed out the difficulties of he interpretation. So we used an indirect approach by the mean of critical states at various temperatures. In that way, we can say that if the errors in the effective multiplication factor are constants with temperature then the temperature coefficient is correctly calculated. We studied the neutronic influence of light water models which are used in the thermal scattering cross-section computation. This cross-section determines the thermalization process of neutrons. We showed that the actual model (JEF2) is satisfactory of the needs of the reactors physics. Concerning the majors isotopes ({sup 235}U, {sup 238}U, {sup 239}Pu), the uncertainties on the nuclear data do not seem as a preponderant cause of errors, without to be totally negligible. We also studied, with the neutron transport code Apollo-2, the influence of difference approximations for cell calculation . The new possibilities of the code has been used to represent the critical experiments, particularly the improvement of the resonance self-shielding formalism. The calculation scheme adopted permits to remove partially the fundamental mode approximation by the mean of a two-dimensional transport calculation with the SN method, the axial leakage being treated as an absorption in DB{sup 2}{sub Z}. The agreement between theory and experiment is good both for the reactivity and the temperature coefficient. (author). 114 refs., 40 figs., 163 tabs., 1 append.

  18. Reactor feedwater device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To suppress soluble radioactive corrosion products in a feedwater device. Method: In a light water cooled nuclear reactor, an iron injection system is connected to feedwater pipeways and the iron concentration in the feedwater or reactor coolant is adjusted between twice and ten times of the nickel concentration. When the nickel/iron ratio in the reactor coolant or feedwater goes nearer to 1/2, iron ions are injected together with iron particles to the reactor coolant to suppress the leaching of stainless steels, decrease the nickel in water and increase the iron concentration. As a result, it is possible to suppress the intrusion of nickel as one of parent nuclide of radioactive nuclides. Further, since the iron particles intruded into the reactor constitute nuclei for capturing the radioactive nuclides to reduce the soluble radioactive corrosion products, the radioactive nuclides deposited uniformly to the inside of the pipeways in each of the coolant circuits can be reduced. (Kawakami, Y.)

  19. Effects of corrosion and precipitates on mechanical properties in the ferritic/martensitic steel cladding under ultra-long cycle fast reactor environment at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yong; Lee, Jeong Hyeon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of); Shin, Sang Hun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This changes chemical compositions of inter-surface and effects on behavior of precipitations. NaCrO{sub 2} which is ternary sodium compound occurs intergranular corrosion resulting in thickness reduction. This change can cause a degradation of mechanical strength of structure material of UCFR. Therefore, we should consider longterm compatibility with sodium and study about life prediction. The research about ferritic/martensitic steel on effects of long term exposure in liquid sodium at 650 .deg. C, 20ppm oxygen includes weight loss of test material (Gr. 92) by corrosion and mechanism about nucleation and growth of precipitates like Laves-phase in bulk. There are many changes such as segregation of component to nucleate precipitates, affecting into microstructural evolution of the steel. Therefore, the thermochemical reaction research to predict behavior about precipitates should be performed. In a specific procedure, the micro-structure and the surface phenomenon of ferritic/martensitic steels (Gr. 92) that are exposed to liquid sodium at 650 .deg. C, 20 ppm oxygen and aged in high pure Argon gas environment to express bulk have been investigated by using scanning electron microscope (SEM) and transmission electron microscope (TEM). At 10 ppm oxygen designed oxygen value for UCFR, there is 107μm thickness reduction for 30 years. Thus, if there is no degradation of mechanical strength caused by aging effect, the tolerance of load of initial cladding should be higher than real load at least 23.6 %. Compared to specimens exposed to Ar-gas environment, Specimen which solutions are leaded into sodium has degradation of strength by reduction of solution hardening.

  20. Effect of the plutonium isotopic composition on the performance of fast reactors; Effet de la composition isotopique du plutonium sur le rendement de reacteurs a neutrons rapides; Vliyanie izotopnogo sostava plutoniya na rabotu reaktorov na bystrykh nejtronakh; Efectos de la composicion isotopica del plutonio sobre el funcionamiento de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Yiftah, S [Israel Atomic Energy Commission (Israel)

