WorldWideScience

Sample records for reactor safety program

  1. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  2. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  3. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  4. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  5. Research and development program in reactor safety for NUCLEBRAS

    International Nuclear Information System (INIS)

    Pinheiro, R.B.; Resende Lobo, A.A. de; Horta, J.A.L.; Avelar Esteves, F. de; Lepecki, W.P.S.; Mohr, K.; Selvatici, E.

    1984-01-01

    With technical assistance from the IAEA, it was established recently an analytical and experimental Research and Development Program for NUCLEBRAS in the area of reactor safety. The main objectives of this program is to make possible, with low investments, the active participation of NUCLEBRAS in international PWR safety research. The analytical and experimental activities of the program are described with some detail, and the main results achieved up to now are presented. (Author) [pt

  6. The safety basis of the integral fast reactor program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  7. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  8. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  9. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  10. Prioritization of R and D programs on probabilistic reactor safety

    International Nuclear Information System (INIS)

    Husseiny, A.A.

    1982-01-01

    An interactive computer code based on the multiattribute utility theory has been developed with graphic capabilities to use in selection of probabilistic reactor safety RandD programs. Utility values and proper graphic representation are made through lottery games on the computer terminal. The code is applied to prioritize a set of RandD programs on LWR safety based on attributes including regulatory issues, institutional issues and operation problems. The methodology is described here in detail with its applications. Some of the input includes statistical distributions and subjective judgments on institutional issues. The flexibility of the approach provides a tool for decision makers whether on individual or group level to assess LWR safety priorities and continuously update their strategies

  11. Nuclear Safety Research Reactor (NSRR) program in JAERI

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hoshi, T.; Ohnishi, N.; Fujishiro, T.; Inabe, T.

    1974-01-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO 2 heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO 2 is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon separately

  12. Nuclear Safety Research Reactor (NSRR) program in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M; Hoshi, T; Ohnishi, N; Fujishiro, T; Inabe, T [Japan Atomic Energy Research Institute (Japan)

    1974-07-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO{sub 2} heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO{sub 2} is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon

  13. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  14. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  15. Nuclear reactor safety program in US department of energy and future perspectives

    International Nuclear Information System (INIS)

    Song, Y.T.

    1988-01-01

    The US Department of Energy (DOE) establishes policy, issues orders, and assures compliance with requirements. The contractors who design, construct, modify, operate, maintain and decommission DOE reactors, set forth the assessment of the safety of cognizant reactors and implement DOE orders. Teams of experts in the Department, through scheduled and unscheduled review programs, reassess the safety of reactors in every phases of their lives. As new technology develops, the safety programs are reevaluated and policies are modified to accommodate these new technologies. The diagnostic capabilities of the computer using multiple alarms to enhance detection of defects and control of a reactor have been greatly utilized in reactor operating systems. The Application of artificial intelligence technologies for diagnostic and even for the decision making process in the event of reactor accidents would be one of the future trends in reactor safety programs

  16. Nuclear reactor safety program in U.S. Department of Energy and future perspectives

    International Nuclear Information System (INIS)

    Song, Y.T.

    1987-01-01

    The U.S. Department of Energy (DOE) establishes policy, issues orders, and assures compliance with requirements. The contractors who design, construct, modify, operate, maintain and decommission DOE reactors, set forth the assessment of the safety of cognizant reactors and impliment DOE orders. Teams of experts in the Depatment, through scheduled and unscheduled review programs, reassess the safety of reactors in every phases of their lives. As new technology develops, the safety programs are reevaluated and policies are modified to accommodate these new technologies. The diagnostic capabilities of the computer using multiple alarms to enhance detection of defects and control of a reactor have been greatly utilized in reactor operating systems. The application of artificial intelligence (AI) technologies for diagnostic and even for the decision making process in the event of reactor accidents would be one of the future trends in reactor safety programs. (author)

  17. Fast reactor safety program. Progress report, January-March 1980

    International Nuclear Information System (INIS)

    1980-05-01

    The goal of the DOE LMFBR Safety Program is to provide a technology base fully responsive to safety considerations in the design, evaluation, licensing, and economic optimization of LMFBRs for electrical power generation. A strategy is presented that divides safety technology development into seven program elements, which have been used as the basis for the Work Breakdown Structure (WBS) for the Program. These elements include four lines of assurance (LOAs) involving core-related safety considerations, an element supporting non-core-related plant safety considerations, a safety R and D integration element, and an element for the development of test facilities and equipment to be used in Program experiments: LOA-1 (prevent accidents); LOA-2 (limit core damage); LOA-3 (maintain containment integrity); LOA-4 (attenuate radiological consequences); plant considerations; R and D integration; and facility development

  18. Fast reactor test facilities in the US safety program

    International Nuclear Information System (INIS)

    Avery, R.; Dickerman, C.E.; Lennox, D.H.; Rose, D.

    1979-01-01

    The needs for safety information derivable from in-pile programs are reviewed, and the correlation made with existing and planned capability. In view of the current status of the U.S. breeder program, emphasis is given in the review to the impact of different fast breeder options on the required program and facilities. It is concluded that facility needs are somewhat independent of specific fast breeder concept, even though the relative emphasis on the various safety issues will differ. 8 refs

  19. French studies and research program in pressurized water reactor safety

    International Nuclear Information System (INIS)

    Duco, J.

    1986-06-01

    The aim of researches developed now in France on water reactor safety is to obtain means and knowledge allowing to control accidental situations, including severe situations beyond design basis accidents. The main studies and researches concerning water reactors and described in this report are the following ones: core cooling accident and prevention of severe accidents, fuel behavior in accidental situation, behavior of the containment building, fission product transfer and releases in case of accident, problems related to equipment aging, and, methodology of risk analysis and ''human factor'' studies. Most of these studies follow an analytic approach of phenomena [fr

  20. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  1. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  2. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  3. Area Safety Program for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Rappe, G.M.

    1984-10-01

    Overall the Area Safety Program has proved to be a very successful operation. There is no doubt that a safety program organized through line management is the best way to involve all personnel. Naturally, when the program was first started, there was some criticism and a certain resistance on the part of a few individuals to fully participate. However, once the program was underway and it could be seen that it was working to everyone's advantage, this reluctance disappeared and a spirit of full cooperation is now enjoyed. It is very important that for this success to continue there must be a two way flow of information, both from the Area Safety Coordinators up through line management, and from senior management, with decisions and answers, back down through the management chain with the utmost dispatch. As with all programs, there is still room for improvement. This program has started a review cycle with a view to streamlining certain areas and possibly increasing its scope in others

  4. Fusion Reactor Safety Research program. Annual report, FY-80

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1981-06-01

    The report is in three sections. Outside contracts includes a report of newly-started study at the General Atomic Company to consider safety implications of low-activation materials, portions of two papers from ongoing work at PNL and ANL, reports of the lithium spill work at HEDL, the LITFIRE code development at MIT, and risk assessment at MIT, all of which are an expansion of FY-79 outside contracts. EG and G Activities includes adaptations of four papers of ongoing work in transient code development, tritium system risk assessment, heat transfer and fluid flow analysis, and fusion safety data base. Program Plan Development includes the Executive Summary of the Plan, which was completed in FY-80, and is accompanied by a list of publications and a brief outline of proposed FY-81 activities to be based on the Program Plan

  5. High-temperature gas-cooled reactor safety-reliability program plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The purpose of this document is to present a safety plan as part of an overall program plan for the design and development of the High Temperature Gas-Cooled Reactor (HTGR). This plan is intended to establish a logical framework for identifying the technology necessary to demonstrate that the requisite degree of public risk safety can be achieved economically. This plan provides a coherent system safety approach together with goals and success criterion as part of a unifying strategy for licensing a lead reactor plant in the near term. It is intended to provide guidance to program participants involved in producing a technology base for the HTGR that is fully responsive to safety consideration in the design, evaluation, licensing, public acceptance, and economic optimization of reactor systems.

  6. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  7. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  8. Advanced Reactor Safety Program – Stakeholder Interaction and Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    In the Spring of 2013, the Idaho National Laboratory (INL) began discussions with industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling and simulation could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  9. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    Rankin, D.B.

    1984-01-01

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  10. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  11. Lessons learned from the safety assistance program for soviet-designed reactors

    International Nuclear Information System (INIS)

    Steinberg, N.

    1999-01-01

    Two examples of nuclear power situation were compared in this conference paper - the situation in Lithuania and the situation in the Ukraine. Based on the examples mentioned, author conclude that the effectiveness of the Multi-National Safety Assistance Program for Soviet -Designed Reactors in a given recipient country does not depend, in practice, on engineering issues. The principal aspects that determine this effectiveness are: first, the level of safety culture in the country, beginning at the Governmental level but also at the level of the senior managers of nuclear power. The other important factor which contributes is the availability of a well-developed national program for upgrading NPP safety. The economical well-being of nuclear power and of the country as a whole also has a major effect on the effectiveness of the western technical assistance programs that are trying to upgrade reactor safety in a particular recipient country. And finally, international community should have well coordinated and well substantiated safety assistance program for specific country

  12. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  13. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1975

    International Nuclear Information System (INIS)

    1976-05-01

    Light water reactor safety activities performed during October--December 1975 are reported. The blowdown heat transfer tests series of the Semiscale Mod-1 test program was completed. In the LOFT Program, preparations were made for nonnuclear testing. The Thermal Fuels Behavior Program completed a power-cooling-mismatch test and an irradiation effects test on PWR-type fuel rods. Model development and verification efforts of the Reactor Behavior Program included developing new analysis models for the RELAP4 computer code, subroutines for the FRAP-S and FRAP-T codes, and new models for predicting reactor fuel restructuring and zircaloy cladding behavior; an analysis of post-CHF fuel behavior was made using FRAP-T

  14. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Light water reactor safety activities performed during October--December 1975 are reported. The blowdown heat transfer tests series of the Semiscale Mod-1 test program was completed. In the LOFT Program, preparations were made for nonnuclear testing. The Thermal Fuels Behavior Program completed a power-cooling-mismatch test and an irradiation effects test on PWR-type fuel rods. Model development and verification efforts of the Reactor Behavior Program included developing new analysis models for the RELAP4 computer code, subroutines for the FRAP-S and FRAP-T codes, and new models for predicting reactor fuel restructuring and zircaloy cladding behavior; an analysis of post-CHF fuel behavior was made using FRAP-T.

  15. A risk characterization of safety research areas for integral fast reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tibbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of integral fast reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure to critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR safety and related base technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorities

  16. A risk characterization of safety research areas for Integral Fast Reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites

  17. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  18. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    International Nuclear Information System (INIS)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard; Szilard, Ronaldo

    2016-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly ''over-design'' portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as ''safety margin.'' Historically, specific safety margin provisions have been formulated, primarily based on ''engineering judgment.''

  19. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  20. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1986-11-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the research program on reactor safety (RS-projects) are sponsored by the Federal Ministry for Research and Technology (BMFT). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  1. Reports of research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1986-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of his research program on reactor safety (RS-projects) are sponsored by the Federal Ministry for Research and Technology (BMFT). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  2. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  3. Research and development program for PWR safety at the CEA reactor thermal hydraulics laboratories

    International Nuclear Information System (INIS)

    Bernard, M.

    1995-01-01

    Since the start of the French electronuclear program, the three partners Fermate, EDF and Cea (DRN and IPSN) have devoted considerable effort to research and development for safety issues. In particular an important program on thermal hydraulics was initiated at the beginning of the seventies. It is illustrated by the development of the CATHARE thermalhydraulic safety code which includes physical models derived from a large experimental support program and the construction of the BETHSY integral facility which is aimed to assess both the CATHARE code and the physical relevance of the accident management procedures to be applied on reactors. The state of the art on this program is described with particular emphasis on the capabilities and the assessment of the last version of CATHARE and the lessons drawn from 50 BETHSY tests performed so far. The future plans for safety research cover the following strategy: - to solve the few problems identified on present computing tools and extend the assessment - to solve the few problems identified on present computing tools and extend the assessment - to perform safety studies on the basis of plant operation feedback - to contribute to treating the safety issues related to the future reactors and in particular the case of severe accidents which have to be taken into account from the design stage. The program on severe accidents is aimed to support the design studies performed by the industrial partners and to provide computing tools which model the various phases of severe accidents and will be validated on experiments performed with real and simulating materials. The main lines of the program are: - the development of the TOLBIAC 3D code for the thermal hydraulics of core melt pools, which will be validated against the Bali experiment presently under construction - the Sultan experiment, to study the capability of cooling by external flooding of the reactor vessel - the development of the MC-3D code for core melt

  4. Reactor safety method

    International Nuclear Information System (INIS)

    Vachon, L.J.

    1980-01-01

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature

  5. Experience in the implementation of quality assurance program and safety culture assessment of research reactor operation and maintenance

    International Nuclear Information System (INIS)

    Syarip; Suryopratomo, K.

    2001-01-01

    The implementation of quality assurance program and safety culture for research reactor operation are of importance to assure its safety status. It comprises an assessment of the quality of both technical and organizational aspects involved in safety. The method for the assessment is based on judging the quality of fulfillment of a number of essential issues for safety i.e. through audit, interview and/or discussions with personnel and management in plant. However, special consideration should be given to the data processing regarding the fuzzy nature of the data i.e. in answering the questionnaire. To accommodate this situation, the SCAP, a computer program based on fuzzy logic for assessing plant safety status, has been developed. As a case study, the experience in the assessment of Kartini research reactor safety status shows that it is strongly related to the implementation of quality assurance program in reactor operation and awareness of reactor operation staffs to safety culture practice. It is also shown that the application of the fuzzy rule in assessing reactor safety status gives a more realistic result than the traditional approach. (author)

  6. Insights from the interim reliability evaluation program pertinent to reactor safety issues

    International Nuclear Information System (INIS)

    Carlson, D.D.

    1983-01-01

    The Interim Reliability Evaluation Program (IREP) consisted of concurrent probabilistic analyses of four operating nuclear power plants. This paper presents and integrated view of the results of the analyses drawing insights pertinent to reactor safety. The importance to risk of accident sequences initiated by transients and small loss-of-coolant accidents was confirmed. Support systems were found to contribute significantly to the sets of dominant accident sequences, either due to single failures which could disable one or more mitigating systems or due to their initiating plant transients. Human errors in response to accidents also were important risk contributors. Consideration of operator recovery actions influences accident sequence frequency estimates, the list of accident sequences dominating core melt, and the set of dominant risk contributors. Accidents involving station blackout, reactor coolant pump seal leaks and ruptures, and loss-of-coolant accidents requiring manual initiation of coolant injection were found to be risk significant

  7. Insights from the U.S. department of Energy plant safety evaluation program of VVER and RBMK reactors

    International Nuclear Information System (INIS)

    Petri, M.C.; Binder, J.L.; Pasedag, W.F.

