WorldWideScience

Sample records for reactor systems simulation

  1. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  2. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  3. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Allison, C.M. [Innovative Systems Software, 1242 South Woodruff Avenue, Idaho Falls, Idaho 83404 (United States)

    2010-07-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  4. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  5. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  6. User's guide of DETRAS system-3. Description of the simulated reactor plant

    International Nuclear Information System (INIS)

    Yamaguchi, Yukichi

    2006-12-01

    DETRAS system is a PWR reactor simulator system for operation trainings whose distinguished feature is that it can be operated from the remote place of the simulator site. The document which is the third one of a series of three volumes of the user's guide of DETRAS, describes firstly an outline of the simulated reactor system then a user's interface needed for operation of the simulator of interest and finally a series of procedure for startup of the simulated reactor and shutdown of it from its rated operation state. (author)

  7. Simulation and calculation of three-reactor system of catalytic reforming

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera; Poposka, Filimena

    1999-01-01

    The process of catalytic reforming has been operated for quite a long time, one can not always find real data for the kinetics and thermodynamics of the reactions that take place during the catalytic reforming process in order to facilitate the designing of reactor system or its simulation in a wide:ran e of process parameters. Kinetic and thermodynamic data have been collected for the reactions that take place during the catalytic reforming process. The stress has been pointed on four major reactions: dehydrogenation of naphthenes (aromatization), dehydrocyclization of paraffins and hydrocracking of naphthenes and paraffins. On the base of such a kinetic model, the reforming process has been described with a system of differential equations. For the purpose of solving these equations computer programs for simulation of a three-reactor system for adiabatic operation of the reactors. The computer simulation of the mathematical model of this three-reactor system has been accomplished by use of the ISIM-dynamic simulator. The results obtained out of the simulation agree very good with the data of the real process of catalytic reforming in OKTA Crude Oil Refinery in Skopje, Macedonia. (Author)

  8. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  9. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  10. Modeling and simulation of CANDU reactor and its regulating system

    Science.gov (United States)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  11. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Kirsch, L.W.; Valente, A.D.

    1984-01-01

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility

  12. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  13. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  14. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  15. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  16. SAFSIM: A computer program for engineering simulations of space reactor system performance

    International Nuclear Information System (INIS)

    Dobranich, D.

    1992-01-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. The current capabilities of SAFSIM are summarized, and some illustrative example results are presented

  17. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  18. MATLAB/SIMULINK platform for simulation of CANDU reactor control system

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2007-01-01

    In this paper a simulation platform for CANDU reactors' control system is presented. The platform is built on MATLAB/SIMULINK interactive graphical interface. Since MATLAB/SIMULINK are powerful tools to describe systems mathematically, all the subsystems in a CANDU reactor are represented in MATLAB's language and are implemented in SIMULINK graphical representation. The focus of the paper is on the flux control loop of CANDU reactors. However, the ideas can be extended to include other parts in CANDU power plants and the same technique can be applied to other types of nuclear reactors and their control systems. The CANDU reactor model and xenon feedback model are also discussed in this paper. (author)

  19. Development of a nuclear reactor control system simulator using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2011-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  20. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  1. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  2. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  3. 3D simulation of CANDU reactor regulating system

    International Nuclear Information System (INIS)

    Venescu, B.; Zevedei, D.; Jurian, M.

    2013-01-01

    Present paper shows the evaluation of the performance of the 3-D modal synthesis based reactor kinetic model in a closed-loop environment in a MATLAB/SIMULINK based Reactor Regulating System (RRS) simulation platform. A notable advantage of the 3-D model is the level of details that it can reveal as compared to the coupled point kinetic model. Using the developed RRS simulation platform, the reactor internal behaviours can be revealed during load-following tests. The test results are also benchmarked against measurements from an existing (CANDU) power plant. It can be concluded that the 3-D reactor model produces more realistic view of the core neutron flux distribution, which is closer to the real plant measurements than that from a coupled point kinetic model. It is also shown that, through a vectorization process, the computational load of the 3-D model is comparable with that of the 14-zone coupled point kinetic model. Furthermore, the developed Graphical User Interface (GUI) software package for RRS implementation represents a user friendly and independent application environment for education training and industrial utilizations. (authors)

  4. A dynamic model of the reactor coolant system flow for KMRR plant simulation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Noh, T.W.; Park, C.; Sim, B.S.; Oh, S.K.

    1990-01-01

    To support computer simulation studies for reactor control system design and performance evaluation, a dynamic model of the reactor coolant system (RCS) and reflector cooling system has been developed. This model is composed of the reactor coolant loop momentum equation, RCS pump dynamic equation, RCS pump characteristic equation, and the energy equation for the coolant inside the various components and piping. The model is versatile enough to simulate the normal steady-state conditions as well as most of the anticipated flow transients without pipe rupture. This model has been successfully implemented as the plant simulation code KMRRSIM for the Korea Multi-purpose Research Reactor and is now under extensive validation testing. The initial stage of validation has been comparison of its result with that of already validated, more detailed reactor system transient codes such as RELAP5. The results, as compared to the predictions by RELAP5 simulation, have been generally found to be very encouraging and the model is judged to be accurate enough to fulfill its intended purpose. However, this model will continue to be validated against other plant's data and eventually will be assessed by test data from KMRR

  5. Development of Multipurpose PLC trainer for the simulator of reactor safety system

    International Nuclear Information System (INIS)

    Syaiful Bakhri; Deswandri; Ahmad Abtokhi

    2014-01-01

    PLC becomes one of the essential components for the current type of reactor which based on digital instrumentation and control. Several studies have demonstrated the promising results including the implementation of PLC's for RSG-GAS research reactor. However, research for the safety and reliability analysis can not be carried out freely in the existing systems.Therefore, this research aims to develop a PLC trainer employing micro PLC OMRON CP1MA which can be useful for simulator of various topics in reactor safety. Two experimental tests were carried out to show the PLC’s performances. The first experimental testing implementing reactor protection system of research reactor RSG-GAS shows the capacity of PLC system to identify the initiator of the SCRAM logic as well as giving a promptly response. Secondly, the application of PLC to controls the water level in dual reservoir system simulation, demonstrates the simplicity of the operation and design while maintaining the best performances. (author)

  6. Application of assembly module to high-temperature gas-cooled reactor full-scope simulation system

    International Nuclear Information System (INIS)

    Li Sifeng; Li Fu; Ma Yuanle; Shi Lei

    2007-01-01

    According to the circumstances that exist in the reactor full-scope simulators development as long development cycle, very difficult upgrade and narrow range of applicability, a kind of new model was developed based on assembly module which root in Linux kernel and successfully applied to the design of high-temperature gas-cooled reactor full-scope simulator system. The simulation results are coincident with the experimental ones, and it indicates that the new model based on assembly module is feasible to design of high-temperature gas cooled reactor simulation system. (authors)

  7. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; Lingerfelt, Eric J.; Wojtowicz, Anna

    2015-01-01

    Highlights: • Data analysis for high-performance simulations of reactors will be a problem that we address with a new management system. • We describe new input-output libraries for nuclear reactor simulations. • We describe a new user interface for visualizing and analyzing simulation results. • We show the utility of these systems with a 17 × 17 fuel assembly example simulation. • The availability of the code and avenues for collaboration are presented. - Abstract: Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the system’s requirements and design

  8. Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems

    International Nuclear Information System (INIS)

    EL Khatib, H.H.A.

    2013-01-01

    The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.

  9. Real-time dynamic simulator for the Topaz II reactor power system

    International Nuclear Information System (INIS)

    Kwok, K.S.

    1994-01-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions

  10. Modelling of reactor control and protection systems in the core simulator program GARLIC

    International Nuclear Information System (INIS)

    Beraha, D.; Lupas, O.; Ploegert, K.

    1984-01-01

    For analysis of the interaction between control and limitation systems and the power distribution in the reactor core, a valuable tool is provided by the joint simulation of the core and the interacting systems. To this purpose, the core simulator GARLIC has been enhanced by models of the systems for controlling and limiting the reactor power and the power distribution in the core as well as by modules for calculating safety related core parameters. The computer-based core protection system, first installed in the Grafenrheinfeld NPP, has been included in the simulation. In order to evaluate the accuracy of GARLIC-simulations, the code has been compared with a design code in the train of a verification phase. The report describes the program extensions and the results of the verification. (orig.) [de

  11. Package Flow Model and its fuzzy implementation for simulating nuclear reactor system dynamics

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi; Ishiguro, Misako.

    1996-01-01

    A simple intuitive simulation model, which we call 'Package Flow Model', has been developed to evaluate physical processes in nuclear reactor system from a macroscopic point of view. In the previous paper, we showed the physical process of each energy generation and transfer stage in a PWR could be modeled by PFM, and its dynamics could be approximately simulated by fuzzy implementation. In this paper, a PFMs network approach for a total PWR system simulation is proposed and some transients of nuclear ship 'MUTSU' reactor system are evaluated. The simulated results are consistent with those from Nuclear Ship Engineering Simulation System developed by JAERI. Furthermore, a visual representation method is proposed to intuitively capture the profile of fuel safety transient. Using the PFMs network, we can handily calculate the transient phenomena of the system even by a notebook-type personal computer. In addition, we can easily interpret the results of calculation surveying a small number of parameters. (author)

  12. SARIE upgrade: Nuclear reactor and water systems 'engineering and training' simulator

    International Nuclear Information System (INIS)

    Roth, P.

    2006-01-01

    Confronted as of its origins with the on-board layout constraints of the French Navy ships, TECHNICATOME integrates, as of the design, the ergonomics and the risks control related to the human factors. During more than 30 years, TECHNICATOME demonstrated a one of a kind know-how from the design to the execution of powerful, flexible and highly available nuclear compact reactors. A total control which includes up to the supervision and monitoring systems, the acoustic discreetly of the systems and its components, implemented on on-board reactors, testing reactors as well as experimental reactors. The functionalities of simulation were right from the start used by TECHNICATOME during the design phase of these installations to carry out operation engineering analyses on the thermal hydraulic and neutron aspects, to validate the principles of operation of the supervision systems like by the use of digital models in 3D CAD to validate the kinematics of operation or the interactions between systems. More recently, and starting from the end of the Nineties, a thought needs was launched to determine the interests related to the development of a training simulator associated with these installations with objectives, among others, to ensure the phase of initial training of the new operators, to widen the field of the training to the accidental situations, the management of crisis and crews behaviour supervision, the possibilities of replay which support the consolidation of the acquired knowledge(debriefing) with situation resume, and to increase the overall training capacity. An upgrade and modernisation project of these various simulation means was thus launched since 2001 with the objective to optimize the whole of the tasks supported by these means. (author)

  13. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto

    2002-10-01

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  14. Water simulation of sodium reactors

    International Nuclear Information System (INIS)

    Grewal, S.S.; Gluekler, E.L.

    1981-01-01

    The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system

  15. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  16. Numerical simulation of large systems: application to a pressurized water reactor

    International Nuclear Information System (INIS)

    Tallec, Michele.

    1981-10-01

    This note describes the design of a pressurized water reactor power plant simulator using a minicomputer. It contains the description of the models used to simulate the dynamic behavior of the various components of the nuclear power station (i.e. the reactor core, two steam generators, the pressurizer and the control systems associated with them); the algorithms used to integrate the resulting system of algebraic differential equations; the solution of problems associated with the use of a mini-computer; the control deck outlay designed and the variables shown on it to the user; and finally the description of tests made to validate the models used and the results obtained for various transients using plant signal is presented. These results are compared to corresponding plant signals and outputs of other, already existing models [fr

  17. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  18. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  19. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  20. DynMo: Dynamic Simulation Model for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    El-Genk, Mohamed; Tournier, Jean-Michel

    2005-01-01

    A Dynamic simulation Model (DynMo) for space reactor power systems is developed using the SIMULINK registered platform. DynMo is modular and could be applied to power systems with different types of reactors, energy conversion, and heat pipe radiators. This paper presents a general description of DynMo-TE for a space power system powered by a Sectored Compact Reactor (SCoRe) and that employs off-the-shelf SiGe thermoelectric converters. SCoRe is liquid metal cooled and designed for avoidance of a single point failure. The reactor core is divided into six equal sectors that are neutronically, but not thermal-hydraulically, coupled. To avoid a single point failure in the power system, each reactor sector has its own primary and secondary loops, and each loop is equipped with an electromagnetic (EM) pump. A Power Conversion assembly (PCA) and a Thermoelectric Conversion Assembly (TCA) of the primary and secondary EM pumps thermally couple each pair of a primary and a secondary loop. The secondary loop transports the heat rejected by the PCA and the pumps TCA to a rubidium heat pipes radiator panel. The primary loops transport the thermal power from the reactor sector to the PCAs for supplying a total of 145-152 kWe to the load at 441-452 VDC, depending on the selections of the primary and secondary liquid metal coolants. The primary and secondary coolant combinations investigated are lithium (Li)/Li, Li/sodium (Na), Na-Na, Li/NaK-78 and Na/NaK-78, for which the reactor exit temperature is kept below 1250 K. The results of a startup transient of the system from an initial temperature of 500 K are compared and discussed

  1. Hardware-in-the-Loop Simulation for the Automatic Power Control System of Research Reactors

    International Nuclear Information System (INIS)

    Fikry, R.M.; Shehata, S.A.; Elaraby, S.M.; Mahmoud, M.I.; Elbardini, M.M.

    2009-01-01

    Designing and testing digital control system for any nuclear research reactor can be costly and time consuming. In this paper, a rapid, low-cost proto typing and testing procedure for digital controller design is proposed using the concept of Hardware-In- The-Loop (HIL). Some of the control loop components are real hardware components and thc others are simulated. First, the whole system is modeled and tested by Real- Time Simulation (RTS) using conventional simulation techniques such as MATLAB / SIMULINK. Second the Hardware-in-the-Ioop simulation is tested using Real-Time Windows Target in MATLAB and Visual C++. The control parts are included as hardware components which are the reactor control rod and its drivers. Two kinds of controllers are studied, Proportional derivative (PD) and Fuzzy controller, An experimental setup for the hardware used in HIL concept for the control of the nuclear research reactor has been realized. Experimental results are obtained and compared with the simulation results. The experimental results indicate the validation of HIL method in this domain

  2. Simulation and tests to individual and coupled models of the reactor vessel simulator and the recirculation system for the SUN-RAH

    International Nuclear Information System (INIS)

    Sanchez S, R.A.

    2004-01-01

    The present project, is continuation of the project presented in the congress SNM-2003. In this new phase of the project, they were carried out adaptive changes to the modeling and implementation of the module of the full superior of the core of the reactor, they were carried out those modeling of the generation of heat as well as of the energy transfer in the one fuel. These models present the main characteristics of the vessel of the one reactor and of the recirculation system, defined by the main phenomena that they intervene in the physical processes, in the previous version the simulation in real time it required of an extremely quick computer and without executing collateral processes. The tests are presented carried out to the different models belonging to the Simulator of the Reactor Vessel and the Recirculation system for the SUN-RAH (University Simulator of Nucleo electric with Boiling Water Reactor), as well as the results hurtled by this tests. In each section the executions of the tests and the corresponding analyses of results are shown for each pattern. Besides the above mentioned, the advantages presented by the Simulator of the reactor vessel and the recirculation system are pointed. (Author)

  3. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Ramirez G, C.; Chavez M, C.

    2012-10-01

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  4. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  5. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  6. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors

    Directory of Open Access Journals (Sweden)

    R. Gobbo

    2004-12-01

    Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.

  7. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    Etchepareborda, A; Flury, C.A; Lema, F; Maciel, F; Alegrechi, D; Damico, M; Ibarra, G; Muguiro, M; Gimenez, M; Schlamp, M; Vertullo, A

    2004-01-01

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models [es

  8. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  9. A three-dimensional operational transient simulation of the CANDU core with typical reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae; Park, Kyung Seok; Park, Jong Woon [Institute for Advanced Engineering, Taejon (Korea, Republic of)

    1995-07-01

    This paper describes the results of simulation of a CANDU operational transient problem (re-startup after short shutdown) using the Coupled Reactor Kinetics(CRKIN) code developed previously with CANDU Reactor Regulating System (RRS) logic. The performance in the simulation is focused on investigating the behaviours of neutron power and regulating devices in accordance with the changes of xenon concentration following the operation of the RRS.

  10. Improvement of nuclear ship engineering simulation system. Hardware renewal and interface improvement of the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki; Kyoya, Masahiko; Shimazaki, Junya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kano, Tadashi [KCS, Co., Mito, Ibaraki (Japan); Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan)

    2001-10-01

    JAERI had carried out the design study about a lightweight and compact integral type reactor (an advanced marine reactor) with passive safety equipment as a power source for the future nuclear ships, and completed an engineering design. We have developed the simulator for the integral type reactor to confirm the design and operation performance and to utilize the study of automation of the reactor operation. The simulator can be used also for future research and development of a compact reactor. However, the improvement in a performance of hardware and a human machine interface of software of the simulator were needed for future research and development. Therefore, renewal of hardware and improvement of software have been conducted. The operability of the integral-reactor simulator has been improved. Furthermore, this improvement with the hardware and software on the market brought about better versatility, maintainability, extendibility and transfer of the system. This report mainly focuses on contents of the enhancement in a human machine interface, and describes hardware renewal and the interface improvement of the integral type reactor simulator. (author)

  11. The simulation study on the Nuclear Heating Reactor's power auto-control system

    International Nuclear Information System (INIS)

    Yang Zhijun; Liu Longzhi; Hu Guifen

    2000-01-01

    The power automatic control system on nuclear heating reactor (NHR) is a multi-input and multi-output non-linear system. The power automatic control system on NHR is studied by modern control theory. Through the simulation experiments, it is clear that adopting μ outer-loop and LQR inner-loop feedback, the best control results are obtained

  12. Digital control system of advanced reactor

    International Nuclear Information System (INIS)

    Peng Huaqing; Zhang Rui; Liu Lixin

    2001-01-01

    This article produced the Digital Control System For Advanced Reactor made by NPIC. This system uses Siemens SIMATIC PCS 7 process control system and includes five control system: reactor power control system, pressurizer level control system, pressurizer pressure control system, steam generator water level control system and dump control system. This system uses three automatic station to realize the function of five control system. Because the safety requisition of reactor is very strict, the system is redundant. The system configuration uses CFC and SCL. the human-machine interface is configured by Wincc. Finally the system passed the test of simulation by using RETRAN 02 to simulate the control object. The research solved the key technology of digital control system of reactor and will be very helpful for the nationalization of digital reactor control system

  13. Pressurized water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using a pressurized water reactor simulator

  14. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Sugaya, Naoto; Ohtsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo; Hotta, Kohji; Ishitsuka, Tatsuo

    2013-06-01

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  15. Boiling water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA

  16. Simulation of a nuclear accident by an academic simulator of a VVER-1000 reactor

    International Nuclear Information System (INIS)

    Hernandez G, L.; Salazar S, E.

    2014-10-01

    This work is planned to simulate a scenario in which the same conditions that caused the accident at the Fukushima Daichi nuclear power plant are present, using a simulator of a nuclear power plant with VVER-1000 reactor, a different type of technology to the NPP where the accident occurred, which used BWR reactors. The software where it will take place the simulation was created and distributed by the IAEA for academic purposes, which contains the essential systems that characterize this type of NPP. The simulator has tools for the analysis of the characteristic phenomena of a VVER-1000 reactor in the different systems together and planned training tasks. This makes possible to identify the function of each component and how connects to other systems, thus facilitating the visualization of possible failures and the consequences that they have on the general behavior of the reactor. To program the conditions in the simulator, is necessary to know and synthesize a series of events occurred in Fukushima in 2011 and the realized maneuvers to reduce the effects of the system failures. Being different technologies interpretation of the changes that would suffer the VVER systems in the scenario in question will be developed. The Fukushima accident was characterized by the power loss of regular supply and emergency of the cooling systems which resulted in an increase in reactor temperature and subsequent fusion of their nuclei. Is interesting to reproduce this type of failure in a VVER, and extrapolate the lack of power supply in the systems that comprise, as well as pumping systems for cooling, has a pressure regulating system which involves more variables in the balance of the system. (Author)

  17. Development of an educational nuclear research reactor simulator

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2014-01-01

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  18. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  19. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  20. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  1. WWER-1000 reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series 12, 'Reactor Simulator Development' (2001). Course material for workshops using a pressurized water reactor (PWR) Simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003) and Training Course Series No. 23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation. N. V. Tikhonov and S. B. Vygovsky of the Moscow Engineering and Physics Institute prepared this report for the IAEA

  2. Application of a Russian nuclear reactor simulator VVER-1000

    International Nuclear Information System (INIS)

    Lopez-Peniche S, A.; Salazar S, E.

    2012-10-01

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  3. Simulation development for TRIGA reactor

    International Nuclear Information System (INIS)

    Handoyo, D.

    1997-01-01

    A simulator of the dynamic of TRIGA reactor has been made. this simulator is meant to study the reactor kinetic behavior and for operator training to more assure the safety and the reliability of the real operation of TRIGA reactor. the simulator consists of PC (Personal Computer) for processing the calculation of reactivity, neutron flux, period, ect and control panel for regulating the input data such as the change of power range, control rod position as well as cooling flow rate. the result will be displayed on screen monitor of personal computer as given in the real control room of TRIGA reactor. the output of simulator will be verified by comparing with measurement result in the real TRIGA MARK II reactor of Musashi institute of technology. for the change of reactivity of 0.3, 0.5 and 0.7 the reactor power and fuel temperature between the simulator and measurements are comparable

  4. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  5. V.S.O.P.-computer code system for reactor physics and fuel cycle simulation

    International Nuclear Information System (INIS)

    Teuchert, E.; Hansen, U.; Haas, K.A.

    1980-03-01

    V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de

  6. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  7. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  8. Development of a research nuclear reactor simulator using LABVIEW®

    International Nuclear Information System (INIS)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade

    2015-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  9. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  10. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  11. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Membrillo G, O. E.; Chavez M, C.

    2012-10-01

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  12. Simulation of the fuzzy-smith control system for the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Li Deheng; Xu Xiaolin; Zheng Jie; Guo Renjun; Zhang Guifen

    1997-01-01

    The Fuzzy-Smith pre-estimate controller to solve the control of the big delay system is developed, accompanied with the development of the mathematical model of the 10 MW high temperature gas cooled test reactor (HTR-10) and the design of its control system. The simulation results show the Fuzzy-Smith pre-estimate controller has the advantages of both fuzzy control and Smith pre-estimate controller; it has better compensation to the delay and better adaptability to the parameter change of the control object. So it is applicable to the design of the control system for the high temperature gas cooled reactor

  13. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  14. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-01

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  15. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  16. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  17. Real time simulation method for fast breeder reactors dynamics

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.

    1985-01-01

    The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)

  18. Development of Reactor TRIGA PUSPATI Simulator for Education and Training

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Zarina Masood; Muhammad Rawi Mohamed Zin

    2016-01-01

    The real-time simulator for Reactor TRIGA PUSPATI (RTP) which is under development. The main purpose of this simulator is operator training and a dynamic test bed (DTB) to test and validate the control logics in reactor regulating system (RRS) of RTP. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, operator station, a network switch, control rod drive mechanism and a large display panel. The RTP hardwired panel is replicated similar to real console. The software includes a mathematical model includes reactor kinetics and thermal-hydraulics that implements plant dynamics in real-time using LabVIEW, an instructor station module work as host computer that manages user instructions, and a human machine interface module as a graphical user interface which is used in the real RTP plant. The developed TRIGA reactor simulators are installed in the Malaysian Nuclear Agency nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet which is consist of Programmable Logic Controller (PLC) S7-1500, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB such as neutron detector signal and control rod positions, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. Normal and abnormal case test have been emulated for this project. In conclusion, the functions and the control performance of the developed RTP dynamic test bed simulator have been tested showing reasonable and acceptable results. (author)

  19. Simplified simulation of an experimental fast reactor plant

    International Nuclear Information System (INIS)

    Fujii, Masaaki; Fujita, Minoru.

    1978-01-01

    Purposes of the simulation are to study the dynamic behavior of a liquid metal-cooled experimental fast breeder reactor plant and to design the control system of the reactor plant by modified-RAPID (Reactor and Plant Integrated Dynamics) computer program. As for the plant model, the Japan Experimental Fast Reactor ''Joyo'' was referred to approximately. This computer program is designed for the calculation of steady-state and transient temperatures in a FBR plant; which is described by a model consisting of the core, upper and lower plenums, an intermediate heat exchanger, an air dump heat exchanger, primary-secondary and tertiary coolant systems and connecting pipes. The basic equations are solved numerically by finite difference approximation. The mathematical model for an experimental FBR plant is useful for the design of the control system of FBR plants. The results of numerical simulation showed that the proportional change in the flow rates of the primary and secondary coolant loops provides good performance in relation to the stepped change in the power level. (J.P.N.)

  20. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  1. LWR [Light Water Reactor] power plant simulations using the AD10 and AD100 systems

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab

  2. Dynamic simulation for scram of high temperature gas-cooled reactor with indirect helium turbine cycle system

    International Nuclear Information System (INIS)

    Li Wenlong; Xie Heng

    2011-01-01

    A dynamic analysis code for this system was developed after the mathematical modeling and programming of important equipment of 10 MW High Temperature Gas Cooled Reactor Helium Turbine Power Generation (HTR-10GT), such as reactor core, heat exchanger and turbine-compressor system. A scram accident caused by a 0.1 $ reactivity injection at 5 second was simulated. The results show that the design emergency shutdown plan for this system is safe and reasonable and that the design of bypass valve has a large safety margin. (authors)

  3. Simulation of a Hydrometallurgical Leaching Reactor modeled as a DAE system

    Directory of Open Access Journals (Sweden)

    Marta Duenas Diez

    2002-04-01

    Full Text Available An existing dynamic model of the main reactor in the Silgrain process for the production of Si from FeSi has been extended here in order to resemble more closely the behavior of the real reactor. The previous model was based on the application of macroscopic mass conservation law, the population balance equation and the assumptions of complete mixing and isothermic conditions. The major modifications are the inclusion of the condition governing the entrainment of particles in the outflow, and the formulation of the energy balance. The extended model consists of 1 integrodifferential equation, 4 implicit ordinary differential equations, 7 algebraic equations and 3 integral equations. After discretization in the particle size space, a system of differential and algebraic equations (DAE is obtained. DAEs are not ODEs and they require analysis and characterization and may require reformulation. After such analysis, it was concluded that the system is implicit index-one for the usual range of operation and that a method based on the Backward Differentiation formulas (BDF can be used for its solution. The model was implemented in Matlab and the ode15s code was used for solving the system of equations. The simulation results are satisfactory and seem to match qualitatively with the known operation of the reactor. The model is suitable for further use in designing a model-based control scheme.

  4. A research reactor simulator for operators training and teaching

    International Nuclear Information System (INIS)

    De Carvalho, R. P.; Maiorino, J. R.

    2006-01-01

    This work describes a training simulator of Research Reactors (RR). The simulator is an interactive tool for teaching and operator training of the bases of the RR operation, reactor physics and thermal hydraulics. The Brazilian IEA-R1 RR was taken as the reference (default configuration). The implementation of the simulator consists of the modeling of the process and system (neutronics, thermal hydraulics), its numerical solution, and the implementation of the man-machine interface through visual interactive screens. The point kinetics model was used for the nuclear process and the heat and mass conservation models were used for the thermal hydraulic feed back in the average core channel. The heat exchanger and cooling tower were also modeled. The main systems were: the reactivity control system, including the automatic control, and the primary and secondary coolant systems. The Visual C++ was used to codes and graphics lay-outs. The simulator is to be used in a PC with Windows XP system. The simulator allows simulation in real time of start up, power maneuver, and shut down. (authors)

  5. The Simulator Development for RDE Reactor

    Science.gov (United States)

    Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.