    1962-03-15

    The isotopic composition of plutonium to be used as fuel for fast reactors will depend on the source of plutonium. In principle three different sources are possible: (a) production reactors; (6) thermal power reactors (using natural uranium or enriched uranium as fuel); (c) fast reactor blankets. In general, source (a) and to some extent source (c) will provide relatively 'clean' plutonium, that is mostly Pu{sup 239}, while plutonium from source (6) will be 'dirty' plutonium, that is plutonium rich in Pu{sup 240}, Pu{sup 241}, and Pu{sup 242}. The degree of 'dirtiness' will depend on the kind of reactor, amount of burn-up and in general on the irradiation history of the fuel. The question then arises, can one use as fuel for fast reactors any kind of plutonium? To investigate the effect of different isotopic composition of the plutonium fuel, in the metallic, oxide and carbide form, on the performance of fast reactors, a limited series of spherical geometry 16-group diffusion theory calculations were performed, using the 16-group cross-section set developed recently by Yiftah, Okrent and Moldauer and taking three different kinds of plutonium, starting with pure Pu{sup 239} and increasing the amount of higher isotopes. For the systems studied-800, 1500 and 2500-l core-volumes, which are typical for large fast power reactors-the result is, when one takes into account only the thermally fissionable isotopes Pu{sup 239} arid Pu{sup 241}, that the 'dirtier' the plutonium, the smaller the critical mass and the higher the breeding ratio. For the 1500-l reactor, taken as an example, it is further found that in the metallic, oxide and carbide plutonium fuels the reactivity change upon removal of 40% of the sodium initially present in the core is made more negative (or less positive) when the plutonium is richer in higher isotopes. (author) [French] La composition isotopique du plutonium qui doit etre utilise comme combustible dans des reacteurs a neutrons rapides depend de

  1. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    attribud au choix de traitements et de rev~tements spproprids. Au contrairo, dens d’sutros structures des corrosions iirportsntea se sont msnifestdes...au traitement . micaniqus qui provoque une compression de surface - h1l’spplication i1’une double protection comportant oxydation snodique et...chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont

  2. Aqueous corrosion study on U-Zr alloy

    International Nuclear Information System (INIS)

    Pal, Titas; Venkatesan, V.; Kumar, Pradeep; Khan, K.B.; Kumar, Arun

    2009-01-01

    In low power or research reactor, U-Zr alloy is a potential candidate for dispersion fuel. Moreover, Zirconium has a low thermal-neutron cross section and uranium alloyed with Zr has excellent corrosion resistance and dimensional stability during thermal cycling. In the present study aqueous corrosion behavior of U-Zr alloy samples was studied in autoclave at 200 deg C temperature. Corrosion rate was determined from weight loss with time. (author)

  3. Atmospheric corrosion of uranium-carbon alloys; Corrosion atmospherique des alliages uranium-carbone

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, P; Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [French] Les auteurs etudient la corrosion des alliages uranium-carbone de composition voisine du monocarbure; ils montrent que l'importance des effets de la corrosion observee augmente avec la teneur en vapeur d'eau du milieu gazeux ambiant et concluent que la corrosion atmospherique de ces alliages est due essentiellement a l'humidite de l'air, l'action de l'oxygene de l'air etant tres faible a la temperature ambiante. Ils indiquent que les conditions optimales de conservation des alliages U-C sont le vide ou une atmosphere d'argon parfaitement desseches. D'autre part, les auteurs etablissent que le type de corrosion mis en jeu est une corrosion 'fissurante sous contrainte', transgranulaire (pouvant egalement etre intergranulaire dans le cas d'alliages sous-stoechiometriques). Ils proposent enfin deux hypotheses pour rendre compte de ce mecanisme, dont l'une est illustree par la mise en evidence, a l'interface des fissures, de produits de corrosion pouvant jouer le role de 'coins' dans les grains de

  4. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    precipitation processes); cold salt: potentiality and preliminary results; TOPIC: redox control of MSR fuel (MSR: nominal operating conditions for the reprocessing process and redox control); technical aspects of R and D of some advanced non-aqueous reprocessing technologies for MSR systems (promising innovative separation and partitioning processes for the MSR fuel cycle); nominal operating conditions for MSR reprocessing process - data base needed and experiments for reprocessing validation; corrosion and materials for MSR and for pyro-chemistry processes; MSR reactor physics - dynamic behaviour; what safety principles for MSR? (MSR and integrated cycle (IFR) safety approach); experimental programmes in the frame of the SPHINX project of MS transmuter (programme of irradiated probes BLANKA, experimental facilities (MSR)); ISTC 1606 status - experimental study of molten salt technology for safe, low-waste and proliferation resistant treatment of radioactive waste and plutonium in accelerator-driven and critical systems. (J.S.)