    2001-01-01

    Throughout the years 1990 the U.S. Department of Energy has worked build capability in countries of the former Soviet Union to assess the safety of their VVER and RBMK reactors. Through this Plant Safety Evaluation Program, deterministic and probabilistic analyses have been used to provide a documented plant risk profile to support safe plant operation and to set priorities for safety upgrades. Work has been sponsored at thirteen nuclear power plant sites in eight countries. The Plant Safety Evaluation Program has resulted in immediate and long-term safety benefits for the Soviet-designed nuclear plants. (author)

  8. Cost effective safety enhancements for research reactors in Uzbekistan and Kazakhstan - results of a joint program with US DOE

    International Nuclear Information System (INIS)

    Earle, O.K.; Carlson, R.B.; Rakhmanov, A.; Salikhbaev, U.S.; Chernyaev, V.; Chakrov, P.

    2004-01-01

    The US Department of Energy's Office of International Nuclear Safety and Cooperation established the Integrated Research Reactor Safety Enhancement Program (IRRSEP) in February 2002 to support U.S. nonproliferation goals by implementing safety upgrades, or assisting with the safe shutdown and decommissioning of foreign test and research reactors which present security concerns. IRRSEP's key program components are: Phase I: Self-evaluation by facility using provided checklists followed by prioritization to identify the 20 highest risk facilities; Phase II: Site visits with technical evaluation to finalize a list of projects that will enhance safety consistent with IAEA observations; Phase III: Corrective measures to implement the projects. Phases I, II and III are accomplished on a rolling basis, such that work is ongoing at three or four reactors per year. IRRSEP's key objective is to resolve the highest-priority nuclear safety issues at the most vulnerable foreign research reactors as quickly as possible. The prioritization methodology employed identified which research reactors fell into this category. The corrective measures mutually developed with the host facility are based on the premise of developing a sustainable infrastructure within each country to deal with its own nuclear material safety, security, and response issues in the future. IRRSEP also assists in creating an international framework of cooperation and openness between research and test reactor operators, and national and international regulators. The initial projects under IRRSEP are underway at research reactors in Kazakhstan, Uzbekistan, and Romania. This paper focuses on the projects undertaken at the WWR-K research reactor at the Institute of Nuclear Physics in Alatau, Kazakhstan and the WWR-SM research reactor at the Institute of Nuclear Physics in Ulugbek, Uzbekistan. These projects demonstrate the success and cost effectiveness of the IRRSEP program

  9. Cost effective safety enhancements for research reactors in Uzbekistan and Kazakhstan - results of a joint program with US DOE

    International Nuclear Information System (INIS)

    Earle, O.K.; Carlson, R.B.; Rakhmanov, A.; Salikhbaev, U.S.; Chernyaev, V.; Chakrov, P.

    2004-01-01

    Full text: The US Department of Energy's Office of International Nuclear Safety and Cooperation established the Integrated Research Reactor Safety Enhancement Program (IRRSEP) in February 2002 to support U.S. nonproliferation goals by (1) implementing safety upgrades, or (2) assisting with the safe shutdown and decommissioning of foreign test and research reactors which present security concerns. IRRSEP's key program components are: Phase I: Self-evaluation by facility using provided checklists followed by prioritization to identify the 20 highest risk facilities; Phase II: Site visits with technical evaluation to finalize a list of projects that will enhance safety consistent with IAEA observations; Phase III: Corrective measures to implement the projects. Phases I, II and III are accomplished on a rolling basis, such that work is ongoing at three or four reactors per year. IRRSEP's key objective is to resolve the highest-priority nuclear safety issues at the most vulnerable foreign research reactors as quickly as possible. The prioritization methodology employed identified which research reactors fell into this category. The corrective measures mutually developed with the host facility are based on the premise of developing a sustainable infrastructure within each country to deal with its own nuclear material safety, security, and response issues in the future. IRRSEP also assists in creating an international framework of cooperation and openness between research and test reactor operators, and national and international regulators. The initial projects under IRRSEP are underway at research reactors in Kazakhstan, Uzbekistan, and Romania. This paper focuses on the projects undertaken at the WWR-K research reactor at the Institute of Nuclear Physics in Alatau, Kazakhstan and the WWR-SM research reactor at the Institute of Nuclear Physics in Ulugbek, Uzbekistan. These projects demonstrate the success and cost effectiveness of the IRRSEP program

  10. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  11. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  12. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    fuels as well as the applied methodologies. The IRSN proceeds in a relevant and independent assessment of the submitted safety reports. To achieve this goal and maintain over time an independent and relevant assessment capability, the IRSN relies on the excellence of its experts and on state of art techniques and knowledge. The IRSN contributes by its work in key area to cutting edge research and development in order to drive nuclear industry towards making the best use of scientific and technological progress for improving safety, environmental protection and health. To maintain at all times the state of the art knowledge and the operational expertise necessary to deal efficiently with major nuclear accident consequences, the IRSN carries out, on the one hand, its own research and development programs to gain accurate knowledge on still unknown phenomena for safety analysis. On the other hand, the IRSN works out its own scientific calculation methodologies involving industrial calculation chain. Concerning more particularly the 'two-phase flows' thematic, The ISRN must correctly simulate the primary fluid behavior in the reactor in normal operation as well as in accidental situations, to estimate if, in such situations, the core reactor state is fully safe and any safety risk is undergone The research and development programs launched at the ISRN on two-phase flows gather work on advanced thermohydraulic configurations encounter in various reactor states (normal operation or accidental situations), in particular: (i)The estimation of the margin to the critical heat flux in normal operation (DNBR), (ii) The pressurized thermal shock, which is due to mechanical important constraints in the reactor vessel resulting from the injection of a cold fluid in case of emergency cooling (PTS), (iii) The reactivity insertion accident (RIA), (iv) The loss of coolant accident (LOCA), (vi) The accidents in spent-fuel pools and (vii) The severe accident, which could lead to core

  13. New perspectives on reactor safety

    International Nuclear Information System (INIS)

    Avery, R.

    1986-01-01

    Over the past few years a number of changes and new perspectives have come about in our approach to reactor safety. These changes have occurred over a period of time extending from as long ago as 1975, when WASH-1400 came out representing the first major application of probabilistic risk analysis (PRA) to US reactor plants. The period of change has extended from that time to the present, and includes new areas of focus such as safety goals, source term studies, and severe accident policy statement and approaches, including the IDCOR Program. It has also included a greatly increased interest in inherent safety. These areas are discussed in this paper

  14. Reactor system safety assurance

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1984-01-01

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  15. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  16. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  17. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  18. Reactor safety issues resolved by the 2D/3D program

    International Nuclear Information System (INIS)

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author)

  19. Reactor safety issues resolved by the 2D/3D Program

    International Nuclear Information System (INIS)

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated

  20. Reactor safety issues resolved by the 2D/3D program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author).

  1. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  2. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  3. Probabilistic safety assessment of Tehran Research Reactor using systems analysis programs for hands-on integrated reliability evaluations

    International Nuclear Information System (INIS)

    Hosseini, M.H.; Nematollahi, M.R.; Sepanloo, K.

    2004-01-01

    Probabilistic safety assessment application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this document the application of the probabilistic safety assessment to the Tehran Research Reactor is presented. The level 1 practicabilities safety assessment application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantifications, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using systems analysis programs for hands-on integrated reliability evaluations software

  4. Light-water-reactor safety program. Quarterly progress report, April--June 1977

    International Nuclear Information System (INIS)

    Sachs, R.G.; Kyger, J.A.

    1977-01-01

    The report summarizes work performed on the following water-reactor-safety problems: (1) loss-of-coolant accident research in heat transfer and fluid dynamics; (2) transient fuel response and fission-product release; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies

  5. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  6. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    International Nuclear Information System (INIS)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas

  7. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  8. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  9. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  10. Evaluation of reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    Although the operation of nuclear reactors has a remarkably good record of safety, the prevention of possible reactor accidents is one of the major factors that atomic planners have to contend with. At the same time, excessive caution may breed an attitude that hampers progress, either by resisting new development or by demanding unnecessarily elaborate and expensive precautions out of proportion to the actual hazards involved. The best course obviously is to determine the possible dangers and adopt adequate measures for their prevention, providing of course, for a reasonable margin of error in judging the hazards and the effectiveness of the measures. The greater the expert understanding and thoroughness with which this is done, the narrower need the margin be. This is the basic idea behind the evaluation of reactor safety

  11. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  12. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  13. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  14. Fusion-Reactor-Safety Research Program. Annual report, Fiscal Year 1981

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1982-07-01

    The report contains four sections: Outside Contracts includes the continuation of the General Atomic Co. low-activation materials safety study, water-cooled transport activation products study by Pacific Northwest Laboratory (PNL), studies of superconducting magnet safety conducted by Argonne National Laboratory (ANL) coupled with a new experimental superconducting magnet study program by Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety methodology work by MIT, portions of papers on lithium safety studies conducted at Hanford Engineering Development Laboratory (HEDL), and a new program to study tritium gas conversion to tritiated water at Oak Ridge National Laboratory (ORNL). The section EG and G idaho, Inc., Activities at INEL includes adaptations of papers of ongoing work in transient code development, tritium systems risk assessment, heat transfer activities, and a summary of a workshop on safety in design. A List of Publications and Proposed FY-82 Activities are also presented

  15. NCSU Reactor Sharing Program

    International Nuclear Information System (INIS)

    Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities

  16. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1976

    International Nuclear Information System (INIS)

    Ferguson, J.B.

    1977-04-01

    Light water reactor safety research performed October through December 1976 is discussed. An analysis to determine the effect of emergency core coolant (ECC) injection location and pump speed on system response characteristics was performed. An analysis to evaluate the capability of commonly used critical heat flux (CHF) correlations to calculate the time of the first CHF in the Semiscale core during a loss-of-coolant experiment (LOCE) was performed. A test program and study to determine the effect thermocouples mounted on the outside fuel rod surfaces would have on the departure from nucleate boiling (DNB) phenomena in the LOFT core during steady state operation were completed. A correlation for use in predicting DNB heat fluxes in the LOFT core was developed. Tests of an experimental transit time flowmeter were completed. A nuclear test was performed to obtain fuel rod behavior data from four PWR-type rods during film boiling operation representative of PWR conditions. Preliminary results from the postirradiation examination of Test IE-1 fuel rods are given. Results of Irradiation Effects Tests IE-2 and IE-3 are given. Gap Conductance Test GC 2-1 was performed to evaluate the effects of fuel density, initial gap width, and fill gas composition on the pellet-cladding gap conductance

  17. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J. B. [ed.

    1977-04-01

    Light water reactor safety research performed October through December 1976 is discussed. An analysis to determine the effect of emergency core coolant (ECC) injection location and pump speed on system response characteristics was performed. An analysis to evaluate the capability of commonly used critical heat flux (CHF) correlations to calculate the time of the first CHF in the Semiscale core during a loss-of-coolant experiment (LOCE) was performed. A test program and study to determine the effect thermocouples mounted on the outside fuel rod surfaces would have on the departure from nucleate boiling (DNB) phenomena in the LOFT core during steady state operation were completed. A correlation for use in predicting DNB heat fluxes in the LOFT core was developed. Tests of an experimental transit time flowmeter were completed. A nuclear test was performed to obtain fuel rod behavior data from four PWR-type rods during film boiling operation representative of PWR conditions. Preliminary results from the postirradiation examination of Test IE-1 fuel rods are given. Results of Irradiation Effects Tests IE-2 and IE-3 are given. Gap Conductance Test GC 2-1 was performed to evaluate the effects of fuel density, initial gap width, and fill gas composition on the pellet-cladding gap conductance.

  18. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  19. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  20. Reactor safety systems

    International Nuclear Information System (INIS)

    Kafka, P.

    1975-01-01

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.) [de

  1. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  2. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  3. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  4. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  5. The Role of Nuclear Power in Slovak Republic; Safety Upgrading Program for WWER Reactors

    International Nuclear Information System (INIS)

    Toth, A.

    1998-01-01

    Implementation of Slovenske elektrarne Production Base Development Program, where all these safety upgrading projects of nuclear power sources at Slovak Republic are included will ensure first of all safety of nuclear power sources on internationally acceptable level, operational reliability of nuclear power units, balanced consumption and production of electric energy in Slovakia and decrease of long term ecological impact in according with international commitments of Slovakia

  6. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  7. Reactor safety training for decision making

    International Nuclear Information System (INIS)

    Scott, C.K.

    2003-01-01

    The purpose of this paper is to describe an approach to reactor safety training for technical staff working at an operating station. The concept being developed is that, when the engineer becomes a registered professional engineer, they have sufficient reactor safety knowledge to perform independent technical work without compromising the safety of the plant. This goal would be achieved with a focused training program while working as an engineer-in-training (four years in NB). (author)

  8. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  9. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  10. Gas-cooled fast reactor safety - and overview and status of the U.S. program

    International Nuclear Information System (INIS)

    Torri, A.; Buttemer, D.R.

    1981-01-01

    In the revised GCFR Safety Program Plan a quantitative risk limit line has been adopted to establish requirements for the safety related functions and systems. The risk limit line is derived from an interpretation of NRC established licensing requirements, including those for LMFBR's. Multiple barriers to the progression of accident sequences are defined in the form of six Lines of Protection (LOPs). LOPs-1 to 3 are dedicated to accident prevention and represent the normal operating systems, the dedicated safety systems and the inherent design features, respectively. LOPs-4 to 6 are dedicated to the mitigation of core melt accident consequences and include in-vessel accident containment, secondary containment integrity and radiological attenuation, respectively. Cumulative frequency limits and consequence limits are established for each LOP. Design features associated with each LOP are described and the results of supporting safety analyses are summarized. (author)

  11. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1988-06-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (research coordination department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  12. Progress report - reports on reactor safety research programs sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1982-09-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC and the OECD. The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  13. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1993-09-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  14. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1985-10-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (research coordination department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./PW) [de

  15. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1989-06-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (Research Coordination Department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  16. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1991-12-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progreess in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communitites) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  17. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1984-09-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  18. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1988-10-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (research coordination department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  19. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1989-11-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (Research Coordination Department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  20. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1992-09-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communitites) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  1. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1993-03-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP) [de

  2. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  3. Safety inspections to TRIGA reactors

    International Nuclear Information System (INIS)

    Byszewski, W.