  6. A station blackout simulation for the Advanced Neutron Source Reactor using the integrated primary and secondary system model

    International Nuclear Information System (INIS)

    Schneider, E.A.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at Oak Ridge National Laboratory. This paper deals with thermal-hydraulic analysis of ANSR's cooling systems during nominal and transient conditions, with the major effort focusing upon the construction and testing of computer models of the reactor's primary, secondary and reflector vessel cooling systems. The code RELAP5 was used to simulate transients, such as loss of coolant accidents and loss of off-site power, as well as to model the behavior of the reactor in steady state. Three stages are involved in constructing and using a RELAP5 model: (1) construction and encoding of the desired model, (2) testing and adjustment of the model until a satisfactory steady state is achieved, and (3) running actual transients using the steady-state results obtained earlier as initial conditions. By use of the ANSR design specifications, a model of the reactor's primary and secondary cooling systems has been constructed to run a transient simulating a loss of off-site power. This incident assumes a pump coastdown in both the primary and secondary loops. The results determine whether the reactor can survive the transition from forced convection to natural circulation

  7. Pressurized water reactor simulator. Workshop material. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development. And the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21, 2nd edition, 'WWER-1000 Reactor Simulator' (2005). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23, 2nd edition, 'Boiling Water Reactor Simulator' (2005). This report consists of course material for workshops using a pressurized water reactor simulator

  8. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  9. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  10. A small-scale experimental reactor combined with a simulator for training purposes

    International Nuclear Information System (INIS)

    Destot, M.; Hagendorf, M.; Vanhumbeeck, D.; Lecocq-Bernard, J.

    1981-01-01

    The authors discuss how a small-scale reactor combined to a training simulator can be a valuable aid in all forms of training. They describe the CEN-based SILOETTE reactor in Grenoble and its combined simulator. They also take a look at prospects for the future of the system in the light of experience acquired with the ARIANE reactor and the trends for the development of simulators for training purposes [fr

  11. Study on simulation, control and online assistance integrated system of 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Luo, S.; Shi, L.; Zhu, S.

    2004-01-01

    In order to provide a convenient tool for engineering designed, safety analysis, operator training and control system design of the high temperature gas-cooled test reactor (HTR), an integrated system for simulation, control and online assistance of the HTR-10 has been designed and is still under development by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China. The whole system is based on a network environment and includes three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four parts: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. The SIMUSUB is intended to analyze and calculate the physical processes of the reactor core, the main loop system and the stream generator, etc., as well as to simulate the normal operation and transient accidents, and the result data can be graphically displayed through the RGDC dynamically. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameter, which are difficult to measure. This whole system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online supports for operators in the main control room, or as a convenient powerful tool for the control system design. (authors)

  12. Simulation of a nuclear accident by an academic simulator of a VVER-1000 reactor; Simulacion de un accidente nuclear, mediante un simulador academico de un reactor VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, L. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Salazar S, E., E-mail: laurahg42@gmail.com [UNAM, Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2014-10-15

    This work is planned to simulate a scenario in which the same conditions that caused the accident at the Fukushima Daichi nuclear power plant are present, using a simulator of a nuclear power plant with VVER-1000 reactor, a different type of technology to the NPP where the accident occurred, which used BWR reactors. The software where it will take place the simulation was created and distributed by the IAEA for academic purposes, which contains the essential systems that characterize this type of NPP. The simulator has tools for the analysis of the characteristic phenomena of a VVER-1000 reactor in the different systems together and planned training tasks. This makes possible to identify the function of each component and how connects to other systems, thus facilitating the visualization of possible failures and the consequences that they have on the general behavior of the reactor. To program the conditions in the simulator, is necessary to know and synthesize a series of events occurred in Fukushima in 2011 and the realized maneuvers to reduce the effects of the system failures. Being different technologies interpretation of the changes that would suffer the VVER systems in the scenario in question will be developed. The Fukushima accident was characterized by the power loss of regular supply and emergency of the cooling systems which resulted in an increase in reactor temperature and subsequent fusion of their nuclei. Is interesting to reproduce this type of failure in a VVER, and extrapolate the lack of power supply in the systems that comprise, as well as pumping systems for cooling, has a pressure regulating system which involves more variables in the balance of the system. (Author)

  13. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  14. Dynamic simulation of the 2 MWt slowpoke heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1982-04-01

    A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined

  15. Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code

    International Nuclear Information System (INIS)

    Shiba, T.; Fallot, M.

    2015-01-01

    To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)

  16. Dynamic simulation of a sodium-cooled fast reactor power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinaishin, M.A.M.

    1976-08-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant.

  17. Dynamic simulation of a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Shinaishin, M.A.M.

    1976-08-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant

  18. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  19. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2015-01-01

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  20. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  1. Development of the user Interface of digital simulation system of the operational parameters of the TRIGA IPR-R1 Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Felippe, Adriano de A.M.; Lage, Aldo M.F.; Mesquita, Amir Z.

    2017-01-01

    The development of simulation systems has been increasingly improved to ensure security and reliability to the systems being associated. Computational tools, simulation systems and programming languages increasingly allow the diversification of control systems. With increasing concern about monitoring the key parameters involved in chain reactions inside a nuclear reactor, new technologies are being developed to ensure operations safety. This paper deals with a practical application of a work that is being developed in the Center for the Development of Nuclear Technology - CDTN, which intends to simulate the operation of the TRIGA-IPR-R1 nuclear research reactor using the LabVIEW® software, evaluating the evolution of the neutron flux and other related events. In this paper, the visual interface of the reactor control table, developed through virtual instruments that allow, in a vast repertoire of tools, replicating the panels of the control table in modern screens that can be operated by a user of an analogous form, but still more practical and complete. Since the innovations developed for research reactors can be replicated in power reactors, and because of their lower operating and maintenance costs, projects in this area allow the development of several technologies

  2. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  3. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  4. Modeling and Simulation of the Multi-module High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Liu Dan; Sun Jun; Sui Zhe; Xu Xiaolin; Ma Yuanle; Sun Yuliang

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is characterized with the inherent safety. To enhance its economic benefit, the capital cost of MHTGR can be decreased by combining more reactor modules into one unit and realize the batch constructions in the concept of modularization. In the research and design of the multi-module reactors, one difficulty is to clarify the coupling effects of different modules in operating the reactors due to the shared feed water and main steam systems in the secondary loop. In the advantages of real-time simulation and coupling calculations of different modules and sub-systems, the operation of multi-module reactors can be studied and analyzed to understand the range and extent of the coupling effects. In the current paper; the engineering simulator for the multi-module reactors was realized and able to run in high performance computers, based on the research experience of the HTR-PM engineering simulator. The models were detailed introduced including the primary and secondary loops. The steady state of full power operation was demonstrated to show the good performance of six-module reactors. Typical dynamic processes, such as adjusting feed water flow rates and shutting down one reactor; were also tested to study the coupling effects in multi-module reactors. (author)

  5. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  6. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  7. Simulation of decreasing reactor power level with BWR simulator

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Rivai, Abu Khalid

    2002-01-01

    Study on characteristic of BWR using Desktop PC Based Simulator Program was analysed. This simulator is more efficient and cheaper for analyzing of characteristic and dynamic respond than full scope simulator for decreasing power level of BW. Dynamic responses of BWR reactor was investigated during the power level reduction from 100% FP (Full Power) which is 3926 MWth to 0% FP with 25% steps and 1 % FP/sec rate. The overall results for core flow rate, reactor steam flow, feed-water flow and turbine-generator power show tendency proportional to reduction of reactor power. This results show that reactor power control in BWR could be done by control of re-circulation flow that alter the density of water used as coolant and moderator. Decreasing the re-circulation flow rate will decrease void density which has negative reactivity and also affect the position of control rods

  8. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  9. Forced vibration tests and simulation analyses of a nuclear reactor building. Part 2: simulation analyses

    International Nuclear Information System (INIS)

    Kuno, M.; Nakagawa, S.; Momma, T.; Naito, Y.; Niwa, M.; Motohashi, S.

    1995-01-01

    Forced vibration tests of a BWR-type reactor building. Hamaoka Unit 4, were performed. Valuable data on the dynamic characteristics of the soil-structure interaction system were obtained through the tests. Simulation analyses of the fundamental dynamic characteristics of the soil-structure system were conducted, using a basic lumped mass soil-structure model (lattice model), and strong correlation with the measured data was obtained. Furthermore, detailed simulation models were employed to investigate the effects of simultaneously induced vertical response and response of the adjacent turbine building on the lateral response of the reactor building. (author). 4 refs., 11 figs

  10. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  11. Interatomic potentials for fusion reactor material simulations

    International Nuclear Information System (INIS)

    Bjoerkas, C.

    2009-01-01

    In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, i.e. interatomic potentials, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electronphonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage

  12. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  13. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  14. Formulae for thermal feedback of group constants in digital reactor simulation

    International Nuclear Information System (INIS)

    Perneczky, L.; Toth, I.; Vigassy, J.

    1976-01-01

    The problem, how the feedback of the thermohydraulic field to the neutron density in a reactor can be calculated is analysed. After a brief survey of the digital models in reactor simulation the applied model based on the time-dependent two-group diffusion equations is described. Using the reactor physical code system THERESA numerical results for the VVER-440 reactor are presented. (Sz.Z.)

  15. Design, construction and simulation of a multipurpose system for precision movement of control rods in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, S.A. Mousavi, E-mail: a_moosavi@azad.ac.i [Department of Physics, Islamic Azad University, South Tehran Branch, Tehran (Iran, Islamic Republic of); Aghanajafi, C. [Department of Mechanical Engineering, K.N.T. University of Technology, Tehran (Iran, Islamic Republic of); Sadoughi, S. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sharifloo, N. [Department of Physics, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2010-12-15

    This article presents the design and implementation of a microcontroller-based system for the automatic movement of control rods in nuclear reactors of either power or research types. This system is controlled automatically, is linked to a personal computer system, and has manual controlling ability as well. The important features of this system are: automatic scram of the control rods, activation of alarm in emergency situations, and the ability to tune the control rod movement course both upwards and downwards. In this system, a small tank has been improvised as a coolant reservoir for pool type reactors such as Tehran Research Reactor and its water level is continuously adjusted by special sensors. Also, this system can be applied for controlling various types of control rods such as the regulating rods, safety rods and shim rods; can be connected to all reactor measurement tools and systems such as the period meter, power meter and flux meter; and can receive feedback signals from them. The devised system can be calibrated with these measurement tools by two special potentiometers in the related electronic board. The processes of this system have been simulated by the SIMULINK tool kit of MATLAB software and all responses of the system, including oscillation and transient responses, have been analyzed.

  16. COUPLED SIMULATION OF GAS COOLED FAST REACTOR FUEL ASSEMBLY WITH NESTLE CODE SYSTEM

    Directory of Open Access Journals (Sweden)

    Filip Osusky

    2018-05-01

    Full Text Available The paper is focused on coupled calculation of the Gas Cooled Fast Reactor. The proper modelling of coupled neutronics and thermal-hydraulics is the corner stone for future safety assessment of the control and emergency systems. Nowadays, the system and channel thermal-hydraulic codes are accepted by the national regulatory authorities in European Union for license purposes, therefore the code NESTLE was used for the simulation. The NESTLE code is a coupled multigroup neutron diffusion code with thermal-hydraulic sub-channel code. In the paper, the validation of NESTLE code 5.2.1 installation is presented. The processing of fuel assembly homogeneous parametric cross-section library for NESTLE code simulation is made by the sequence TRITON of SCALE code package system. The simulated case in the NESTLE code is one fuel assembly of GFR2400 concept with reflective boundary condition in radial direction and zero flux boundary condition in axial direction. The results of coupled calculation are presented and are consistent with the GFR2400 study of the GoFastR project.

  17. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  18. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  19. Simulation-based expert system for nuclear reactor control and diagnostics. Progress report

    International Nuclear Information System (INIS)

    Lee, J.C.; Martin, W.R.

    1986-01-01

    This research concerns the development of artificial intelligence (AI) techniques suitable for application to the diagnostics and control of nuclear power plant systems. The overall objective of the current effort is to build a prototype simulation-based expert system for diagnosing accidents in nuclear reactors. The system is being designed to analyze plant data heuristically using fuzzy logic to form a set of hypotheses about a particular transient. Hypothesis testing, fault magnitude estimation and transient analysis is performed using simulation programs to model plant behavior. An adaptive learning technique has been developed for achieving accurate simulations of plant dynamics using low-order physical models of plant components. The results of the diagnostics and simulation analysis of the plant transient are to be analyzed by an expert system for final diagnoses and control guidance. To date, significant progress has been made toward achieving the primary goals of this project. Based on a critical safety functions approach, an overall design for the nuclear plant expert system has been developed. The methodology for performing diagnostic reasoning on plant signals has been developed and the algorithms implemented and tested. A methodology for utilizing the information contained in the physical models of plant components has also been developed. This work included the derivation of a unique Kalman filtering algorithm for using power plant data to systematically improve on-line simulations through the judicious adjustment of key model parameters. A few simulation models of key plant components have been developed and implemented to demonstrate the method on a realistic accident scenario. The chosen transient is a loss of feed flow exasperated by a stuck open relief valve, similar to the initiating event of the Three Mile Island Unit 2 accident in 1979

  20. Development of a training simulator to operators of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carvalho, Ricardo Pinto de

    2006-01-01

    This work reports the development of a Simulator for the IEA-R1 Research Reactor. The Simulator was developed with Visual C++ in two stages: construction of the mathematics models and development and configuration of graphics interfaces in a Windows XP executable. A simplified modeling was used for main physics phenomena, using a point kinetics model for the nuclear process and the energy and mass conservation laws in the average channel of the reactor for the thermal hydraulic process. The dynamics differential equations were solved by using finite differences through the 4th order Runge- Kutta method. The reactivity control, reactor cooling, and reactor protection systems were also modeled. The process variables are stored in ASCII files. The Simulator allows navigating by screens of the systems and monitoring tendencies of the operational transients, being an interactive tool for teaching and training of IEA-R1 operators. It also can be used by students, professors, and researchers in teaching activities in reactor and thermal hydraulics theory. The Simulator allows simulations of operations of start up, power maneuver, and shut down. (author)

  1. Simulation and tests to individual and coupled models of the reactor vessel simulator and the recirculation system for the SUN-RAH; Simulacion y pruebas a modelos individuales y acoplados del simulador de la vasija del reactor y el sistema de recirculacion para el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, R.A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: rsanchez_15@yahoo.com.mx

    2004-07-01

    The present project, is continuation of the project presented in the congress SNM-2003. In this new phase of the project, they were carried out adaptive changes to the modeling and implementation of the module of the full superior of the core of the reactor, they were carried out those modeling of the generation of heat as well as of the energy transfer in the one fuel. These models present the main characteristics of the vessel of the one reactor and of the recirculation system, defined by the main phenomena that they intervene in the physical processes, in the previous version the simulation in real time it required of an extremely quick computer and without executing collateral processes. The tests are presented carried out to the different models belonging to the Simulator of the Reactor Vessel and the Recirculation system for the SUN-RAH (University Simulator of Nucleo electric with Boiling Water Reactor), as well as the results hurtled by this tests. In each section the executions of the tests and the corresponding analyses of results are shown for each pattern. Besides the above mentioned, the advantages presented by the Simulator of the reactor vessel and the recirculation system are pointed. (Author)

  2. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  3. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  4. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    International Nuclear Information System (INIS)

    Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.

    2010-10-01

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  5. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  6. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  7. Distributed expert systems for nuclear reactor control

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1992-01-01

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed

  8. Conceptual design for simulator of irradiation test reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Ohto, Tsutomu; Magome, Hirokatsu; Izumo, Hironobu; Hori, Naohiko

    2012-03-01

    A simulator of irradiation test reactors has been developed since JFY 2010 for understanding reactor behavior and for upskilling in order to utilize a nuclear human resource development (HRD) and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR, one of the irradiation test reactors, and it simulates operation, irradiation tests and various kinds of accidents caused by the reactor and irradiation facility. The development of the simulator is sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. The training using the simulator will be started for the nuclear HRD from JFY 2012. This report summarizes the result of the conceptual design of the simulator in JFY 2010. (author)

  9. Analog reactor simulator RAS; Reaktorski analogni simulator RAS

    Energy Technology Data Exchange (ETDEWEB)

    Radanovic, Lj; Bingulac, S; Popovic, D [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    Analog computer RAS was designed as a nuclear reactor simulator, but it can be simultaneously used for solving a number of other problems. This paper contains a brief description of the simulator parts and their principal characteristics.

  10. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  11. Development of telerobotic systems for reactor decommissioning, (3)

    International Nuclear Information System (INIS)

    Usui, Hozumi; Fujii, Yoshio; Shinohara, Yoshikuni

    1991-01-01

    This paper describes the telerobotic system for reactor decommissioning in the scope of engineering demonstration of dismantling radioactive reactor internals of an experimental boiling water power reactor JPDR. The total system consists of a telerobotic manipulator system equipped with a multi-functional amphibious slave manipulator with a load capacity of 25 daN, a chain-driven transport system, and a computer-assisted monitoring and control system. Preceding to the application of the telerobotic system to actual dismantling operation, a mockup test was performed of dismantling the simulated reactor internals of actual-size by the method of underwater plasma arc cutting in order to study the performance of the telerobotic system in a realistic environment. The system was then successfully applied to dismantling the actual reactor internals according to the JPDR decommissioning program. (author)

  12. Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach

    International Nuclear Information System (INIS)

    Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.

    1980-01-01

    A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%

  13. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  14. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  15. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  16. Reactor refueling machine simulator

    International Nuclear Information System (INIS)

    Rohosky, T.L.; Swidwa, K.J.

    1987-01-01

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console

  17. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  18. Experimental evaluation of an expert system for nuclear reactor operators

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1984-10-01

    The United States Nuclear Regulatory Commission (USNRC) is supporting a program for the experimental evaluation of an expert system for nuclear reactor operators. A prototype expert system, called the Response Tree System, has been developed and implemented at INEL. The Response Tree System is designed to assess the status of a reactor system following an accident and recommend corrective actions to reactor operators. The system is implemented using color graphic displays and is driven by a computer simulation of the reactor system. Control of the system is accomplished using a transparent touch panel. Controlled experiments are being conducted to measure performance differences between operators using the Response Tree System and those not using it to respond to simulated accident situations. This paper summarizes the methodology and results of the evaluation of the Response Tree System, including the quantitative results obtained in the experiments thus far. Design features of the Response Tree System are discussed, and general conclusions regarding the applicability of expert systems in reactor control rooms are presented

  19. Cronos 2: a neutronic simulation software for reactor core calculations

    International Nuclear Information System (INIS)

    Lautard, J.J.; Magnaud, C.; Moreau, F.; Baudron, A.M.

    1999-01-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  20. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  1. IAEA activities in nuclear reactors simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1998-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has two simulation programs: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  2. Dynamic simulation of a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Shinaishin, M.A.M.

    1976-01-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is dealt with. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. In addition to the usual assumption of lumped parameters, uniform heat transfer and point kinetics (prompt jump) have been the main approximations in this and other simulators (see below). Two different transport-delay models have also been installed in all simulators. The simulators were constructed using the DARE-P System, developed by the Electrical Engineering Department at the University of Arizona

  3. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    International Nuclear Information System (INIS)

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-01-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un-SCRAM-ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role

  4. Primary loop simulation of the SP-100 space nuclear reactor

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F.

    2011-01-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  5. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  6. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Two simulation programs are presented at this workshop: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  7. Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors

    International Nuclear Information System (INIS)

    Chu, Y.Y.

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design

  8. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  9. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  10. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  11. Modeling, simulation, and analysis of a reactor system for the generation of white liquor of a pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2011-02-01

    Full Text Available An industrial system for the production of white liquor of a pulp and paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by the evaporation and reaction, in addition to variations in the volumetric flow of lime mud across the reactors due to the composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction was nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurred more pronouncedly in the slaker reactor than in the final causticizing reactors; nevertheless, the lime mud flow remained nearly constant across the reactors.

  12. Modeling and simulation of pressurized water reactor power plant

    International Nuclear Information System (INIS)

    Wang, S.J.

    1983-01-01

    Two kinds of balance of plant (BOP) models of a pressurized water reactor (PWR) system are developed in this work - the detailed BOP model and the simple BOP model. The detailed model is used to simulate the normal operational performance of a whole BOP system. The simple model is used to combine with the NSSS model for a whole plant simulation. The trends of the steady state values of the detailed model are correct and the dynamic responses are reasonable. The simple BOP model approach starts the modelling work from the overall point of view. The response of the normalized turbine power and the feedwater inlet temperature to the steam generator of the simple model are compared with those of the detailed model. Both the steady state values and the dynamic responses are close to those of the detailed model. The simple BOP model is found adequate to represent the main performance of the BOP system. The simple balance of plant model was coupled with a NSSS model for a whole plant simulation. The NSSS model consists of the reactor core model, the steam generator model, and the coolant temperature control system. A closed loop whole plant simulation for an electric load perturbation was performed. The results are plausible. The coupling effect between the NSSS system and the BOP system was analyzed. The feedback of the BOP system has little effect on the steam generator performance, while the performance of the BOP system is strongly affected by the steam flow rate from the NSSS

  13. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  14. CFD simulations of moderator flow inside Calandria of the Passive Moderator Cooling System of an advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Eshita [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 India (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2015-10-15

    Highlights: • CFD simulations in the Calandria of an advanced reactor under natural circulation. • Under natural convection, majority of the flow recirculates within the Calandria. • Maximum temperature is located at the top and center of the fuel channel matrix. • During SBO, temperature inside Calandria is stratified. - Abstract: Passive systems are being examined for the future Advanced Nuclear Reactor designs. One of such concepts is the Passive Moderator Cooling System (PMCS), which is designed to remove heat from the moderator in the Calandria vessel passively in case of an extended Station Black Out condition. The heated heavy-water moderator (due to heat transferred from the Main Heat Transport System (MHTS) and thermalization of neutrons and gamma from radioactive decay of fuel) rises upward due to buoyancy, gets cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator temperature and pressure beyond safe limits. In an earlier study, a full-scale 1D transient simulation was performed for the reactor including the MHTS and the PMCS, in the event of a station blackout scenario (Kumar et al., 2013). The results indicate that the systems remain within the safe limits for 7 days. However, the flow inside a geometry like Calandria is quite complex due to its large size and inner complexities of dense fuel channel matrix, which was simplified as a 1D pipe flow in the aforesaid analysis. In the current work, CFD simulations are performed to study the temperature distributions and flow distribution of moderator inside the Calandria vessel using a three-dimensional CFD code, OpenFoam 2.2.0. First, a set of steady state simulation was carried out for a band of inlet mass flow rates, which gives the minimum mass flow rate required for removing the maximum heat load, by virtue of prediction of hot spots inside the Calandria

  15. Fessenheim simulator for OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    Oudot, G.; Bonnissent, B.

    1998-01-01

    A full scope NPP simulator is presently under manufacture by THOMSON TRAINING and SIMULATION (TTandS) in Cergy (France) for the OECD HALDEN REACTOR PROJECT. The reference plant of this simulator is the Fessenheim CP0 PWR power plant operated by the French utility EDF, for which TTandS has delivered a full scope training simulator in mid 1997. The simulator for HALDEN Reactor Project is based on a software duplication of the Fessenheim simulator delivered to EDF, ported on the most recent computers and O.S. available. This paper outlines the main features of this new simulator generation which reaps benefit of the advanced technologies of the SIPA design simulator introduced inside a full scope simulator. This kind of simulator is in fact the synthesis between training and design simulators and offers therefore added technical capabilities well suited to HALDEN needs. (author)

  16. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki; Im, Ki Hong

    2013-01-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  17. Modular high-temperature gas-cooled reactor simulation using parallel processors

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.

    1989-01-01

    The MHPP (Modular HTGR Parallel Processor) code has been developed to simulate modular high-temperature gas-cooled reactor (MHTGR) transients and accidents. MHPP incorporates a very detailed model for predicting the dynamics of the reactor core, vessel, and cooling systems over a wide variety of scenarios ranging from expected transients to very-low-probability severe accidents. The simulations routines, which had originally been developed entirely as serial code, were readily adapted to parallel processing Fortran. The resulting parallelized simulation speed was enhanced significantly. Workstation interfaces are being developed to provide for user (operator) interaction. In this paper the benefits realized by adapting previous MHTGR codes to run on a parallel processor are discussed, along with results of typical accident analyses

  18. Training simulator for nuclear power plant reactor control model and method

    International Nuclear Information System (INIS)

    Czerbuejewski, F.R.

    1975-01-01

    A description is given of a method and system for the real-time dynamic simulation of a nuclear power plant for training purposes, wherein a control console has a plurality of manual and automatic remote control devices for operating simulated control rods and has indicating devices for monitoring the physical operation of a simulated reactor. Digital computer means are connected to the control console to calculate data values for operating the monitoring devices in accordance with the control devices. The simulation of the reactor control rod mechanism is disclosed whereby the digital computer means operates the rod position monitoring devices in a real-time that is a fraction of the computer time steps and simulates the quick response of a control rod remote control lever together with the delayed response upon a change of direction

  19. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  20. Considerations on nuclear reactor passive safety systems

    International Nuclear Information System (INIS)

    2016-01-01

    After having indicated some passive safety systems present in electronuclear reactors (control bars, safety injection system accumulators, reactor cooling after stoppage, hydrogen recombination systems), this report recalls the main characteristics of passive safety systems, and discusses the main issues associated with the assessment of new passive systems (notably to face a sustained loss of electric supply systems or of cold water source) and research axis to be developed in this respect. More precisely, the report comments the classification of safety passive systems as it is proposed by the IAEA, outlines and comments specific aspects of these systems regarding their operation and performance. The next part discusses the safety approach, the control of performance of safety passive systems, issues related to their reliability, and the expected contribution of R and D (for example: understanding of physical phenomena which have an influence of these systems, capacities of simulation of these phenomena, needs of experimentations to validate simulation codes)

  1. Feasibility study of teleoperational maintenance using real-time simulator for experimental fusion reactor

    International Nuclear Information System (INIS)

    Hamada, Tomoyuki; Tanaka, Keiji; Oka, Kiyoshi; Shibanuma, Kiyoshi

    2004-01-01

    The maintenance manipulator for the experimental fusion reactor has long vertical and horizontal telescopic booms to access the neutral beam injector of the fusion reactor. Due to this boom structure, the vibration and deflection of the manipulator are the critical issues for the accurate operation. A real-time simulation system was constructed to evaluate the maneuverability of the manipulator under these vibration and deflection. In this simulation system, the dynamic behavior of the flexible manipulator is calculated synchronized with the real-time control input of the human operator. A vibration and position compensation method was adapted to improve the maneuverability. Through the evaluation using the real-time simulation system, it was verified that the manipulator is maneuverable by using vibration and position compensation. (author)

  2. NEPTUNIX, a general program of simulation applied to nuclear reactors

    International Nuclear Information System (INIS)

    Bonnemay, A.; Dansac Bon, V.

    1978-01-01

    Most simulation languages admit an incremental description and involve explicit integration algorithms. NEPTUNIX is a simulation language directly admitting algebraic differential equations under an implicit form, and it involves a very efficient implicit integration method with variable step and order. NEPTUNIX is a tool used for building large systems models in the field of nuclear reactors [fr

  3. Development of Nuclear ship Engineering Simulation SYstem (NESSY)

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Takahashi, Teruo; Kobayashi, Hideo; Ochiai, Masa-aki; Hashidate, Kouji.