  5. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Handley-Sidhu, Stephanie, E-mail: s.handley-sidhu@bham.ac.uk [Water Sciences Research Group, School of Geography, Earth, Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Research Group, and School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Lloyd, Jonathan R.; Vaughan, David J. [Williamson Research Centre for Molecular Environmental Science, and School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom)

    2010-11-01

    Depleted uranium (DU) is a by-product of nuclear fuel enrichment and is used in antitank penetrators due to its high density, self-sharpening, and pyrophoric properties. Military activities have left a legacy of DU waste in terrestrial and marine environments, and there have been only limited attempts to clean up affected environments. Ten years ago, very little information was available on the dispersion of DU as penetrators hit their targets or the fate of DU penetrators left behind in environmental systems. However, the marked increase in research since then has improved our knowledge of the environmental impact of firing DU and the factors that control the corrosion of DU and its subsequent migration through the environment. In this paper, the literature is reviewed and consolidated to provide a detailed overview of the current understanding of the environmental behaviour of DU and to highlight areas that need further consideration.

  6. Sodium purification in Rapsodie; La purification du sodium a Rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [French] Ce rapport fait partie d'une serie de publications presentant l'essentiel des resultats des essais effectues a l'occasion du demarrage du premier reacteur francais a neutrons rapides: RAPSODIE. Cet article expose les techniques de la purification du sodium utilise dans les circuits de refroidissement du reacteur tant au point de vue de leur realisation technologique, que des resultats obtenus pendant la premiere annee de fonctionnement. (auteur)

  7. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  8. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  9. GCR dismantling: corrosion of vessel internals during decay storage

    International Nuclear Information System (INIS)

    Gras, J.M.

    1991-06-01

    Gas-cooled reactor decommissioning confronts EDF with the problem of the corrosion resistance of vessel internals over a decay storage period fixed at 50 years. The layer of magnetite previously formed in the C0 2 should protect structural steelwork from atmospheric corrosion. In any case, estimated steel corrosion after 50 years may be put at below or equal to 0.1 mm and the corresponding swelling induced by corrosion products at 0.2 mm. There should be no risk of hydrogen embrittlement or stress corrosion cracking of threaded fasteners. Corrosion tests aimed at providing further insight into the effects of the magnetite layer and a program for the surveillance of post-decommissioning structural corrosion should nevertheless be envisaged

  10. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  11. Fiche technique du spermogramme et du spermocytogramme ...

    African Journals Online (AJOL)

    En Afrique la stérilité du couple constitue un drame social. Selon l'OMS, environ 8 à 12 % des couples africains sont touchés par une infertilité. La responsabilité masculine dans la stérilité est comprise entre 30 à 40%. Les causes de l'infertilité masculine peuvent être l'impuissance et/ ou l'altération du sperme. L'étude de ...

  12. Long term integrity of reactor pressure vessel and primary containment vessel after the severe accidents in Fukushima Daiichi Nuclear Power Station. Leaching property of spent oxide fuel segment and corrosion property of a carbon steel under artificial seawater immersion

    International Nuclear Information System (INIS)

    2014-06-01

    Primary containment vessel (PCV), reactor pressure vessel and pedestal in Fukushima Daiichi Nuclear power station units 1 through 3 have been exposed to severe thermal, chemical and mechanical conditions due to core meltdown events and seawater injections for emergent core cooling. These components will be immersed in diluted seawater with dissolved fission products under irradiation until the end of debris removal. Fresh water injected into the cores contacts with debris to cool, dissolves or erodes their constituents, mixed with retained water, and becomes 'accumulated water' with radioactive nuclides. We have focused the leaching of fission products into the accumulated water under lower temperature (323 K). FUGEN spent oxide fuel segments were immersed to determine the leaching factor of fission product and actinide elements. Since PCV made from carbon steel is one of the most important boundaries to prevent from fission products release, corrosion behavior has been paid attention to evaluate their integrity. Carbon steel specimens were immersion- and electrochemical-tested in diluted seawater with simulants of the accumulated water at 323 K in order to evaluate the effect of fission products in particular cesium and radiation. (author)

  13. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  14. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  15. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  16. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  17. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    politique de bas prix exercée par la Russie et le Qatar vient confirmer ce constat ; s'ajoute à cela l'entrée éventuelle du gaz non conven- tionnel, dont son prix actuel de 3/4 $US, offre aux USA l'opportunité d'être exportateur de ..... les compagnies à produire en matière du gaz naturel, tels le prix du gaz naturel, le prix des ...