    1988-01-01

    The operational safety advisory programme was created to provide useful assistance and advice from an international perspective to research reactor operators and regulators on how to enhance operational safety and radiation protection on their reactors. Safety missions cover not only the operational safety of reactors themselves, but also the safety of associated experimental loops, isotope laboratories and other experimental facilities. Safety missions are also performed on request in other Member States which are interested in receiving impartial advice and assistance in order to enhance the safety of research reactors. The results of the inspections have shown that in some countries there are problems with radiation protection practices and nuclear safety. Very often the Safety Analysis Report is not updated, regulatory supervision needs clarification and improvement, maintenance procedures should be more formalised and records and reports are not maintained properly. In many cases population density around the facility has increased affecting the validity of the original safety analysis

  4. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  5. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  6. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    Results from the previously conducted Semiscale Mod-1 ECC injection test series were analyzed. Testing in the LOFT counterpart test series was essentially completed, and the steam generator tube rupture test series was begun. Two tests in the alternate ECC injection test series were conducted which included injection of emergency core coolant into the upper plenum through use of the low pressure injection system. The Loss-of-Fluid Test Program successfully completed nonnuclear Loss-of-Coolant Experiment L1-4. A nuclear test, GC 2-3, in the Power Burst Facility Reactor was performed to evaluate the power oscillation method of determining gap conductance and to determine the effects of initial gap size, fill gas composition, and fuel density on the thermal performance of a light water reactor fuel rod. Additional test results were obtained relative to the behavior of irradiated fuel rods during a fast power increase and during a high power film boiling transient. Fuel model development and verification activities continued for the steady state and transient Fuel Rod Analysis Program, FRAP-S and FRAP-T. A computer code known as RELAP4/MOD7 is being developed to provide best-estimate modeling for reflood during a postulated loss-of-coolant accident (LOCA). A prediction of the fourth test in the boiling water reactor (BWR) Blowdown/Emergency Core Cooling Program was completed and an uncertainty analysis was completed of experimental steady state stable film boiling data for water flowing vertically upward in round tubes. A new multinational cooperative program to study the behavior of entrained liquid in the upper plenum and cross flow in the core during the reflood phase of a pressurized water reactor LOCA was defined.

  7. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety

  8. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  9. Study on safety of a nuclear ship having an integral marine water reactor. Intelligent information database program concerned with thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Kobayashi, Michiyuki; Murata, Hiroyuki; Aya, Izuo

    2001-01-01

    As a high economical marine reactor with sufficient safety functions, an integrated type marine water reactor has been considered most promising. At the National Maritime Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated/passive-safety type marine water reactor such as the flow boiling of a helical-coil type steam generator, natural circulation of primary water under a ship rolling motion and flashing-condensation oscillation phenomena in pool water has been conducted. This current study aims at making use of the safety analysis or evaluation of a future marine water reactor by developing an intelligent information database program concerned with the thermal-hydraulic characteristics of an integral/passive-safety reactor on the basis of the above-mentioned valuable experimental knowledge. Since the program was created as a Windows application using the Visual Basic, it is available to the public and can be easily installed in the operating system. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability limit for any helical-coil type once-through steam generator design. (2) analysis and comparison with the flow boiling data, (3) reference and graphic display of the experimental data, (4) indication of the knowledge information such as analysis method and results of the study. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor. (author)

  10. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  11. High-reliability logic system evaluation of a programmed multiprocessor solution. Application in the nuclear reactor safety field

    International Nuclear Information System (INIS)

    Lallement, Dominique.

    1979-01-01

    Nuclear reactors are monitored by several systems combined. The hydraulic and mechanical limitations on the equipment and the heat transfer requirements in the core set a reliable working range for the boiler defined with certain safety margins. The control system tends to keep the power plant within this working range. The protection system covers all the electrical and mechanical equipment needed to safeguard the boiler in the event of abnormal transients or accidents accounted for in the design of the plant. On units in service protection is handled by cabled automatic systems. For better reliability and safety operation, greater flexibility of use (modularity, adaptability) and improved start-up criteria by data processing the tendency is to use digital programmed systems. Computers are already present in control systems but their introduction into protection systems meets with some reticence on the part of the nuclear safety authorities. A study on the replacement of conventional by digital protection systems is presented. From choices partly made on the principles which should govern the hardware and software of a protection system the reliability of different structures and elements was examined and an experimental model built with its simulator and test facilities. A prototype based on these options and studies is being built and is to be set up on one of the CEN-G reactors for tests [fr

  12. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  13. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr

  14. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, January--March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Zane, J. O.; Farman, R. F.; Hanson, D. J.; Peterson, A. C.; Ybarrondo, L. J.; Berta, V. T.; Naff, S. A.; Crocker, J. G.; Martinson, Z. R.; Smolik, G. R.; Cawood, G. W.; Quapp, W. J.; Ramsthaler, J. H.; Ransom, V. H.; Scofield, M. P.; Dearien, J. A.; Bohn, M. P.; Burnham, B. W.; James, S. W.; Lee, W. H.; Lime, J. F.; Nalezny, C. L.; MacDonald, P. E.; Thompson, L. B.; Domenico, W. F.; Rice, R. E.; Hendrix, C. E.; Davis, C. B.

    1976-06-01

    Light water reactor sfaety research performed January through March 1976 is summarized. Results of the Semiscale Mod-1 blowdown heat transfer test series relating to those phenomena that influence core fluid and heat transfer effects are analyzed, and preliminary analyses of the recently completed reflood heat transfer test series are summarized for the forced and gravity feed reflood tests. The first nonnuclear LOCE in the LOFT program was successfully completed and preliminary results are presented. Preliminary results are given for the PCM 8-1 RF Test, the PCM-2A Test, and the Irradiation Effects Scoping Test 2 in the Thermal Fuel Behavior Program. Model development and verification efforts reported in the Reactor Behavior Program include checkout of RELAP4/MOD5 Update 1, development of a new hydrodynamic model for two-phase separated flows, development of the RACHET code to assess the assumptions in current fuel behavior codes of uniform stress and strain in the cladding, modifications of the containment code BEACON, analysis of results from the Halden Assembly IFA-429 helium sorption experiment, development of correlations for the thermal conductivity of UO/sub 2/ and (U,Pu)O/sub 2/, and evaluation of RALAP4 through comparison of calculated results with data from the GE Blowdown Heat Transfer and Semiscale experiments.

  15. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  16. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  17. Reactor safety research programs. Quarterly progress report, October 1--December 31, 1977

    International Nuclear Information System (INIS)

    Romano, A.J.

    1978-01-01

    HTGR safety evaluation included studies on fission product release; materials, chemistry, and instrumentation; structural evaluation; and analytical safety evaluation. LMFBR safety evaluation included studies on accident sequences, technical coordination of structural integrity, and SSC code development and validation. LWR safety studies included thermal/hydraulic accident analysis, THOR code development, and stress corrosion cracking of PWR steam generator tubing

  18. Some views on nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, P.Y. [Electricite de France, Paris (France)

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  19. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    1982-09-01

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.) [de

  20. Space reactor safety, 1985--1995 lessons learned

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1995-01-01

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration

  1. Space reactor safety, 1985--1995 lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1995-12-31

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  2. The advanced test reactor strategic evaluation program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1989-01-01

    Since the Chernobly accident, the safety of test reactors and irradiation facilities has been critically evaluated from the public's point of view. A systematic evaluation of all safety, environmental, and operational issues must be made in an integrated manner to prioritize actions to maximize benefits while minimizing costs. Such a proactive program has been initiated at the Advanced Test Reactor (ATR). This program, called the Strategic Evaluation Program (STEP), is being conducted for the ATR to provide integrated safety and operational reviews of the reactor against the standards applied to licensed commercial power reactors. This has taken into consideration the lessons learned by the US Nuclear Regulatory Commission (NRC) in its Systematic Evaluation Program (SEP) and the follow-on effort known as the Integrated Safety Assessment Program (ISAP). The SEP was initiated by the NRC to review the designs of older operating nuclear power plants to confirm and document their safety. The ATR STEP objectives are discussed

  3. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  4. Development of the reactor safety film

    International Nuclear Information System (INIS)

    Sheheen, N.N.; Hodson, P.J.

    1981-01-01

    The first computer-generated film of LASL's Reactor Safety efforts was developed using the ANIMATE framework, a program that adds visual capabilities to MAPPER. Numerous software limitations had to be overcome within a very limited production schedule. A significant achievement was the 15,000-vector-per-frame sequence depicting a pressurized water reactor core with parts flashing while pumps circulate fluid through the system

  5. The 'SURA' fast reactor program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  6. Material presented to advisory committee on reactor safeguards, subcommittee on extreme external phenomena, January 29-30, 1981, Los Angeles, California. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Smith, P.D.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Dong, R.G.; Johnson, J.J.; Wells, J.E.

    1981-01-01

    The January 29-30, 1981, meeting of the Advisory Committee on Reactor Safeguards (ACRS), Subcommittee on Extreme External Phenomena, mark the close of Phase I efforts on the Seismic Safety Margins Research Program (SSMRP). Presentations at the meeting focused on results produced. These included computer codes, response computations, failure and release probabilities, data bases, and fragilities and parameter characteristics

  7. Integrated plant safety assessment. Systematic Evaluation Program. La Crosse Boiling Water Reactor. Dairyland Power Cooperative, Docket No. 50-409. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  8. Integrated plant safety assessment: Systematic Evaluation Program. LaCrosse Boiling Water Reactor, Dairyland Power Cooperative, Docket No. 50-409

    International Nuclear Information System (INIS)

    1983-04-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addresed. Equipment and procedural changes have been identified as a result of the review

  9. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  10. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  11. Fast Reactor Safety Research Program. Quarterly report, January--March 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Progress is summarized in the following study areas: (1) prompt burst excursion, (2) post-accident heat removal (PAHR) debris bed, (3) fuel motion detection, (4) PAHR molten pool behavior, (5) equation-of-state high-temperature fuel vapor data, and (6) fuel motion detection equipment for the upgraded Annular Core Pulsed Reactor

  12. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  13. Safety research for CANDU reactors

    International Nuclear Information System (INIS)

    Hancox, W.T.

    1982-10-01

    Continuing research to develop and verify computer models of CANDU-PHW reactor process and safety systems is described. It is focussed on loss-of-coolant accidents (LOCAs) because they are the precursors of more serious accidents. Research topics include: (i) fluid-dynamic and heat-transfer processes in the heat transport system during the blowdown and refilling phases of LOCAs; (ii) thermal and mechanical behaviour of fuel elements; (iii) thermal and mechanical behaviour of the fuel and the fuel-channel assembly in situations where the heavy-water moderator is the sink for decay heat produced in the fuel; (iv) chemical behaviour of fission gases that might be released into the reactor coolant and transported to the containment system; and (v) combustion of hydrogen-air-steam mixtures that would be produced if fuel temperatures were sufficiently high to initiate the zirconium-water reaction. The current status of the research on each of these topics is highlighted with particular emphasis on the conclusions reached to date and their impact on the continuing program

  14. 1982 annual status report: reactor safety

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents the projects of the Reactor Safety Program at the JRC: 1) Reliability and risk evolution; 2) LWR loss of coolant accident studies; 3) Primary system integrity; 4) LMFBR core accident initiation and transition phase; and, 5) LMFBR accident post disassembly phase

  15. The Norwegian Assistance Program for Increased Reactor Safety in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, E.; Saxeboel, G.

    2002-06-01

    For several years Norway has focused on issues related to international nuclear safety. Consequently, under the Norwegian Plan of Action for Nuclear Safety, Norwegian governmental authorities have been actively involved in bilateral co-operation efforts to improve safety at Kola Nuclear Power Plant, Leningrad Nuclear Power Plant and Ignalina Nuclear Power Plant. Norway's major involvement began in 1993 at the Kola NPP, and has included projects within several different areas of nuclear safety with a total budget of 124 million NOK. In this report, the projects have been grouped as follows (UD- 1999): (1) Reliability of core cooling and emergency power supply; (2) Component reliability and primary circuit reliability; (3) Improved instrumentation and control; (4) Operational safety; (5) Safety studies. The involvement in Ignalina and Leningrad NPP started 1996 and 1997, respectively. The accumulated budget for the Norwegian efforts at Leningrad NPP is 13.8 million NOK with focus on the following two areas: (1) Training of personnel and prevention of human error; (2) Component reliability and primary circuit integrity. The Norwegian monetary contribution related to projects at lgnalina NPP is 11 million NOK, with main efforts dedicated to the following two areas: (1) Security and physical protection of the plant; (2) Fire safety. In the early phase of the projects, difficulties were encountered concerning tax exemption and indemnity for the delivery of equipment to Kola NPP. Matters improved successively, following the signing of the Norwegian-Russian Framework Agreement in 1998. Another positive change is the involvement of Russian contractors, who now contribute to the supply of considerable parts of the equipment and services and give a tighter co-operation between Russian and Western suppliers. The feedback from the beneficiaries has generally been positive throughout the project periods. (author)

  16. The Norwegian Assistance Program for Increased Reactor Safety in Eastern Europe

    International Nuclear Information System (INIS)

    Larsen, E.; Saxeboel, G.