    1993-11-01

    NESSY has been developed for design studies of advanced marine reactors as a part of nuclear ship research and development since 1987. Engineering simulation model of the Mutsu, which is the first nuclear ship in Japan, was completed in March of 1993. In this report we concentration on detail description of softwares for Mutsu modeling. The aims of development of NESSY are as follows; (1) Assessment and confirmation on plant performance of an advanced marine reactor in each step of nuclear ship design (2) Development of abnormality diagnosis system and operator support system as a part of enhanced automization study, and study of human interface with hardware The characteristics of NESSY are the followings. (1) Total engineering simulation system simulate simultaneously ship motions, propulsion system behavior, and nuclear plant behavior under given weather and sea conditions. (2) Models based on physical theory as far as possible. (3) The simulator has high extensibility and flexibility. It is able to apply to other reactors, as the simulation model consists of the part of basic model and the part of plant data which are easy to change. After completion of Mutsu modeling, we are planning to utilize this system as one of design tools for an advanced marine reactor. (author)

  4. Dynamic model for the control system simulation and design of a 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Zhang Yuai; Liu Longzhi; Ma Changwen

    1999-01-01

    The author develops a nonlinear dynamic model used in a wide range control system simulation for a 200 MW Nuclear Heating Reactor (NHR-200). Besides a one-point neutron kinetics equation and temperature feedback based on the lumped fuel and coolant temperature, which are the usual methods used in modeling of PWR, two other factors are also considered in order to suit the wide range operation. The first consideration is the natural circulation in the primary loop because it affects the heat transfer coefficients in the core and in the primary heat exchanger (PHE). The second consideration is the flow rate variation in the secondary loop which leads to some nonlinear properties. The simulation results show that the model is accurate enough for control system simulation. Some model reduction basis can be obtained through the dynamic analysis

  5. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  6. Hamiltonian circuited simulations in reactor physics

    International Nuclear Information System (INIS)

    Rio Hirowati Shariffudin

    2002-01-01

    In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)

  7. Transient thermal-hydraulic simulations of direct cycle gas cooled reactors

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Marchand, Muriel; Chataing, Thierry; Geffraye, Genevieve; Bassi, Christophe

    2005-01-01

    This work concerns the design and safety analysis of gas cooled reactors. The CATHARE code is used to test the design and safety of two different concepts, a High Temperature Gas Reactor concept (HTGR) and a Gas Fast Reactor concept (GFR). Relative to the HTGR concept, three transient simulations are performed and described in this paper: loss of electrical load without turbo-machine trip, 10 in. cold duct break, 10 in. break in cold duct combined with a tube rupture of a cooling exchanger. A second step consists in modelling a GFR concept. A nominal steady state situation at a power of 600 MW is obtained and first transient simulations are carried out to study decay heat removal situations after primary loop depressurisation. The turbo-machine contribution is discussed and can offer a help or an alternative to 'active' heat extraction systems

  8. Control system design and validation platform development for small pressurized water reactors (SPWR) by coupling an engineering simulator and MATLAB/Simulink

    International Nuclear Information System (INIS)

    Sun, Peiwei; Zhao, Huanhuan; Liao, Longtao; Zhang, Jianmin; Su, Guanghui

    2017-01-01

    Highlights: • An SPWR control system design and validation platform is developed. • The platform is developed by coupling MATLAB/Simulink and an engineering simulator. • SPWR is modeled using Relap5 and preliminary control system is designed. • The platform is verified through numerical simulation over two typical load patterns. - Abstract: Significant progress has been made in the development of the small pressurized water reactors (SPWR). Unique characteristics of the SPWR deliver challenges to its control system design. In order to facilitate the control system design process and enhance its efficiency, it is important and necessary to establish a control system design and validation platform. Using shared memory technology, an engineering simulator coupled with MATLAB/Simulink is employed to achieve this objective. Shared memory is an efficient method to exchange data within programs. Dynamic data exchange and simulation time synchronization methods are particularly treated. To verify the platform, an SPWR with its control system is modeled using the platform and the simulator. Thermal-hydraulic modeling of the SPWR is carried out using Relap5, and its nodalization is introduced. The objectives of the control strategy are to maintain the average coolant temperature linearly varying with the reactor power and steam pressure constant. A preliminary SPWR control system is designed with proportional-integral-derivative (PID) controllers, and is implemented in MATLAB/Simulink associated with the engineering simulator. Subsequently, in order to evaluate the performance of the established simulation platform, transients of abrupt load changes and wide range load changes are simulated and simulation results are verified against those obtained from the engineering simulator alone. It is demonstrated that simulation results of both platforms are consistent with each other, which proves that the coupling of engineering simulator and MATLAB/Simulink is successful

  9. WWER-1000 reactor simulator. Material for training courses and workshops. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No.12, Reactor Simulator Development (2001). Course material for workshops using a pressurized water reactor (PWR) simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication, Training Course Series No. 22, 2nd edition, Pressurized Water Reactor Simulator (2005) and Training Course Series No.23, 2nd edition, Boiling Water Reactor Simulator (2005). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation

  10. Reactor numerical simulation and hydraulic test research

    International Nuclear Information System (INIS)

    Yang, L. S.

    2009-01-01

    In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device

  11. An automatic regulating control system for a graphite moderated reactor using digital techniques

    International Nuclear Information System (INIS)

    Carvalho Goncalves Junior, J. de.

    1989-01-01

    The work propose an automatic regulating control system for a graphite moderated reactor using digital techniques. The system uses a microcomputer to monitor the power and the period, to run the control algorithm, and to generate electronic signals to excite the motor, which moves vertically the control rod banks. A nuclear reactor simulator was developed to test the control system. The simulator consists of a software based on the point kinetic equations and implanted in an analogical computer. The results show that this control system has a good performance and versatility. In addition, the simulator is capable of reproducing with accuracy the behavior of a nuclear reactor. (author)

  12. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail: alanleyfly@gmail.com; Jiang, Zeng

    2014-03-15

    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  13. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ji, W. [Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer, Polytechnic Institute, 110 8th street, Troy, NY 12180 (United States)

    2013-07-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  14. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2013-01-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  15. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Badulescu, A.; Lyon, R.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has simulation programs available for distribution that simulate the behaviour of BWR, PWR and HWR reactor types. (authors)

  16. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de aspersion del nucleo a baja presion (LPCS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Membrillo G, O. E.; Chavez M, C., E-mail: garzo1012@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  17. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    Science.gov (United States)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  18. FISS: a computer program for reactor systems studies

    International Nuclear Information System (INIS)

    Tamm, H.; Sherman, G.R.; Wright, J.H.; Nieman, R.E.

    1979-08-01

    ΣFISSΣ is a computer code for use in investigating alternative fuel cycle strategies for Canadian and world nuclear programs. The code performs a system simulation accounting for dynamic effects of growing nuclear systems. Facilities in the model include storage for irradiated fuel, mines, plants for enrichment, fuel fabrication, fuel reprocessing and heavy water, and reactors. FISS is particularly useful for comparing various reactor strategies and studying sensitivities of resource consumption, capital investment and energy costs with changes in fuel cycle parameters, reactor parameters and financial variables. (author)

  19. Development of new methods for the modeling of technical systems and result evaluation for reactor safety simulation codes. Modeling, simulation models; Entwicklung neuer Methoden zur Modellierung technischer Systeme und zur Ergebnisauswertung fuer Simulationsprogramme der Reaktorsicherheit. Modellierung, Simulationsprogramme

    Energy Technology Data Exchange (ETDEWEB)

    Cester, Francesco; Deitenbeck, Helmuth; Kuentzel, Matthias; Scheuer, Josef; Voggenberger, Thomas

    2015-04-15

    The overall objective of the project is to develop a general simulation environment for program systems used in reactor safety analysis. The simulation environment provides methods for graphical modeling and evaluation of results for the simulation models. The terms of graphical modeling and evaluation of results summarize computerized methods of pre- and postprocessing for the simulation models, which can assist the user in the execution of the simulation steps. The methods comprise CAD (''Computer Aided Design'') based input tools, interactive user interfaces for the execution of the simulation and the graphical representation and visualization of the simulation results. A particular focus was set on the requirements of the system code ATHLET. A CAD tool was developed that allows the specification of 3D geometry of the plant components and the discretization with a simulation grid. The system provides inter-faces to generate the input data of the codes and to export the data for the visualization software. The CAD system was applied for the modeling of a cooling circuit and reactor pressure vessel of a PWR. For the modeling of complex systems with many components, a general purpose graphical network editor was adapted and expanded. The editor is able to simulate networks with complex topology graphically by suitable building blocks. The network editor has been enhanced and adapted to the modeling of balance of plant and thermal fluid systems in ATHLET. For the visual display of the simulation results in the local context of the 3D geometry and the simulation grid, the open source program ParaView is applied, which is widely used for 3D visualization of field data, offering multiple options for displaying and ana-lyzing the data. New methods were developed, that allow the necessary conversion of the results of the reactor safety codes and the data of the CAD models. The trans-formed data may then be imported into ParaView and visualized. The

  20. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code

    International Nuclear Information System (INIS)

    Russell, Liam; Buijs, Adriaan; Jonkmans, Guy

    2014-01-01

    Highlights: • G4-STORK is a new, time-dependent, Monte Carlo code for reactor physics applications. • G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. • G4-STORK was designed to simulate short-term fluctuations in reactor cores. • G4-STORK is well suited for simulating sub- and supercritical assemblies. • G4-STORK was verified through comparisons with DRAGON and MCNP. - Abstract: In this paper we introduce G4-STORK (Geant4 STOchastic Reactor Kinetics), a new, time-dependent, Monte Carlo particle tracking code for reactor physics applications. G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. The toolkit provides the fundamental physics models and particle tracking algorithms that track each particle in space and time. It is a framework for further development (e.g. for projects such as G4-STORK). G4-STORK derives reactor physics parameters (e.g. k eff ) from the continuous evolution of a population of neutrons in space and time in the given simulation geometry. In this paper we detail the major additions to the Geant4 toolkit that were necessary to create G4-STORK. These include a renormalization process that maintains a manageable number of neutrons in the simulation even in very sub- or supercritical systems, scoring processes (e.g. recording fission locations, total neutrons produced and lost, etc.) that allow G4-STORK to calculate the reactor physics parameters, and dynamic simulation geometries that can change over the course of simulation to illicit reactor kinetics responses (e.g. fuel temperature reactivity feedback). The additions are verified through simple simulations and code-to-code comparisons with established reactor physics codes such as DRAGON and MCNP. Additionally, G4-STORK was developed to run a single simulation in parallel over many processors using MPI (Message Passing Interface) pipes

  1. Simulation tools and new developments of the molten salt fast reactor

    International Nuclear Information System (INIS)

    Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Doligez, X.; Ghetta, V.

    2010-01-01

    In the MSFR (Molten Salt Fast Reactor), the liquid fuel processing is part of the reactor where a small side stream of the molten salt is processed for fission product removal and then returned to the reactor. Because of this design characteristic, the MSFR can thus operate with a widely varying fuel composition. Our reactor's studies of the MSFR concept rely on numerical simulations making use of the MCNP neutron transport code coupled with a code for Bateman's equations computing the population of any nucleus inside any part of the reactor at any moment. The classical Bateman's equations have been modified by adding 2 terms representing the reprocessing capacities and an online addition. We have thus coupled neutronic and reprocessing simulation codes in a numerical tool used to calculate the extraction efficiencies of fission products, their location in the whole system and radioprotection issues. The very preliminary results show the potential of the neutronic-reprocessing coupling we have developed. We also show that these studies are limited by the uncertainties on the design and the knowledge of the chemical reprocessing processes. (A.C.)

  2. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  3. BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Hetrick, D.L.; Sowers, G.W.

    1978-06-01

    This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. A list of variable names and a listing for BRENDA are included as appendices

  4. Reactor component inventory system at FFTF

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Redekopp, R.D.; Reed, E.A.

    1985-02-01

    A reliable inventory control system was developed at the Fast Flux Test Facility (FFTF) to keep track of the occupancy of 900 refueling facility locations, to compile historical data on the movement of each reactor assembly, and to simulate assembly moves. The simulate capability is valuable because it allows verification of documents before they are issued for use in the plant, and eliminates the possibility of planning illegal or impossible moves. The system is installed on a UNIVAC 1100 computer and is maintained using a data base management system by Sperry Univac called MAPPER

  5. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  6. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  7. Simulation tools and new developments of the molten salt fast reactor

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Doligez, X.; Heuer, D.; Allibert, M.; Ghetta, V.

    2010-01-01

    Starting from the Molten Salt Breeder Reactor project of Oak-Ridge, we have performed parametric studies in terms of safety coefficients, reprocessing requirements and breeding capabilities. In the frame of this major re-evaluation of the molten salt reactor (MSR), we have developed a new concept called Molten Salt Fast Reactor or MSFR, based on the Thorium fuel cycle and a fast neutron spectrum. This concept has been selected for further studies by the MSR steering committee of the Generation IV International Forum in 2009. Our reactor's studies of the MSFR concept rely on numerical simulations making use of the MCNP neutron transport code coupled with a code for materials evolution which resolves the Bateman's equations giving the population of each nucleus inside each part of the reactor at each moment. Because of MSR's fundamental characteristics compared to classical solid-fuelled reactors, the classical Bateman equations have to be modified by adding two terms representing the reprocessing capacities and the fertile or fissile alimentation. We have thus coupled neutronic and reprocessing simulation codes in a numerical tool used to calculate the extraction efficiencies of fission products, their location in the whole system (reactor and reprocessing unit) and radioprotection issues. (authors)

  8. Simulation and control of the site-dependent neutron density in a nuclear reactor

    International Nuclear Information System (INIS)

    Stark, K.

    1974-01-01

    The present work deals with the simulation and control of a pressurized-water reactor such as is used in nuclear power plants today. In the first part of the work, the mathematical model equations of the reactor are set up. They take into consideration the local distribution of the various reactor parameters as far as seems necessary for further investigations. Taking the given approximations, the mathematical model is locally one-dimensional; it is valid for the period of time in which a power control of the reactor must work. The model equations set up are calculated on an analog/hybride computer according to the modal simulation method in true time. The method is distinguished in the present problem here through good convergence and enables the observation of the simulation results as a stationary picture on an oscillograph screen. For this reason, a simulation of this type seems particularly suitable for the training of operational personnel. The aim of the second part of the work is the development of a simple control concept which enables the control of the total power of the reactor as well as of the distribution of the power density in the reactor core. The fundamentals of the control design are the non-linear system equations of the nuclear reactor. The developed control is based on the controlling of eigenfunctions; it controls the total power of the reactor as well as the distribution of the power density in the reactor core where a uniform burn-up of the nuclear fuel is seen to. Part-absorbing control rods amongst others are used as actuators like they are already used in that type of reactors. (orig./LH) [de

  9. Analysis of dynamic stability and safety of reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    In order to enable qualitative analysis of dynamic properties of reactors RA and RB, mathematical models of these reactors were formulated and adapted for solution on analog computer. This report contains basic assessments for creating the model and complete equations for each reactor. Model was used to analyse three possible accidents at the RA reactor and possible hypothetical accidents at the RB reactor

  10. Education and training by utilizing irradiation test reactor simulator

    International Nuclear Information System (INIS)

    Eguchi, Shohei; Koike, Sumio; Takemoto, Noriyuki; Tanimoto, Masataka; Kusunoki, Tsuyoshi

    2016-01-01

    The Japan Atomic Energy Agency, at its Japan Materials Testing Reactor (JMTR), completed an irradiation test reactor simulator in May 2012. This simulator simulates the operation, irradiation test, abnormal transient change during operation, and accident progress events, etc., and is able to perform operation training on reactor and irradiation equipment corresponding to the above simulations. This simulator is composed of a reactor control panel, process control panel, irradiation equipment control panel, instructor control panel, large display panel, and compute server. The completed simulator has been utilized in the education and training of JMTR operators for the purpose of the safe and stable operation of JMTR and the achievement of high operation rate after resuming operation. For the education and training, an education and training curriculum has been prepared for use in not only operation procedures at the time of normal operation, but also learning of fast and accurate response in case of accident events. In addition, this simulator is also being used in operation training for the purpose of contributing to the cultivation of human resources for atomic power in and out of Japan. (A.O.)

  11. Design system for in-vessel mainipulator of fusion reactor 'DESIM'

    International Nuclear Information System (INIS)

    Adachi, Junihci; Kobayashi, Takeshi; Ise, Hideo; Sato, Keisuke; Matsuda, Hirotsugu

    1989-01-01

    A computer aided design system 'DESIM' for the in-vessel manipulators of nuclear fusion reactors has been developed to design the manipulators efficiently. The DESIM consists of the following subsystems: (1) the design system for arm mechanisms to realize optimum manipulation performance in the specified workspace; (2) the robot simulator to study manipulator movement, postures and interference problems; (3) the CAD system which is used to define the structure object data for robots, and the interface system for the data conversion from the CAD system to the robot simulator. The DESIM has been used to design the in-vessel manipulator for the Fusion Experimental Reactor (FER) to confirm the effectiveness. (author)

  12. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    International Nuclear Information System (INIS)

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO 2 ) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO 2 Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO 2 Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO 2 Brayton cycles and to evaluate the introduced heat removal system

  13. Simulation of Molten Salt Reactor dynamics

    International Nuclear Information System (INIS)

    Krepel, J.; Rohde, U.; Grundmann, U.

    2005-01-01

    Dynamics of the Molten Salt Reactor - one of the 'Generation IV' concepts - was studied in this paper. The graphite-moderated channel type MSR was selected for the numerical simulation of the reactor with liquid fuel. The MSR dynamics is very specific because of two physical peculiarities of the liquid fueled reactor: the delayed neutrons precursors are drifted by the fuel flow and the fission energy is immediately released directly into the coolant. Presently, there are not many accessible numerical codes appropriate for the MSR simulation, therefore the DYN3D-MSR code was developed based on the FZR in-house code DYN3D. It allows calculating of full 3D transient neutronics in combination with parallel channel type thermal-hydraulics. By means of DYN3D-MSR, several transients typical for the liquid fuel system were analyzed. Those transients were initiated by reactivity insertion, by overcooling of fuel at the core inlet, by the fuel pump start-up or coast-down, or by the blockage of selected fuel channels. In these considered transients, the response of the MSR is characterized by the immediate change of the fuel temperature with changing power and fast negative temperature feedback to the power. The response through the graphite temperature is slower. Furthermore, for big MSR cores fueled with U233 the graphite feedback coefficient can be positive. In this case the addition of erbium to the graphite can ensure the inherent safety features. The DYN3D-MSR code has been shown to be an effective tool for MSR dynamics studies. (author)

  14. Simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1986-10-01

    This report describes the development of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM. The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and Shutdown System 1, SDS1, and Shutdown System 2, SDS2, software. The DARSIM program operates in the interactive simulation (INSIM) program environment

  15. TARMS, an on-line boiling water reactor operation management system. [3 D core simulator LOGOS 2

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, T.; Sakurai, S.; Uematsu, H.; Tsuiki, M.; Makino, K.

    1984-12-01

    The TARMS (Toshiba Advanced Reactor Management System) software package was developed as an effective on-line, on-site tool for boiling water reactor core operation management. It was designed to support a complete function set to meet the requirement to the current on-line process computers. The functions can be divided into two categories. One is monitoring of the present core power distribution as well as related limiting parameters. The other is aiding site engineers or reactor operators in making the future reactor operating plan. TARMS performs these functions with a three-dimensional BWR core physics simulator LOGOS 2, which is based on modified one-group, coarse-mesh nodal diffusion theory. A method was developed to obtain highly accurate nodal powers by coupling LOGOS 2 calculations with the readings of an in-core neutron flux monitor. A sort of automated machine-learning method also was developed to minimize the errors caused by insufficiency of the physics model adopted in LOGOS 2. In addition to these fundamental calculational methods, a number of core operation planning aid packages were developed and installed in TARMS, which were designed to make the operator's inputs simple and easy.

  16. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINKTM

    International Nuclear Information System (INIS)

    Wright, Steven A.; Sanchez, Travis

    2005-01-01

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK TM (Simulink, 2004). SIMULINK TM is a development environment packaged with MatLab TM (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK TM models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK TM modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)

  17. Dynamic simulation of LMFBR systems

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.

    1980-01-01

    This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)

  18. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  19. Parallelization and automatic data distribution for nuclear reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, L.M. [Liebrock-Hicks Research, Calumet, MI (United States)

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  20. Parallelization and automatic data distribution for nuclear reactor simulations

    International Nuclear Information System (INIS)

    Liebrock, L.M.

    1997-01-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed

  1. Improving the fidelity of electrically heated nuclear systems testing using simulated neutronic feedback

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Godfroy, Thomas J.; Webster, Kenny

    2010-01-01

    Nonnuclear test platforms and methodologies can be employed to reduce the overall cost, risk and complexity of testing nuclear systems while allowing one to evaluate the operation of an integrated nuclear system within a reasonable timeframe, providing valuable input to the overall system design. In a nonnuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard electric test techniques allow one to fully assess thermal, heat transfer, and stress related attributes of a given system, but these approaches fail to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and testing with nuclear fuel elements installed. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. This paper summarizes the results of initial system dynamic response testing for two electrically heated reactor concepts: a heat pipe-cooled reactor simulator with integrated heat exchanger and a gas-cooled reactor simulator with integrated Brayton power conversion system. Initial applications apply a simplified reactor kinetics model with either a single or an averaged measured state point. Preliminary results demonstrate the applicability of the dynamic test methodology to any reactor type, elucidating the variation in system response characteristics in different reactor concepts. These results suggest a need to further enhance the dynamic test approach by incorporating a more accurate model of the reactor dynamics and improved hardware instrumentation for better state estimation in application of the

  2. A methodology of neutronic-thermodynamics simulation for fast reactor

    International Nuclear Information System (INIS)

    Waintraub, M.

    1986-01-01

    Aiming at a general optimization of the project, controlled fuel depletion and management, this paper develop a neutronic thermodynamics simulator, SIRZ, which besides being sufficiently precise, is also economic. That results in a 75% reduction in CPU time, for a startup calculation, when compared with the same calculation at the CITATION code. The simulation system by perturbation calculations, applied to fast reactors, which produce errors smaller than 1% in all components of the reference state given by the CITATION code was tested. (author)

  3. Simulation of the aspersion system of the core at high pressure (HPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Vargas O, D.; Chavez M, C.

    2012-10-01

    A high-priority topic for the nuclear industry is the safety, consequently a nuclear power plant should have the emergency systems of cooling of the core (ECCS), designed exclusively to enter in operation in the event of an accident with coolant loss, including the design base accident. The objective of the aspersion system of the core at high pressure (HPCS) is to provide in an autonomous way the cooling to the core maintaining for if same the coolant inventory even when a small break is presented that does not allow the depressurization of the reactor and also avoiding excessive temperatures that affect the shielding of the fuel. The present work describes the development of the model and the simulation of the HPCS using the RELAP/SCDAP code. During the process simulation, for the setting in march of the system HPCS in an accident with coolant loss is necessary to implement the main components of the system taking into account what unites them, the main pump, the filled pump, the suction and injection valves, pipes and its water sources that can be condensed storage tanks and the suppression pool. The simulation of this system will complement the model with which counts the Analysis Laboratory in Nuclear Reactors Engineering of the UNAM regarding to the nuclear power plant of Laguna Verde which does not have a detailed simulation of the emergency cooling systems. (Author)

  4. Simulating the Behaviour of the Fast Reactor Joyo (Draft)

    International Nuclear Information System (INIS)

    Juutilainen, Pauli

    2008-01-01

    Motivated by the development of fast reactors the behaviour of the Japanese experimental fast reactor Joyo is simulated with two Monte Carlo codes: Monte Carlo NParticle (MCNP) and Probabilistic Scattering Game (PSG). The simulations are based on the benchmark study 'Japan's Experimental Fast Reactor Joyo MKI core: Sodium-Cooled Uranium-Plutonium Mixed Oxide Fueled Fast Core Surrounded by UO 2 Blanket'. The study is focused on the criticality of the reactor, control rod worth, sodium void reactivity and isothermal temperature coefficient of the reactor. These features are calculated by applying both homogeneous and heterogeneous reactor core models that are built according to the benchmark instructions. The results of the two models obtained by the two codes are compared with each other and especially with the experimental results presented in the benchmark. (author)

  5. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  6. Microprocessor tester for the treat upgrade reactor trip system

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations

  7. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  8. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2016-01-01

    A wastewater treatment system composed of an upflow anaerobic sludge blanket (UASB) reactor followed by a packed-bed reactor (PBR) filled with Sorbulite(®) and Polonite(®) filter material was tested in a laboratory bench-scale experiment. The system was operated for 50 weeks and achieved very efficient total phosphorus (P) removal (99%), 7-day biochemical oxygen demand removal (99%) and pathogenic bacteria reduction (99%). However, total nitrogen was only moderately reduced in the system (40%). A model focusing on simulation of organic material, solids and size of granules was then implemented and validated for the UASB reactor. Good agreement between the simulated and measured results demonstrated the capacity of the model to predict the behaviour of solids and chemical oxygen demand, which is critical for successful P removal and recovery in the PBR.

  9. The problem of a digital simulation of Xe oscillations in power reactors

    International Nuclear Information System (INIS)

    Elzmann, H.J.

    1974-04-01

    Xe-induced power oscillations are simulated in a pressurized water reactor. The coupled balance equation for the neutrons and the decay products iodine/xenon are decoupled via a quasi-stationary approach. The stationary multigroup diffusion equation is solved with a difference method. The whole model is realized with the aid of already existing modules of the reactor program system RSYST. Its basic usefulness is established. A further expansion of the method is discussed with the aim to develop rod drive programs for real reactors. (orig./LN) [de

  10. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  11. Development of intelligent interface for simulation execution by module-based simulation system

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Mizutani, Naoki; Shimoda, Hiroshi; Wakabayashi, Jiro

    1988-01-01

    An intelligent user support for the two phases of simulation execution was newly developed for Module-based Simulation System (MSS). The MSS has been in development as a flexible simulation environment to improve software productivity in complex, large-scale dynamic simulation of nuclear power plant. The AI programing by Smalltalk-80 was applied to materialize the two user-interface programs for (i) semantic diagnosis of the simulation program generated automatically by MSS, and (ii) consultation system by which user can set up consistent numerical input data files necessary for executing a MSS-generated program. Frame theory was utilized in those interface programs to represent the four knowledge bases, which are (i) usage information on module library in MSS and MSS-generated program, and (ii) expertise knowledge on nuclear power plant analysis such as material properties and reactor system configuration. Capabilities of those interface programs were confirmed by some example practice on LMFBR reactor dynamic calculation, and it was demonstrated that the knowledge-based systemization was effective to improve software work environment. (author)

  12. Chaotic behavior of water column oscillator simulating pressure balanced injection system in passive safety reactor

    International Nuclear Information System (INIS)

    Morimoto, Y.; Madarame, H.; Okamoto, K.