  18. Bulletin du CRDI #124

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les femmes jouent un rôle important dans les exploitations minières artisanales et à petite échelle en Afrique subsaharienne. De concert ... Couverture du livre: Une vie saine pour les femmes et les enfants vulnérables · Couverture du livre: Entre el activismo y la intervención · Couverture du livre: Revitalizing Health for All.

  19. Bulletin du CRDI #125

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'IOSRS remporte le prix de la diplomatie scientifique · GrowInclusive : la plateforme tant attendue est en construction · Toutes les nouvelles. Activités à venir. Semaine du développement international 2018. Le CRDI célébrera la Semaine du développement international du 4 au 10 février 2018. Suivez-nous sur Twitter et ...

  20. An Overview of Corrosion Issues for the Design and Operation of High-Temperature Lead- and Lead-Bismuth-Cooled Reactor Systems

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.; Lim, Jeongyoun

    2004-01-01

    The viability of advanced Pb- or Pb-Bi-cooled fast reactor systems will depend on the development of classes of materials that can operate over the temperature range 650-1200 deg. C. We briefly review the current state of the technology concerning the interaction of Pb and Pb-Bi alloys with structural materials. We then identify the key challenges to successful use of materials in these systems and suggest a path forward to the development of new materials and operating methods to allow higher-temperature operation. Our focus is on the necessary trade-offs that must be considered and how these trade-offs influence R and D choices. Our analysis suggests that three classes of materials will be needed for successful deployment of a lead-alloy-cooled reactor system. A lower-temperature qualified material will be necessary for the pressure boundary. The structural and cladding materials will require 1000 deg. C- and 1200 deg. C-class materials. The 1000 deg. C-class material will be exposed to the 1000 deg. C coolant. The 1200 deg. C-class material will be required for the cladding and structural materials in the core region. The higher-temperature material will be required to accommodate anticipated temperature transients from potential accident scenarios, such as a loss of flow

  1. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  2. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  3. Impact of Zr + 2.5% Nb alloy corrosion upon operability of RBMK-1000 fuel channels

    International Nuclear Information System (INIS)

    Kovyrshin, V.; Zaritsky, N.

    1999-01-01

    The basic components of RBMK-1000 core (fuel channels, bimetal adapters, claddings of fuel elements, etc.) are of zirconium alloys. Their corrosion is one of factors influencing upon fuel channels operability. Dynamics of channel tubes nodular corrosion development is presented by the results of in-reactor investigation at ChNPP. Radiation-induced mechanism of corrosion damage of tubes surface in contact with coolant was formulated and substantiated by data of post-reactor studies. Within the certain time period of operation corrosion of zirconium alloy of lower bimetal adapter along with removal from there of corrosion products are predominant within the whole process of reactor elements corrosion. The experimental and calculating method was proposed and substantiated to predict time duration up to loss of fuel channels leak tightness. The approaches were generalized to control state of fuel channels material to assess their operability under operation of RBMK-1000 reactors. (author)

  4. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  5. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  6. The Economical Application of Non-Destructive Testing to Reactor Components, Especially Jacket Tubing; Avantages Economiques du Controle Non Destructif des Pieces de Reacteurs, Notamment des Tubes de Gainage; Ehkonomicheskoe primenenie nedestruktivnykh ispytanij dlya reaktornykh komponentov, v chastnosti obolochechnykh trub; Aplicacion en Condiciones Economicas de Ensayos No Destructivos a las Piezas de los Reactores, en Especial a los Tubos de Revestimiento

    Energy Technology Data Exchange (ETDEWEB)

    Renken, C. J. [Metallurgy Division Argonne National Laboratory Argonne, IL (United States)