    2002-06-01

    For several years Norway has focused on issues related to international nuclear safety. Consequently, under the Norwegian Plan of Action for Nuclear Safety, Norwegian governmental authorities have been actively involved in bilateral co-operation efforts to improve safety at Kola Nuclear Power Plant, Leningrad Nuclear Power Plant and Ignalina Nuclear Power Plant. Norway's major involvement began in 1993 at the Kola NPP, and has included projects within several different areas of nuclear safety with a total budget of 124 million NOK. In this report, the projects have been grouped as follows (UD- 1999): (1) Reliability of core cooling and emergency power supply; (2) Component reliability and primary circuit reliability; (3) Improved instrumentation and control; (4) Operational safety; (5) Safety studies. The involvement in Ignalina and Leningrad NPP started 1996 and 1997, respectively. The accumulated budget for the Norwegian efforts at Leningrad NPP is 13.8 million NOK with focus on the following two areas: (1) Training of personnel and prevention of human error; (2) Component reliability and primary circuit integrity. The Norwegian monetary contribution related to projects at lgnalina NPP is 11 million NOK, with main efforts dedicated to the following two areas: (1) Security and physical protection of the plant; (2) Fire safety. In the early phase of the projects, difficulties were encountered concerning tax exemption and indemnity for the delivery of equipment to Kola NPP. Matters improved successively, following the signing of the Norwegian-Russian Framework Agreement in 1998. Another positive change is the involvement of Russian contractors, who now contribute to the supply of considerable parts of the equipment and services and give a tighter co-operation between Russian and Western suppliers. The feedback from the beneficiaries has generally been positive throughout the project periods. (author)

  17. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  18. Thermal reactor safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport

  19. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  20. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  1. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  2. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  3. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  4. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  5. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  6. Contributions to the research programs in nuclear and industrial electronics, domestic production of instrumentation, safety and control systems and equipment for nuclear reactors and auxiliary installations

    International Nuclear Information System (INIS)

    Talpariu, C; Talpariu, J.; Matei, C.

    2001-01-01

    Domestic production of component system and equipment for the control and safety of nuclear facilities was one of the priority objective of the Nuclear Research Institute Pitesti. The problems addressed were particularly related to design and production of analog and digital equipment for measurements, triggering and display of the values of process parameters as well as to regulating complex functions of this equipment. Associated to this effort were the research works concerning: - reliability and in-service life-time of the electronic components and equipment in the safety and control systems for nuclear processes; - radiation endurance of industrial electronic components; utilization of whirling currents in calandria tube testing; - expert systems and applications in nuclear reactor control and safety; design and testing methods of process real time software packages for safety in control critical systems for nuclear domain. There are presented characteristics of the following equipment: 1. amplifier for ionization chambers with triggering comparator circuits for the CANDU 600 reactor shut down system; 2. amplifier for ionization chambers without triggering comparator circuits for power regulating system; 3. safety and regulating computerized system for C9 and C5 cans; 4. acquisition system for dosimetric data in nuclear facilities; 5. program able digital comparator for the reactor shut down system; 6. stationary gamma areal monitors for CANDU 600 reactors and other nuclear facilities

  7. Operational safety evaluation for minor reactor accidents

    International Nuclear Information System (INIS)

    Wang, O.S.

    1981-01-01

    The purpose of this paper is to address a concern of applying conservatism in analysing minor reactor incidents. A so-called ''conservative'' safety analysis may exaggerate the system responses and result in a reactor scram tripped by the reactor protective system (RPS). In reality, a minor incident may lead the reactor to a new thermal hydraulic steady-state without scram, and the mitigation or termination of the incident may entirely depend on operator actions. An example on a small steamline break evaluation for a pressurized water reactor recently investigated by the staff at the Washington Public Power Supply System is presented to illustrate this point. A safety evaluation using mainly the safety-related systems to be consistent with the conservative assumptions used in the Safety Analysis Report was conducted. For comparison, a realistic analysis was also performed using both the safety- and control-related systems. The analyses were performed using the RETRAN plant simulation computer code. The ''conservative'' safety analysis predicts that the incident can be turned over by the RPS scram trips without operator intervention. However, the realistic analysis concludes that the reactor will reach a new steady-state at a different plant thermal hydraulic condition. As a result, the termination of the incident at this stage depends entirely on proper operator action. On the basis of this investigation it is concluded that, for minor incidents, ''conservative'' assumptions are not necessary, sometimes not justifiable. A realistic investigation from the operational safety point of view is more appropriate. It is essential to highlight the key transient indications for specific incident recognition in the operator training program

  8. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  9. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  10. Reactor Sharing Program

    International Nuclear Information System (INIS)

    Tehan, Terry

    2002-01-01

    Support utilization of the RINSC reactor for student and faculty instructions and research. The Department of Energy award has provided financial assistance during the period 9/29/1995 to 5/31/2001 to support the utilization of the Rhode Island Nuclear Science Center (RINSC) reactor for student and faculty instruction and research by non-reactor owning educational institutions within approximately 300 miles of Narragansett, Rhode Island. Through the reactor sharing program, the RINSC (including the reactor and analytical laboratories) provided reactor services and laboratory space that were not available to the other universities and colleges in the region. As an example of services provided to the users: Counting equipment, laboratory space, pneumatic and in-pool irradiations, demonstrations of sample counting and analysis, reactor tours and lectures. Funding from the Reactor Sharing Program has provided the RINSC to expand student tours and demonstration programs that emphasized our long history of providing these types of services to the universities and colleges in the area. The funding have also helped defray the cost of the technical assistance that the staff has routinely provided to schools, individuals and researchers who have called on the RINSC for resolution of problems relating to nuclear science. The reactor has been featured in a Public Broadcasting System documentary on Pollution in the Arctic and how a University of Rhode Island Professor used Neutron Activation Analysis conducted at the RINSC to discover the sources of the ''Arctic Haze''. The RINSC was also featured by local television on Earth Day for its role in environmental monitoring

  11. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  12. Nuclear safety cooperation for Soviet designed reactors

    International Nuclear Information System (INIS)

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  13. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  14. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  15. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  16. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  17. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  18. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  19. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  20. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  1. Breazeale Reactor Modernization Program

    International Nuclear Information System (INIS)

    Davison, C. C.

    2003-01-01

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future

  2. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  3. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology. Reported period: July 1 to December 31, 1986. Progress report

    International Nuclear Information System (INIS)

    1987-05-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of the research program on reactor safety (RS-projects) are sponsored by the Federal Ministry for Research and Technology (BMFT). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  4. Aspects of nuclear reactor safety

    International Nuclear Information System (INIS)

    Hardt, P. von der; Rottger, H.

    1980-01-01

    The Colloquium on 'Irradiation Tests for Reactor Safety Programmes' has been organised by JRC Petten in order to determine the present state of technology in the field. The role of research and test reactors for studies of structural material and fuel elements under transient and off-normal conditions was to be explained. The Colloquium has been attended by 110 participants from outside and inside Europe. 27 papers were presented covering the major ongoing projects in Japan, the United States, and in Europe, and elaborating in particular: - design rationale and layout of safety irradiation experiments; - design, manufacture, and performance of irradiation equipment with particular attention to generation and control of transient conditions, fast response in-pile instrumentation and its out-of-pile data retrieval; - post-irradiation evaluation; - results and analytical support

  5. Safety issues at the defense production reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The United States produces plutonium and tritium for use in nuclear weapons at the defense production reactors - the N Reactor in Washington and the Savannah River reactors in South Carolina. This report reaches general conclusions about the management of those reactors and highlights a number of safety and technical issues that should be resolved. The report provides an assessment of the safety management, safety review, and safety methodology employed by the Department of Energy and the private contractors who operate the reactors for the federal government. This report examines the safety objective established by the Department of Energy for the production reactors and the process the Department of its contractors use to implement the objective; focuses on a variety of uncertainties concerning the production reactors, particularly those related to potential vulnerabilities to severe accidents; and identifies ways in which the DOE approach to management of the safety of the production reactors can be improved

  6. Reactor safety research in Sweden

    International Nuclear Information System (INIS)

    Pershagen, B.

    1980-02-01

    Objectives, means and results of Swedish light water reactor safety research during the 1970s are reviewed. The expenditure is about 40 Million Swkr per year excluding industry. Large efforts have been devoted to experimental studies of loss of coolant accidents. Large scale containment response tests for simulated pipe breaks were carried out at the Marviken facility. At Studsvik a method for testing fuel during fast power changes has been developed. Stress corrosion, crack growth and the effect of irradiation on the strength ductility of Zircaloy tube was studied. A method for determining the fracture toughness of pressure vessel steel was developed and it was shown that the fracture toughness was lower than earlier assumed. The release of fission products to reactor water was studied and so was the release, transport and removal of airborne radioactive matter for Swedish BWRs and PWRs. Test methods for iodine filter systems were developed. A system for continuous monitoring of radioactive noble gas stack release was developed for the Ringhals plant. Attention was drawn to the importance of the human factor for reactor safety. Probabilistic methods for risk analysis were applied to the Barsebaeck 2 and Forsmark 3 boiling water reactors. Procedures and working conditions for operator personnel were investigated. (GBn)

  7. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  8. Advanced reactor concepts and safety

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1988-06-01

    The need for some consistency in the terms used to describe the evolution of methods for ensuring the safety of nuclear reactors has been identified by the IAEA. This is timely since there appears to be a danger that the precision of many valuable words is being diluted and that a new jargon may appear that will confuse rather than aid the communication of important but possibly diverse philosophies and concepts. Among the difficulties faced by the nuclear industry is promoting and gaining a widespread understanding of the risks actually posed by nuclear reactors. In view of the importance of communication to both the public and to the technical community generally, the starting point for the definition of terms must be with dictionary meanings and common technical usage. The nuclear engineering community should use such words in conformance with the whole technical world. This paper addresses many of the issues suggested in the invitation to meet and also poses some additional issues for consideration. Some examples are the role of the operator in either enhancing or degrading safety and how the meaning or interpretation of the word 'safety' can be expected to change during the next few decades. It is advantageous to use criteria against which technologies and ongoing operating performance can be judged provided that the criteria are generic and not specific to particular reactor concepts. Some thoughts are offered on the need to frame the criteria carefully so that innovative solutions and concepts are fostered, not stifled

  9. Savannah River Site K-Reactor Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O'Kula, K.R.; Wittman, R.S.; Woody, N.D.; Amos, C.N.; Weingardt, J.J.

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety

  10. Activities performed within the program of nuclear safety research on structural and cladding materials for innovative reactor system able to transmute nuclear waste

    International Nuclear Information System (INIS)

    Fazio, C.; Rieth, M.; Lindau, R.; Aktaa, J.; Schneider, H-C.; Konys, J.; Yurechko, M.; Mueller, G.; Weisenburger, A.

    2009-01-01

    The transmutation of nuclear waste to reduce the burden on a geological repository is a relevant topic within the Program of Nuclear Safety Research of the Research Centre Karlsruhe. Several studies have confirmed that a high efficiency of transmutation of actinides is reached in fast neutron spectrum reactor system. Therefore, an important effort is dedicated to the study of transmutation strategies with different fast reactors and their associated technologies. Moreover, in international contexts as Generation IV International Forum (GIF) and Sustainable Nuclear Energy Technology Platform (SNETP), fast reactors are considered in the frame of sustainable development of nuclear energy and reduction of waste. The systems that are currently under investigation, in the frame of the different fuel cycle scenarios, are liquid metal cooled and gas cooled fast reactors as well as Accelerator Driven Sub-critical Transmutation devices (ADS). These innovative reactor systems, call for structural and clad materials, which are able to perform in a safe manner under the envisaged operational and postulated transient conditions. In this context the European Commission supports the FP7 project GETMAT, with the objective to contribute to the development and selection of reference structure materials for core components and primary systems of fast neutron reactors. Several institutes of the Research Centre Karlsruhe are involved in this project with activities in the area of 9Cr ODS steel development and mechanical characterisation; optimisation and ranking of weld and joining techniques as Electron Beam, TIG and Diffusion Bonding; assessment of materials behaviour in corrosive environment and in neutron and neutron/proton irradiation field; and development of corrosion protection barriers for cladding and primary system components and their characterisation. The objective of this contribution is to describe the context in which the GETMAT activities are embedded in the Program

  11. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  12. Reactor safety-a New Approach

    International Nuclear Information System (INIS)

    Machiels, A.J.; Marston, T.U.; Taylor, J.J.

    1993-01-01

    Since 1982, the U.S. utilities have been leading to an industry-wide effort to establish a technical foundation for the design of the next generation of light water reactors (LWRs) in the United States. Since 1985, the utility initiative has been effected through a major technical program managed by the Electric Power Research Institute (EPRI): the Advanced Light Water Reactor (ALWR) Program. In addition to the U.S. utility leadership and sponsorship, the ALWR Program has also greatly benefitted from the participation and sponsorship of numerous international utility companies and from the close cooperation with the U.S. Department of Energy (DOE). One of the main goals of the ALWR Program has been to develop a comprehensive set of design requirements for the advanced LWRs. The Utility Requirement Document (URD) defines the technical basis for improved and standardized future LWR designs. The URD covers the entire plant up to the grid interface. Therefore, it is the basis for an integrated plant design, i.e., nuclear steam supply system and balance of plant. It emphasizes those areas which are most important to the objective of achieving an advanced LWR that is excellent with respect to safety, performance, constructibility, and economics. There are numerous basic design policies underlying the ALWR URD. Of particular interest is the treatment of reactor safety

  13. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  14. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  15. The safety of future reactors

    International Nuclear Information System (INIS)

    Tanguy, P.

    1992-01-01

    To sum up, I would like to underline once again the importance of experience feedback. This issue can only be properly handled by reversing the thought process which lay behind the construction of the current NPP's. The design was the springboard for building the reactors and then operating them. Throughout construction and at times during operation, many difficulties arose, which were overcome by modifications. The need today is to go back down the line in the opposite direction : to use operational and constructional experience to restructure the design. Furthermore, the design of future reactors appears to me as a process which must be founded upon two guiding principles : defense in depth and a PSA-type probabilistic approach. They seem to me ideally fitted to underpin such a process, especially in the case of an evolutionary-type reactor project. Such a strategy requires the cooperation of many participants supported by a high level of safety culture, as defined in the report published by the IAEA in 1991 : a permanent questioning attitude, a prudent approach and efficient communication between all of the individuals and organizations involved. Failure to make such an effort might well compromise the safety goals mentioned earlier in this paper. (author) any other organization. (author)

  16. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  17. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  18. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  19. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  20. Structural mechanics and reactor safety

    International Nuclear Information System (INIS)

    Brandes, K.

    1983-01-01

    Operational safety and reliability of nuclear power plants widely depend on the mechanical behaviour of their structural components and their resistance to the various and complex influences. Durability and consistency of structural components are determined by the kind of strain - during the life - and by environmental conditions. The Conferences on Structural Mechanics in Reactor Technology (SMiRT) are dedicated to the discussion of such questions. The 7th of these Conferences taking place in 2-year increments was held in Chicago in August 1983. The number of contributions again increased, the number of participants slightly decreased. There are some trends in this field worth mentioning, in particular the fact that experience from design and operation of nuclear power plants now available is more and more made use of, and that more and more attention is given the problems of fusion reactors. (orig./HP) [de

  1. Inherent safety characteristics of innovative reactors

    International Nuclear Information System (INIS)

    Heil, J.A.