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor called the System-integrated Pressurized Water Reactor (SPWR). In a loss of coolant accident, the Pressurizing Line (PL) and the Injection Line (IL) are passively opened. Vapor generated by residual heat pushes down the water level in the Reactor Vessel (RV). When the level is lower than the inlet of the PL, the vapor is ejected into the Containment Vessel (CV) through the PL. Then boronized water in the CV is injected into the RV through the IL by the static head. In an experiment using a simple apparatus, gas ejection and water injection were found to occur alternately under certain conditions. The gas ejection interval was observed to fluctuate considerably. Though stochastic noise affected the interval, the experimental results suggested that the large fluctuation was produced by an inherent character in the system. A set of piecewise linear differential equations was derived to describe the experimental result. The large fluctuation was reproduced in the analytical solution. Thus it was shown to occur even in a deterministic system without any source of stochastic noise. Though the derived equations simulated the experiment well, they had ten independent parameters governing the behavior of the solution. There appeared chaotic features and bifurcation, but the analytical model was too complicated to examine the features and mechanism of bifurcation. In this study, a new simple model is proposed which consists of a set of piecewise linear ordinary differential equations with only four independent parameters. (authors)

  13. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Venker, Jeanne

    2015-03-31

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO{sub 2}) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO{sub 2} Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO{sub 2} Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO{sub 2} Brayton cycles and to evaluate the introduced

  14. Comparison of simulated and measured quantities of a duplex reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, M.; Kajava, M. [ABB Marine, Helsinki (Finland)

    1997-12-31

    The purpose of this article is to illustrate the use of an analog simulator as a design tool when designing new power electric equipment. The purpose of simulation is to predict the functionality of electrical equipment to be constructed. Duplex reactor is an electromagnetic device designed to reduce voltage harmonics and short circuit currents in the ship electrical network. In this report a comparison between simulated and measured electrical quantities of a duplex reactor has been made. The purpose of the measurements was to show the correct functioning of the reactor. The simulation results and the measured waveforms corresponds well to each other. (orig.) 4 refs.

  15. Lightning protection system analysis at Multipurpose Reactor G A. Siwabessy building

    International Nuclear Information System (INIS)

    Teguh-Sulistyo

    2003-01-01

    Analysis to the part of lightning protection system at Multi Purpose Reactor GA Siwabessy (RSG-GAS) have been done. Observation examined the damage of some part of the earthing system caused by human error of chemically system. The analysis performed some assumptions and simulations to the points of lightning stroke. From this analysis obtained that the reactor building do not have vertical finial which can protect effectively to the whole reactor building and auxiliary building. Installing some new finials at some places are needed to protect building therefore the reactor building and auxiliary building well safe from lighting stroke

  16. Simulators and their use in the training of CEGB reactor operations engineers

    International Nuclear Information System (INIS)

    Madden, V.J.; Tompsett, P.A.

    1988-01-01

    The development of simulators in the Central Electricity Generating Board's nuclear power training are traced, and, in describing the overall training programme of an advanced gas-cooled reactor operations engineer, the contribution made by a range of simulation devices from concept through to full-scope replica simulators is indicated. The capabilities of today's simulators are such that they are also making other contributions to the commissioning and safe operation of nuclear power plants. They are being successfully used for ergonomic and procedure validation work and the testing and commissioning of software for automatic control systems, and data and alarm processing systems. (author)

  17. Tightly coupled simulation of nuclear reactor transients with artificial intelligence

    International Nuclear Information System (INIS)

    Makowitz, H.; Ragheb, M.; Laats, E.T.; Bray, M.A.

    1985-01-01

    The authors' current efforts are directed toward exploring new avenues of research in simulation of nuclear reactor kinetics transients with artificial intelligence (AI). Being examined are advanced graphics systems such as the Nuclear Plant Analyzer designed to run in parallel with the RELAP5 code, faster than real-time best-estimate simulations, the utilization of the multi-CPU super computers, and simulation as knowledge by attempting to develop new assessment methodologies for artificial intelligence systems and their associated interfaces. This new and fertile area of research should be viewed by the educational and university community as an indication of the future possibilities for AI developments in a number of academic and engineering disciplines

  18. Apparatus for simulating a reactor core

    International Nuclear Information System (INIS)

    Yokomizo, Osamu; Kiguchi, Takashi; Motoda, Hiroshi; Takeda, Renzo.

    1975-01-01

    Object: To facilitate searching of input and output of information and to efficiently perform trial-and-error in a short time. Structure: Kinds of necessary input information are stored in an input information converter and are displayed by an image display through an image control. An operator operates an information input device to input information. This input information is converted by the input information converter into a form used in a reactor core simulation counter. The reactor core simulation counter simulates a state of the core to the input information converted, and outputs it as an output information. An output information converter converts output information into a form that may be displayed as an image and feeds it to the image control. The operator may correct the input information while viewing the output information displayed on the image display to immediately perform succeeding calculation. (Kamimura, M.)

  19. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  20. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  1. Integral Pressurized Water Reactor Simulator Manual

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides detailed explanations of the theoretical concepts that the simulator users have to know to gain a comprehensive understanding of the physics and technology of integral pressurized water reactors. It provides explanations of each of the simulator screens and various controls that a user can monitor and modify. A complete description of all the simulator features is also provided. A detailed set of exercises is provided in the Exercise Handbook accompanying this publication.

  2. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    Directory of Open Access Journals (Sweden)

    Matthew Bucknor

    2017-03-01

    Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.

  3. Advanced reactor passive system reliability demonstration analysis for an external event

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)

    2017-03-15

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

  4. Advanced reactor passive system reliability demonstration analysis for an external event

    International Nuclear Information System (INIS)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2017-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event

  5. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  6. Analytical prediction and experimental verification of reactor safety system injection transient

    International Nuclear Information System (INIS)

    Roy, B.N.; Nomm, E.

    1991-01-01

    This paper describes the computer code that was developed for thermal hydraulic transient analysis of mixed phase fluid system and the flow tests that were carried out to validate the Code. A full scale test facility was designed to duplicate the Supplementary Shutdown System (SSS) of Savannah River Production Reactors. Several steady state and dynamic flow tests were conducted simulating the actual reactor injection transients. A dynamic multiphase fluid flow code was developed and validated with experimental results and utilized for system performance predictions and development of technical specifications for reactors. 3 refs

  7. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  8. Conceptual study of a complementary scram system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Vanmaercke, S.; Van den Eynde, G.; Tijskens, E.; Bartosiewicz, Y.

    2009-01-01

    GEN-IV reactors promise higher safety and reliability as one of the major improvements over previous generations of reactors. To achieve that, all GEN-IV reactor concepts require two completely independent shutdown systems that rely on different operating principles. For liquid metal cooled reactors the first system is an absorber-rod based solution. The second system that by requirement should rely on another principle, is however quite a challenge to design. The second system used in current PWR reactors is to dissolve a neutron absorber, boric acid, into the primary coolant. This method cannot be used in liquid metal cooled reactors because of the high cost of cleaning the coolant. In this paper an overview of the existing literature on scram systems is given, each with their advantages and limitations. A promising new concept is also presented. This concept leads to a totally passive self activating device using small absorbing particles that flow into a dedicated channel to shutdown the reactor. The system consists of tubes filled with particles of an absorber material. During normal operation, these particles are kept above the active core by means of a metallic seal. In case of an accident, the system is activated by the temperature increase in the coolant. This leads to melting of the metal seal. The ongoing work conducted at SCK·CEN and UCL/TERM aims at assessing the reliability of this new concept both experimentally and numerically. This study is multidisciplinary as neutronic and thermal hydraulics issues are tackled. Most challenging is however the thermal hydraulics related to understanding and predicting the liberation and flow of the absorber particles during a shutdown. Simple experiments are envisaged to compare to numerical simulations using the Discrete Element Method for simulating the particles. In a later stage this will be coupled with Smoothed Particles Hydrodynamics for simulating the melting of the seal. Some preliminary experimental and

  9. Programming for a nuclear reactor instrument simulation

    International Nuclear Information System (INIS)

    Cohn, C.

    1988-01-01

    This note discusses 8086/8087 machine-language programming for simulation of nuclear reactor instrument current inputs by means of a digital-analog converter (DAC) feeding a bank of series input resistors. It also shows FORTRAN programming for generating the parameter tales used in the simulation. These techniques would be generally useful for high-speed simulation of quantities varying over many orders of magnitude

  10. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  11. Cronos 2: a neutronic simulation software for reactor core calculations; Cronos 2: un logiciel de simulation neutronique des coeurs de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lautard, J J; Magnaud, C; Moreau, F; Baudron, A M [CEA Saclay, Dept. de Mecanique et de Technologie (DMT/SERMA), 91 - Gif-sur-Yvette (France)

    1999-07-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  12. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  13. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  14. Development of the “Approach to Critical” Experiment Simulation Model for the Consort Reactor Using LABVIEW

    International Nuclear Information System (INIS)

    Abbo, D. N. O.

    2015-01-01

    Following the shutdown of the CONSORT reactor, the “Approach to Critical” experiment which allowed students to observe and understand the procedure for taking the reactor to critical, balancing the system at low power and increasing the power over a range of powers levels and eventual reactor shutdown, would no longer be possible. It was therefore important to develop a simulation model of the experiment that would enable future students to have comparable training. An “Approach to Critical” Experiment Simulation model for the CONSORT Reactor was developed using Lab-VIEW software to simulate the “Students” experiment version. Lab– VIEW software was chosen due to its good user graphical user interface, offers ready to start functions and also the possibility of improving on the system with new algorithms. The modulation process was used to develop mathematical codes from equations using Lab–VIEW 2012 based on the CONSORT historical experimental data and known literature. The Simulation models the kinetics of a sub-critical reactor with a start-up neutron source, such that control rods are used to increase the power, then achieve power balance and finally shutting down the reactor. Reactivity changes due to temperature effects were neglected. The model was validated by testing the code through performing the three parts of the experiment; Approach to Critical, Doubling time method and Rod drop method, and results compared to the historical experimental data. The results were in agreement with historical data. However the negligible variations were obtained in the Rod drop method due to the reactivity values used to generate the code. (author)

  15. Control device for start-up of reactor depressurization system

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Saito, Minoru; Oda, Shingo; Miura, Satoshi; Hashimoto, Koji; Tate, Hitoshi; Fujii, Kazunobu

    1998-01-01

    The present invention concerns are emergency reactor core cooling system (ECCS) of a BWR type reactor and provides a control device for start-up of an automatic depressurization system. Namely, the device has an object of preventing erroneous opening of a main steam escape safety value when testing a start-up signal circuit of an automatic depressurization system for testing the automatic depressurization system. A start-up signal circuit receives both signals of a reactor container pressure high signal and a reactor pressure vessel water level low signal and outputs an automatic start-up signal for compulsorily opening a main steam escape safety valve automatically. A test switch having a self-holding circuit is disposed to a central control chamber. A test signal circuit is disposed for preventing transfer of an erroneous start-up signal to the main steam escape safety valve due to a simulation signal during output test signals by the test switch. (I.S.)

  16. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  17. Simulation of a gas cooled reactor with the system code CATHARE

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Ruby, Alain; Geffraye, Genevieve; Messie, Anne; Saez, Manuel; Tauveron, Nicolas; Widlund, Ola

    2006-01-01

    In recent years the CEA has commissioned a wide range of feasibility studies of future advanced nuclear reactors, in particular gas-cooled reactors (GCR). This paper presents an overview of the use of the thermohydraulics code CATHARE in these activities. Extensively validated and qualified for pressurized water reactors, CATHARE has been adapted to deal also with gas-cooled reactor applications. Rather than branching off a separate GCR version of CATHARE, new features have been integrated as independent options in the standard version of the code, respecting the same stringent procedures for documentation and maintenance. CATHARE has evolved into an efficient tool for GCR applications, with first results in good agreement with existing experimental data and other codes. The paper give an example among the studies already carried out with CATHARE with the case of the Very High Temperature Reactor (VHTR) concepts. Current and future activities for experimental validation of CATHARE for GCR applications are also discussed. Short-term validation activities are also included with the assessment of the German utility Oberhausen II. For the long term, CEA has initiated an ambitious experimental program ranging from small scale loops for physical correlations to component technology and system demonstration loops. (authors)

  18. Reliability analysis with the simulator S.ESCAF of a very complex sequential system: the electrical power supply system of a nuclear reactor

    International Nuclear Information System (INIS)

    Blot, M.

    1987-06-01

    The reliability analysis of complex sequential systems, in which the order of arrival of the events must be taken into account, can be very difficult, because the use of the classical modelling technique of Markov diagrams leads to an important limitation on the number of components which can be handled. The desk-top apparatus S.ESCAF, which electronically simulates very closely the behaviour of the system being studied, and is very easy to use, even by a non specialist in electronics, allows one to avoid these inconveniences and to enlarge considerably the analysis possibilities. This paper shows the application of the S.ESCAF method to the electrical power supply system of a nuclear reactor. This system requires the simulation of more than forty components with about sixty events such as failure, repair and refusal to start. A comparison of times necessary to perform the analysis by these means and by other methods is described, and the advantages of S.ESCAF are presented

  19. Analysis and application of a simulator of a nuclear reactor AP-600

    International Nuclear Information System (INIS)

    Medina S, V. S.; Salazar S, E.

    2011-11-01

    In front of the resurgence of interest in the nuclear power production, several national organizations have considered convenient to have highly specialized human resources in the technologies of nuclear reactors of III + and IV generation. For this task, the intensive and extensive applications of the computation should been considered, as the virtual instrumentation. The present work analyzes the possible applications of a nuclear simulator provided by the IAEA with base in the design of the reactor AP-600, using a focusing of modular model developed in FORTRAN. One part of the work that was made with the simulator includes the evaluation of 21 transitory events of operation, including the recreation of the accident happened in the nuclear power plant of Three Mile Island in 1979, comparing the actions flow and the answer of the systems under the intrinsic security of a III + generation reactor. The impact that had the mentioned accident was analyzed in the growing of the nuclear energy sector and in the public image with regard to the nuclear power plants. An application for this simulator was proposed, its use as tool for the instruction in the nuclear engineering courses using it to observe the operation of the different security systems and its interrelation inside the power plant as well as a theoretical/practical approach for the student. (Author)

  20. Implementation of nuclear power plant simulation in start-up commissioning of reactor control system

    International Nuclear Information System (INIS)

    Yang Zongwei; Huang Tieming; Feng Guangyu; Luan Zhenhua; Lin Meng; Zhu Lizhi

    2009-01-01

    Based on the nuclear power thermal-hydraulic model, Labview graphical programming language and virtual instrument data acquisition technology, this paper describes a dedicate test platform to solve the problem that the reactor control system (RRC) can not be evaluated and analyzed far before the actual startup of the unit. By connecting the test platform to the nuclear Digital Control System (DCS), the step-by-step closed-looped test and global function test of RRC system were performed, the dynamic validation and logical function demonstration for RRC were realized, and a lot of configuration mistakes of RRC and nonconformity were solved. The test for unit 3 of Ling'ao phase II has proved that the implementation of nuclear power plant simulation in the start-up commissioning of RRC can greatly reduce the risk of normal power operation and great transient tests, with which the term of startup for overall unit test can be greatly shortened. (authors)

  1. Reactor system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Naoshi.

    1990-01-01

    The represent invention concerns a reactor system with improved water injection means to a pressure vessel of a BWR type reactor. A steam pump is connected to a heat removing system pipeline, a high pressure water injection system pipeline and a low pressure water injection system pipeline for injecting water into the pressure vessel. A pump actuation pipeline is disposed being branched from a main steam pump or a steam relieaf pipeline system, through which steams are supplied to actuate the steam pump and supply cooling water into the pressure vessel thereby cooling the reactor core. The steam pump converts the heat energy into the kinetic energy and elevates the pressure of water to a level higher than the pressure of the steams supplied by way of a pressure-elevating diffuser. Cooling water can be supplied to the pressure vessel by the pressure elevation. This can surely inject cooling water into the pressure vessel upon loss of coolant accident or in a case if reactor scram is necessary, without using an additional power source. (I.N.)

  2. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  3. Simulation of Safety and Transient Analysis of a Pressurized Water Reactor using the Personal Computer Transient Analyzer

    Directory of Open Access Journals (Sweden)

    Sunday J. IBRAHIM

    2013-06-01

    Full Text Available Safety and transient analyses of a pressurised water reactor (PWR using the Personal Computer Transient Analyzer (PCTRAN simulator was carried out. The analyses presented a synergistic integration of a numerical model; a full scope high fidelity simulation system which adopted point reactor neutron kinetics model and movable boundary two phase fluid models to simplify the calculation of the program, so it could achieve real-time simulation on a personal computer. Various scenarios of transients and accidents likely to occur at any nuclear power plant were simulated. The simulations investigated the change of signals and parameters vis a vis loss of coolant accident, scram, turbine trip, inadvertent control rod insertion and withdrawal, containment failure, fuel handling accident in auxiliary building and containment, moderator dilution as well as a combination of these parameters. Furthermore, statistical analyses of the PCTRAN results were carried out. PCTRAN results for the loss of coolant accident (LOCA caused a rapid drop in coolant pressure at the rate of 21.8KN/m2/sec triggering a shutdown of the reactor protection system (RPS, while the turbine trip accident showed a rapid drop in total plant power at the rate of 14.3 MWe/sec causing a downtime in the plant. Fuel handling accidents mimic results showed release of radioactive materials in unacceptable doses. This work shows the potential classes of nuclear accidents likely to occur during operation in proposed reactor sites. The simulations are very appropriate in the light of Nigeria’s plan to generate nuclear energy in the region of 1000 MWe from reactors by 2017.

  4. Interactive Real-time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer

    International Nuclear Information System (INIS)

    Muncharoen, C.; Chanyotha, S.; Bereznai, G.

    1998-01-01

    The simulation of the Emergency Core Cooling System for a 900 MW nuclear power plant has been developed by using object oriented programming language. It is capable of generating code that executes in real-time on a PENTIUM 100 or equivalent personal computer. Graphical user interface ECCS screens have been developed using Lab VIEW to allow interactive control of ECCS. The usual simulator functions, such as freeze, run, iterate, have been provided, and a number of malfunctions may be activated. A large pipe break near the reactor inlet header has been simulated to verify the response of the ECCS model. LOCA detection, ECC initiation, injection and recovery phased are all modeled, and give results consistent with safety analysis data for a 100% break. With stand alone ECCS simulation, the changes of flow and pressure in ECCS can be observed. The operator can study operational procedures and get used to LOCA in case of the LOCA. Practicing with malfunction, the operator will improve problem solving skills and gain a deeper comprehension of ECCS

  5. Compilation of reactor physics data of the year 1984, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-12-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1984 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  6. Compilation of reactor physics data of the year 1983, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-06-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1983 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  7. Simulation of the behaviour of small and medium nuclear reactors on PCs

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. One of the simulation programs distributed by the IAEA is the the Advanced Reactor Simulator which simulates the behaviour of BWR, PWR and HWR reactor types. For this package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer program. (author)

  8. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  9. Modeling and simulation of loss of the ultimate heat sink in a typical material testing reactor

    International Nuclear Information System (INIS)

    El-Khatib, Hisham; El-Morshedy, Salah El-Din; Higazy, Maher G.; El-Shazly, Karam

    2013-01-01

    Highlights: ► A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in MTR. ► The model involves three coupled sub-models for core, heat exchanger and cooling tower. ► The model is validated against PARET for steady-state and verified by operation data for transients. ► The model is used to simulate the behavior of the reactor under a loss of the ultimate heat sink. ► The model results are analyzed and discussed. -- Abstract: A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in a typical material testing reactor (MTR). The model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The model is validated against PARET code for steady-state operation and verified by the reactor operation records for transients. Then, the model is used to simulate the thermal–hydraulic behavior of the reactor under a loss of the ultimate heat sink event. The simulation is performed for two operation regimes: regime I representing 11 MW power and three cooling tower cells operated, and regime II representing 22 MW power and six cooling tower cells operated. In regime I, the simulation is performed for 1, 2 and 3 cooling tower cells failed while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower cells failed. The simulation is performed under protected conditions where the safety action called power reduction is triggered by reactor protection system to decrease the reactor power by 20% when the coolant inlet temperature to the core reaches 43 °C and scram is triggered if the core inlet temperature reaches 44 °C. The model results are analyzed and discussed.

  10. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  11. Finding Solutions to Different Problems Simultaneously in a Multi-molecule Simulated Reactor

    Directory of Open Access Journals (Sweden)

    Jaderick P. Pabico

    2014-12-01

    Full Text Available – In recent years, the chemical metaphor has emerged as a computational paradigm based on the observation of different researchers that the chemical systems of living organisms possess inherent computational properties. In this metaphor, artificial molecules are considered as data or solutions, while the interactions among molecules are defined by an algorithm. In recent studies, the chemical metaphor was used as a distributed stochastic algorithm that simulates an abstract reactor to solve the traveling salesperson problem (TSP. Here, the artificial molecules represent Hamiltonian cycles, while the reactor is governed by reactions that can re-order Hamiltonian cycles. In this paper, a multi-molecule reactor (MMR-n that simulates chemical catalysis is introduced. The MMR-n solves in parallel three NP-hard computational problems namely, the optimization of the genetic parameters of a plant growth simulation model, the solution to large instances of symmetric and asymmetric TSP, and the static aircraft landing scheduling problems (ALSP. The MMR-n was shown as a computational metaphor capable of optimizing the cultivar coefficients of CERES-Rice model, and at the same time, able to find solutions to TSP and ALSP. The MMR-n as a computational paradigm has a better computational wall clock time compared to when these three problems are solved individually by a single-molecule reactor (MMR-1.

  12. Control system design for a 100 MW(th) research reactor

    International Nuclear Information System (INIS)

    Seshadri, S.N.; Ranganath, M.V.; Singh, Manjit.

    1983-01-01

    This paper presents the computer simulation carried out to evolve a suitable analog controller for a 100 MW(th) heavy water moderated research reactor under construction at Trombay. The control action is based on the average neutron flux in the reactor core and the reactivity is controlled by adjusting the moderator level in the calandria. A dual control scheme controlling the inflow as well as the outflow was adopted in order to fully exploit the capabilities of control elements. For reasons of reliability, the system consists of three identical channels enabling safe operation even under one channel failure. Based on the simulation studies a suitable compensation network was incorporated to achieve satisfactory system response. (author)

  13. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  14. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    International Nuclear Information System (INIS)

    Legrady, David; Hoogenboom, J. Eduard

    2008-01-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  15. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Legrady, David [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Hoogenboom, J. Eduard [Delft University of Technology, Delft (Netherlands)

    2008-07-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  16. Experimental study on air ingress during a primary pipe rupture accident with a graphite reactor core simulator

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Hishida, Makoto; Baba, Shinichi

    1991-11-01

    When a primary coolant pipe of a High Temperature Gas Cooled Reactor (HTGR) ruptures, helium gas in the reactor core blows out into the container, and the primary cooling system reduces the pressure. After the pressures are balanced between the reactor and the container, air is expected to enter into the reactor core from the breach. It seems to be probable that the graphite structures is oxidized by air. Hence, it is necessary to investigate the air ingress process and the behavior of the generating gases by the oxidation reactions. The previous experimental study is performed on the molecular diffusion and natural convection of the two component gas mixtures using a test model simulating simply the reactor. Objective of the study was to investigate the air ingress process during the early stage of the primary pipe rupture accident. However, since the model did not have any kind of graphite components, the reaction between graphite and oxygen was not simulated. The present model includes the reactor core and the high temperature plenum simulators made of graphite. The major results obtained in the present study are summarized in the followings: (1) The air ingress process with graphite oxidation reaction is similar to that without the reaction qualitatively. (2) When the reactor core simulator is maintained at low temperatures (lower than 450degC), the initiation time of the natural circulation of air is almost equal to that of the natural circulation of nitrogen. On the other hand, when the temperature of the reactor core simulator is high (more than 500degC), the initiation time of the natural circulation of air is earlier than that of nitrogen. (3) When the temperature of the reactor core simulator is higher than 600degC, oxygen is almost dissipated by the graphite structures. When the temperature of the reactor core simulator is below 700degC, carbon dioxide mainly is generated by the oxidation reactions. (author)

  17. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  18. Reactor controller design using genetic algorithms with simulated annealing

    International Nuclear Information System (INIS)

    Erkan, K.; Buetuen, E.

    2000-01-01

    This chapter presents a digital control system for ITU TRIGA Mark-II reactor using genetic algorithms with simulated annealing. The basic principles of genetic algorithms for problem solving are inspired by the mechanism of natural selection. Natural selection is a biological process in which stronger individuals are likely to be winners in a competing environment. Genetic algorithms use a direct analogy of natural evolution. Genetic algorithms are global search techniques for optimisation but they are poor at hill-climbing. Simulated annealing has the ability of probabilistic hill-climbing. Thus, the two techniques are combined here to get a fine-tuned algorithm that yields a faster convergence and a more accurate search by introducing a new mutation operator like simulated annealing or an adaptive cooling schedule. In control system design, there are currently no systematic approaches to choose the controller parameters to obtain the desired performance. The controller parameters are usually determined by test and error with simulation and experimental analysis. Genetic algorithm is used automatically and efficiently searching for a set of controller parameters for better performance. (orig.)

  19. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  20. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2004-01-01

    Requirements of neutron, thermohydraulic and safety analysis calculation are very important because of issuing new version of SAR for DNRR, research on construction of new research reactor and nuclear power plant. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor has been done in the frame work of research theme in the year 2002-2003. The purposes of the research are maintaining safety operation of the DNRR and enhancement of man power and calculation and safety analysis tool potential. (author)

  1. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  2. Analysis of dynamic stability and safety of the reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    This document defines the approximations done for establishing a mathematical model of a reactor. Since the model should be used for safety analysis, it was important to choose a mathematical model less stable than the reactor itself. The analysis was performed on the analog computer RAS. Results obtained and conclusions concerned with three possible reactor accidents are presented [sr

  3. Large-signal, dynamic simulation of the slowpoke-3 nuclear heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1983-07-01

    A 2 MWt nuclear reactor, called SLOWPOKE-3, is being developed at the Chalk River Nuclear Laboratories (CRNL). This reactor, which is cooled by natural circulation, is designed to produce hot water for commercial space heating and perhaps generate some electricity in remote locations where the costs of alternate forms of energy are high. A large-signal, dynamic simulation of this reactor, without closed-loop control, was developed and implemented on a hybrid computer, using the basic equations of conservation of mass, energy and momentum. The natural circulation of downcomer flow in the pool was simulated using a special filter, capable of modelling various flow conditions. The simulation was then used to study the intermediate and long-term transient response of SLOWPOKE-3 to large disturbances, such as loss of heat sink, loss of regulation, daily load following, and overcooling of the reactor coolant. Results of the simulation show that none of these disturbances produce hazardous transients

  4. Modeling the reactor core of MNSR to simulate its dynamic behavior using the code PARET

    International Nuclear Information System (INIS)

    Hainoun, A.; Alhabet, F.

    2004-02-01

    resulting from the fact that the implemented physical model to simulate subcooled void formation is simplified with some limitations. The main constraint results from assuming constant values for the heat flux share of evaporation and condensation time of steam bubbles that depend in general on the various thermal hydraulic conditions along the channel. This study, which is limited to the modelling of reactor core only, is considered as preparation stage for a full scale modelling of whole reactor system including reactor vessel (primary loop) and reactor pool (secondary loop). This integral analysis that will enable an accurate and comprehensive analysis of reactor system with some improvement of reactor operation conditions, is being under consideration using the computer code ATHLETE. (author)

  5. Development of intellectual reactor design system IRDS

    International Nuclear Information System (INIS)

    Kugo, T.; Tsuchihashi, K.; Nakagawa, M.; Mori, T.