    1965-10-15

    . Des indications erronees de defauts contribuent directement a l'accroissement du prix de revient des pieces; c'est pourquoi le memoire contient une evaluation de ces effets pour les methodes ultrasonores et electromagnetiques en ce qui concerne plusieurs sources frequentes d'indications erronees. L'auteur expose l'experience acquise au Laboratoire national d'Argonne dans l'application de ces methodes a des quantites relativement importantes de tubes d'origines diverses, du point de vue du prix minimum du controle parunite de longueur de tube. Cette partie du memoire resume egalement l'experience acquise au Laboratoire d'Argonne avec les methodes electromagnetiques et impulsions les plus recentes. L'auteur discute l'influence primordiale, mais generalement trop negligee, du diametre et de l'epaisseur du tube sur le prix de revient du controle. Comme la question de l'economie du controle est etroitement liee et celle des defauts admissibles, l'auteur expose les normes appliquees a cet egard au Laboratoire d'Argonne. Enfin, il enumere les obstacles pratiques et theoriques qui empechent de reduire le prix de revient du controle des pieces et il s'efforce de faire une prevision des reductions possibles de c e prix grace aux methodes ultiasonores et electromagnetiques. (author) [Spanish] Ademas de las caracteristicas que debe reunir el modelo ideal de reactor, hay que aplicarle metodos de ensayo que no tengan caracter destructivo. Como otros ideales, es probable que este no se alcance nunca. Para cualquier modelo en el que el costo sea un factor importante, la cuestion de la posibilidad de ensayar las piezas en condiciones economicas debe plantearse al mismo tiempo que la de la posibilidad de fabricacion. En la presente memoria se resellan algunas observaciones al respecto y se examina la importancia que ha de atribuirse a los metodos de ensayo no destructivo al establecer las especificaciones correspondientes. El fabricante ademas es responsable de la utilizacion de

  7. In plant corrosion potential monitoring

    International Nuclear Information System (INIS)

    Rosborg, B.; Molander, A.

    1997-01-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs

  8. In plant corrosion potential monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, B; Molander, A [Studsvik Material AB, Nykoeping (Sweden)

    1997-02-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs.

  9. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  10. Corrosion performance of new Zircaloy-2-based alloys

    International Nuclear Information System (INIS)

    Rudling, P.; Mikes-Lindbaeck, M.; Lethinen, B.; Andren, H.O.; Stiller, K.

    1994-01-01

    A material development project was initiated to develop a new zirconium alloy, outside the ASTM specifications for Zircaloy-2 and Zircaloy-4, with optimized hydriding and corrosion properties for both boiling water reactors and pressurized water reactors. A number of different alloys were manufactured. These alloys were long-term corrosion tested in autoclaves at 400 C in steam. Also, a 520 C/24 h steam test was carried out. The zirconium metal microstructure and the chemistry of precipitates were characterized by analytical electron microscopy. The metal matrix chemistry was determined by atom probe analysis. The paper describes the correlations between corrosion material performance and zirconium alloy microstructure

  11. A compilation of experiences of corrosion in Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Norring, K.; Rosborg, B.

    1985-01-01

    14 reactors in commercial operation in the Nordic countries exhibit a great variety of corrosion induced damages. The largest number of such damages have affected turbine plants and seawater cooling systems. More severe cases of corrosion which have been experienced are intergranular stress corrosion cracking of steam generator tubing, stainless steel piping, and high strenght bolts and screws, together with erosion corrosion of structural steel in turbine plants. In all units in operation some form of corrosion damage has occurred. In a worldwide perspective the corrosion problems in the Nordic nuclear power plants have been of manageable extent

  12. Nuclear reactor container

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1988-01-01

    Cables coverd with non-halogen covering material are used as electric wire cables wired for supplying electric power to a reactor recycling pump. Silicone rubber having specified molecular formula is used for the non-halogen covering material. As a result, formation of chlorine in a nuclear reactor container can be eliminated and increase in the deposited salts to SUS pipeways, etc. can be prevented, to avoid the occurrence of stress corrosion cracks. (H.T.)

  13. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  14. Corrosion problems and its prevention in nuclear industries

    International Nuclear Information System (INIS)

    Sakae, Yukio; Susukida, Hiroshi; Kowaka, Masamichi; Fujikawa, Hisao.

    1979-01-01

    29 nuclear power plants with 2.56 million kW output are expected to be in operation by 1985 in Japan. The main problems of corrosion in the nuclear reactors in operation at present and promising for the future are as follows: corrosion, denting and stress corrosion cracking in the steam generator tubes for PWRs, stress corrosion cracking in SUS pipings for BWRs, sodium corrosion and mass transfer in FBRs, high temperature gas corrosion in HTGRs, and interaction between coolant, blanket material and structural material in nuclear fusion reactors. In LWRs, the countermeasures based on the experiences in actual plants and the results of simulation tests have attained the good results. Various monitoring systems and the techniques for in-service inspection and preservice inspection have accomplished astonishing progress. These contributed largely to establish the reliability of nuclear power plants. The cases of troubles in primary and secondary systems, the experiences of the corrosion of steam generator tubes and the countermeasures, and the denting troubles occurred in USA and the trend of countermeasures in PWRs, the cases of stress corrosion cracking in SUS 304 and 316 pipings for BWRs, and the problems of various future reactors are described. Unexpected troubles often occur in practical plants of large capacity, therefore the method of predicting tests must be established, and the monitoring of safety must be thorough. (Kako, I.)