    1995-11-01

    The added safety value of innovative or third generation reactor designs has been evaluated in order to determine the most suitable candidate for Dutch government funded research and development support. To this end, four innovative reactor concepts, viz. PIUS (Process Inherent Ultimate Safety), PRISM (Power Reactor Innovative Small), HTR-M (High Temperature Reactor Module) and MHTGR (Modular High Temperature Gas-cooled Reactor), have been studied and their passive and inherent safety characteristics have been outlined. Also the outlook for further technological and industrial development has been considered. The results of the study confirm the perspective of the innovative reactors for reduced dependence on active safety provisions and for a further reduced vulnerability to technical failures and human errors. The accident responses to generic accident initiators, viz. reactivity and cooling accidents, and also to reactor specific accidents show that neither active safety systems nor short term operator actions are required for maintaining the reactor core in a controlled and coolable condition. Whether this gives rise to a higher total safety of the innovative reactor designs, compared to evolutionary or advanced reactors, cannot be concluded. Supplementary experimental and analytical analyses of reactor specific accidents are required to be able to assess the safety of these innovative designs in a more quantitative manner. It is believed that the safety case of innovative reactors, which are less dependent on active safety systems, can be communicated with the general public in a more transparent way. Considering the perspective for further technological and industrial development it is not expected that any of the considered innovative reactor concepts will become commercially available within the next one to two decades. However, they could be made available earlier if they would receive sufficient financial backing. Considering the added safety perspectives

  2. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commision of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  3. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  4. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  5. Pacific Northwest Laboratory Monthly Activities Report for August 1966 AEC Division of Reactor Development and Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    SL Fawcett

    1966-08-01

    This report has the following sections: Summary; Civilian Power Reactors; Applied and Reactor Physics; Reactor Fuels and Materials; Engineering Development; Plutonium Recycle Program; and Nuclear Safety.

  6. Safety Management at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Zarina Masood; Ahmad Nabil Abdul Rahim

    2011-01-01

    Adequate safety measures and precautions, which follow relevant safety standards and procedures, should be in place so that personnel safety is assured. Nevertheless, the public, visitor, contractor or anyone who wishes to enter or be in the reactor building should be well informed with the safety measures applied. Furthermore, these same elements of safety are also applied to other irradiation facilities within the premises of Nuclear Malaysia. This paper will describes and explains current safety management system being enforced especially in the TRIGA PUSPATI Reactor (RTP) namely radiation monitoring system, safety equipment, safe work instruction, and interconnected internal and external health, safety and security related departments. (author)

  7. New safety experiments in decommissioned superheated steam reactor at Karlstein

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    This article gives a concise summary of the Status Report of the Superheated Steam Reactor Safety Program (PHDR) Project, held at KfK on Dec. 5, 1985. The results discussed dealt with fire experiments, shock tests simulating airplane crashes, temperature shocks in the reactor pressure vessel, studies of crack detection in pressure vessels and blasting experiments associated with nuclear plant decommissioning

  8. Strategies for reactor safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K

    1997-12-01

    The NKS/RAK-1 project formed part of a four-year nuclear research program (1994-1997) in the Nordic countries, the NKS Programme. The project aims were to investigate and evaluate the safety work, to increase realism and reliability of the safety analysis, and to give ideas for how safety can be improved in selected areas. An evaluation of the safety work in nuclear installations in Finland and Sweden was made, and a special effort was devoted to plant modernisation and to see how modern safety standards can be met up with. A combination of more resources and higher efficiency is recommended to meet requirements from plant modernisation and plant renovations. Both the utilities and the safety authorities are recommended to actively follow the evolving safety standards for new reactors. Various approaches to estimating LOCA frequencies have been explored. In particular, a probabilistic model for pipe ruptures due to intergranular stress corrosion has been developed. A survey has been done over methodologies for integrated sequence analysis (ISA), and different approaches have been developed and tested on four sequences. Structured frameworks for integration between PSA and behavioural sciences have been developed, which e.g. have improved PSA. The status of maintenance strategies in Finland and Sweden has been studied and a new maintenance data information system has been developed. (au) 41 refs.

  9. Strategies for reactor safety. Final report

    International Nuclear Information System (INIS)

    Andersson, K.

    1997-12-01

    The NKS/RAK-1 project formed part of a four-year nuclear research program (1994-1997) in the Nordic countries, the NKS Programme. The project aims were to investigate and evaluate the safety work, to increase realism and reliability of the safety analysis, and to give ideas for how safety can be improved in selected areas. An evaluation of the safety work in nuclear installations in Finland and Sweden was made, and a special effort was devoted to plant modernisation and to see how modern safety standards can be met up with. A combination of more resources and higher efficiency is recommended to meet requirements from plant modernisation and plant renovations. Both the utilities and the safety authorities are recommended to actively follow the evolving safety standards for new reactors. Various approaches to estimating LOCA frequencies have been explored. In particular, a probabilistic model for pipe ruptures due to intergranular stress corrosion has been developed. A survey has been done over methodologies for integrated sequence analysis (ISA), and different approaches have been developed and tested on four sequences. Structured frameworks for integration between PSA and behavioural sciences have been developed, which e.g. have improved PSA. The status of maintenance strategies in Finland and Sweden has been studied and a new maintenance data information system has been developed. (au)

  10. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  11. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  12. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  13. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  14. Monitoring circuit for reactor safety systems

    Science.gov (United States)

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  15. Monitoring circuit for reactor safety systems

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned. 3 claims, 2 figures

  16. University Reactor Sharing Program

    International Nuclear Information System (INIS)

    Reese, W.D.

    2004-01-01

    Research projects supported by the program include items such as dating geological material and producing high current super conducting magnets. The funding continues to give small colleges and universities the valuable opportunity to use the NSC for teaching courses in nuclear processes; specifically neutron activation analysis and gamma spectroscopy. The Reactor Sharing Program has supported the construction of a Fast Neutron Flux Irradiator for users at New Mexico Institute of Mining and Technology and the University of Houston. This device has been characterized and has been found to have near optimum neutron fluxes for A39/Ar 40 dating. Institution final reports and publications resulting from the use of these funds are on file at the Nuclear Science Center

  17. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  18. Passive safety and the advanced liquid metal reactors

    International Nuclear Information System (INIS)

    Hill, D.J.; Pedersen, D.R.; Marchaterre, J.F.

    1988-01-01

    Advanced Liquid Metal Reactors being developed today in the USA are designed to make maximum use of passive safety features. Much of the LMR safety work at Argonne National Laboratory is concerned with demonstrating, both theoretically and experimentally, the effectiveness of the passive safety features. The characteristics that contribute to passive safety are discussed, with particular emphasis on decay heat removal systems, together with examples of Argonne's theoretical and experimental programs in this area

  19. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  20. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  1. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  2. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  3. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  4. SP-100 Program: space reactor system and subsystem investigations

    International Nuclear Information System (INIS)

    Harty, R.B.

    1983-01-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs

  5. Transactions of the Twentieth Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 20th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 21--23, 1992. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included

  6. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  7. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP) [de

  8. Light Water Reactor (LWR) safety

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2006-01-01

    In this paper, a historical review of the developments in the safely of LWR power plants is presented. The paper reviews the developments prior to the TMI-2 accident, i.e. the concept of the defense in depth, the design basis, the large LOCA technical controversies and the LWR safety research programs. The TMI-2 accident, which became a turning point in the history of the development of nuclear power is described briefly. The Chernobyl accident, which terrified the world and almost completely curtailed the development of nuclear power is also described briefly. The great international effort of research in the LWR design-base and severe accidents, which was, respectively, conducted prior to and following the TMI-2 and Chernobyl accidents is described next. We conclude that with the knowledge gained and the improvements in plant organisation/management and in the training of the staff at the presently-installed nuclear power stations, the LWR plants have achieved very high standards of safety and performance. The Generation 3 + LWR power plants, next to be installed, may claim to have reached the goal of assuring the safety of the public to a very large extent. This review is based on the historical developments in LWR safety that occurred primarily in USA. however, they are valid for the rest of the Western World. This review can not do justice to the many many fine contributions that have been made over the last fifty years to the cause of LWR safety. We apologize if we have not mentioned them. We also apologize for not providing references to many of the fine investigations, which have contributed towards LWR safety earning the conclusions that we describe just above

  9. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  10. Summary view on demonstration reactor safety

    International Nuclear Information System (INIS)

    Satoh, Kazuziro; Kotake, Shoji; Tsukui, Yutaka; Inagaki, Tatsutoshi; Miura, Masanori

    1991-01-01

    This work presents a summary view on safety design approaches for the demonstration fast breeder reactor (DFBR). The safety objective of DFBR is to be at lea as safe as a LWR. Major safety issues discussed in this paper are; reduction of sodium void reactivity worth, adoption of self-actuated mechanism in the backup shutdown system, use of the direct reactor auxiliary cooling system (DRACS), provision of the containment system. (author)

  11. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  12. Technical mechanics in constructional reactor safety

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    Reactor safety is based on close cooperation between a number of technical and scientific disciplines; most problems of reactor technology can be solved with the aid of technical mechanics. At the 5th International Conference on Structural Mechanics in Reactor Technology (5th SMIRT), one of the biggest conferences in the field of applied technical mechanics, about 800 papers were read giving the latest state of knowledge in the field of constructional reactor safety. The main subject of the conference was the analysis of material behaviour under high loads; the information and methods of these analysis go far beyond what is required in the conventional field. (orig./UA) [de

  13. RSAS: a Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Dixon, B.W.; Bray, M.A.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is being developed for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system generates situation assessments for the NRC Reactor Safety Team based on a limited number of plant parameters, known operator actions, and plant status data. The RSAS rule base currently covers one reactor type. The extension of the rule base to other reactor types is also discussed

  14. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  15. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  16. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' [Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety] is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document

  17. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 6, appendices A, B, and C

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events (including internal flooding, but excluding internal fire). The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, reviewed the WE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. In particular, these results are assessed in relation to the design and operational characteristics of the various reactor and containment types, and by comparing the IPEs to probabilistic risk assessment characteristics. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants

  18. Safety issues at the defense production reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The United States produces plutonium and tritium for use in nuclear weapons at the defense production reactors endash the N Reactor in Washington and the Savannah River reactors in South Carolina. This report reaches general conclusions about the management of those reactors and highlights a number of safety and technical issues that should be resolved. The report provides an assessment of the safety management, safety review, and safety methodology employed by the Department of Energy and the private contractors who operate the reactors for the federal government. The report is necessarily based on a limited review of the defense production reactors. It does not address whether any of the reactors are ''safe,'' because such an analysis would involve a determination of acceptable risk endash a matter of obvious importance, but one that was beyond the purview of the committee. It also does not address whether the safety of the production reactors is comparable to that of commercial nuclear power stations, because even this narrower question extended beyond the charge to the committee and would have involved detailed analyses that the committee could not undertake

  19. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  20. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  1. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  2. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  3. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  4. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  5. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  6. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  7. Application of the reactor kinetics equations to the reactor safety analysis

    International Nuclear Information System (INIS)

    Sdouz, G.

    1976-01-01

    The reactor kinetics equations which can be solved by the computer program AIREK-III are used to describe the behavior of fast reactivity transients. By supplementing this computer program it was possible to solve additional safety problems, e.g. the course of reactor excursions induced by any form of reactivity input, the control of reactivity input as a function of a threshold-energy and the computation of produced energy. (author)

  8. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  9. Simplified safety and containment systems for the iris reactor

    International Nuclear Information System (INIS)

    Conway, L.E.; Lombardi, C.; Ricotti, M.; Oriani, L.

    2001-01-01

    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  10. Safety and environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Kilic, H.; Jensen, B.

    1982-01-01

    This paper deals with those problems concerning safety and environmental aspects of the future fusion reactors (e.g. fuel cycle, magnetic failure, after heat disturbances, radioactive waste and magnetic field)

  11. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  12. The Advanced Test Reactor Strategic Evaluation Program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1990-01-01

    A systematic evaluation of safety, environmental, and operational issues has been initiated at the Advanced Test Reactor (ATR). This program, the Strategic Evaluation Program (STEP), provides an integrated review of safety and operational issues against the standards applied to licensed commercial facilities. In the review of safety issues, 18 deviations were identified which required prompt attention. Resolution of these items has been accelerated in the program. An integrated living schedule is being developed to address the remaining findings. A risk evaluation is being performed on the proposed corrective actions and these actions will then be formally ranked in order of priority based on considerations of safety and operational significance. Once the final ranking is completed, an integrated schedule will be developed, which will include considerations of availability of funding and operating schedule. 3 refs., 2 figs

  13. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  14. The safety of pressurized water reactors

    International Nuclear Information System (INIS)

    Panossian, J.; Tanguy, P.

    1991-01-01

    In this paper we present a review of the status of the safety level of modern pressurized water reactors, that is to say those that meet the safety criteria accepted today by the international nuclear community. We will mainly rely on the operating experience and the Probabilistic Safety Assessments concerning French reactors. We will not back over the basic safety concepts of these reactors, which are well known. We begin with a brief review of some of the lessons learned from the two main accidents discussed in the present meeting. Three Mile Island and Chernobyl, without entering into details presented in previous papers. The presentation ends with a rather lengthy conclusion, aimed more at those not directly involved in the technical details of nuclear safety matters

  15. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  16. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  17. The safety of fast reactors

    International Nuclear Information System (INIS)

    Justin, F.

    1976-01-01

    A response is made to the main questions that a man in the street may arise concerning fast breeder reactors, in particular: the advantages of this line, dangerous materials contained in fast breeder reactors, containment shells protecting the environment from radiations, main studies now in progress [fr

  18. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  19. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  20. Safety equipment in a reactor

    International Nuclear Information System (INIS)

    Shiratori, Hirozo; Ishiyama, Satoshi; Ugawa, Yukio.

    1976-01-01

    Object: To safely retain, even if fuel should be molten and flown through the bottom of a container in a reactor, the molten fuel to remove heat generation of the fuel to prevent occurrence of a critical trouble. Structure: A reactor container housing a core and coolant has thereunder a separation dome in a central portion thereof and a partitioning plate coaxially and circularly disposed in the periphery of the separation dome, with a tray formed of magnesium oxide being disposed. Further, a cooling path system is provided so as to surround the tray. The cooling path system and the reactor container are surrounded and protected by a reactor wall provided with heat insulating refractory bricks, a coolant pouring system extends through the reactor wall, and the coolant is supplied to the tray. (Furukawa, Y.)