    1993-01-01

    An intellectual reactor design system IRDS has been developed to support feasibility study and conceptual design of new type reactors in the fields of reactor core design including neutronics, thermal-hydraulics and fuel design. IRDS is an integrated software system in which a variety of computer codes in the different fields are installed. An integration of simulation modules are performed by the information transfer between modules through design model in which the design information of the current design work is stored. An object oriented architecture is realized in frame representation of core configuration in a design data base. The knowledge relating to design tasks to be performed are encapsulated, to support the conceptual design work. The system is constructed on an engineering workstation, and supports efficiently design work through man-machine interface adopting the advanced information processing technologies. Optimization methods for design parameters with use of the artificial intelligence technique are now under study, to reduce the parametric study work. A function to search design window in which design is feasible is realized in the fuel pin design. (orig.)

  6. Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Hideaki, E-mail: mat@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Nakaya, Hiroyuki; Nakao, Yasuyuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Shimakawa, Satoshi; Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki 311-1393 (Japan); Nishikawa, Masabumi [Graduate School of Engineering Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2013-10-15

    Highlights: • The performance of a gas-cooled reactor as a tritium production system was studied. • A continuous tritium recovery using helium gas was considered. • Gas-cooled reactors with 3 GW output in all can produce ∼6 kg of tritium in a year • Performance of the system was examined for Li{sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3} and LiAlO{sub 2} compounds. -- Abstract: The performance of a high-temperature gas-cooled reactor as a tritium production with continuous tritium recovery system is examined. A gas turbine high-temperature reactor of 300-MWe (600 MW) nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations for the three-dimensional entire-core region of the GTHTR300 were performed. A Li loading pattern for the continuous tritium recovery system in the gas-cooled reactor is presented. It is shown that module gas-cooled reactors with a total thermal output power of 3 GW in all can produce ∼6 kg of tritium maximum in a year.

  7. Simulations for the transmutation of nuclear wastes with hybrid reactors

    International Nuclear Information System (INIS)

    Vuillier, St.

    1998-06-01

    A Monte Carlo simulation, devoted to the spallation, has been built in the framework of the hybrid systems proposed for the nuclear wastes incineration. This system GSPARTE, described the reactions evolution. It takes into account and improves the nuclear codes and the low and high energy particles transport in the GEANT code environment, adapted to the geometry of the hybrid reactors. Many applications and abacus useful for the wastes transmutation, have been realized with this system: production of thick target neutrons, source definition, material damages. (A.L.B.)

  8. Computer simulation of nuclear reactor control by means of heuristic learning controller

    International Nuclear Information System (INIS)

    Bubak, M.; Moscinski, J.

    1976-01-01

    A trial of application of two techniques of Artificial Intelligence: heuristic Programming and Learning Machines Theory for nuclear reactor control is presented. Considering complexity of the mathematical models describing satisfactorily the nuclear reactors, value changes of these models parameters in course of operation, knowledge of some parameters value with too small exactness, there appear diffucluties in the classical approach application for these objects control systems design. The classical approach consists in definition of the permissible control actions set on the base of the set performance index and the object mathematical model. The Artificial Intelligence methods enable construction of the control system, which gets during work an information being a priori inaccessible and uses it for its action change for the control to be the optimum one. Applying these methods we have elaborated the reactor power control system. As the performance index there has been taken the integral of the error square. For the control system there are only accessible: the set power trajectory, the reactor power and the control rod position. The set power trajectory has been divided into time intervals called heuristic intervals. At the beginning of every heuristic interval, on the base of the obtained experience, the control system chooses from the control (heuristic) set the optimum control. The heuristic set it is the set of relations between the control rod rate and the state variables, the set and the obtained power, similar to simplifications applied by nuclear reactors operators. The results obtained for the different control rod rates and different reactor (simulated on the digital computer) show the proper work of the system. (author)

  9. Development of a full scope reactor engineering simulator

    International Nuclear Information System (INIS)

    Venhuizen, J.R.; Laats, E.T.

    1988-01-01

    An engineering laboratory is pursuing the development of an engineering simulator for use by several agencies of the U.S. Government. According to the authors, this simulator will provide the highest fidelity simulation with initial objectives for studying augmented nuclear reactor operator training, and later for advanced concepts testing as applicable to control room accident diagnosis and management

  10. A model of Altio Lazio boiling water reactor using the LEGO code nuclear steam supply system simulation

    International Nuclear Information System (INIS)

    Garbossa, G.B.; Spelta, S.; Cori, R.; Mosca, R.; Cento, P.

    1989-01-01

    An extensive effort has been made at the Italian National Electricity Board (ENEL) to construct and validate a LEGO model capable of simulating the operational transients of the Alto Lazio Nuclear Station, a two-twin units site with BWR/6 class reactors, rated at 2894 MWt and with Mark III containment. The desired end-product of this effort is an overall plant model consisting of the Nuclear Steam Supply System model, described in this paper, and the Balance of Plant model, capable of simulating the transient response of Alto Lazio Station. The models utilize the in-house developed LEGO code, which is a modular package oriented to power plant modeling and suitable to perform transient analyses to assist during power plant design, control system design and operating procedure verification. The ability of the NSSS model to predict correctly the plant response is demonstrated through comparison with results calculated by the vendor, using REDY code, and by an in-house RETRAN-02 model

  11. Physical modelling of the composting environment: A review. Part 1: Reactor systems

    International Nuclear Information System (INIS)

    Mason, I.G.; Milke, M.W.

    2005-01-01

    In this paper, laboratory- and pilot-scale reactors used for investigation of the composting process are described and their characteristics and application reviewed. Reactor types were categorised by the present authors as fixed-temperature, self-heating, controlled temperature difference and controlled heat flux, depending upon the means of management of heat flux through vessel walls. The review indicated that fixed-temperature reactors have significant applications in studying reaction rates and other phenomena, but may self-heat to higher temperatures during the process. Self-heating laboratory-scale reactors, although inexpensive and uncomplicated, were shown to typically suffer from disproportionately large losses through the walls, even with substantial insulation present. At pilot scale, however, even moderately insulated self-heating reactors are able to reproduce wall losses similar to those reported for full-scale systems, and a simple technique for estimation of insulation requirements for self-heating reactors is presented. In contrast, controlled temperature difference and controlled heat flux laboratory reactors can provide spatial temperature differentials similar to those in full-scale systems, and can simulate full-scale wall losses. Surface area to volume ratios, a significant factor in terms of heat loss through vessel walls, were estimated by the present authors at 5.0-88.0 m 2 /m 3 for experimental composting reactors and 0.4-3.8 m 2 /m 3 for full-scale systems. Non-thermodynamic factors such as compression, sidewall airflow effects, channelling and mixing may affect simulation performance and are discussed. Further work to investigate wall effects in composting reactors, to obtain more data on horizontal temperature profiles and rates of biological heat production, to incorporate compressive effects into experimental reactors and to investigate experimental systems employing natural ventilation is suggested

  12. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  13. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  14. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    should make them attractive for remote areas or electrical grids that are not large enough to support a standard-sized nuclear power plant. The last application of fast reactors this thesis investigates promises a solution to the problem of the radioactive waste from nuclear energy production. The separation of the spent fuel in different material streams (partitioning) and the irradiation of minor actinides in a fast neutron spectrum (transmutation) is claimed to solve this problem. Implementation of partitioning and transmutation (P and T) would require centuries of dedicated efforts, since several irradiation cycles and repeated reprocessing of the spent fuel elements between the irradiation cycles would be necessary. For all three applications, computer models of exemplary reactor systems were set up to perform criticality, depletion, and dose rate calculations. Based on the results, a specific critique on the viability of these fast reactor applications was conducted. Possible risks associated with their deployment were investigated.

  15. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    should make them attractive for remote areas or electrical grids that are not large enough to support a standard-sized nuclear power plant. The last application of fast reactors this thesis investigates promises a solution to the problem of the radioactive waste from nuclear energy production. The separation of the spent fuel in different material streams (partitioning) and the irradiation of minor actinides in a fast neutron spectrum (transmutation) is claimed to solve this problem. Implementation of partitioning and transmutation (P and T) would require centuries of dedicated efforts, since several irradiation cycles and repeated reprocessing of the spent fuel elements between the irradiation cycles would be necessary. For all three applications, computer models of exemplary reactor systems were set up to perform criticality, depletion, and dose rate calculations. Based on the results, a specific critique on the viability of these fast reactor applications was conducted. Possible risks associated with their deployment were investigated.

  16. Status report on high fidelity reactor simulation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere, M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-01-01

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool

  17. Behavior of Type 316 stainless steel under simulated fusion reactor irradiation

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Maziasz, P.J.; Bloom, E.E.; Stiegler, J.O.; Grossbeck, M.L.

    1978-05-01

    Fusion reactor irradiation response in alloys containing nickel can be simulated in thermal-spectrum fission reactors, where displacement damage is produced by the high-energy neutrons and helium is produced by the capture of two thermal neutrons in the reactions: 58 Ni + n → 59 Ni + γ; 59 Ni + n → 56 Fe + α. Examination of type 316 stainless steel specimens irradiated in HFIR has shown that swelling due to cavity formation and degradation of mechanical properties are more severe than can be predicted from fast reactor irradiations, where the helium contents produced are far too low to simulate fusion reactor service. Swelling values are greater and the temperature dependence of swelling is different than in the fast reactor case

  18. Light Water Reactor-Pressure Vessel Surveillance project computer system

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1980-10-01

    A dedicated process control computer has been implemented for regulating the metallurgical Pressure Vessel Wall Benchmark Facility (PSF) at the Oak Ridge Research Reactor. The purpose of the PSF is to provide reliable standards and methods by which to judge the radiation damage to reactor pressure vessel specimens. Benchmark data gathered from the PSF will be used to improve and standardize procedures for assessing the remaining safe operating lifetime of aging reactors. The computer system controls the pressure vessel specimen environment in the presence of gamma heating so that in-vessel conditions are simulated. Instrumented irradiation capsules, in which the specimens are housed, contain temperature sensors and electrical heaters. The computer system regulates the amount of power delivered to the electrical heaters based on the temperature distribution within the capsules. Time-temperature profiles are recorded along with reactor conditions for later correlation with specimen metallurgical changes

  19. Analysis of core and core barrel heat-up under conditions simulating severe reactor accidents

    International Nuclear Information System (INIS)

    Chellaiah, S.; Viskanta, R.; Ranganathan, P.; Anand, N.K.

    1987-01-01

    This paper reports on the development of a model for estimating the temperature distributions in the reactor core, core barrel, thermal shield and reactor pressure vessel of a PWR during an undercooling transient. A number of numerical calculations simulating the core uncovering of the TMI-2 reactor and the subsequent heat-up of the core have been performed. The results of the calculations show that the exothermic heat release due to Zircaloy oxidation contributes to the sharp heat-up of the core. However, the core barrel temperature rise which is driven by the temperature increase of the edge of the core (e.g., the core baffle) is very modest. The maximum temperature of the core barrel never exceeded 610 K (at a system pressure of 68 bar) after a 75 minute simulation following the start of core uncovering

  20. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  1. Simulation of the preliminary General Electric SP-100 space reactor concept using the ATHENA computer code

    International Nuclear Information System (INIS)

    Fletcher, C.D.

    1986-01-01

    The capability to perform thermal-hydraulic analyses of a space reactor using the ATHENA computer code is demonstrated. The fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of the preliminary General electric SP-100 design were modeled with ATHENA. Two demonstration transient calculations were performed simulating accident conditions. Calculated results are available for display using the Nuclear Plant Analyzer color graphics analysis tool in addition to traditional plots. ATHENA-calculated results appear reasonable, both for steady state full power conditions, and for the two transients. This analysis represents the first known transient thermal-hydraulic simulation using an integral space reactor system model incorporating heat pipes. 6 refs., 17 figs., 1 tab

  2. Numerical simulation of severe water ingress accidents in a modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Scherer, W.

    1996-01-01

    This report analyzes reverse water ingress accidents in the SIEMENS 200 MW Modular Pebble-Bed High Temperature Gas Cooled Reactor (HTR-MODULE) under the assumption of no active safety protection systems in order to find the safety margins of the current HTR-MODULE design and to realize a catastrophe-free nuclear technology. A water, steam and helium multi-phase cavity model is developed and implemented in the DSNP simulation system. The DSNP system is then used to simulate the primary and secondary circuit of a HTR-MODULE power plant. Comparisons of the model with experiments and with TINTE calculations serve as validation of the simulation. The analysis of the primary circuit tries to answer the question how fast the water enters the reactor core. It was found that the maximum H 2 O concentration increase in the reactor core is smaller than 0.3 kg/(m 3 s). The liquid water vaporization in the steam generator and H 2 O transport from the steam generator to the reactor core reduce the ingress velocity of the H 2 O into the reactor core. In order to answer the question how much water enters the primary circuit, the full cavitation of the feed water pumps is analyzed. It is found that if the secondary circuit is depressurized enough, the feed water pumps will be inherently stopped by the full cavitation. This limits the water to be pumped from the deaerator to the steam generator. A comprehensive simulation of the MODUL-HTR power plant then shows that the H 2 O inventory in the primary circuit can be limited to about 3000 kg. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600 C was not reached in any case. (orig.) [de

  3. Comparison of Instrumentation and Control Parameters Based on Simulation and Experimental Data for Reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Anith Khairunnisa Ghazali; Mohd Sabri Minhat

    2015-01-01

    Reactor TRIGA PUSPATI (RTP) undergoes safe operation for more than 30 years and the only research reactor in Malaysia. The main safety feature of Instrumentation and Control (I and C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. There are no best models for RTP simulation was designed for study and research. Therefore, the comparison for I&C parameters are very essential, to design the best RTP model using MATLAB/ Simulink as close as the RTP. The simulation of TRIGA reactor type already develop using desktop reactor simulator such as Personal Computer Transient Analyzer (PCTRAN). The experimental data from RTP and simulation of PCTRAN shows some similarities and differences due to certain limitation. Currently, the structured RTP simulation was designed using MATLAB and Simulink tool that consist of ideal fission chamber, controller, control rod position, height to worth and RTP model. The study on this paper focus on comparison between real data from RTP and simulation result from PCTRAN on I&C parameters such as water level, fuel temperature, bulk temperature, power rated and rod position. The error analysis due to some similarities and differences of I&C parameters shall be obtained and analysed. The result will be used as reference for proposed new structured of RTP model. (author)

  4. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  5. On geometric simulating in nuclear reactor calculations by the Monte-Carlo method

    International Nuclear Information System (INIS)

    Ostashenko, S.V.

    1988-01-01

    Analysis of existing geometric modules makes it possible to reveal their disadvantages and to formulate requirements list, which should be satisfied by any usefull geometry system. Short description of GDL language used for complex reactor systems simulating is given. GDL language applies hierarchical representation scheme to assemblies, which aids to reduce significantly amount of input data. The language is part of GDL geometry system designed for MCU package and implemented on ES computers

  6. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  7. The TEX-I real-time expert system, applied to situation assessment for the SNR-300 reactor

    International Nuclear Information System (INIS)

    Schmal, N.; Leder, H.J.; Schade, H.J.

    1988-01-01

    Interatom, a subsidiary company of Siemens, is developing expert systems for the technical domain. These systems are operating in various industrial applications like flexible manufacturing or plant configuration, based on a domain-specific expert system shell, developed by Interatom. Additional projects are focusing on real-time diagnostics, e.g., for nuclear power plants. The authors report in this paper about a diagnosis expert system for the liquid-metal fast breeder reactor SNR-300, which uses new real-time tools, developed within the German TEX-I project (technical expert systems for data interpretation, diagnosis, and process control). The purpose of the system is to support the reactor operators in assessing plant status in real time, based on readings from many sensors. By on-line connection to the process control computer, it can monitor all incoming signal values, check the consistency of data, continuously diagnose the current plant status, detect unusual trends prior to accidents, localize faulty components, and recommended operator response in abnormal conditions. In the present knowledge acquisition and test phase, the expert system is connected to a real-time simulation of the reactor. The simulator is based on a thermohydraulic code for simulation of the transient behavior of temperatures and flow rates in the reactor core, plena, pipes, pumps, valves, intermediate heat exchangers, and cooling components. Additionally, the system's response to an asynchronous operator interaction can be simulated

  8. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  9. Simulated annealing algorithm for reactor in-core design optimizations

    International Nuclear Information System (INIS)

    Zhong Wenfa; Zhou Quan; Zhong Zhaopeng

    2001-01-01

    A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened

  10. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  11. Man-machine interface design of real-time hardware-in-loop simulation system for power regulation of nuclear heating reactor

    International Nuclear Information System (INIS)

    Ni Xiaoli; Huang Xiaojin; Dong Zhe

    2009-01-01

    It is necessary to set up real-time hardware-in-loop simulation system for power regulation of nuclear heating reactor (NHR) because it is used in the load following instance such as seawater desalination and energy source. As the experiment data are so large that it is hard to be real-time all in one computer and to save and show the data.With the distributed configuration, the system was set up having a legible and intuitionist man-machine interface, speeding the model calculation computer and meeting the requirements of power regulation of NHR. Screen clear and concise, easy command input and results output make the system easier to verify. (authors)

  12. An advanced three-dimensional simulation system for safety analysis of gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lapins, Janis

    2016-07-01

    simulated simultaneously. TORT-TD and ATTICA{sup 3D} exchange data (power distributions or fuel and moderator temperature distribution, possibly hydrogen distribution) by means of a common interface that interpolates values that are exchanged on mutual computational grids by volumetric averaging. As verification for the proper operation of the interface, the steady state of the transient PBMR-400 benchmark was used. After obtaining a coupled steady state, the transient exercises are performed to test the proper working of the interface in time dependent cases. Here, the cold helium ingress, the total control rod withdrawal case and the total control rod ejection case were simulated and compared to results of other partakers of the benchmark. Also, the coupled system was validated for a full power temperature distribution experiment in the Chinese experimental reactor HTR-10 where good agreement could be reached with the measurements. The coupled HTR simulation system TORT-TD/ATTICA{sup 3D} was then applied for single control rod ejection cases for both the PBMR-400 and the HTR-PM. These cases require a 180 model of the reactor. As preparatory works, the control rod cross sections were adjusted to yield the same reactivity increase as the grey curtain model for the PBMR and with MCNP5 for the HTR-PM. Since there are strong shielding effects by neighbouring rods, the power increase was moderate due to strong Doppler and moderator feedbacks. For the HTR-PM, coupled calculations for water ingress cases are simulated. This also tested the whole computational sequence, i.e. steam transport into the core by ATTICA{sup 3D}, then transfer of hydrogen densities (from hydrogen or from steam) to TORT-TD via the interface, interpolation of the macroscopic cross sections which changes the power density, and the feedback to ATTICA{sup 3D}. Additionally, an anticipated transient without scram is simulated where shutdown of the reactor is achieved by the temperature feedback effects. For

  13. CFD simulation analysis and validation for CPR1000 pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Mingqian; Ran Xiaobing; Liu Yanwu; Yu Xiaolei; Zhu Mingli

    2013-01-01

    Background: With the rapid growth in the non-nuclear area for industrial use of Computational fluid dynamics (CFD) which has been accompanied by dramatically enhanced computing power, the application of CFD methods to problems relating to Nuclear Reactor Safety (NRS) is rapidly accelerating. Existing research data have shown that CFD methods could predict accurately the pressure field and the flow repartition in reactor lower plenum. But simulations for the full domain of the reactor have not been reported so far. Purpose: The aim is to determine the capabilities of the codes to model accurately the physical phenomena which occur in the full reactor vessel. Methods: The flow field of the CPR1000 reactor which is associated with a typical pressurized water reactor (PWR) is simulated by using ANSYS CFX. The pressure loss in reactor pressure vessel, the hydraulic loads of guide tubes and support columns, and the bypass flow of head dome were obtained by calculations for the full domain of the reactor. The results were validated by comparing with the determined reference value of the operating nuclear plant (LingAo nuclear plant), and the transient simulation was conducted in order to better understand the flow in reactor pressure vessel. Results: It was shown that the predicted pressure loss with CFD code was slightly different with the determined value (10% relative deviation for the total pressure loss), the hydraulic loads were less than the determined value with maximum relative deviation 50%, and bypass flow of head dome was approximately the same with determined value. Conclusion: This analysis practice predicts accurately the physical phenomena which occur in the full reactor vessel, and can be taken as a guidance for the nuclear plant design development and improve our understanding of reactor flow phenomena. (authors)

  14. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  15. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  16. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  17. Computer simulations of a 1/5-scale experiment of a Mark I boiler water reactor pressure-suppression system under hypothetical LOCA conditions

    International Nuclear Information System (INIS)

    Edwards, L.L.

    1978-01-01

    The CHAMP computer code was employed to simulate a plane-geometry cross section of a Mark I boiling water reactor toroidal pressure suppression system air discharge experiment under hypothetical loss-of-coolant accident conditions. The experiments were performed at the Lawrence Livermore Laboratory on a 1 / 5 -scale model of the Peach Bottom Nuclear Power Plant

  18. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and moderator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  19. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and mode-rator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  20. An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code

    Energy Technology Data Exchange (ETDEWEB)

    Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2017-01-15

    Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.

  1. A programming language study and an implementation of a simulation system with formal derivation. Application to nuclear reactors, control systems and elecronic networks

    International Nuclear Information System (INIS)

    Nakhle, Michel.

    1979-06-01

    Physical systems simulation requires a lot of information about the controlled process, and the mathematical approach must be appropriate. On the other hand, the parameters describing most systems components are nonlinear and time dependent. Moreover the differential equations describing them are 'stiff' equations of high order. The scope of the study is the description of the NEPTUNIX language and the differential equations. Most of the algorithms used, and the programs implementing these algorithms, are dealt with. Examples of nuclear reactors and mechanical processes simulation are investigated. NEPTUNIX handles a given mathematical description of a continuous system such as: f (x, x(.), t) = 0. Even more, symbolic derivation is performed automatically in order to compute the jacobian associated with the system, requisite for the numerical integration. So, for large systems the manual method for computer the jacobian and the classical method of differentiation are avoided, the former being tiresome and consuming of human time and the latter being costly in run time. The jacobian evaluated in this way is dealt with, by the approach of sparse matrices. Every element of this matrix is assigned a type attribute to improve time execution. Moreover, this is done only once, for a physical system which is described by a mathematical model which topology is invariant. The results of this process are sayed on a suitable device ready for performing repeated simulations [fr

  2. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  3. Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3

    International Nuclear Information System (INIS)

    Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias

    2009-01-01

    The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.

  4. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  5. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  6. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  7. Data on loss of off-site electric power simulation tests of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2002-07-01

    The high temperature engineering test reactor (HTTR), the first high temperature gas-cooled reactor (HTGR) in Japan, achieved the first full power of 30 MW on December 7 in 2001. In the rise-to-power test of the HTTR, simulation tests on loss of off-site electric power from 15 and 30 MW operations were carried out by manual shutdown of off-site electric power. Because helium circulators and water pumps coasted down immediately after the loss of off-site electric power, flow rates of helium and water decreased to the scram points. To shut down the reactor safely, the subcriticality should be kept by the insertion of control rods and the auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components. About 50 s later from the loss of off-site electric power, the auxiliary cooling system started up by supplying electricity from emergency power feeders. Temperature of hot plenum block among core graphite structures decreased continuously after the startup of the auxiliary cooling system. This report describes sequences of dynamic components and transient behaviors of the reactor and its cooling system during the simulation tests from 15 and 30 MW operations. (author)

  8. Computer code for simulating pressurized water reactor core

    International Nuclear Information System (INIS)

    Serrano, A.M.B.

    1978-01-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)

  9. A Multi-Physics simulation of the Reactor Core using CUPID/MASTER

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Cho, Hyoung Kyu; Yoon, Han Young; Cho, Jin Young; Jeong, Jae Jun

    2011-01-01

    KAERI has been developing a component-scale thermal hydraulics code, CUPID. The aim of the code is for multi-dimensional, multi-physics and multi-scale thermal hydraulics analysis. In our previous papers, the CUPID code has proved to be able to reproduce multidimensional thermal hydraulic analysis by validated with various conceptual problems and experimental data. For the numerical closure, it adopts a three dimensional, transient, two-phase and three-field model, and includes physical models and correlations of the interfacial mass, momentum, and energy transfer. For the multi-scale analysis, the CUPID is on progress to merge into system-scale thermal hydraulic code, MARS. In the present paper, a multi-physics simulation was performed by coupling the CUPID with three dimensional neutron kinetics code, MASTER. The MASTER is merged into the CUPID as a dynamic link library (DLL). The APR1400 reactor core during control rod drop/ejection accident was simulated as an example by adopting a porous media approach to employ fuel assembly. The following sections present the numerical modeling for the reactor core, coupling of the kinetics code, and the simulation results

  10. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  11. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Perez M, C.; Benitez R, J.S.; Lopez C, R.

    2003-01-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  12. Methodology of the On-Iine FoIIow Simulation of Pebble-bed High-temperature Reactors

    International Nuclear Information System (INIS)

    Xia Bing; Li Fu; Wei Chunlin; Zheng Yanhua; Chen Fubing; Zhang Jian; Guo Jiong

    2014-01-01

    The on-line fuel management is an essential feature of the pebble-bed high-temperature reactors (PB-HTRs), which is strongly coupled with the normal operation of the reactor. For the purpose of on-line analysis of the continuous shuffling scheme of numerous fuel pebbles, the follow simulation upon the real operation is necessary for the PB-HTRs. In this work, the on-line follow simulation methodology of the PB-HTRs’ operation is described, featured by the parallel treatments of both neutronics analysis and fuel cycling simulation. During the simulation, the operation history of the reactor is divided into a series of burn-up cycles according to the behavior of operation data, in which the steady-state neutron transport equations are solved and the diffusion theory is utilized to determine the physical features of the reactor core. The burn-up equations of heavy metals, fission products and neutron poisons including B-10, decoupled from the pebble flow term, are solved to analyze the burn-up process within a single burn-up cycle. The effect of pebble flow is simulated separately through a discrete fuel shuffling pattern confined by curved pebble flow channels, and the effect of multiple pass of the fuel is represented by logical batches within each spatial region of the core. The on-line thermal-hydraulics feedback is implemented for each bur-up cycle by using the real thermal-hydraulics data of the core operation. The treatment of control rods and absorber balls is carried out by utilizing a coupled neutron transport-diffusion calculation along with discontinuity factors. The physical models mentioned above are established mainly by using a revised version of the V.S.O.P program system. The real operation data of HTR-10 is utilized to verify the methodology presented in this work, which gives good agreement between simulation results and operation data. (author)

  13. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  14. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  15. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    Science.gov (United States)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  16. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    Science.gov (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  17. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  18. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  19. A systems CFD model of a packed bed high temperature gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Du Toit, C.G.; Rousseau, P.G.; Greyvenstein, G.P.; Landman, W.A.

    2006-01-01

    The theoretical basis and conceptual formulation of a comprehensive reactor model to simulate the thermal-fluid phenomena of the PBMR reactor core and core structures is given. Through a rigorous analysis the fundamental equations are recast in a form that is suitable for incorporation in a systems CFD code. The formulation of the equations results in a collection of one-dimensional elements (models) that can be used to construct a comprehensive multi-dimensional network model of the reactor. The elements account for the pressure drop through the reactor; the convective heat transport by the gas; the convection heat transfer between the gas and the solids; the radiative, contact and convection heat transfer between the pebbles and the heat conduction in the pebbles. Results from the numerical model are compared with that of experiments conducted on the SANA facility covering a range of temperatures as well as two different fluids and different heating configurations. The good comparison obtained between the simulated and measured results show that the systems CFD approach sufficiently accounts for all of the important phenomena encountered in the quasi-steady natural convection driven flows that will prevail after critical events in a reactor. The fact that the computer simulation time for all of the simulations was less than three seconds on a standard notebook computer also indicates that the new model indeed achieves a fine balance between accuracy and simplicity. The new model can therefore be used with confidence and still allow quick integrated plant simulations. (authors)

  20. Relap5 simulation for severe accident analysis of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Andi Sofrany Ekariansyah; Endiah P-Hastuti; Sudarmono

    2018-01-01

    The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational characteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element. (author)

  1. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  2. TPX Poloidal Field (PF) power systems simulation

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1993-01-01

    This paper describes the modeling and simulation of the PF power system for the Tokamak Physics Experiment (TPX), which is required to supply pulsed DC current to the Poloidal Field (PF) superconducting coil system. An analytical model was developed to simulate the dynamics of the PF power system for any PF current scenario and thereby provide the basis for selection of PF circuit topology, in support of the major design goal of optimizing the use of the existing Tokamak Fusion Test Reactor (TFTR) facilities at the Princeton Plasma Physics Lab (PPPL)

  3. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  4. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment

    International Nuclear Information System (INIS)

    Perez M, C.