  15. "Cirque du Freak."

    Science.gov (United States)

    Rivett, Miriam

    2002-01-01

    Considers the marketing strategies that underpin the success of the "Cirque du Freak" series. Describes how "Cirque du Freak" is an account of events in the life of schoolboy Darren Shan. Notes that it is another reworking of the vampire narrative, a sub-genre of horror writing that has proved highly popular with both adult and…

  16. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  17. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  18. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes; Reaction de reduction de l'oxygene sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Le Bozec, N

    2000-01-15

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  19. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes; Reaction de reduction de l'oxygene sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Le Bozec, N

    2000-01-15

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  20. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G.

    2006-08-01

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors

  1. An extraction method of uranium 233 from the thorium irradiates in a reactor core; Une methode d'extraction de l'uranium-233 a partir du thorium irradie dans une pile

    Energy Technology Data Exchange (ETDEWEB)

    Chesne, A; Regnaut, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Description of the conditions of separation of the thorium, of the uranium 233 and of the protactinium 233 in hydrochloric solution by absorption then selective elution on anion exchange resin. A precipitation of the thorium by the oxalic acid permits the recuperation of the hydrochloric acid which is recycled, the main, raw material consumed being the oxalic acid. (authors) [French] Description des conditions de separation du thorium, de l'uranium 233 et du protactinium 233 en solution chlorhydrique par absorption puis elution selective sur resine echangeuse d'anions. Une precipitation du thoriun par l'acide oxalique permet la recuperation de l'acide chlorhydrique qui est recycle, la principale matiere premiere consommee etant l'acide oxalique. (auteurs)

  2. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  3. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  4. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  5. Ecologie du phytoplancton du lac Kivu

    Directory of Open Access Journals (Sweden)

    Sarmento, H.

    2008-01-01

    Full Text Available Speciation within the African Coffee Pathogen. Cet article analyse s'il est avantageux d'utiliser le compost au lieu de l'engrais minéral pour produire la laitue dans la zone urbaine et péri-urbaine de Yaoundé. Les résultats de terrain montrent l'obtention de rendements et profits plus élevés lorsqu'on utilise le compost. Les résultats de la fonction de production Cobb-Douglas prouvent que l'utilisation du compost est statistiquement significative pour expliquer la variation de rendement de la laitue et que le compost est l'intrant le plus productif. D'autres résultats montrent que le compost fournit la matière organique utile au sol et que les besoins d'irrigation en eau de la culture sont réduits grâce à l'utilisation du compost. Par conséquent, malgré le fait que l'application du compost demande une main-d'oeuvre beaucoup plus élevée, son utilisation est généralement bénéfique pour les agriculteurs vivant aux alentours de Yaoundé. Les programmes de vulgarisation de cet intrant pour encourager son adoption devraient donc figurer parmi les points prioritaires dans la politique agricole du gouvernement camerounais.

  6. Corrosion of structural materials for Generation IV systems

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Cabet, C.; Courouau, J.L.; Martinelli, L.; Arnoux, P.

    2009-01-01

    The Generation IV International Forum aims at developing future generation nuclear energy systems. Six systems have been selected for further consideration: sodium-cooled fast reactor (SFR), gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR) and very high temperature reactor (VHTR). CEA, in the frame of a national program, of EC projects and of the GIF, contributes to the structural materials developments and research programs. Particularly, corrosion studies are being performed in the complex environments of the GEN IV systems. As a matter of fact, structural materials encounter very severe conditions regarding corrosion concerns: high temperatures and possibly aggressive chemical environments. Therefore, the multiple environments considered require also a large diversity of materials. On the other hand, the similar levels of working temperatures as well as neutron spectrum imply also similar families of materials for the various systems. In this paper, status of the research performed in CEA on the corrosion behavior of the structural material in the different environments is presented. The materials studied are either metallic materials as austenitic (or Y, La, Ce doped) and ferrito-martensitic steels, Ni base alloys, ODS steels, or ceramics and composites. In all the environments studied, the scientific approach is identical, the objective being in all cases the understanding of the corrosion processes to establish recommendations on the chemistry control of the coolant and to predict the long term behavior of the materials by the development of corrosion models. (author)

  7. The corrosion of depleted uranium in terrestrial and marine environments

    International Nuclear Information System (INIS)

    Toque, C.; Milodowski, A.E.; Baker, A.C.