  1. N Reactor Deactivation Program Plan

    International Nuclear Information System (INIS)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities · in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually

  2. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  3. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  4. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  5. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  6. Safety aspects of pressurised water reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This submission to the Health and Safety Executive has been prepared by the Institution of Professional Civil Servants (IPCS) as a contribution to the debate on safety aspects associated with Pressurized Water Reactors (PWRs). Although supporting an energy policy which includes the development of nuclear power, assurances are sought on a number of safety issues if it is decided that this should be generated by a PWR-type reactor. These issues are listed. In particular the following are mentioned: the wider publication of design information, the use of elastic-plastic fracture mechanics as the basis for determining pressure vessel integrity, the failure rate of steam generating units, water coolant quality control, greater investigation of two-phase flow accident conditions, the components of the reactor cooling system and training of reactor personnel in the understanding of LOCA effects. (U.K.)

  7. Safety system for reactor container

    International Nuclear Information System (INIS)

    Shimizu, Miwako; Seki, Osamu; Mano, Takio.

    1995-01-01

    A slanted structure is formed below a reactor core where there is a possibility that molten reactor core materials are dropped, and above a water level of a pool which is formed by coolants flown from a reactor recycling system and accumulated on the inner bottom of the reactor container, to prevent molten fuels from dropping at once in the form of a large amount of lump. The molten materials are provisionally received on the structure, gradually formed into small pieces and then dropped. Further, the molten materials are dropped and received provisionally on a group of coolant-flowing pipelines below the structure, to lower the temperature of the molten materials, and then the reactor core molten materials are gradually formed into small pieces and dropped into the pool water. Since they are not dropped directly into the pool water but dropped gradually into the pool water as small droplets, occurrence of steam explosion can be reduced. The occurrence of steam explosion due to dropped molten reactor core material and pool water is suppressed, and the molten materials are kept in the pool water, thereby enabling to maintain the integrity of the reactor container more effectively. (N.H.)

  8. Safety assessment of Department of Energy nuclear reactors

    International Nuclear Information System (INIS)

    1981-03-01

    One of the first tasks of the NFPQT Committee was to determine which DOE reactors would be assessed. The Committee determined that in view of the limited time available to conduct the assessment, 13 DOE reactors were of such size (physical, power or fission product inventory) to warrant review. This determination was approved by the Under Secretary. A decision was also made in the cases of three weapons material production reactors, C, K and P, to concentrate on the K reactor only, since all three are of the same basic design, have the same operating features, are all at the same site, and are all operated by the same contractor. The assessment was accomplished in the following ways: reviewing the results of assessments conducted by the DOE organizations with reactor safety responsibilities, which were undertaken in compliance with the request of the various program directors; reviewing selected documents that were requested by the Committee and assembled at DOE Headquarters; interviewing DOE Headquarters and Field Office personnel; and conducting on-site reviews of four reactors located at four different sites. The four reactors for on-site reviews were: Advanced Test Reactor (ATR); K Production Reactor; High Flux Beam Reactor (HFBR); and High Flux Isotope Reactor (HFIR). Specific findings and recommendations from the assessment are presented

  9. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  10. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  11. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  12. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    Sills, H.E.; Duffey, R.B.; Andres, T.H.

    1999-01-01

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  13. Considerations on nuclear reactor passive safety systems

    International Nuclear Information System (INIS)

    2016-01-01

    After having indicated some passive safety systems present in electronuclear reactors (control bars, safety injection system accumulators, reactor cooling after stoppage, hydrogen recombination systems), this report recalls the main characteristics of passive safety systems, and discusses the main issues associated with the assessment of new passive systems (notably to face a sustained loss of electric supply systems or of cold water source) and research axis to be developed in this respect. More precisely, the report comments the classification of safety passive systems as it is proposed by the IAEA, outlines and comments specific aspects of these systems regarding their operation and performance. The next part discusses the safety approach, the control of performance of safety passive systems, issues related to their reliability, and the expected contribution of R and D (for example: understanding of physical phenomena which have an influence of these systems, capacities of simulation of these phenomena, needs of experimentations to validate simulation codes)

  14. The safety of the fast reactor

    International Nuclear Information System (INIS)

    Matthews, R.R.

    1977-01-01

    Verbatim of an address by R.R. Matthews, Chief Nuclear Health and Safety Officer, UK Central Electricity Generating Board given on January 15th 1977. The object of this address was to give some opinions on the safety issues of fast reactors as seen from an operational point of view. An outline of the basic responsibilities for nuclear safety is first given, and it is emphasized that the Central Electricity Generating Board has a statutory responsibility for the safe operation of its nuclear plant. The Nuclear Installations Act places absolute responsibility on the operator for ensuring that injury to persons and damage to property do not occur, and the new Health and Safety at Work Act does likewise. In addition the Board has a Nuclear Health and Safety Department that has to ensure that adequate provision for safety is made in the design, construction, and operation of nuclear plant, and safety at operational stations is monitored continuously by inspectors. In addition the requirements of the Nuclear Installations Inspectorate, laid down in the site licence conditions, must be satisfied. All these requirements are here discussed in the light of application to commercial fast reactors. It is considered that the hazards to fast reactor operating personnel are small and little different from those of other types of reactor, and in some respects the fast reactor has advantages, particularly in regard to the use of a Na coolant. The possibility of various types of accident is considered. Radioactive effluent discharge is also considered. The fast reactor as an international problem is discussed, including security matters. The extensive experience gained in operation of the experimental and prototype fast reactors at Dounreay is emphasized. (U.K.)

  15. Review of light--water reactor safety studies. Volume 3 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    International Nuclear Information System (INIS)

    Nero, A.V.; Farnaam, M.R.K.

    1977-01-01

    This report summarizes and compares important studies of light-water nuclear reactor safety, emphasizing the Nuclear Regulatory Commission's Reactor Safety Study, work on risk assessment funded by the Electric Power Research Institute, and the Report of the American Physical Society study group on light-water reactor safety. These reports treat risk assessment for nuclear power plants and provide an introduction to the basic issues in reactor safety and the needs of the reactor safety research program. Earlier studies are treated more briefly. The report includes comments on the Reactor Safety Study. The manner in which these studies may be used and alterations which would increase their utility are discussed

  16. Nuclear reactor core safety device

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The danger of a steam explosion from a nuclear reactor core melt-down can be greatly reduced by adding a gasifying agent to the fuel that releases a large amount of gas at a predetermined pre-melt-down temperature that ruptures the bottom end of the fuel rod and blows the finely divided fuel into a residual coolant bath at the bottom of the reactor. This residual bath should be equipped with a secondary cooling loop

  17. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  18. Independent assessment for new nuclear reactor safety

    International Nuclear Information System (INIS)

    D'Auria, F.; Glaeser, H.; Debrecin, N.

    2017-01-01

    A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs). Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry). The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty (BEPU) approach. (authors)

  19. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    1975-01-01

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  20. EDF's nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1987-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction-had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's 'with book' on nuclear safety. (author)

  1. EDF'S nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1988-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction - had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's white book on nuclear safety

  2. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  3. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  4. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  5. Overview of fast reactor safety research and development in the USA

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Avery, R.; Marchaterre, J.F.

    1986-01-01

    The liquid metal reactor (LMR) safety R and D program in the U.S. is presently focused on support of two modular innovative reactor concepts: PRISM - the General Electric Power Reactor Inherently Safe Module and SAFR - the Rockwell International Sodium Advanced Fast Reactor. These reactor plant concepts accommodate the use of either oxide fuel or the metal fuel which is under development in the Argonne National Laboratory (ANL) Integral Fast Reactor (IFR) program. Both concepts emphasize prevention of accidents through enhancement of inherent and passive safety characteristics. Enhancement of these characteristics is expected to be a major factor in establishing new and improved safety criteria and licensing arrangements with regulatory authorities for advanced reactors. Limited work is also continuing on the Large Scale Prototype Breeder (LSPB), a large pool plant design. Major elements of the current and restructured safety program are discussed. (author)

  6. Regulatory activities in reactor safety

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1987-01-01

    The safety phylosophy in designs and operation of nuclear power plants and, the steps for evaluating the safety and quality assurance, in the licensing procedure are described. The CNEN organization structure and the licensing procedure for nuclear power plants in Brazil are presented. (M.C.K.) [pt

  7. The safety of Ontario's nuclear reactors

    International Nuclear Information System (INIS)

    1980-06-01

    A Select Committee of the Legislature of Ontario was established to examine the affairs of Ontario Hydro, the provincial electrical utility. Extensive public hearings were held on several topics including the safety of nuclear power reactors operating in Ontario. The Committee found that these reactors are acceptably safe. Many of the 24 recommendations in this report deal with the licensing process and public access to information. (O.T.)

  8. Nuclear reactor safety in the USA

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1983-01-01

    Nuclear reactor safety in the USA has emphasized a defense-in-depth approach to protecting the public from reactor accidents. This approach was severely tested by the Three Mile Island accident and was found to be effective in safeguarding the public health and safety. However, the economic impact of the TMI accident was very large. Consequently, more attention is now being given to plant protection as well as public-health protection in reactor-safety studies. Sophisticated computer simulations at Los Alamos are making major contributions in this area. In terms of public risk, nuclear power plants compare favorably with other large-scale alternatives to electricity generation. Unfortunately, there is a large gulf between the real risks of nuclear power and the present public perception of these risks

  9. Safety report on WWR-S reactor

    International Nuclear Information System (INIS)

    Horyna, J.; Kaisler, L.; Listik, E.

    1981-04-01

    The present Safety Report of the WWR-S reactor summarizes findings obtained during the trial and partially also permanent operation of the reactor after two stages of its reconstruction implemented between 1974 and 1976. Most data are presented necessary for assessing probable risks of possible accident conditions whose consequences pose health hazards to individuals of the population, radiation personnel and the facilities themselves. Attention is devoted to the description of the locality, to components and systems, heat removal from the core, design aspects, the quality of new and old parts of the technological circuits, the systems of protection and control, the emergency core cooling system, the problems of radiation safety, and to the safety analyses of the abnormal states envisaged. The Report was compiled with regard to IAEA and CMEA recommendations concerning safe operation of research reactors and to the recommendations and binding decisions of the Czechoslovak Atomic Energy Commission. (author)

  10. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  11. Revised GCFR safety program plan

    International Nuclear Information System (INIS)

    Kelley, A.P.; Boyack, B.E.; Torri, A.

    1980-05-01

    This paper presents a summary of the recently revised gas-cooled fast breeder reactor (GCFR) safety program plan. The activities under this plan are organized to support six lines of protection (LOPs) for protection of the public from postulated GCFR accidents. Each LOP provides an independent, sequential, quantifiable risk barrier between the public and the radiological hazards associated with postulated GCFR accidents. To implement a quantitative risk-based approach in identifying the important technology requirements for each LOP, frequency and consequence-limiting goals are allocated to each. To ensure that all necessary tasks are covered to achieve these goals, the program plan is broken into a work breakdown structure (WBS). Finally, the means by which the plan is being implemented are discussed

  12. New Production Reactors Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  13. New Production Reactors Program Plan

    International Nuclear Information System (INIS)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs

  14. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  15. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  16. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  17. The safety features of an integrated maritime reactor

    International Nuclear Information System (INIS)

    Miyakoshi, Junichi; Yamada, Nobuyuki; Kuwahara, Shin-ichi

    1975-01-01

    The EFDR-80, a typical integrated maritime reactor, which is being developed in West Germany is outlined. The safety features of the integrated maritime reactor are presented with the analysis of reactor accidents and hazards, and are compared with those of the separated maritime reactor. Furthermore, the safety criteria of maritime reactors in Japan and West Germany are compared, and some of the differences are presented from the viewpoint of reactor design and safety analysis. In this report the authors express an earnest desire that the definite and reasonable safety criteria of the integrated maritime reactor should be established and that the safety criteria of the nuclear ship should be standardized internationally. (auth.)

  18. Experts' discussion on reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    The experts' discussion on reactor safety research deals with risk analysis, political realization, man and technics, as well as with the international state of affairs. Inspite of a controversy on individual issues and on the proportion of governmental and industrial involvment in reactor safety research, the continuation and intensification of corresponding research work is said to be necessary. Several participants demanded to consider possible 'conventional accidents' as well as a stronger financial commitment by the industry in this sector. The ratio 'man and technics' being an interface decisive for the proper functioning or failure of complex technical systems requires even more research work to be done. (GL) [de

  19. Perspectives on reactor safety. Revision 1

    International Nuclear Information System (INIS)

    Haskin, F.E.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  20. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  1. Reactor safety research - results and perspectives

    International Nuclear Information System (INIS)

    Banaschik, M.

    1989-01-01

    The work performed so far is an essential contribution to the determination of the safety margins of nuclear facilities and their systems and to the further development of safety engineering. The further development of safety engineering involves a shift of emphasis in reactor safety research towards event sequences beyond the design basis. The aim of this shift in emphasis is the further development of the preventive level. This is based on the fact that the conservative design of the operating and safety systems involves and essential safety potential. The R and D work is intended to help develop accident management measures and to take the plant back into the safe state even after severe accidents. In this context, it is necessary to make full use of the safety margins of the plant and to include the operating systems for coping with accidents. As a result of the aims, the research work approaches operating and plant-specific processes. (orig./DG) [de

  2. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  3. University Reactor Matching Grants Program

    International Nuclear Information System (INIS)

    John Valentine; Farzad Rahnema; Said Abdel-Khalik

    2003-01-01

    During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given

  4. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  5. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  6. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  7. The dual face of reactor safety

    International Nuclear Information System (INIS)

    Merz, L.