    2004-01-01

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  5. Computational simulation of Argonauta/IEN nuclear reactor using MCNPX code

    International Nuclear Information System (INIS)

    Cunha, Victor Lusis Lassance; Silva Junior, Wilson F. Rebello da

    2011-01-01

    The study consisted of developing a computer simulation of a nuclear research reactor using the MCNPX. The reactor modeled is the Argonauta located at IEN (Rio de Janeiro) designed by Argonne National Laboratory (USA), which is primarily used for non-destructive testing with neutron beam and teaching purposes. It was entirely modeled with geometric fidelity, including detailed material description, shielding and irradiation channels. When available, the model was based on the as-built drawings. Four different simulations were made, the first set of two for criticality calculations and the other set for flux measurement. The first simulation set consisted of estimating the reactors reactivity. The second set consisted of placing detectors on specific places where the reactor is monitored and on the fuel axis covering the multiplicative and non-multiplicative media. Based on this data, the thermal neutron flux profile was plotted. All the outputs were compared with experimental data. Since it is a stochastic method, the statistical convergence was successfully checked for all simulations. The results were in good agreement with the experimental values. For the criticality calculations, the relative error was smaller then 1%. The flux measurements were also very well reproduced. The values were normalized for a reference point and the proportionality between the different spots was respected. The neutron flux profile along the core had the expected shape and values. Based on the good results, it can be said that the model is validated. (author)

  6. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    International Nuclear Information System (INIS)

    He, Xun

    2016-01-01

    Molten Salt Reactor (MSR), which was confirmed as one of the six Generation IV reactor types by the GIF (Generation IV International Forum in 2008), recently draws a lot of attention all around the world. Due to the application of liquid fuels the MSR can be regarded as the most special one among those six GEN-IV reactor types in a sense. A unique advantage of using liquid nuclear fuel lies in that the core melting accident can be thoroughly eliminated. Besides, a molten salt reactor can have several fuel options, for instance, the fuel can be based on "2"3"5U, "2"3"2Th-"2"3"3U, "2"3"8U-"2"3"9Pu cycle or even the spent nuclear fuel (SNF), so the reactor can be operated as a breeder or as an actinides burner both with fast, thermal or epi-thermal neutron spectrum and hence, it has excellent features of the fuel sustainability and for the non-proliferation. Furthermore, the lower operating pressure not only means a lower risk of the explosion as well as the radioactive leakage but also implies that the reactor vessel and its components can be lightweight, thus lowering the cost of equipments. So far there is no commercial MSR being operated. However, the MSR concept and its technical validation dates back to the 1960s to 1970s, when the scientists and engineers from ORNL (Oak Ridge National Laboratory) in the United States managed to build and run the world's first civilian molten salt reactor called MSRE (Molten Salt Reactor Experiment). The MSRE was an experimental liquid-fueled reactor with 10 MW thermal output using "4LiF-BeF_2-ZrF_4-UF_4 as the fuel also as the coolant itself. The MSRE is usually taken as a very important reference case for many current researches to validate their codes and simulations. Without exception it works also as a benchmark for this thesis. The current thesis actually consists of two main parts. The first part is about the validation of the current code for the old MSRE concept, while the second one is about the demonstration of a new

  7. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    Molten Salt Reactor (MSR), which was confirmed as one of the six Generation IV reactor types by the GIF (Generation IV International Forum in 2008), recently draws a lot of attention all around the world. Due to the application of liquid fuels the MSR can be regarded as the most special one among those six GEN-IV reactor types in a sense. A unique advantage of using liquid nuclear fuel lies in that the core melting accident can be thoroughly eliminated. Besides, a molten salt reactor can have several fuel options, for instance, the fuel can be based on {sup 235}U, {sup 232}Th-{sup 233}U, {sup 238}U-{sup 239}Pu cycle or even the spent nuclear fuel (SNF), so the reactor can be operated as a breeder or as an actinides burner both with fast, thermal or epi-thermal neutron spectrum and hence, it has excellent features of the fuel sustainability and for the non-proliferation. Furthermore, the lower operating pressure not only means a lower risk of the explosion as well as the radioactive leakage but also implies that the reactor vessel and its components can be lightweight, thus lowering the cost of equipments. So far there is no commercial MSR being operated. However, the MSR concept and its technical validation dates back to the 1960s to 1970s, when the scientists and engineers from ORNL (Oak Ridge National Laboratory) in the United States managed to build and run the world's first civilian molten salt reactor called MSRE (Molten Salt Reactor Experiment). The MSRE was an experimental liquid-fueled reactor with 10 MW thermal output using {sup 4}LiF-BeF{sub 2}-ZrF{sub 4}-UF{sub 4} as the fuel also as the coolant itself. The MSRE is usually taken as a very important reference case for many current researches to validate their codes and simulations. Without exception it works also as a benchmark for this thesis. The current thesis actually consists of two main parts. The first part is about the validation of the current code for the old MSRE concept, while the second

  8. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  9. Trip setpoint analysis for the reactor protection system of an advanced integral reactor

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Kim, Soo Hyung; Chung, Young Jong; Zee, Sung Quun

    2007-01-01

    The trip setpoints for the reactor protection system of a 65-MWt advanced integral reactor have been analyzed through sensitivity evaluations by using the Transients and Setpoint Simulation/System-integrated Modular Reactor code. In the analysis, an inadvertent control rod withdrawal event has been considered as an initiating event because this event results in the worst consequences from the viewpoint of the minimum critical heat flux ratio and its consequences are considerably affected by the trip setpoints. Sensitivity evaluations have been performed by changing the trip setpoints for the ceiling of a variable overpower trip (VOPT) function and the pressure of a high pressurizer pressure trip function. Analysis results show that a VOPT function is an effective means to satisfy the acceptance criteria as the control rod rapidly withdraws: on the other hand, a high pressurizer pressure trip function is an essential measure to preserve the safety margin in the case of a slow withdrawal of the control rod because a reactor trip by a VOPT function does not occur in this case. It is also shown that the adoptions of 122.2% of the rated core power and 16.25 MPa as the trip setpoint for the ceiling of a VOPT function and the pressure of a high pressurizer pressure trip function are good selections to satisfy the acceptance criteria

  10. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  11. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  12. Analysis and application of a simulator of a nuclear reactor AP-600; Analisis y aplicacion de un simulador de un reactor nuclear AP-600

    Energy Technology Data Exchange (ETDEWEB)

    Medina S, V. S. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Salazar S, E., E-mail: medina_victor@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (MX)

    2011-11-15

    In front of the resurgence of interest in the nuclear power production, several national organizations have considered convenient to have highly specialized human resources in the technologies of nuclear reactors of III + and IV generation. For this task, the intensive and extensive applications of the computation should been considered, as the virtual instrumentation. The present work analyzes the possible applications of a nuclear simulator provided by the IAEA with base in the design of the reactor AP-600, using a focusing of modular model developed in FORTRAN. One part of the work that was made with the simulator includes the evaluation of 21 transitory events of operation, including the recreation of the accident happened in the nuclear power plant of Three Mile Island in 1979, comparing the actions flow and the answer of the systems under the intrinsic security of a III + generation reactor. The impact that had the mentioned accident was analyzed in the growing of the nuclear energy sector and in the public image with regard to the nuclear power plants. An application for this simulator was proposed, its use as tool for the instruction in the nuclear engineering courses using it to observe the operation of the different security systems and its interrelation inside the power plant as well as a theoretical/practical approach for the student. (Author)

  13. Conversational module-based simulation system as a human interface to versatile dynamic simulation of nuclear power plant

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakaya, K.; Wakabayashi, J.

    1986-01-01

    A new conversational simulation system is proposed which aims at effective re-utilization of software resources as module database, and conducting versatile simulations easily by automatic module integration with the help of user-friendly interfaces. The whole simulation system is composed of the four parts: master module library and pre-compiler system as the core system, while module database management system and simulation execution support system for the user interfaces. Basic methods employed in the system are mentioned with their knowledge representation and the relationship with the human information processing. An example practice of an LMFBR reactor dynamic simulation by the system demonstrated its capability to integrate a large simulation program and the related input/output files automatically by a single user

  14. Design and Analysis of the Power Control System of the Fast Zero Energy Reactor FR-0

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, N J.H.

    1966-12-15

    This report describes the power control by means of the fine-control rod and the design of the control system of the fast zero energy reactor FR-0 located in Studsvik, Sweden. System requirements and some operational conditions were used as design criteria. Manual and automatic control is possible. Variable electronic end-stops for the control rod have been designed, because of the special construction of the reactor and control rod. Noise in the control system caused by the reactor, detector and electronics caused disturbances of the control system at the lower power levels. The noise power-spectrum was measured. Statistical design methods, using the measured noise power spectrum, were used to design filters, which will reduce the influence of the noise at the lower power levels. Root Loci sketches and Bode diagrams were used for stability analyses. The system was simulated on an analogue computer, taking into account even nonlinearities of the control system and noise. Typical cases of reactor operation were simulated and stability analysis performed.

  15. Design and Analysis of the Power Control System of the Fast Zero Energy Reactor FR-0

    International Nuclear Information System (INIS)

    Schuh, N.J.H.

    1966-12-01

    This report describes the power control by means of the fine-control rod and the design of the control system of the fast zero energy reactor FR-0 located in Studsvik, Sweden. System requirements and some operational conditions were used as design criteria. Manual and automatic control is possible. Variable electronic end-stops for the control rod have been designed, because of the special construction of the reactor and control rod. Noise in the control system caused by the reactor, detector and electronics caused disturbances of the control system at the lower power levels. The noise power-spectrum was measured. Statistical design methods, using the measured noise power spectrum, were used to design filters, which will reduce the influence of the noise at the lower power levels. Root Loci sketches and Bode diagrams were used for stability analyses. The system was simulated on an analogue computer, taking into account even nonlinearities of the control system and noise. Typical cases of reactor operation were simulated and stability analysis performed

  16. Simulation of mixing effects in a VVER-1000 reactor

    International Nuclear Information System (INIS)

    Ulrich Bieder; Gauthier Fauchet; Sylvie Betin; Nikola Kolev; Dimitar Popov

    2005-01-01

    Full text of publication follows: The work presented has been performed in the framework of the OECD/NEA thermalhydraulic benchmark V1000CT-2. This benchmark is related to fluid mixing in the reactor vessel during a MSLB accident scenario in a VVER-1000 reactor. The purpose of the first exercise is to test the capability of CFD codes to represent the coolant mixing in the reactor vessel, in particular in the downcomer and the lower plenum. Coolant mixing in a VVER-1000 V320 reactor was investigated in plant experiments during the commissioning of Kozloduy Unit 5 and 6. Starting from nearly symmetric states, asymmetric loop operation in different combinations was caused by disturbing the steam flow from one or more steam generators. Non-uniform and asymmetric loop flow mixing in the reactor vessel has been observed in the event of asymmetric loop operation. For certain flow patterns there is a shift (swirl) of the main loop flows with respect to the cold leg axes. This azimuthal shift as well as mixing coefficients from cold legs to the fuel assembly inlets have been measured. The presented reference problem is a pure TH problem with given boundary conditions and power distributions. During a stabilization phase, the thermal power of the reactor was 281 MW i.e. 9.36% of the nominal power according to primary balance. Then, a transient was initiated by closing the steam isolation valve of the steam generator one (SG-1) and isolating SG-1 from feed water. The coolant temperature in the cold and hot legs of Loop no 1 rose by 13-13.5 C. After about 20 minutes a stabilized state was reached which is considered as 'final state'. This final state has been analysed with the Trio-U code. Trio-U is a CFD code developed by the CEA Grenoble, aimed to supply an efficient computational tool to simulate transient thermalhydraulic mono-phase turbulent flows encountered in nuclear systems as well as in industrial processes. For the presented study, a LES approach was used. Therefore

  17. Soft computing simulation tools for nuclear energy systems

    International Nuclear Information System (INIS)

    Kannan Balasubramanian, S.

    2012-01-01

    This chapter deals with simulation, a very powerful tool in designing, constructing and operating nuclear power generating facilities. There are very different types of power plants, and the examples mentioned in this chapter originate from experience with water cooled and water moderated thermal reactors, based on fission of uranium-235. Nevertheless, the methodological achievements in simulation mentioned below can definitely be used not only for this particular type of nuclear power generating reactor. Simulation means: investigation of processes in the time domain. We can calculate the characteristics and properties of different systems, e.g. we can design a bridge over a river, but if we calculate how it would respond to a thunderstorm with high winds, its movement can or can not evolve after a certain time into destructive oscillation - this type of calculations are called simulation

  18. Simulation of the operational monitoring of a BWR with Simulate-3; Simulacion del seguimiento operacional de un reactor BWR con Simulate-3

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez F, J. O.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: ace.jo.cu@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    This work was developed in order to describe the methodology for calculating the fuel burned of nuclear power reactors throughout the duration of their operating cycle and for each fuel reload. In other words, simulate and give monitoring to the main operation parameters of sequential way along its operation cycles. For this particular case, the operational monitoring of five consecutive cycles of a reactor was realized using the information reported by their processes computer. The simulation was performed with the Simulate-3 software and the results were compared with those of the process computer. The goal is to get the fuel burned, cycle after cycle for obtain the state conditions of the reactor needed for the fuel reload analyses, stability studies and transients analysis, and the development of a methodology that allows to manage and resolve similar cases for future fuel cycles of the nuclear power plant and explore the various options offered by the simulator. (Author)

  19. Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paar, H; Narodoslawsky, M; Moser, A [Technische Univ., Graz (Austria). Inst. fuer Biotechnologie, Mikrobiologie und Abfalltechnologie

    1990-10-10

    Systematic simulatiom may decisively help in development and optimization of bioprocesses. By applying simulation techniques, optimal use can be made of experimental data, decreasing development costs and increasing the accuracy in predicting the behavior of an industrial scale plant. The procedure of the dialogue between simulation and experimental efforts will be exemplified in a case study. Alcoholic fermentation of glucose by zymomonas mobilis bacteria in a gasified turbular recycle reactor was studied first by systematic simulation, using a computer model based solely on literature data. On the base of the results of this simulation, a 0.013 m{sup 3} pilot plant reactor was constructed. The pilot plant experiments, too, were based on the results of the systematic simulation. Simulated and experimental data were well in agreement. The pilot plant experiments reiterated the trends and limits of the process as shown by the simulation results. Data from the pilot plant runs were then used to improve the simulation model. This improved model was subsequently used to simulate the performances of an industrial scale plant. The results of this simulation are presented. They show that the alcohol fermentation in a tubular recycle reactor is potentially advantageous to other reactor configurations, especially to continuous stirred tanks. (orig.).

  20. Development of modeling tools for pin-by-pin precise reactor simulation

    International Nuclear Information System (INIS)

    Ma Yan; Li Shu; Li Gang; Zhang Baoyin; Deng Li; Fu Yuanguang

    2013-01-01

    In order to develop large-scale transport simulation and calculation method (such as simulation of whole reactor core pin-by-pin problem), the Institute of Applied Physics and Computational Mathematics developed the neutron-photon coupled transport code JMCT and the toolkit JCOGIN. Creating physical calculation model easily and efficiently can essentially reduce problem solving time. Currently, lots of visual modeling programs have been developed based on different CAD systems. In this article, the developing idea of a visual modeling tool based on field oriented development was introduced. Considering the feature of physical modeling, fast and convenient operation modules were developed. In order to solve the storage and conversion problems of large scale models, the data structure and conversional algorithm based on the hierarchical geometry tree were designed. The automatic conversion and generation of physical model input file for JMCT were realized. By using this modeling tool, the Dayawan reactor whole core physical model was created, and the transformed file was delivered to JMCT for transport calculation. The results validate the correctness of the visual modeling tool. (authors)

  1. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    Energy Technology Data Exchange (ETDEWEB)

    Raussi, P.; Kainulainen, S. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  2. ''NEPTUNIX'': a continuous system simulation language

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1982-07-01

    From the mathematical description of a physical system, NEPTUNIX builds the corresponding simulator. Algebraic and ordinary differential equations describing a physical system may be ''stiff'', nonlinear, implicit and even dynamically variable. The non procedural language describing the mathematical model is independent from the integration algorithm. The NEPTUNIX built simulator, transportable on many computers, may be controlled by a userfriendly operating language, independent from host computer and integration method. Last years results about numerical and non-numerical algorithms were used for the package implementation. NEPTUNIX appears as a powerful modeling tool, specially in the field of nuclear reactors design [fr

  3. Monitor for reactor feedwater systems

    International Nuclear Information System (INIS)

    Takizawa, Yoji; Tomizawa, Teruaki

    1983-01-01

    Purpose: To improve the reliability of operator's procedures upon occurrence of the feedwater system abnormality in a BWR type reactor by presenting the operation with effective information to avoid such abnormality. Constitution: A feedwater temperature at the reactor inlet of a reactor feedwater system measured by a temperature detector and a predetermined value for the feedwater temperature at the reactor inlet determined depending on the reactor conditions are inputted to a start-up system. The start-up system outputs a start-up signal when the difference between the inputted values exceeds a predetermined value. Then, the start-up signal is inputted to a display device where information required for the operator is displayed in the device. Thus, the information required for the operator is rapidly provided upon abnormality of the feedwater system to thereby improve the reliability of the operator's procedures. (Moriyama, K.)

  4. Pneumatic transport systems for TRIGA reactors

    International Nuclear Information System (INIS)

    Bolton, John A.

    1970-01-01

    Main parameters and advantages of pneumatically operated systems, primarily those operated by gas pressure are discussed. The special irradiation ends for the TRIGA reactor are described. To give some idea of the complexity of some modern systems, the author presents the large system currently operating at the National Bureau of Standards in Washington. In this system, 13 stations are located throughout the radiochemistry laboratories and three irradiation ends are located in the reactor, which is a 14-megawatt unit. The system incorporates practically every fail-safe device possible, including ball valves located on all capsule lines entering the reactor area, designed to close automatically in the event of a reactor scram, and at that time capsules within the reactor would be diverted by means of switches located on the inside of the reactor wall. The whole system is under final control of a permission control panel located in the reactor control room. Many other safety accessories of the system are described

  5. Reactor protection system

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Lesniak, L.M.; Orgera, E.G.

    1977-10-01

    The report describes the reactor protection system (RPS-II) designed for use on Babcock and Wilcox 145-, later 177-, and 205-fuel assembly pressurized water reactors. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low-pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, a description of the software programmed in the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W

  6. Computer simulation of radiation processes in reactor facilities

    International Nuclear Information System (INIS)

    Gann, V.V.; Abdulaev, A.M.; Zhukov, A.I.; Marekhin, S.V.; Soldatov, S.A.

    2009-01-01

    The paper describes experience of the code system ALPHA-H/PHOENIX-H/ANC-H (APA) and the code MCNP usage for fuel assembly neutronic calculations and modeling of VVER-1000 reactor core. Using Monte Carlo code MCNP, calculations of neutron field and pin-by-pin energy deposition distributions are provided for different type of assemblies in reactor core. An MCNP model for unit 3 Zaporozhye NPP reactor core was designed. Calculations for pin-by-pin energy deposition in the reactor core were performed using the code system APA and the code MCNP. Comparison of these calculations shows rather high precision of APA calculation for energy deposition in the fuel rods and assemblies operated in the reactor core

  7. 1200 FPD refuelling simulation of RUFIC fuel in a CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Young; Jeong, Chang Joon; Min, Byung Joo; Suk, Ho Chun

    2001-07-01

    The refuelling strategy of RUFIC (Recovered Uranium Fuel in CANDU) fuel as a high-burnup fuel for a CANDU 6 reactor is studied to determine the achievable operation characteristics of the fuel and reactor. In this study, three refuelling schemes of 4-, 2-, and 3-bundle shift for 0.92 w/o RUFIC fuel in an CANDU 6 reactor were individually evaluated through 1200 FPD(Full Power Day)refuelling simulaltions where the 0.92 w/o RUFIC is equivalent to CANFLEX 0.9 w/o SEU(Slightly Enriched Uranium) in reactivity and burnup respects. The computer code system used for this study is WIMS-AECL/DRAGON/RFSP. The results simulated for the case of 4-bundle shift refueling scheme shows that the peak maximum channel power and peak maximum CPPF(Channel Power Peaking Factor)of 7228 kW and 1.175, respectively, seems too high to maintain the available operating margins, because some data of the maximum channel power exceed the operating limit(7070 kW based on the Technical Specifications of Wolsong 3 and 4 Units). Whereas, the results simulated for the case of 2-bundle shift refuelling scheme shows that sufficient operating margin could be secured where the peak maximum channel power and peak maximum CPPF were 6889 kW and 1.094, respectively. However, the channel refuelling rate (channels/day) of the 2-bundle shift refuelling scheme is twice that of the 4-bundle shift refuelling scheme, and hence the 2-bundle shift refuelling would not be an economical refuelling scheme for the RUFIC fuel bundles. Therefore, a 3-bundle shift refuelling scheme for the RUFIC fuel in CANDU 6 reactor was also studied by the 1200 FPD refuelling simulation. As a result, it is found that all the operating parameters in the 3-bundle shift case are achivable for the CANDU 6 reactor operation, and the channel refuelling rate of 2.88 channels/day seems to be attractive compared to the refuelling rate of 4.32 channels/day in the 2-bundle shift case.

  8. Reactor protection and shut-down system

    International Nuclear Information System (INIS)

    Klar

    1980-01-01

    The reactor protection system being a part of the reactor safety system. The requirements on the reactor protection system are: high safety with regard to signal processing, high availability, self-reporting of faults etc. The functional sections of the reactor protection system are the analog section, the logic section and the generating of output signals. Description of the operation characteristics and of the extension of function. (orig.)

  9. Human-system interface for CAREM nuclear reactor

    International Nuclear Information System (INIS)

    Abaurre, Norberto F.; Flury, Celso A.; Pierini, Juan P.; Etchepareborda, Andres; Breitembuecher, Alfredo J.; Lema, Fabian M.

    2009-01-01

    Associated with activities to be developed by our working group on the construction of the reactor training simulator for the CAREM, we have planned the design of human-system interface (HSI) of the main control room. The goal of this study is to describe the planning and methodology used for the HSI interface design. The products of this process are the layout specifications of the Control Room and the screens specifications for control software. (author)

  10. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    Sofo Haro, M.; Cantero, P.

    2009-01-01

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  11. Simulation for Remote Operation for REX10 Nuclear Reactor

    International Nuclear Information System (INIS)

    Lee, Sim Won; Kim, Dong Su; Na, Man Gyun; Lee, Yoon Joon; Lee, Yeon Gun; Park, Goon Cherl

    2010-01-01

    The newly designed REX10 (Regional Energy Reactor, 10MWth) is an environmentally-friendly and stable small nuclear reactor for a small-scale reactor based Multi-purpose regional energy system. The REX10 has been developed to maintain system safety in order to be placed in densely populated region, island, etc. In addition, it is significantly hard to recruit many operation and maintenance personnel for small power reactors differently from usual commercial reactors because of its remote location and of economic reasons. In order to overcome these constraints, to decrease the operation cost by reducing operation and maintenance personnel, and to increase plant reliability through autonomous plant control, it is needed to design the control system of the small power reactors and to establish its unmanned remote operation system. In this study, the REX10 reactor core thermal power controller is designed by using a REX10 code analyzer. The remote control facility through man-machine interface (MMI) design and interface between programming languages was established and it was used to verify remote operation of REX10

  12. Design of Kartini reactor radiation monitor system using lab view

    International Nuclear Information System (INIS)

    Adi Abimanyu; Jumari; Achmad Fahrul Aji; Muhammad Khoiri

    2014-01-01

    Kartini Reactor operation will result in radiation exposure. Gamma radiation exposure rate at the Kartini Reactor monitored by several radiation monitors (Ludlum) that integrate with the computer, so that the rate of radiation exposure is always monitored. Current monitoring system combines six radiation monitor in one computer monitor radiation, and monitoring performed by operators and supervisors to see how the radiation exposure rate measured in the area around the reactor core in a periodic time manually. This research will develop a system to monitor radiation exposure in Kartini reactor based ATMega8 micro controller for interface between radiation monitor and computer and also Graphical User Interface (GUI) develop using Lab view software that makes monitoring is easier and documented regularly. This system is testing by simulation, it is done by replacing the function of the radiation monitoring devices (Ludlum) in Kartini Reactor with computers that send serial data with the same format with a format that is sent by Ludlum. The results show that the interface system has the ability to operate in a range of baud rate 1,200 bps, 2,400 bps, 4,800 bps, 9,600 bps, 14,400 bps, 19,200 bps and 38,400 bps, with the ability to provide realtime information every 6 seconds and able to document the rate of exposure to radiation in the form of logbook. (author)

  13. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  14. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  15. Development of a safety and regulation systems simulation program II

    International Nuclear Information System (INIS)

    1985-05-01

    This report describes the development of a safety and regulation systems simulation program under contract to the Atomic Energy Control Board of Canada. A systems logic interaction simulation (SLISIM) program was developed for the AECB's HP-1000 computer which operates in the interactive simulation (INSIM) program environment. The SLISIM program simulates the spatial neutron dynamics, the regulation of the reactor power and in this version the CANDU-PHW 600 MW(e) computerized shutdown systems' trip parameters. The modular concept and interactive capability of the INSIM environment provides the user with considerable flexibility of the setup and control of the simulation

  16. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  17. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  18. Technical report on implementation of reactor internal 3D modeling and visual database system

    International Nuclear Information System (INIS)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation's integrated computer aided engineering system, such as Mitsubishi's NUWINGS (Japan), AECL's CANDID (Canada) and Duke Power's PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new

  19. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  20. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  1. A JAVA applet to simulate a CANDU reactor

    International Nuclear Information System (INIS)

    Varin, E.; Desarmenien, J.

    2004-01-01

    Here we present a CANDU nuclear power plant simulator, directly available on a web page. The developed applet has two mains objectives: to expose the CANDU technology to a large public on the internet; and to construct a realistic simulator to be used as a pedagogical tool for nuclear introduction to high school or under-graduate students. The neutronic behavior and control algorithms of the reactor are simulated. Java programming language enables a very flexible environment for public information and user interaction with the plant. Examples of shutdown and power maneuver are explained. (author)

  2. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation

    International Nuclear Information System (INIS)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2015-01-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  3. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  4. Behavior of 241Am in fast reactor systems - a safeguards perspective

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Lafleur, Adrienne M.