    2014-01-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm −2 y −1 and 2.5–48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area. -- Highlights: ► In-situ experiments were conducted to evaluate corrosion rates of depleted uranium. ► Samples were corroded in marine sediments, open sea water and two terrestrial soils. ► The depleted uranium titanium alloy corroded fastest in the marine environments. ► Rates of mass loss can vary through time if corrosion products are not removed.

  8. Neutron Tests at the Start-Up of EDF1; Les essais neutroniques au demarrage du reacteur EDF1; Nejtronnye izmereniya pri puske reaktora EDF1; Ensayos neutronicos efectuados durante la puesta en marcha del reactor EDF1

    Energy Technology Data Exchange (ETDEWEB)

    Teste du Bailler, A. [Centre d' Etudes Nucleaires de Saclay (France); Janin, R. [Electricite de France, Paris (France)

    1963-10-15

    A series of neutron measurements, for which the principal experimental methods perfected at the Marcoule reactors were used, was carried out at the start-up of EDF1. The measurements were designed mainly to determine the efficiency of the control rods at different depths of insertion. From them a rod-withdrawal configuration was derived which allowed full-power operation without infringing certain limitations on cladding and gas temperatures. At the same time flux measurements were made for different shim-rod positions and different absorber loadings in certain channels. These measurements based on preliminary two-dimensional calculations, were obtained by activation of point detectors,using the standard technique of air poisoning. At certain temperature plateaus (up to 140{sup o}C), measurements of temperature coefficients and control-rod efficiency were made. Spectrum index measurements were carried out at the same time by activation of appropriate detectors (U, Pu, Lu, Mn, In, Au). The oscillation technique was used to measure the efficiency of certain shim rods. Finally, fast-neutron measurements were made in connection with studies of shielding and graphite damage. (author) [French] Une serie de mesures neutroniques utilisant les principales methodes experimentales mises au point sur les reacteurs de Marcoule a ete effectuee au cours du demarrage d'EDF1. Les mesures portent essentiellement sur l 'efficacite des barres de controle a differents enfoncements. On en deduit une configuration de montee des barres permettant d'obtenir la pleine puissance en respectant certaines limitations sur les temperatures de gaines et de gaz. Parallelement des mesures de flux ont ete faites pour differentes positions des barres de compensation et pour divers chargements d'absorbants dans certains canaux, suivant des calculs previsionnels a deux dimensions. Ces mesures sont obtenues par activation de detecteurs ponctuels, au moyen de la technique classique par empoisonnement a l

  9. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  10. Corrosion issues in the BWR and their mitigation for plant life extension

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1988-01-01

    Corrosion is a major service life limiting mechanism for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). For the BWR, stress corrosion cracking of piping has been the major source of concern where extensive research has led to a number of qualified remedies and currently > 90% of susceptible welds have been mitigated or replaced. Stress corrosion cracking of reactor internals due to the interaction of irradiation, as discussed elsewhere in this conference, is also a possible life limiting phenomenon. This paper focusses on two corrosion phenomena in the BWR which have only recently been identified as impacting the universal goal of BWR life extension: the general corrosion of containment structures and the erosion-corrosion of carbon steel piping

  11. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors; Corrosion bajo esfuerzo (Norma ASTM G30-90) en acero inoxidable 08x18H10T de piscinas de almacenamiento de combustible nuclear en reactores V.V.E.R

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V.; Zamora R, L. [Centro de Estudios Aplicados al Desarrollo Nuclear (Cuba)

    1997-07-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  12. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  13. The Role of Exponential and PCTR Experiments at Hanford in the Design of Large Power Reactors; Roles Respectifs des Experiences Exponentielles et du Reacteur d'Etude des Constantes Physiques de Hanford dans les Etudes de Grands Reacteurs de Puissance; Znachenie ehksponentsial'nykh opytov i opytov na reaktore PCTR pri proektirovanii bol'shikh ehnergeticheskikh reaktorov v khehnforde; Papel de los Experimentos Exponenciales y del Reactor PCTR de Hanford en el Proyecto de Grandes Reactores de Potencia

    Energy Technology Data Exchange (ETDEWEB)

    Heineman, R. E. [General Electric Company, Richland, WA (United States)