    1981-01-01

    Reactor safety is nowadays treated theoretically by a probabilistic approach. This means that events which may lead to accidents are considered as random events, and probability calculus is employed to predict potential damage. However, it has been found in practice that there are also failures in no way connected with chance, i.e., the so-called deterministic ones. This lends a dual face to reactor safety, a probabilistic and a deterministic one. In this contribution, the author resumes studies he had once initiated under the heading of Deterministic and Probabilistic Theses on Reactor Safety. He examines the present state of reactor safety under the aspect of deterministic and probabilistic failures and the significance of active and passive safety systems, estimating whether and to what extent earlier proposals have been incorporated in present technology. The two most prominent studies dealing with the risk of nuclear power plants, the American Rasmussen Study, WASH 1400, and the German Risk Study, were calculated by the most recent probabilistic methods. The causes of deterministic failures can be traced back to deterministic errors. There are errors in planning, in design, in fabrication, errors caused by maloperation, premature aging, sabotage and war. Since they are due to certain causes, it is possible in principle to discover and control them already by mental experiments. (orig./HP) [de

  8. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  9. Transactions of the nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately

  10. Reactor safety research in times of change

    International Nuclear Information System (INIS)

    Zipper, Reinhard

    2013-01-01

    Since the early 1970ies reactor safety research sponsored by the German Ministry of Economics an Technology and its predecessors and pursued independently from interests of industry or industrial associations as well as from current licensing issues significantly contributed to the extension of knowledge regarding risks and possible threats associated with the operation of nuclear power plants. The results of these research activities triggered several measures taken by industry and utilities to further enhance the internationally recognized high safety standards of nuclear power plants in Germany. Furthermore, by including especially universities in the distinguished research activities a large number of young scientists were given the opportunity to qualify in the field of nuclear reactor technology and safety thus contributing to the preservation of competence during the demographic change. The nuclear phase out in Germany affects also issues of reactor safety research in Germany. While Germany will progressively decrease and terminate the use of nuclear energy for public power supply other countries in Europe and in other parts of the world are continuing, expanding and even starting the use of nuclear power. As generally recognized, nuclear safety is an international issue and in the wake of the Fukushima disaster there are several initiatives to launch a system of internationally binding safety rules and guide lines. The German Competence Alliance therefore has elaborated a framework of areas were future reactor safety research will still be needed to support German efforts based on own and independent expertise to continuously develop and establish highest safety standards for the use of nuclear power supply domestic and abroad.

  11. COMPRESS - a computerized reactor safety system

    International Nuclear Information System (INIS)

    Vegh, E.

    1986-01-01

    The computerized reactor safety system, called COMPRESS, provides the following services: scram initiation; safety interlockings; event recording. The paper describes the architecture of the system and deals with reliability problems. A self-testing unit checks permanently the correct operation of the independent decision units. Moreover the decision units are tested by short pulses whether they can initiate a scram. The self-testing is described in detail

  12. Inspection program for U.S. research reactors

    International Nuclear Information System (INIS)

    Isaac, Patrick J.

    2010-01-01

    This paper presents an established program for inspection of nuclear research reactors to ensure that systems and techniques are in accordance with regulatory requirements and to provide protection for the health and safety of the public. The inspection program, implemented from the time a facility gets licensed, remains in effect through operations, shutdown, decommissioning, and until the license is terminated. The program establishes inspection methodology for operating, safeguards, and decommissioning activities. Using a performance- based approach, inspectors focus their attention on activities important to safety. Inspection procedures allow the inspectors to assess facility safety and compliance to applicable requirements. A well designed inspection program is an integral part of the mechanism to ensure that the level of performance in the strategic areas of reactor safety, radiation safety, and safeguards is acceptable and provides adequate protection of public health and safety. (author)

  13. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  14. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  15. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  16. Advanced reactor systems: safety and regulatory aspects

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.

    1994-01-01

    Safety features which are desirable in futuristic reactor systems have been the subject of several studies over the past decade by different expert groups. When one discusses this subject, therefore, in a somewhat non-specific and qualitative manner, it is best to make use of the already available collective wisdom and literature on the matter. (author). 3 refs

  17. USA NRC/RSR Data Bank System and Reactor Safety Research Data Repository (RSRDR)

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Bankert, S.F.

    1979-01-01

    The United States Nuclear Regulatory Commission (NRC), through its Division of Reactor Safety Research (RSR) of the Office of Nuclear Regulatory Research, has established the NRC/RSR Data Bank Program to collect, process, and make available data from the many domestic and foreign water reactor safety research programs. An increasing number of requests for data and/or calculations generated by NRC Contractors led to the initiation of the program which allows timely and direct access to water reactor safety data in a manner most useful to the user. The program consists of three main elements: data sources, service organizations, and a data repository

  18. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  19. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  20. Decentralization of operating reactor licensing reviews: NRR Pilot Program

    International Nuclear Information System (INIS)

    Hannon, J.N.

    1984-07-01

    This report, which has incorporated comments received from the Commission and ACRS, describes the program for decentralization of selected operating reactor licensing technical review activities. The 2-year pilot program will be reviewed to verify that safety is enhanced as anticipated by the incorporation of prescribed management techniques and application of resources. If the program fails to operate as designed, it will be terminated

  1. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Education, Science, Research and Technology. Reported period: January 1 to June 30, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Research Management Division at the GRS within the framework of general informations of progress in reactor safety research. The individual reports are classified according to projects of the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC (Commision of the European Communities), IAEA (International Atomic Energy Agency) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP) [de

  2. Technical specification optimization program - engineered safety features

    International Nuclear Information System (INIS)

    Andre, G.R.; Jansen, R.L.

    1986-01-01

    The Westinghouse Technical Specification Program (TOP) was designed to evaluate on a quantitative basis revisions to Nuclear Power Plant Technical Specifications. The revisions are directed at simplifying plant operation, and reducing unnecessary transients, shutdowns, and manpower requirements. In conjunction with the Westinghouse Owners Group, Westinghouse initiated a program to develop a methodology to justify Technical Specification revisions; particularly revisions related to testing and maintenance requirements on plant operation for instrumentation systems. The methodology was originally developed and applied to the reactor trip features of the reactor protection system (RPS). The current study further refined the methodology and applied it to the engineered safety features of the RPS

  3. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  4. List of reports in reactor safety research by BMFT, EPRI, JSTA, and USNRC

    International Nuclear Information System (INIS)

    1981-05-01

    This list reviews reports from the Federal Republic of Germany, from the United States of America and from Japan concerning special problems in the field of reactor safety research. The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Program of BMFT, reporting organisation. The list of reports appears quarterly. (orig./HP) [de

  5. Reactor safety in the Netherlands

    International Nuclear Information System (INIS)

    Eendebak, B.Th.

    1983-01-01

    In this book, the author gives a survey of the most important safety aspects of the construction and operation of nuclear power plants in the Netherlands. It deals with concrete questions like how to choose appropriate sites for power plants; what are the risks for people living in their surroundings; what are the consequences of possible accidents; what to do with the nuclear wastes and what are the conseqences for new generations. For answering these questions, the author has presented a fairly well documented outline of the contemporary problems. So, the book is a useful tool for everybody who wants to become acquainted with the nuclear controversy (G.J.P.)

  6. Safety device for nuclear reactors

    International Nuclear Information System (INIS)

    Gruhl, H.

    1974-01-01

    The safety device is used to capture fragments of the lid of a pressure vessel when this vessel ruptures. It consists of a catcher structure attached to the concrete vessel, which is open at the top, and surrounding the pressure vessel. The catcher structure in this case may be designed as a ring installed very close to the concrete vessel, as a closure plate or may be made of transverse beams arranged parallel to each other. It is anchored either rigidly or elastically to the concrete vessel by means of springs or to the foundation by means of steel stretching members. (DG) [de

  7. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  8. The German reactor safety study

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1980-01-01

    The most important results of the German risk study of a nuclear power plant equipped with a pressurized water reactor were published in August 1979. The main volume of the study with the approach used and the results elaborated has been available for reference since late 1979. Eight technical volumes contain detailed descriptions and documentations of the investigations carried out. The reference facility used as a basis for the technical plant studies was unit B of the Biblis Nuclear Power Station, a KWU PWR of 3750 MW thermal power. This contribution provides more detailed explanations of the methods and the results of the risk study illustrated by examples. The description refers to accident categories and categories of radioactivity releases, probabilities of specific sequences of accident events, and the damage associated with core meltdown accidents as a function of various types of failure. For purposes of evaluation and application of the results the limits in the basic assumptions of the study are referred to. (orig./HP) [de

  9. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  10. Advanced power reactors with improved safety characteristics

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1994-01-01

    The primary objective of nuclear safety is the protection of individuals, society and environment against radiological hazards from accidental releases of radioactive materials contained in nuclear reactors. Hereto, these materials are enclosed by several successive barriers and the barriers protected against mishaps and accidents by a multi-level system of safety precautions. The evolution of reactor technology continuously improves this concept and its implementation. At a world-wide scale, several advanced reactor concepts are currently being considered, some of them already at a design stage. Essential safety objectives include both further strengthening the prevention of accidents and improving the containment of fission products should an accident occur. The proposed solutions differ considerably with regard to technical principles, plant size and time scales considered for industrial application. Two typical approaches can be distinguished: The first approach basically aims at an evolution of power reactors currently in use, taking into account the findings from safety research and from operation of current plants. This approach makes maximum use of proven technology and operating experience but may nevertheless include new safety features. The corresponding designs are often termed 'large evolutionary'. The second approach consists in more fundamental changes compared to present designs, often with strong emphasis on specific passive features protecting the fuel and fuel cladding barriers. Owing to the nature and capability of those passive features such 'innovative designs' are mostly smaller in power output. The paper describes the basic objectives of such developments and illustrates important technical concepts focusing on next generation plants, i.e. designs to be available for industrial application until the end of this decade. 1 tab. (author)

  11. A probabilistic safety analysis of incidents in nuclear research reactors.

    Science.gov (United States)

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  12. A probabilistic safety analysis of incidents in nuclear research reactors

    International Nuclear Information System (INIS)

    Lopes, V. M.; Sordi, G. M. A. A.; Moralles, M.; Filho, T. M.

    2012-01-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64. (authors)

  13. Reactor safety research in France

    International Nuclear Information System (INIS)

    Bussac, J.; Zammite, R.

    1989-01-01

    The paper deals withs PWR research only and covers programs performed in CEA or in cooperation between CEA and EDF or Framatome. Emphasis is being given to core cooling faults and associated procedures, primary circuit two-phase thermohydraulics, core damage, safeguarding of confinement, evaluation of accidental releases, and management of accident consequences. Most of the design and construction adequacy problems have already been solved in a generic manner, nevertheless new designs are now being studied and may require complementary research. (DG)

  14. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  15. Nuclear safety. Concerns about the nuclear power reactors in Cuba

    International Nuclear Information System (INIS)

    Wells, Jim; Aloise, Gene; Flaherty, Thomas J.; Fitzgerald, Duane; Zavala, Mario; Hayward, Mary Alice

    1992-09-01

    the atmosphere, contains defective welds. Another said that reactor operator trainees have received training on inadequate reactor simulators. In contrast, a representative of the Cuban government told us that Cuba wants to build its reactor in accordance with safety standards. Also, according to information provided to us by a representative of the Russian government, Cuba's reactor has been constructed according to safety rules that take into account, among other things, the possible impacts of an earthquake. State Department, NRC, and DOE officials have expressed a number of concerns about the construction and operation of Cuba's nuclear power reactors. According to State Department officials, the United States maintains a comprehensive embargo on any U.S. transactions with Cuba and discourages other countries from providing assistance, except for safety purposes, to Cuba's nuclear power program. The United States would prefer that the construction of the reactors never be completed and wants Cuba to sign the Non-Proliferation Treaty or the Treaty of Tlatelolco, both of which bind signatories to blanket nonproliferation commitments for their entire nuclear program, before the United States considers reversing its policy of discouraging other countries from assisting Cuba with the construction of the reactors. The United States has asked Russia to cease providing any nuclear assistance until Cuba has signed either treaty. NRC officials are aware of, but could not verify, the Cuban emigres' allegations of safety deficiencies because available information was limited. They said, however, that if the allegations were true, the cited deficiencies could affect the safety of the reactors operation. In addition, they expressed concern about the ability of Cuba's industrial infrastructure to support the nuclear power reactors, the lack of a regulatory structure, the adequacy of training for reactor operators, the quality of the civil construction, and the design of the

  16. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  17. Conceptual safety design analysis of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  18. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  19. Reactor engineering and engineered reactor safety in France

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings give the full text of the lectures held by acknowledged French experts at the KTG Seminar in Mainz on March 10, 1987, all dealing with the leading topic of the current status of reactor engineering and development in France. Although the basic engineering principles and construction lines as well as the safety philosophy are the same in France as in West Germany, there have been distinctive developments over many years in the two countries that by now are not well known even among experts in this field, and hence cannot be properly assessed. Non-availability of relevant surveys or other type of literature in the German language reviewing the French developments is another factor that hitherto was a handicap to mutual exchange of information. The seminar was intended to close this gap. The proceedings should be read by all those in West Germany who wish to be informed about the developments in reactor engineering and reactor safety in France. (orig./DG) [de

  20. Self Assessment for the Safety of Research Reactor in Indonesia

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. National Nuclear Energy Agency (BATAN) has three research reactor; which are: Reactor Triga Mark II at Bandung, Reactor Kartini at Yogyakarta and Reactor Serbaguna (Multi Purpose Reactor) at Serpong. The Code of Conduct on the Safety of Research Reactors establishes 'best practice' guidelines for the licensing, construction and operation of research reactors. In this paper the author use the requirement in code of conduct to review the safety of research reactor in Indonesia

  1. MAPLE-X10 reactor safety assessment

    International Nuclear Information System (INIS)

    Cotnam, K.D.; Lounsbury, R.I.; Gillespie, G.E.

    1990-01-01

    This paper reports on the safety assessment of the 10 MW MAPLE-X10 reactor which has involved a substantial component of PSA analysis to supplement deterministic analysis. Initiating events are identified through the use of a master logic diagram. The events are then examined through event sequence diagrams, at the concept design stage, followed by a set of reliability analyses that are coordinated with the event sequence diagrams. Improvements identified through the reliability analyses are incorporated into the design to ensure that safety objectives are attained

  2. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  3. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  4. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  5. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).

  6. Hydrogen problems in reactor safety research

    International Nuclear Information System (INIS)

    Casper, H.

    1984-01-01

    The BMFT and BMI have initiated a workshop 'Hydrogen Problems in Reactor Safety Research' that took place October 3./4., 1983. The objective of this workshop was to present the state of the art in the main areas - Hydrogen-Production - Hydrogen-Distribution - Hydrogen-Ignition - Hydrogen-Burning and Containment Behaviour - Mitigation Measures. The lectures on the different areas are compiled. The most important results of the final discussion are summarized as well. (orig.) [de

  7. Computer graphics in reactor safety analysis

    International Nuclear Information System (INIS)

    Fiala, C.; Kulak, R.F.