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of 241 Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased (α,n) production in oxide fuels from the 241 Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of 241 Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of 241 Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of 241 Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  5. Non-linear punctual kinetics applied to PWR reactors simulation

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-11-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model for the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and CSMP using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (Author) [pt

  6. Design of Simulink module for dynamic reactivity simulation of marine reactor automatic control rod

    International Nuclear Information System (INIS)

    Chen Zhiyun; Luo Lei; Chen Wenzhen; Gui Xuewen

    2010-01-01

    The power of marine reactor varies frequently and acutely, which induces the frequent and acute adjustment of the automatic control rod. According to the characteristics of marine reactor and the problem of improper control rod reactivity insertion in previous literatures, the Simulink module for dynamic reactivity simulation of automatic control rod was designed and adopted as a sub-module of Simulink program for the fast calculation of the physical and thermal parameters of marine reactor. A typical dynamic process of the marine reactor was used as the benchmark, which indicates that the designed Simulink module is capable of the dynamic simulation of automatic control rod position and reactivity, and is adequate to the fast calculation of physic and thermal parameters. The Simulink module is of significant meaning to the simulation of the dynamic process of marine reactor and the fast calculation of the operating parameters. (authors)

  7. Principles elaboration and creation of information-analytical system ''RI Operation Safety with SSC RIAR Research Reactors''

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Grachev, A.F.; Kinsky, O.M.; Makin, P.S.; Okhrimenko, A.I.; Demidov, L.I.; Karpyuk, V.I.; Afonin, V.K.; Iskanderov, R.G.

    1995-01-01

    In this paper an approach is described, which is accepted at elaboration and creation of computer-aided control system of technological process (CCS TP) at the installations with research reactors. The tasks and the main technological requirements to elaborated information-analytical system, are formulated, based on the accepted approach, experience of computer-aided systems and analysis of technological processes at reactor installations (RI) of SSC RIAR. The system includes the following installations: the SM-3, the VK-50, the RBT-10, the BOR-60 and the MIR. Based on the given example there is a classification and the purposes of the modern system of information personnel support of research reactors are formulated as well as approaches to its creation, including creation of determined models of the processes, which are realized in simulators and statistic methods of time series. According to the accepted approaches the results of systematic-technical synthesis and modern states with system simulation are described. (author). 17 refs, 3 figs, 4 tabs

  8. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  9. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  10. CENTAR code for extended nonlinear transient analysis of extraterrestrial reactor systems

    International Nuclear Information System (INIS)

    Nassersharif, B.; Peer, J.S.; DeHart, M.D.

    1987-01-01

    Current interest in the application of nuclear reactor-driven power systems to space missions has generated a need for a systems simulation code to model and analyze space reactor systems; such a code has been initiated at Texas A and M, and the first version is nearing completion; release was anticipated in the fall of 1987. This code, named CENTAR (Code for Extended Nonlinear Transient Analysis of Extraterrestrial Reactor Systems), is designed specifically for space systems and is highly vectorizable. CENTAR is composed of several specialized modules. A fluids module is used to model fluid behavior throughout the system. A wall heat transfer module models the heat transfer characteristics of all walls, insulation, and structure around the system. A fuel element thermal analysis module is used to predict the temperature behavior and heat transfer characteristics of the reactor fuel rods. A kinetics module uses a six-group point kinetics formulation to model reactivity feedback and control and the ANS 5.1 decay-heat curve to model shutdown decay-heat production. A pump module models the behavior of thermoelectric-electromagnetic pumps, and a heat exchanger module models not only thermal effects in thermoelectric heat exchangers, but also predicts electrical power production for a given configuration. Finally, an accumulator module models coolant expansion/contraction accumulators

  11. Development of a thermal–hydraulic system code, TAPINS, for 10 MW regional energy reactor

    International Nuclear Information System (INIS)

    Lee, Yeon-Gun; Kim, Jong-Won; Park, Goon-Cherl

    2012-01-01

    Highlights: ► A thermal–hydraulic system code named TAPINS is developed for simulations of an integral reactor. ► The TAPINS is based on the one-dimensional momentum integral model. ► A dynamic model for the steam–gas pressurizer with non-condensable gas present is proposed. ► A series of pressurizer insurge test and natural circulation test are simulated by the TAPINS. ► It is proved that the TAPINS can provide reliable prediction of an integral reactor system on natural circulation. - Abstract: Small modular reactors (SMRs) with integral system layout have been drawing a great deal of attention as alternative options to branch out the utilization of nuclear energy as well as to offer the inherent safety features. Serving to confirm the design basis and analyze the transient behavior of an integral reactor such as REX-10, a thermal–hydraulic system code named TAPINS (Thermal–hydraulic Analysis Program for INtegral reactor System) is developed in this study. The TAPINS supports the simple pre-processing to build up the frameworks of node diagram for the typical integral reactor configuration. The TAPINS basically consists of mathematical models for the reactor coolant system, the core, the once-through helical-coil steam generator, and the built-in steam–gas pressurizer. The hydrodynamic model of the TAPINS is formulated using the one-dimensional momentum integral model, which is based on the analytical integration of the momentum equation around the closed loop in the system. As a key contribution of the study, a dynamic model for the steam–gas pressurizer with non-condensable gas present is newly proposed and incorporated into the code. The TAPINS is validated by comparing against the experimental data from the pressurizer insurge tests conducted at MIT (Massachusetts Institute of Technology) and natural circulation tests in the RTF (REX-10 Test Facility) at RERI (Regional Energy Reactor Institute). From the comparison results, it is

  12. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  13. Tritium behavior in the Caisson, a simulated fusion reactor room

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Kobayashi, Kazuhiro; Iwai, Yasunori; Yamada, Masayuki; Suzuki, Takumi; O'hira, Shigeru; Nakamura, Hirofumi; Shu, Weimin; Yamanishi, Toshihiko; Kawamura, Yoshinori; Isobe, Kanetsugu; Konishi, Satoshi; Nishi, Masataka

    2000-01-01

    In order to confirm tritium confinement ability in the deuterium-tritium (DT) fusion reactor, intentional tritium release experiments have been started in a specially fabricated test stand called 'Caisson', at Tritium Process Laboratory in Japan Atomic Energy Research Institute. The Caisson is a stainless steel leak-tight vessel of 12 m 3 , simulating a reactor room or a tritium handling room. In the first stage experiments, about 260 MBq of pure tritium was put into the Caisson under simulated constant ventilation of four times air exchanges per h. The tritium mixing and migration in the Caisson was investigated with tritium contamination measurement and detritiation behavior measurement. The experimental tritium migration and removal behavior was almost perfectly reproduced and could almost be simulated by a three-dimensional flow analysis code

  14. IERIAS: inference engine for reactor accident diagnostic system using knowledge engineering technique

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Kohsaka, Atsuo; Yamamoto, Minoru.

    1984-11-01

    This report describes an inference engine IERIAS which has been devoloped for a diagnostic system to identify the cause and type of an abnormal transient of a reactor plant. This system using knowledge engineering technique consists of a knowledge base and an inference engine. The inference engine IERIAS is designed so as to treat time-varying data of a plant. The major features of IERIAS are ; (1) histroy of transients can be treated, (2) knowledge base can be divided into some knowledge units, (3) program language UTILISP is used which is suitable for symbolic data manipulation. Inference was made using IERIAS with a knowledge base which was created from simulated results of various transients by a PWR plant simulator. The results showed a good applicability of IERIAS for reactor diagnosis. (author)

  15. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  16. Optimization by simulation of the coupling between a sub-critical reactor and its spallation source. Towards a pilot reactor

    International Nuclear Information System (INIS)

    Kerdraon, D.

    2001-10-01

    Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of 99 Tc and 129 I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required 233 U proportion. (author)

  17. Computer simulation of multi-elemental fusion reactor materials

    International Nuclear Information System (INIS)

    Voertler, K.

    2011-01-01

    Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the

  18. Core followup studies of the Tarapur Reactors with the three dimensional BWR simulator COMTEG

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, S. R.; Jagannathan, V.; Mohanakrishnan, P.; Srinivasan, K. R.; Rastogi, B. P.

    1976-07-01

    Both the units of the Tarapur Atomic Power Station started operation in the year 1969. Since then, these units have completed three cycles. For efficient operation and fuel management of these reactors, a three dimensional BWR simulator COMETG has been developed. The reactors are closely being followed using the simulator. The detailed analyses for cycle 3/4 operation of both the units are described in the paper. The results show very good agreement between calculated and measured values. It is concluded that reactor core behaviour could be predicted in a satisfactory manner with the core simulator COMETG.

  19. Reactor feedwater system

    International Nuclear Information System (INIS)

    Kagaya, Hiroyuki; Tominaga, Kenji.

    1993-01-01

    In a simplified water type reactor using a gravitationally dropping emergency core cooling system (ECCS), the present invention effectively prevents remaining high temperature water in feedwater pipelines from flowing into the reactor upon occurrence of abnormal events. That is, (1) upon LOCA, if a feedwater pipeline injection valve is closed, boiling under reduced pressure of the remaining high temperature water occurs in the feedwater pipelines, generated steams prevent the remaining high temperature water from flowing into the reactor. Accordingly, the reactor is depressurized rapidly. (2) The feedwater pipeline injection valve is closed and a bypassing valve is opened. Steams generated by boiling under reduced pressure of the remaining high temperature water in the feedwater pipelines are released to a condensator or a suppression pool passing through bypass pipelines. As a result, the remaining high temperature water is prevented from flowing into the reactor. Accordingly, the reactor is rapidly depressurized and cooled. It is possible to accelerate the depressurization of the reactor by the method described above. Further, load on the depressurization valve disposed to a main steam pipe can be reduced. (I.S.)

  20. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  1. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    Science.gov (United States)

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  2. A Comparative Study on the Refueling Simulation Method for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Do, Quang Binh; Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The Canada deuterium uranium (CANDU) reactor calculation is typically performed by the RFSP code to obtain the power distribution upon a refueling. In order to assess the equilibrium behavior of the CANDU reactor, a few methods were suggested for a selection of the refueling channel. For example, an automatic refueling channel selection method (AUTOREFUEL) and a deterministic method (GENOVA) were developed, which were based on a reactor's operation experience and the generalized perturbation theory, respectively. Both programs were designed to keep the zone controller unit (ZCU) water level within a reasonable range during a continuous refueling simulation. However, a global optimization of the refueling simulation, that includes constraints on the discharge burn-up, maximum channel power (MCP), maximum bundle power (MBP), channel power peaking factor (CPPF) and the ZCU water level, was not achieved. In this study, an evolutionary algorithm, which is indeed a hybrid method based on the genetic algorithm, the elitism strategy and the heuristic rules for a multi-cycle and multi-objective optimization of the refueling simulation has been developed for the CANDU reactor. This paper presents the optimization model of the genetic algorithm and compares the results with those obtained by other simulation methods.

  3. Multi-physic simulations of irradiation experiments in a technological irradiation reactor

    International Nuclear Information System (INIS)

    Bonaccorsi, Th.

    2007-09-01

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  4. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  5. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Tautges, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, Robert Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  6. Computer simulation of a staging system for a theta-pinch reactor (RTPR)

    International Nuclear Information System (INIS)

    Crnkovich, P.G.

    1976-02-01

    To reduce excessive energy requirements for the implosion heating system of a theta-pinch reactor, two staging methods, the brute force and bucking field options, were proposed. A Marshall coil and a segmented coil were also considered. Calculations involved in coding these coil designs and staging options into a PL/I subprogram are described. A marked savings in the energy required for the IH system is realized with the bucking option and others

  7. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  8. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  9. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  10. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  11. Development of advanced automatic control system for nuclear ship. 2. Perfect automatic operation after reactor scram events

    International Nuclear Information System (INIS)

    Yabuuchi, Noriaki; Nakazawa, Toshio; Takahashi, Hiroki; Shimazaki, Junya; Hoshi, Tsutao

    1997-11-01

    An automatic operation system has been developed for the purpose of realizing a perfect automatic plant operation after reactor scram events. The goal of the automatic operation after a reactor scram event is to bring the reactor hot stand-by condition automatically. The basic functions of this system are as follows; to monitor actions of the equipments of safety actions after a reactor scram, to control necessary control equipments to bring a reactor to a hot stand-by condition automatically, and to energize a decay heat removal system. The performance evaluation on this system was carried out by comparing the results using to Nuclear Ship Engineering Simulation System (NESSY) and the those measured in the scram test of the nuclear ship 'Mutsu'. As the result, it was showed that this system had the sufficient performance to bring a reactor to a hot syand-by condition quickly and safety. (author)

  12. Development of advanced automatic control system for nuclear ship. 2. Perfect automatic operation after reactor scram events

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Noriaki; Nakazawa, Toshio; Takahashi, Hiroki; Shimazaki, Junya; Hoshi, Tsutao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An automatic operation system has been developed for the purpose of realizing a perfect automatic plant operation after reactor scram events. The goal of the automatic operation after a reactor scram event is to bring the reactor hot stand-by condition automatically. The basic functions of this system are as follows; to monitor actions of the equipments of safety actions after a reactor scram, to control necessary control equipments to bring a reactor to a hot stand-by condition automatically, and to energize a decay heat removal system. The performance evaluation on this system was carried out by comparing the results using to Nuclear Ship Engineering Simulation System (NESSY) and the those measured in the scram test of the nuclear ship `Mutsu`. As the result, it was showed that this system had the sufficient performance to bring a reactor to a hot syand-by condition quickly and safety. (author)

  13. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  14. Development and testing of a service concept for integration of simulation in the remote nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Grohmann, A.

    2002-01-01

    In this dissertation a framework for distributed software services is developed. This allows the easy integration of software components in complex systems. The capabilities of the components are offered as services, which can be consumed by others. Services share a common and generic interface, which increases flexibility and the potential use in systems that have to act, react and communicate flexibly. Services can be suspended, resumed and terminated at run-time. The service framework has been implemented in C++ and uses CORBA as distribution mechanism. It is fully multi-threaded and provides recovery mechanisms in order to safe computation time after a crash. The implementation aims at high flexibility, extensibility, clarity and the use of modern, object-oriented software technologies. The framework is independent of the actual domain and of the data objects that need to be exchanged. The service framework is used in the large-scale Remote Nuclear Reactor Monitoring System of Baden-Wuerttemberg. This mission-critical system simulates the dispersion and deposition of radioactive nuclides and their effects on humans. In the past, the single steps of the simulation had to be co-ordinated by humans. Now, they are provided as automated information services, integrated into the system and are always available. For the system, a special multi-agent system has been employed. The service framework is the backbone of that multi-agent system. Some experiences and insights on the system level are discussed, which cover mainly the distribution of system knowledge and its impact on maintenance costs as well as procedural vs. rule-based problems and approaches. (orig.) [de

  15. Code for the core simulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Serrano, M.A.B.

    1978-08-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numericaly. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistence added to the film coeficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (Author) [pt

  16. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  17. A severe accident analysis for the system-integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Jung, Gunhyo; Jae, Moosung

    2015-01-01

    The System-Integrated Modular Advanced Reactor (SMART) that has been recently designed in KOREA and has acquired standard design certification from the nuclear power regulatory body (NSSC) is an integral type reactor with 330MW thermal power. It is a small sized reactor in which the core, steam generator, pressurizer, and reactor coolant pump that are in existing pressurized light water reactors are designed to be within a pressure vessel without any separate pipe connection. In addition, this reactor has much different design characteristics from existing pressurized light water reactors such as the adoption of a passive residual heat removal system and a cavity flooding system. Therefore, the safety of the SMART against severe accidents should be checked through severe accident analysis reflecting the design characteristics of the SMART. For severe accident analysis, an analysis model has been developed reflecting the design information presented in the standard design safety analysis report. The severe accident analysis model has been developed using the MELCOR code that is widely used to evaluate pressurized LWR severe accidents. The steady state accident analysis model for the SMART has been simulated. According to the analysis results, the developed model reflecting the design of the SMART is found to be appropriate. Severe accident analysis has been performed for the representative accident scenarios that lead to core damage to check the appropriateness of the severe accident management plan for the SMART. The SMART has been shown to be safe enough to prevent severe accidents by utilizing severe accident management systems such as a containment spray system, a passive hydrogen recombiner, and a cavity flooding system. In addition, the SMART is judged to have been technically improved remarkably compared to existing PWRs. The SMART has been designed to have a larger reactor coolant inventory compared to its core's thermal power, a large surface area in

  18. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  19. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  20. Development of a system based in a digital signal processor (DSP) for a simulator of power regulation in a reactor: first stage

    International Nuclear Information System (INIS)

    Benitez R, J.S.; Perez C, B.

    2002-01-01

    The first stage of the development of a digital system based on a DSP is presented which forms part of an hybrid simulator for the power regulation in am model of the punctual kinetics of a TRIGA reactor type. The DSP performs the regulation, using a Mandami type algorithm of diffuse control. In the algorithm, the universe of the output variable is discretized for performing in an unique stage the aggregation functions and dis-diffusization. (Author)

  1. In-operation diagnostic system for reactor coolant pump

    International Nuclear Information System (INIS)

    Sugiyama, Mitsunobu; Hasegawa, Ichiro; Kitahara, Hiromichi; Shimamura, Kazuo; Yasuda, Chiaki; Ikeda, Yasuhiro; Kida, Yasuo.

    1996-01-01

    A reactor coolant pump (RCP) is one of the most important rotating machines in the primary loop nuclear power plants. To improve the reliability and of nuclear power plants, a new diagnostic system that enables early detection of RCP faults has been developed. This system is based on continuous monitoring of vibration and other process data. Vibration is an important indicator of mechanical faults providing information on physical phenomena such as changes in dynamic characteristics and excitation forces changes that signal failure or incipient failure. This new system features comparative vibration analysis and simulation to anticipate equipment failure. (author)

  2. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  3. Development of Reactor Core Model based on Optimal Analysis for Shinhanul no. 1, 2 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-min [Korea Hydro Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    As one of the outputs of 'Development of the Shin Hanul Nuclear Plant(SHN) 1,2 Simulator' project which is being done by KHNP Central Research Institute, the SHN1,2 Simulator is being developed including the KNICS methodology and advanced Alarm Systems first applied to the Nuclear Power Plant in Korea, and the SHN 1,2 simulator adopts the virtually stimulated HMI(Human-Machine Interface) for the non-safety MMIS system, whose key-programs are identical to those applied to the real SHN 1,2 plants. The purpose of this paper is to develop localization core model by integrating the Simulator system with the Simulator core model though technology agreement of KAERI. To develop ShinHanul 1 and 2 reactor core simulator model, KHNP and KAERI create MASTER-SIM model and tried validation. And calculations of MASSIM{sub S}S program for MASTER{sub S}IM validation, are within tolerance range. Test has not yet been completed. And many verification will be conducted MASTER-SIM software is expected to be the highest economic software and satisfy international simulator standards.

  4. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  5. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  6. The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation

    International Nuclear Information System (INIS)

    Peluso, M.A.V.

    1978-01-01

    The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author) [pt

  7. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  8. Measurements and simulations of electromagnetic perturbations on neutronic and thermodynamic control systems of nuclear reactors

    International Nuclear Information System (INIS)

    Lecompte, J.-C.; Buisson, Jacques.

    1981-01-01

    Neutronics and thermodynamics measuring devices realize the control and nuclear safety of the reactor and the core. They cause the emergency stop of the reactor if the informations given by the sensors are out of the normal operation tolerances. Defining and assuring a protection level sufficiently high against electromagnetic disturbances is essential for avoiding those measuring devices of giving erroneous indications in the environment where they are located. To obtain this result, one procceds according to the following three steps: a) In situ measurements of the ambient level of disturbances (oscilloscope analysis, statistical measurements). b) Measurement in laboratory of the immunity against the disturbances caused by every constituent of the device (electronic cables, connectors) and then the complete device. c) In situ simulation on the devices of the perturbations caused by the measured ambient level [fr

  9. TRIGASIM: A computer program to simulate a TRIGA Mark I Reactor

    International Nuclear Information System (INIS)

    Ruby, Lawrence

    1992-01-01

    A Fortran-77 computer program has been written which simulates the operation of a TRIGA Mark I Reactor. The 'operator' has options at 1-second intervals, of raising rods, lowering rods, maintaining rods steady, dropping a rod, or scramming the reactor. Results are printed to the screen, and to 2 output files - a tabular record and a logarithmic plot of the power. The Point Kinetic Equations are programmed with 6 delayed groups, quasi-static power feedback, and forward differencing. A pulsing option is available, with simulation which employs the Fuchs Model. A pulse-tail model has been devised to simulate behavior for a few minutes following a pulse. Both graphic and tabular output are also available for the pulses. (author)

  10. Simulation study of a system for diagnosis of nuclear power plant operation

    International Nuclear Information System (INIS)

    Wakabayashi, J.; Fukumoto, A.

    1981-01-01

    A diagnostic system of the nuclear power plant operation is proposed and the applicability of this system to the actual plant has been verified by computer simulation. A typical pressurized water reactor plant simulator was made by an analog computer and the diagnostic system was made by a digital computer. The observed signals obtained from the actual plant are simulated by superposing the equivalent observation noises generated by the digital computer on the sampled signals obtained from the plant simulator. 8 refs

  11. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  12. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  13. Internal transport barrier formation and pellet injection simulation in helical and tokamak reactors

    International Nuclear Information System (INIS)

    Higashiyama, You; Yamazaki, Kozo; Arimoto, Hideki; Garcia, Jeronimo

    2008-01-01

    In the future fusion reactor, plasma density peaking is important for increase in the fusion power gain and for achievement of confinement improvement mode. Density control and internal transport barrier (ITB) formation due to pellet injection have been simulated in tokamak and helical reactors using the toroidal transport linkage code TOTAL. First, pellet injection simulation is carried out, including the neutral gas shielding model and the mass relocation model in the TOTAL code, and the effectiveness of high-field side (HFS) pellet injection is clarified. Second, ITB simulation with pellet injection is carried out with the confinement improvement model based on the E x B shear effects, and it is found that deep pellet penetration is helpful for ITB formation as well as plasma core fuelling in the reversed-shear tokamak and helical reactors. (author)

  14. Nuclear system test simulator

    International Nuclear Information System (INIS)

    Sawyer, S.D.; Hill, W.D.; Wilson, P.A.; Steiner, W.M.

    1987-01-01

    A transportable test simulator is described for a nuclear power plant. The nuclear power plant includes a control panel, a reactor having actuated rods for moving into and out of a reactor for causing the plant to operate, and a control rod network extending between the control panel and the reactor rods. The network serially transmits command words between the panel and rods, and has connecting interfaces at preselected points remote from the control panel between the control panel and rods. The test simulator comprises: a test simulator input for transport to and connection into the network at at least one interface for receiving the serial command words from the network. Each serial command includes an identifier portion and a command portion; means for processing interior of the simulator for the serial command words for identifying that portion of the power plant designated in the identifier portion and processing the word responsive to the command portion of the word after the identification; means for generating a response word responsive to the command portion; and output means for sending and transmitting the response word to the nuclear power plant at the interface whereby the control panel responds to the response word

  15. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  16. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  17. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  18. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  19. Dosimetry system of the RB reactor

    International Nuclear Information System (INIS)

    Lolic, B.; Vukadin, D.

    1962-01-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor

  20. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  1. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  2. Simulation of the aspersion system of the core at high pressure (HPCS) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de aspersion del nucleo alta presion (HPCS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, D.; Chavez M, C., E-mail: danmirnyi@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    A high-priority topic for the nuclear industry is the safety, consequently a nuclear power plant should have the emergency systems of cooling of the core (ECCS), designed exclusively to enter in operation in the event of an accident with coolant loss, including the design base accident. The objective of the aspersion system of the core at high pressure (HPCS) is to provide in an autonomous way the cooling to the core maintaining for if same the coolant inventory even when a small break is presented that does not allow the depressurization of the reactor and also avoiding excessive temperatures that affect the shielding of the fuel. The present work describes the development of the model and the simulation of the HPCS using the RELAP/SCDAP code. During the process simulation, for the setting in march of the system HPCS in an accident with coolant loss is necessary to implement the main components of the system taking into account what unites them, the main pump, the filled pump, the suction and injection valves, pipes and its water sources that can be condensed storage tanks and the suppression pool. The simulation of this system will complement the model with which counts the Analysis Laboratory in Nuclear Reactors Engineering of the UNAM regarding to the nuclear power plant of Laguna Verde which does not have a detailed simulation of the emergency cooling systems. (Author)

  3. RELAP5 based engineering simulator

    International Nuclear Information System (INIS)

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper presents an overview of the INEL Engineering Simulation Center, and discusses the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It provides an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation

  4. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  5. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Carroll, D.G.; Chen, C.; Crane, C.; Dalton, R.; Taylor, J.R.; Tosunoglu, S.; Weymouth, T.

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS

  6. Computational analysis of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.

    2007-01-01

    Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing

  7. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  8. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Focus session: Uncertainty analyses in reactor core simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, Winfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Forschungszentrum

    2017-12-15

    The supplementation of reactor simulations by uncertainty analyses is becoming increasingly important internationally due to the fact that the reliability of simulation calculations can be significantly increased by the quantification of uncertainties in comparison to the use of so-called conservative methods (BEPU- ''Best-Estimate plus Uncertainties''). While systematic uncertainty analyses for thermo-hydraulic calculations have been performed routinely for a long time, methods for taking into account uncertainties in nuclear data, which are the basis for neutron transport calculations, are under development. The Focus Session Uncertainty Analyses in Reactor Core Simulations was intended to provide an overview of international research and development with respect to supplementing reactor core simulations with uncertainty and sensitivity analyses, in research institutes as well as within the nuclear industry. The presented analyses not only focused on light water reactors, but also on advanced reactor systems. Particular emphasis was put on international benchmarks in the field. The session was chaired by Winfried Zwermann (Gesellschaft fuer Anlagen- und Reaktorsicherheit).

  9. CFD simulation of fluid dynamic and biokinetic processes within activated sludge reactors under intermittent aeration regime.

    Science.gov (United States)

    Sánchez, F; Rey, H; Viedma, A; Nicolás-Pérez, F; Kaiser, A S; Martínez, M

    2018-08-01

    Due to the aeration system, biological reactors are the most energy-consuming facilities of convectional WWTPs. Many biological reactors work under intermittent aeration regime; the optimization of the aeration process (air diffuser layout, air flow rate per diffuser, aeration length …) is necessary to ensure an efficient performance; satisfying the effluent requirements with the minimum energy consumption. This work develops a CFD modelling of an activated sludge reactor (ASR) which works under intermittent aeration regime. The model considers the fluid dynamic and biological processes within the ASR. The biological simulation, which is transient, takes into account the intermittent aeration regime. The CFD modelling is employed for the selection of the aeration system of an ASR. Two different aeration configurations are simulated. The model evaluates the aeration power consumption necessary to satisfy the effluent requirements. An improvement of 2.8% in terms of energy consumption is achieved by modifying the air diffuser layout. An analysis of the influence of the air flow rate per diffuser on the ASR performance is carried out. The results show a reduction of 14.5% in the energy consumption of the aeration system when the air flow rate per diffuser is reduced. The model provides an insight into the aeration inefficiencies produced within ASRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The DSNP simulation language and its application to liquid-metal fast breeder reactor transient analyses

    International Nuclear Information System (INIS)

    Saphier, D.; Madell, J.T.