    1964-02-15

    Exponential pile measurements have been made at the Hanford Laboratories on graphite-uranium lattices for almost fifteen years. Although the results of these experiments were used to establish the bucklings of proposed production reactors they also served to advance the understanding of the reactor physics of these systems. It was recognized early that the utility of the exponential experiment was limited because of its large size and its lack of sensitivity to small, localized perturbations of the system. Thought was then given to the problem of devising an integral reactor experiment which would minimize the quantity of materials needed to provide meaningful data. This effort led to the construction of an advanced, several-region critical facility, the Physical Constants Testing Reactor (PCTR). The PCTR has been used to support the reactor physics design of several power reactors. In addition, the PCTR has served as a general-purpose facility for the measurement of reactor cross- sections and for the determination of both differential and integral reactor physics parameters for various types of multiplying media. The exponential piles were used after the PCTR was built, even though the advantages claimed for the PCTR were amply fulfilled. Typical data from these two facilities are reviewed. The use of these facilities for power reactor design, to support changes inoperation of existing reactors, as reactor physics tools, and as training devices are contrasted. Comparisons are made of the initial costs and the cost of subsequent operation. The development of new experimental techniques for use with these facilities and of the demand for a wider variety of experimental data are traced. Such contrasts and developments are necessary to predict more clearly the needs and the future trends in the specific use of such facilities for the support of the design of power reactors. A brief description of the high-temperature lattice test reactor is presented and its proposed

  14. Du Pont de Nemours

    NARCIS (Netherlands)

    Ros JPM; LAE

    1994-01-01

    Dit rapport over Du Pont de Nemours (produktie van o.a. chemische stoffen) is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning

  15. The functioning of the reactors G2-G3 at Marcoule and E.D.F. 1; Experience de fonctionnement des reacteurs G2-G3 de Marcoule et enseignements des essais de demarrage du reacteur E.D.F. 1 de Chinon

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R; Conte, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Stolz, J M [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    After resuming briefly the characteristics of the installations G2-G3 at Marcoule and EDF 1 at Chinon, the authors review the main aspects of the tests, the starting and the exploitation of these reactors. Among the various points examined, particular emphasis is given to the devices of original nature such as tubular fuel elements, flattening of the neutron flux by stuffing, behaviour of the reactor tanks and the cooling circuits, the blowers, unloading devices, regulation and functioning of the informations. This analysis deals equally with the performances obtained and the difficulties and the various incidents experienced during the initial starting period. Among the more interesting results, the progressive increase in the power of the Marcoule reactors is mentioned, obtained through a better knowledge of the parameters covering the functioning of the reactors such as the distribution of the flux and the temperatures etc... acquired during the course of the exploitation of the reactor. The conclusion reached by the authors is that the experience gained on these installations has shown: - that during an initial period, adjustments became necessary, all of which turned out to be possible, - that an analysis of their functioning has permitted the progressive movement towards a truly industrial exploitation. (authors) [French] Les auteurs, apres un bref rappel des caracteristiques des installations G2 - G3 de MARCOULE et E.D.F. 1 de CHINON, passent en revue les principaux aspects des essais, de la mise en service et de l'exploitation de ces centrales. Parmi les divers points examines, une attention speciale est accordee aux dispositifs presentant un caractere original tels que elements combustibles tubulaires, aplatissement du flux neutronique par gavage, comportement des caissons des reacteurs et des circuits de refroidissement, soufflantes, appareils de dechargement, regulation et fonctionnement des informations. L'analyse presentee porte tant sur les

  16. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    6 juil. 2007 ... La problématique du développement du secteur de l'artisanat en. Algérie a été très peu abordée par les chercheurs, qu'ils soient universitaires ou .... La loi a institué une taxe d'apprentissage dont le taux a été fixé à. 1% de la ...

  17. Les outils du CERN

    CERN Multimedia

    1999-01-01

    C'est le plus grand centre mondial de recherche en physique des particules. Les outils du Laboratoire, accélérateurs et détecteurs de particules, figurent parmi les instruments scientifiques les plus complexes au monde. Des prix Nobels ont d'ailleurs été attribués aux physiciens du CERN pour leurs développements.

  18. Bulletin du CRDI #127

    International Development Research Centre (IDRC) Digital Library (Canada)

    La mise à l'échelle de la recherche et de l'innovation en vue de créer un impact social constitue une priorité pour la communauté du développement. Toutefois ... Nous avons renouvelé notre soutien à la recherche auprès du gouvernement de l'Inde ... Des femmes étudient à l'École supérieure d'infotronique d'Haïti.

  19. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the m