    1982-01-01

    A new, special purpose block-oriented simulation language, the Dynamic Simulator for Nuclear Power Plants (DSNP), was used to perform a dynamic analysis of several conceptual design studies of liquid metal fast breeder reactors. The DSNP being a high level language enables the user to transform a power plant flow chart directly into a simulation program using a small number of DSNP statements. In addition to the language statements, the DSNP system has its own precompiler and an extensive library containing models of power plant components, algorithms of physical processes, material property functions, and various auxiliary functions. The comparative analysis covered oxide-fueled versus metal-fueled core designs and loop- versus pool-type reactors. The question of interest was the rate of change of the temperatures in the components in the upper plenum and the primary loop, in particular the reactor outlet nozzle and the intermediate heat exchanger inlet nozzle during different types of transients. From the simulations performed it can be concluded that metal-fueled cores will have much faster temperature transients than oxide-fueled cores due mainly to the much higher thermal diffusivity of the metal fuel. The transients in the pool-type design (either with oxide fuel or metal fuel) will be much slower than in the loop-type design due to the large heat capacity of the sodium pool. The DSNP language was demonstrated to be well suited to perform many types of transient analysis in nuclear power plants

  11. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  12. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  13. RSAS: a Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Dixon, B.W.; Bray, M.A.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is being developed for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system generates situation assessments for the NRC Reactor Safety Team based on a limited number of plant parameters, known operator actions, and plant status data. The RSAS rule base currently covers one reactor type. The extension of the rule base to other reactor types is also discussed

  14. IEA-R1 reactor core simulation with RELAP5 code

    International Nuclear Information System (INIS)

    Rocha, Ricardo Takeshi Vieira da; Belchior Junior, Antonio; Andrade, Delvonei Alves de; Sabundjian, Gaiane; Umbehaum, Pedro Ernesto; Torres, Walmir Maximo

    2005-01-01

    This paper presents a preliminary RELAP5 model for the IEA-R1 core. The power distribution is supplied by the neutronic code, CITATION. The main objective is to model the IEA-R1 core and validate the model through the comparison of the results to the ones from COBRA and PARET, which were used in the Final Safety Analysis Report (FSAR) for this plant. Preliminary calculations regarding some simulations are presented. Boundary conditions are simulated through time dependent components. Results obtained are compared to those available for the IEA-R1. This study will be continued considering a model for the whole plant. Important transient and accidents will be analysed in order to verify the Emergency Core Cooling System - ECCS efficiency to hold its function as projected to preserve the integrity of the reactor core and guarantee its cooling. (author)

  15. Patterns identification in supervisory systems of nuclear reactors installations and gas pipelines systems using self-organizing maps

    International Nuclear Information System (INIS)

    Doraskevicius Junior, Waldemar

    2005-01-01

    Self-Organizing Maps, SOM, of Kohonen were studied, implemented and tested with the aim of developing, for the energy branch, an effective tool especially for transient identification in nuclear reactors and for gas pipelines networks logistic supervision, by classifying operations and identifying transients or abnormalities. The digital system for the test was developed in Java platform, for the portability and scalability, and for belonging to free development platforms. The system, executed in personal computers, showed satisfactory results to aid in decision taking, by classifying IRIS (International Reactor Innovative and Secure) reactor operation conditions (data from simulator) and by classifying Southeast (owner: TRANSPETRO - Brazil) gas pipeline network. Various adaptations were needed for such business, as new topologies for the output layer of artificial neural network and particular preparation for the input data. (author)

  16. Simulation of Reforming Reactor Tube: Quantifying Catalyst Pellet's Effectiveness Factor

    OpenAIRE

    Da Cruz, Flavio Eduardo

    2016-01-01

    In this work, a consistent mathematical model to simulate a spherical catalytic pellet and a Packed-Bed Reactor (PBR) is develop. The Dusty Gas Model (DGM) is applied to the calculation of the diffusive fluxes in the porous media. Simulations are executed considering hydrogen production from steam methane reforming. Species’ diffusivities are calculated using data from literature as well as the values for tortuosity and porosity. The pellet simulation is performed considering mass, species, m...

  17. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  18. Acoustic emission from fuel pellets in a simulated reactor environment

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Kennedy, C.R.; Reimann, K.J.

    1977-01-01

    Thermal-shock damage of nuclear reactor fuel pellets in a simulated reactor environment has been correlated with acoustic-emission data obtained from sensors placed on extensions of the electrical feedthroughs. Ringdown counts, rms output data, and event-location data has been acquired for experiments carried out with single pellets as well as multiple pellet stacks. These tests have shown that acoustic-emission monitoring can provide information indicating the onset and the extent of cracking

  19. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  20. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  1. Simulating a partial LOCA in a narrow channel using the DSNP simulating system

    International Nuclear Information System (INIS)

    Saphier, D.

    2007-01-01

    A partial LOCA accident in a pool type research reactor was investigated. A new MTR type fuel channel model for the DSNP simulation system was developed; permitting detailed axial and radial temperature distribution. New and older heat transfer correlations were incorporated in the model. Simulation for water levels of 14 and 35 cm in a 62 cm channel were performed. The resulting maximum temperatures remain significantly below the aluminium melting point, and no damage to the core will take place under these conditions

  2. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

    International Nuclear Information System (INIS)

    Saha Ray, S.

    2012-01-01

    Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

  3. A teaching model in nuclear reactor dynamics by a CSMP simulation

    International Nuclear Information System (INIS)

    Alujevic, A.; Potrc, I.

    1979-01-01

    The CSMP is an IBM problem-oriented code, designated to facilitate the digital simulation of continuous system processes on large-scale computing machines. It provides an input language that accepts problems, described in the form of a set of ordinary differential equations or block diagrams. The method has been used for reactor dynamics parametric studies with inlet temperature, coolant flow and internal heat source fluctuations. Results of step and ramp input changes in fluid temperature are given on time-dependent scale, with diagrams drawn from automatic plots by the computer digigraphic peripherals. (author)

  4. Engineering simulator applications to emergency preparedness at DOE reactor sites

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1990-01-01

    This paper reports that since 1984 the Idaho National Engineering Laboratory (INEL) has conducted twenty-seven comprehensive emergency preparedness exercises at the U.S. Nuclear Regulatory Commission's (NRC) Headquarters Operations Center and Regional Incident Response Centers using the NRC's Nuclear Plant Analyzer (NPA), developed at the INEL, as an engineering simulator. The objective of these exercises has been to assist the NRC in upgrading its preparedness to provide technical support backup and oversight to U.S. commercial nuclear plant licensees during emergencies. With the current focus on Department of Energy (DOE) reactor operational safety and emergency preparedness, this capability is envisioned as a means of upgrading emergency preparedness at DOE production and test reactor sites such as the K-Reactor at Savannah River Laboratory (SRL) and the Advanced Test Reactor (ATR) at INEL

  5. Development of a protection system for research reactor based in Field Programmable Gate Array - FPGA

    International Nuclear Information System (INIS)

    Martins, Roque Hudson da Silva

    2016-01-01

    This study presents a implementation purpose of a protection system for research nuclear reactors by using a programed device FPGA (Field Programmable Gate Array). As well as logic protection method involved on an automatic shutdown (TRIP) of a reactor, that ensure the security on such systems. These new control and operation mechanics are developed to guarantee that the security limits of a power plant are not exceeded, these mechanics can work isolated or in groups to safe guard the security levels. For this implementation to be completed, there will be presented the main aspects and concepts referred to protection systems, mostly about research nuclear reactors, with some applications terms exposed. The system proposed at this paper was developed following the VHDL (Very High Speed Integrated Circuits) hardware describing language, and the Modelsim software from Altera Software to program the automatic turning off routines, and hypothetical simulations for such. The results show that for every software application for supporting nuclear reactors, like security devices, they have to meet the IEC 60880 criteria. This paper have great importance, seeing that nuclear reactor security systems, are a basic element for ensure the reactor security. (author)

  6. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C.

    2012-10-01

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  7. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  8. Proceedings of workshop on reactor shutdown system

    International Nuclear Information System (INIS)

    1997-03-01

    India has gained considerable experience in design, development, construction and operation of research and power reactors during the last four decades. Reactor shutdown system (RSS) is the most important engineered safety system of any reactor. A lot of technological developments have taken place to improve the reactor shutdown systems, particularly with advancement in reliability analysis and instrumentation and control. If the reactor is not shutdown, the fuel may melt, releasing radioactivity and possibly reactivity addition as in the case of Fast Breeder Reactor (FBR). Apart from radiological safety consequences, large investment has to be written off. The function of the RSS is to stop fission chain reaction and prevent breach of fuel. The design of RSS is multidisciplinary. It requires reactor physics analysis, design of absorber rods, drive mechanisms, safety logic to order shutdown and instrumentation to detect unsafe conditions. High reliability is essential and this requires two independent shutdown systems. This book contains the proceedings of the workshop on reactor shutdown system and papers relevant to INIS are indexed separately

  9. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  10. Implementation of a pressurized water reactor simulator for teaching on a mini-computer

    International Nuclear Information System (INIS)

    Tallec, Michele.

    1982-06-01

    This paper presents the design of a pressurized water reactor power plant simulator using a mini-computer. This simulator is oriented towards teaching. It operates real-time simulations and many parameters can be changed by the student during execution of the digital code. First, a state variable model of the dynamic behavior of the plant is derived from the physical laws. The second part presents the problems associated with the use of a mini-computer for the resolution of a large differential system, notably the problems of memory-space availability, execution time and numerical integration. Finally, it contains the description of the control deck outlay used to interfer with the digital code, and of the the conditions that can be changed during an excution [fr

  11. Reacting flow simulations of supercritical water oxidation of PCB-contaminated transformer oil in a pilot plant reactor

    Directory of Open Access Journals (Sweden)

    V. Marulanda

    2011-06-01

    Full Text Available The scale-up of a supercritical water oxidation process, based on recent advancements in kinetic aspects, reactor configuration and optimal operational conditions, depends on the research and development of simulation tools, which allow the designer not only to understand the complex multiphysics phenomena that describe the system, but also to optimize the operational parameters to attain the best profit for the process and guarantee its safe operation. Accordingly, this paper reports a multiphysics simulation with the CFD software Comsol Multiphysics 3.3 of a pilot plant reactor for the supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil. The proposed model was based on available information for the kinetic aspects of the complex mixture and the optimal operational conditions obtained in a lab-scale continuous supercritical water oxidation unit. The pilot plant simulation results indicate that it is not feasible to scale-up directly the optimal operational conditions obtained in the isothermal lab-scale experiments, due to the excess heat released by the exothermic oxidation reactions that result in outlet temperatures higher than 600°C, even at reactor inlet temperatures as low as 400°C. Consequently, different alternatives such as decreasing organic flowrates or a new reactor set-up with multiple oxidant injections should be considered to guarantee a safe operation.

  12. A simulator-independent optimization tool based on genetic algorithm applied to nuclear reactor design

    International Nuclear Information System (INIS)

    Abreu Pereira, Claudio Marcio Nascimento do; Schirru, Roberto; Martinez, Aquilino Senra

    1999-01-01

    Here is presented an engineering optimization tool based on a genetic algorithm, implemented according to the method proposed in recent work that has demonstrated the feasibility of the use of this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it can be customized to use most of the simulators which have the input parameters read from formatted text files and the outputs also written from a text file. As the nuclear reactor simulators generally use such kind of interface, the proposed tool plays an important role in nuclear reactor designs. Research reactors may often use non-conventional design approaches, causing different situations that may lead the nuclear engineer to face new optimization problems. In this case, a good optimization technique, together with its customizing facility and a friendly man-machine interface could be very interesting. Here, the tool is described and some advantages are outlined. (author)

  13. MAPLE-X10 reactor digital control system

    International Nuclear Information System (INIS)

    Deverno, M.T.; Hinds, H.W.

    1991-10-01

    The MAPLE-X10 reactor, currently under construction at the Chalk River Laboratories of Atomic Energy of Canada Limited, is a 10 MW t , pool-type, light-water reactor. It will be used for radioisotope production and silicon neutron transmutation doping. The reactor is controlled by a Digital Control System (DCS) and protected against abnormal process events by two independent safety systems. The DCS is an integrated control system used to regulate the reactor power and process systems. The safety philosophy for the control system is to minimize unsafe events arising from system failures and operational errors. this is achieved through redundancy, fail-safe design, automatic fault detection, and the selection of highly reliable components. The DCS provides both computer-controlled reactor regulation from the shutdown state to full power and automated reactor shutdown if safe limits are exceeded or critical sensors malfunction. The use of commercially available hardware with enhanced quality assurance makes the system cost effective while providing a high degree of reliability

  14. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  15. Application of 2DOF controller for reactor power control. Verification by numerical simulation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1996-09-01

    In this report the usefulness of the two degree of freedom (2DOF) control is discussed to improve the reference response characteristics and robustness for reactor power control system. The 2DOF controller consists of feedforward and feedback elements. The feedforward element was designed by model matching method and the feedback element by solving the mixed sensitivity problem of H ∞ control. The 2DOF control gives good performance in both reference response and robustness to disturbance and plant perturbation. The simulation of reactor power control was performed by digitizing the 2DOF controller with the digital control periods of 10[msec]. It is found that the control period of 10[msec] is enough not to make degradation of the control performance by digitizing. (author)

  16. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  17. Nonlinear punctual dynamic applied to simulation of PWR type reactors

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-01-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model to the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and C S M P using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (author)

  18. An intelligent environment for dynamic simulation program generation of nuclear reactor systems

    International Nuclear Information System (INIS)

    Ishizaka, Hiroaki; Gofuku, Akio; Yoshikawa, Hidekazu

    2004-01-01

    A graphical user interface system was developed for the two dynamic simulation systems based on modular programming methods: MSS and DSNP. The following works were made in conjunction with the system development: (1) conversion of the module libraries of both DSNP and MSS, (2) extension of DSNP- pre-compiler, (3) graphical interface for module integration, and (4) automatic converter of simple language descriptions for DSNP, where (1) and (2) were made on an engineering work station, while the rest (3) and (4), on Macintosh HyperCard. By using the graphical interface, a user can specify the structure of a simulation model, geometrical data, initial values of variables, etc. only by handling modules as icon on the pallet fields. The use of extended DSNP pre-compiler then generates the final product of dynamic simulation program automatically. The capability and effectiveness of the system was confirmed by a sample simulation of PWR SBLOCA transient in PORV stuck open event. (author)

  19. Simulation of the containment spray system test PACOS PX2.2 with the integral code ASTEC and the containment code system COCOSYS

    International Nuclear Information System (INIS)

    Risken, Tobias; Koch, Marco K.

    2011-01-01

    The reactor safety research contains the analysis of postulated accidents in nuclear power plants (npp). These accidents may involve a loss of coolant from the nuclear plant's reactor coolant system, during which heat and pressure within the containment are increased. To handle these atmospheric conditions, containment spray systems are installed in various light water reactors (LWR) worldwide as a part of the accident management system. For the improvement and the safety ensurance in npp operation and accident management, numeric simulations of postulated accident scenarios are performed. The presented calculations regard the predictability of the containment spray system's effect with the integral code ASTEC and the containment code system COCOSYS, performed at Ruhr-Universitaet Bochum. Therefore the test PACOS Px2.2 is simulated, in which water is sprayed in the stratified containment atmosphere of the BMC (Battelle Modell-Containment). (orig.)

  20. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  1. RELAP5 based engineering simulator

    International Nuclear Information System (INIS)

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor II (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper will present an overview of the INEL Engineering Simulation Center, and discuss the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It will provide an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation. 12 refs., 2 figs

  2. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  3. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  4. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  5. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  6. CFD Numerical Simulation of Biodiesel Synthesis in a Spinning Disc Reactor

    Directory of Open Access Journals (Sweden)

    Wen Zhuqing

    2015-03-01

    Full Text Available In this paper a two-disc spinning disc reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat discs, located coaxially and parallel to each other with a gap of 0.2 mm between the discs. The upper disc is located on a rotating shaft while the lower disc is stationary. The feed liquids, triglycerides (TG and methanol are introduced coaxially along the centre line of rotating disc and stationary disc. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effect of the upper disc’s spinning speed is evaluated. The results show that the rotational speed increase causes an increase of TG conversion despite the fact that the residence time decreases. Compared to data obtained from adequate experiments, the model shows a satisfactory agreement.

  7. A multi-group neutron noise simulator for fast reactors

    International Nuclear Information System (INIS)

    Tran, Hoai Nam; Zylbersztejn, Florian; Demazière, Christophe; Jammes, Christian; Filliatre, Philippe

    2013-01-01

    Highlights: • The development of a neutron noise simulator for fast reactors. • The noise equation is solved fully in a frequency-domain. • A good agreement with ERANOS on the static calculations. • Noise calculations induced by a localized perturbation of absorption cross section. - Abstract: A neutron noise simulator has been developed for fast reactors based on diffusion theory with multi-energy groups and several groups of delayed neutron precursors. The tool is expected to be applicable for core monitoring of fast reactors and also for other reactor types with hexagonal fuel assemblies. The noise sources are modeled through small stationary fluctuations of macroscopic cross sections, and the induced first order noise is solved fully in the frequency domain. Numerical algorithms are implemented for solving both the static and noise equations using finite differences for spatial discretization, where a hexagonal assembly is radially divided into finer triangular meshes. A coarse mesh finite difference (CMFD) acceleration has been used for accelerating the convergence of both the static and noise calculations. Numerical calculations have been performed for the ESFR core with 33 energy groups and 8 groups of delayed neutron precursors using the cross section data generated by the ERANOS code. The results of the static state have been compared with those obtained using ERANOS. The results show an adequate agreement between the two calculations. Noise calculations for the ESFR core have also been performed and demonstrated with an assumption of the perturbation of the absorption cross section located at the central fuel ring

  8. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  9. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  10. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  11. New digital control and power protection system of VR 1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Juoeickova, M.

    2005-01-01

    The contribution describes the new VR-1 training reactor control and power protection system at the Czech Technical University in Prague. The control system provides safety and control functions, calculates average values of the important variables and sends data and system status to the human-machine interface. The upgraded control system is based on a high quality industrial PC. The operating system of the PC is the Microsoft Windows XP with the real time support RTX of the VentureCom Company. The software was developed according to requirements in MS Visual C. The independent power protection system is a component of the reactor safety (protection) system with high quality and reliability requirements. The digital system is redundant; each channel evaluates the reactor power and the velocity of power changes and provides safety functions. The digital part of the channel is multiprocessor-based. The software was developed with respect to nuclear standards. The software design was coded in the C language regarding the NRC restrictions. Configuration management, verification and validation accompanied the software development. Both systems were thoroughly tested. Firstly, the non active tests were carried out. During these tests, the active core of the reactor was subcritical; the input signals were generated from HPIB and VXI controlled instruments to simulate different operational and safety events. The software for instruments control and tests evaluation utilized Agilent VEE development system. After the successful non active checking, the active tests followed. (author)

  12. SIMODIS - a software package for simulating nuclear reactor components

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Borges, Eduardo M.

    2000-01-01

    In this paper it is presented the initial development effort in building a nuclear reactor component simulation package. This package was developed to be used in the MATLAB simulation environment. It uses the graphical capabilities from MATLAB and the advantages of compiled languages, as for instance FORTRAN and C ++ . From the MATLAB it takes the facilities for better displaying the calculated results. From the compiled languages it takes processing speed. So far models from reactor core, UTSG and OTSG have been developed. Also, a series a user-friendly graphical interfaces have been developed for the above models. As a by product a set of water and sodium thermal and physical properties have been developed and may be used directly as a function from MATLAB, or by being called from a model, as part of its calculation process. The whole set was named SIMODIS, which stands for SIstema MODular Integrado de Simulacao. (author)

  13. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  14. Control parameter optimization for AP1000 reactor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu

    2016-01-01

    Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization

  15. THEXSYST - a knowledge based system for the control and analysis of technical simulation calculations

    International Nuclear Information System (INIS)

    Burger, B.

    1991-07-01

    This system (THEXSYST) will be used for control, analysis and presentation of thermal hydraulic simulation calculations of light water reactors. THEXSYST is a modular system consisting of an expert shell with user interface, a data base, and a simulation program and uses techniques available in RSYST. A knowledge base, which was created to control the simulational calculation of pressurized water reactors, includes both the steady state calculation and the transient calculation in the domain of the depressurization, as a result of a small break loss of coolant accident. The methods developed are tested using a simulational calculation with RELAP5/Mod2. It will be seen that the application of knowledge base techniques may be a helpful tool to support existing solutions especially in graphical analysis. (orig./HP) [de

  16. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    advanced type of reactors have adopted passive safety systems such as gravity driven water pool, isolation condenser, accumulator and other passive heat removal systems. Since 1991, the IAEA has made various efforts to improve economics, safety, and reliability of evolutionary or innovative reactors through the implementation of a variety of activities related to passive safety systems. In particular, the coordinated research programme (CRP) launched in 2004, titled Natural Circulation Phenomena, Modelling and Reliability of Passive Systems, focused on the use of passive safety systems in new generation of nuclear power plants. Following this CRP, the IAEA supported the implementation of the collaborative project on Advanced Water Cooled Reactor (AWCR) Case Studies in Support of Passive Safety Systems launched in 2008. The objectives of the current collaborative project were to investigate natural circulation phenomena related to the selected AWCR systems, such as: (1) steady state, stability and startup of single-phase and two-phase natural circulation reactor systems, and (2) theoretical and experimental studies on mixing and stratification in large water pools with immersed heat exchangers. The reactor systems concerned are the advanced heavy water reactor (AHWR) of India, the Central Argentina de Elementos Modulares (CAREM-25) of Argentina, and the advanced power reactor plus (APR+) of the Republic of Korea. During the past three years, India, Argentina, and the Republic of Korea have actively participated in implementing this project and, according to the terms of reference, each country has successfully conducted an assigned case study associated with natural circulation and thermal stratification phenomena. In-depth review and discussion on case study results were made at the final consultants meeting held in December 2011 at the IAEA Headquarters in Vienna, Austria during which the final report was also reviewed. In order to simulate the AHWR main heat transport

  17. Simulation software of 3-D two-neutron energy groups for ship reactor with hexagonal fuel subassembly

    International Nuclear Information System (INIS)

    Zhang Fan; Cai Zhangsheng; Yu Lei; Gui Xuewen

    2005-01-01

    Core simulation software for 3-D two-neutron energy groups is developed. This software is used to simulate the ship reactor with hexagonal fuel subassembly after 10, 150 and 200 burnup days, considering the hydraulic and thermal feedback. It accurately simulates the characteristics of the fast and thermal neutrons and the detailed power distribution in a reactor under normal and abnormal operation condition. (authors)

  18. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  19. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  20. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  1. Reactor protection system. Revision 1

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Vincent, D.R.; Lesniak, L.M.

    1975-04-01

    The reactor protection system-II (RPS-II) designed for use on Babcock and Wilcox 145- and 205-fuel assembly pressurized water reactors is described. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W. (U.S.)

  2. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  3. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  4. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented

  5. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  6. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  7. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor; Desarrollo de un simulador para diseno y prueba de controladores de potencia en un reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Perez M, C.; Benitez R, J.S.; Lopez C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  8. Numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Z., E-mail: ssfmorghi@gmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Puente, Jesus, E-mail: jpuente720@gmail.com [Centro Federal de Educaçao Tecnologica Celso Suckowda Fonseca (CEFET), Angra dos Reis, RJ (Brazil); Baliza, Ana R., E-mail: baliza@eletronuclear.gov.br [Eletrobras Eletronuclear Angra dos Reis, RJ (Brazil)

    2017-07-01

    After a loss-of-coolant accident (LOCA) in a Pressurized Water Reactor (PWR), the temperature of the fuel elements cladding increases dramatically due to the heat produced by the fission products decay, which is not adequately removed by the vapor contained in the core. In order to avoid this sharp rise in temperature and consequent melting of the core, the Emergency Core Cooling System is activated. This system initially injects borated water from accumulator tanks of the reactor through the inlet pipe (cold leg) and the outlet pipe (hot leg), or through the cold leg only, depending on the plant manufacturer. Some manufacturers add to this, direct injection into the upper plenum of the reactor. The penetration of water into the reactor core is a complex thermo fluid dynamic process because it involves the mixing of water with the vapor contained in the reactor, added to that generated in the contact of the water with the still hot surfaces in various geometries. In some critical locations, the vapor flowing in the opposite direction of the water can control the penetration of this into the core. This phenomenon is known as Countercurrent Flow Limitation (CCFL) or Flooding, and it is characterized by the control that a gas exerts in the liquid flow in the opposite direction. This work presents a proposal to use a CFD to simulate the CCFL phenomenon. Numerical computing can provide important information and data that is difficult or expensive to measure or test experimentally. Given the importance of computational science today, it can be considered a third and independent branch of science on an equal footing with the theoretical and experimental sciences. (author)

  9. Development of fault diagnostic technique using reactor noise analysis

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B.

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  10. Development of fault diagnostic technique using reactor noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  11. Primary system thermal-hydraulic simulation of a experimental pool type research fast reactor

    International Nuclear Information System (INIS)

    Borges, E.M.; Braz Filho, F.A.

    1993-01-01

    The first step of the Fast Reactor Program (REARA) is the design of an experimental reactor. To this end a 5 MW t pool type reactor was adapted. The objective of this work is to evaluate the reactor behaviour at the on set protected accidents. The program NALAP was used in this study and the results showed the outstanding safety margins that this reactor type presents inherently. (author)

  12. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale

    International Nuclear Information System (INIS)

    Faucher, V.; Galon, P.; Beccantini, A.; Crouzet, F.; Debaud, F.; Gautier, T.

    2015-01-01

    Highlights: • Reference accidental situations for current and future reactors are considered. • They require the modeling of complex fluid–structure systems at full reactor scale. • EPX software computes the non-linear transient solution with explicit time stepping. • Focus on the parallel hybrid solver specific to the proposed coupled equations. - Abstract: This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid–structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid–structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside subdomains

  13. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments

    International Nuclear Information System (INIS)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin; Metzroth, Kyle; Catalyurek, Umit; Denning, Richard; Hakobyan, Aram; Dunagan, Sean C.

    2008-01-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other

  14. Design of in-situ reactive wall systems - a combined hydraulical-geochemical-economical simulation study

    International Nuclear Information System (INIS)

    Teutsch, G.; Tolksdorff, J.; Schad, H.

    1997-01-01

    The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested

  15. Expert system driven fuzzy control application to power reactors

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ''supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment

  16. Incorporation of the pressure control system to the classroom simulator

    International Nuclear Information System (INIS)

    Sanchez J, J.

    2004-01-01

    In the nucleo electric centrals, the information systems, support for the decisions making and training are every day more complex and important. The present work is a contribution in this sense, specifically, it is part of a tool of training and analysis developed by the Laboratory of Analysis in Engineering of Nuclear Reactors (LAIRN) of the Faculty of Engineering of the UNAM that consists essentially of a simulator of the Laguna Verde Nucleo electric plant; the classroom simulator, understands the physical systems that compose to the power station and graphic interfaces for its operation and the analysis of results. The project of the classroom simulator is carried out in independent modules that are integrated to the total system as these they are developed and proven. The central objective of this work consists on the development, implementation and it proves of a model of the pressure control system according to the characteristics of the Nucleo electric plant of Laguna Verde, as well as the development of the mimic ones and unfolding necessary graphics to make its interactive operation from sensitive monitors to the tact. The pattern of the control system was developed using as tool the nuclear code of simulation RELAP/SCDAP, designed for the analysis of the types of nuclear reactors more common in occident, and it allows the typical maneuvers in the ways of start up, heating and operation to power, showing an appropriate behavior during the more common operational transitoriness. (Author)

  17. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  18. Development of Vibration Diagnostic System in Research Reactors

    International Nuclear Information System (INIS)

    EL-Kafas, A. A.

    1999-01-01

    Early failure detection and diagnosis system are an important group with increasing interest with the operating support system. Already existing system to monitor integrity of primary system components are vibration and acoustic monitoring system (2,3). The development of vibration diagnostic system for MARIA reactor (30 MW)-the second research reactor in Poland -was made. The new system is applied for the Egypt research reactor (ETRR-1). This paper represents the result obtained during the operation of this activity that carried out at MARIA and ETRR-1 reactors

  19. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)