    1989-01-01

    This paper describes a family of three computer graphics codes designed to assist the analyst in three areas: the modelling of complex three-dimensional finite element models of reactor structures; the interpretation of computational results; and the reporting of the results of numerical simulations. The purpose and key features of each code are presented. The graphics output used in actual safety analysis are used to illustrate the capabilities of each code. 5 refs., 10 figs

  8. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  9. N Reactor updated safety analysis report, NUSAR

    International Nuclear Information System (INIS)

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  10. Development Program of the Advanced HANARO Reactor in Korea

    International Nuclear Information System (INIS)

    Yang, I.-S.; Ahn, J.-H.; Han, K.-I.; Parh, C.; Jun, B.-J.; Kim, Y.-J.

    2006-01-01

    The development program of an advanced HANARO (AHR) reactor started in Korea to keep abreast of the increasing future demand, from both home and abroad, for research activities. This paper provides a review of the status of research reactors in Korea, the operating experience of the HANARO, the design principles and preliminary features of an advanced HANARO reactor, and the specific strategy of an advanced HANARO reactor development program. The design principles were established in order to design a new multi-purpose research reactor that is safe, economically competitive and technically feasible. These include the adaptation of the HANARO design concept, its operating experience, a high ratio of flux to power, a high degree of safety, improved economic efficiency, improved operability and maintainability, increased space and expandability, and ALARA design optimization. The strategy of an advanced HANARO reactor development program considers items such as providing a digital advanced HANARO reactor in cyber space, a method for the improving the design quality and economy of research reactors by using Computer Integrated Engineering, and more effective advertising using diverse virtual reality. This development program will be useful for promoting the understanding of and interest in the operating HANARO as well as an advanced HANARO reactor under development in Korea. It will provide very useful information to a country that may need a research reactor in the near future for the promotion of public health, bio-technology, drug design, pharmacology, material processing, and the development of new materials. (author)

  11. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  12. Distinctive safety aspects of the CANDU-PHW reactor design

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. They were prepared in response to a request from IAEA to provide information on the 'Special characteristics of the safety analysis of heavy water reactors' to delegates from member states attending the Interregional Training Course on Safety Analysis Review, held at Karlsruhe, November 19 to December 20, 1979. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (auth)

  13. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor

    International Nuclear Information System (INIS)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC's ''Statement of Policy for the Regulation of Advanced Nuclear Power Plants'' (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC's preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant's research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified

  14. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  15. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  16. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  17. Passive Safety Features for Small Modular Reactors

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2010-01-01

    The rapid growth in the size and complexity of commercial nuclear power plants in the 1970s spawned an interest in smaller, simpler designs that are inherently or intrinsically safe through the use of passive design features. Several designs were developed, but none were ever built, although some of their passive safety features were incorporated into large commercial plant designs that are being planned or built today. In recent years, several reactor vendors are actively redeveloping small modular reactor (SMR) designs with even greater use of passive features. Several designs incorporate the ultimate in passive safety they completely eliminate specific accident initiators from the design. Other design features help to reduce the likelihood of an accident or help to mitigate the accidents consequences, should one occur. While some passive safety features are common to most SMR designs, irrespective of the coolant technology, other features are specific to water, gas, or liquid-metal cooled SMR designs. The extensive use of passive safety features in SMRs promise to make these plants highly robust, protecting both the general public and the owner/investor. Once demonstrated, these plants should allow nuclear power to be used confidently for a broader range of customers and applications than will be possible with large plants alone.

  18. Safety reviews of the Brazilian multipurpose reactor

    International Nuclear Information System (INIS)

    Soares, Humberto Vitor

    2014-01-01

    This work presents a model developed for thermal hydraulic (TH) simulation of the Multipurpose Brazilian Reactor (RMB), whose Brazilian proposal for design, construction and operation was established in 2007. This reactor has as main proposed the production of radioisotopes for use in exams of nuclear medicine, material tests and utilization of neutrons beams. Besides of the TH modeling and safety analysis of the reactor, the application of a methodology to perform coupled calculation thermal-hydraulic/neutron kinetic (TH/NK) is also presented. Initially, the RMB was modeled in the safety analysis RELAP5 code. This code performs the thermal hydraulic calculation using point kinetics. Subsequently, the model was adapted and verified to the RELAP5-3D© code. This code performs the process of internal coupling through the option of nodal neutron kinetics calculation using the NESTLE code which solves the neutron diffusion equation. To generate the neutronic group constants, which are macroscopic cross sections that serve as input data for the neutronic codes, it was used the WIMSD-5B cell calculation code. The neutron analysis code PARCS was also used to model the 3D RMB core in order to compare the results of radial and axial average power distribution with the results generated by RELAP5-3D© code and with the available results of the CITATION neutron kinetic code. The safety analyses demonstrated safe behavior of the reactor through situations of possible transients. The 3D coupled calculations to the steady state operation also showed expected behavior, as well as the RMB neutronic analyzes performed with the codes NESTLE and PARCS.(author)

  19. Research reactor safety - an overview of crucial aspects

    International Nuclear Information System (INIS)

    Laverie, M.

    1998-01-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  20. Research reactor safety - an overview of crucial aspects

    Energy Technology Data Exchange (ETDEWEB)

    Laverie, M. [Atomic Energy Commission, Saclay, F-91191 Gif sur Yvette (France)

    1998-07-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  1. DOE University Reactor Sharing Program. Renewal for 1994--1995

    International Nuclear Information System (INIS)

    Chappas, W.J.; Adams, V.G.

    1994-01-01

    The Department of Energy University Reactor Sharing Program at University of Maryland, College Park (UMCP) has, once again, stimulated a broad use of the reactor facilities by undergraduate and graduate students, visitors, and professionals. Participants are exposed to topics such as nuclear engineering, radiation safety, and nuclear reactor operations. This information is presented through various means including tours, slide presentations, experiments, and discussions. Student research using the MUTR is also encouraged. In addition, the Reactor Sharing Program here at the University of Maryland does not limit itself to the confines of the TRIGA reactor facility. Incorporated in the program are the Maryland University Neutron Activation Analysis Laboratory, the Maryland University Radiation Effects Laboratory, and the UMCP 2x4 Thermal Hydraulic Loop. These facilities enhance and give an added dimension to the tours and experiments

  2. Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis

    International Nuclear Information System (INIS)

    Pointer, W. David; Billings, J.; Bradley, K.; Fischer, P.; Smith, M.; Tautges, T.; Jain, R.; Obabko, A.; Ferencz, R.; Martineau, R.

    2013-01-01

    The objective of the NEAMS program is to enable the design of future nuclear power stations and reactor cores: • Implement enhanced safety and security features; • Enable more cost effectively producing power; • Plan for better utilization natural resources

  3. Safety analysis calculations for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S Y; MacDonald, R; MacFarlane, D [Argonne National Laboratory, Argonne, IL (United States)

    1983-08-01

    The goal of the RERTR (Reduced Enrichment in Research and Test Reactor) Program at ANL is to provide technical means for conversion of research and test reactors from HEU (High-Enrichment Uranium) to LEU (Low-Enrichment Uranium) fuels. In exploring the feasibility of conversion, safety considerations are a prime concern; therefore, safety analyses must be performed for reactors undergoing the conversion. This requires thorough knowledge of the important safety parameters for different types of reactors for both HEU and LEU fuel. Appropriate computer codes are needed to predict transient reactor behavior under postulated accident conditions. In this discussion, safety issues for the two general types of reactors i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs. HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl{sub x}) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with EU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods ( {approx} 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. The two most important mechanisms in providing this feedback are: spectral hardening due to neutron interaction with the ZrH moderator as it is heated and Doppler broadening of resonances in erbium and U-238. Since these phenomena result directly from heating of the fuel, and do not depend on heat transfer to the moderator/coolant, the coefficients are prompt acting. Results of transient

  4. Reactor Containment Spray Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Row, T. H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1968-12-15

    The design basis accident in water moderated power reactors is a loss-of-coolant accident in which water sprays are generally employed to control the containment pressure transient by condensing the released steam-air mixture. Additives to the spray have been proposed as a way to increase their usefulness by enhancing the removal of various forms of radioiodine from the containment atmosphere. A program to investigate the gas-liquid systems involved is co-ordinated by ORNL for the US Atomic Energy Commission. A basic part of the program is the search for various chemical additives that will increase the spray affinity for molecular iodine and methyl iodide. A method for evaluating additives was developed that measures equilibrium distribution coefficients for iodine between air and aqueous solutions. Additives selected are used in single drop-wind tunnel experiments where the circulating gas contains iodine or CH{sub 3}I. Mass transfer coefficients and transient distribution coefficients have been determined as a function of relative humidity, temperature, drop size, and solution pH and concentration. Tests have shown that surfactants and organic amines increase the solution ability to getter CH{sub 3}l. Results from single drop tests help in planning spray experiments in the Nuclear Safety Pilot Plant, a large ({approx}38 m{sup 3}) facility, where accident conditions are closely simulated. Iodine and CH{sub 3}I removal rates have been determined for a number of solutions, including 1 wt% Na{sub 2}S{sub 2}O{sub 3} + 3000 ppm B + 0.153 M NaOH and 3000 ppm B + 0.153 M NaOH. The additive has very little effect in removal of I{sub 2} with half-lives of less than 1 mm typical for any aqueous solution. These same solutions remove CH{sub 3}I with a half-life of one hour. Analytical models for the removal processes have been developed. Consideration is also being given to corrosion, thermal and radiation stability of the solutions. Radiation studies have indicated the loss

  5. Thirteenth water reactor safety research information meeting: proceedings Volume 1

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1986-02-01

    This six-volume report contains 151 papers out of the 178 that were presented at the Thirteenth Water Reactor Safety Research Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 22-25, 1985. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-one different papers presented by researchers from Japan, Canada and eight European countries. The title of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume presents information on: risk analysis PRA application; severe accident sequence analysis; risk analysis/dependent failure analysis; and industry safety research

  6. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  7. Safety design analyses of Korea Advanced Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  8. Learning and nuclear safety: New reactors and US regulation

    International Nuclear Information System (INIS)

    Nichols, E.; Wildavsky, A.

    1992-01-01

    Gathering and analyzing data from operating reactors has become part of government and industry programs to improve performance in plants already on line and to inform development of future reactors. In the United States, however, early development and certain other factors combined to encourage a bias in learning. Regulation and learning from operational data intersect in ways that limit participation, data collection, and positive response to findings. Past learning has shown the advantage of simpler more standard designs with passive or inherent safety features. However, even designs incorporating these past lessons are apt to face tough regulatory tests and much criticism as operating experience is gathered. Only the operational success of new standardized reactors is apt to help rationalize regulation. (orig.)

  9. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  10. WWER safety investigations on LR-0 reactor

    International Nuclear Information System (INIS)

    Mikus, J.

    2001-01-01

    A set of the measurement needed for the WWER-440 and WWER-1000 reactor lifetime assessment, verification of the methods, codes and input cross section libraries for the WWER reactor pressure vessel exposure evaluation has been performed on the LR-0 experimental reactor. The WWER Mock-ups (engineering benchmarks) has been carried out on the reactor, with the aim to investigate differential neutron spectra for reactor dosimetry purposes. Critical experiments have also been performed to determine the perturbation of the fission density distribution caused by the WWER-440 control assembly. Such assembly, partially inserted in the core, has significant influence on the space power distribution. A wide research program for sub-criticality investigations of the spent nuclear fuel storage has been realized on the LR-0 reactor. A benchmark experiment is realized on the reactor in corresponding geometry for CASTOR 440/84 container for storage and transportation of spent fuel. Critical experiments with new fuel assemblies including various burnable absorbers and different enrichments are performed. A set of critical experiments is performed using the fuel assemblies with 3,6% and 4,4% enrichment, arranged in the WWER-440 type cores with various lattice pitch. The critical high of the moderator level and the moderator level coefficient of reactivity are measured and the effect of the fuel assembly, placed in a hexagonal tube of stainless steel containing boron absorber (ATABOR - STANDARD) is investigated. The obtained results are used for the validation of the codes (MCNP, KENO and SCALE) in the frame of the contract 'Burn-up credit implementation for the storage and transport containers of the spent fuel'. Combined neutron-gamma spectra measurements in the WWER-1000 Mock-up are carried out during 2001

  11. Safety aspects of the US advanced LMR [liquid metal reactor] design

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S.

    1989-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs

  12. Tests for validation of fast neutron reactors safety

    International Nuclear Information System (INIS)

    Nagata, T.; Yamashita, H.

    2001-01-01

    Japanese scientific research and design enterprises in cooperation with industrial and power generating corporations implement a project on creating a fast neutron reactor of the ultimate safety. One of the basic expected results from such a development is creation of a reactor core structure that is able to eliminate recriticality occurrence in the course of reactor accident involving fuel melting. One of the possible ways to solve this problem is to include pipes (meant for specifying directed (controlled) molten fuel relocation) into fuel assembly structure. In the course of conduction and subsequent implementation of such a design the basic issue is to experimentally confirm the operating capacity of FA having such a structure and that is called FAIDUS. Within EAGLE Project on experimental basis of IAE NNC RK an activity has been started on preparation and conduction of out-of-pile and in-pile tests. During tests a sodium coolant will be used. Studies are conducted by NNC RK in cooperation with the Japanese corporations JAPC and JNC. Basic objective of out-of-pile tests was to obtain preliminary information on fuel relocation behavior under conditions simulating accident involving melting of core consisting of FAIDUS FA, which will help to clarify simulation criteria and to develop the most optimum structure of the experimental channel for reactor experiments conduction. The basic objective of in-pile tests was the experimental confirmation of operating capacity of FAIDUS FA model under reactor conditions. According to the program two tests are planned to be performed at IGR reactor: tests for validation of fast neutron reactor safety, and out-of-pile tests at EAGLE experimental facility without sodium coolant

  13. Safety characteristics of small heat producing reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1987-10-01

    The primary objectives of protection in nuclear power plants are the possibility to shut the reactor down in case of emergency and keep it subcritical in the long run, the existence of a heat sink for post-decay heat removal in order to avoid overheating, let alone core meltdown, and the containment of radioactivity within the barriers designed for this purpose, thus preventing significant activity release. In principle, these objectives can be met in various ways, namely by active, passive or inherent technical safeguards systems. In practice, a mixture of these approaches is employed in almost all cases. What matters in the end is the assessment of the overall concept, not of some outstanding feature. Inherent characteristics are easier to achieve in small reactors. However, also in this case, inherent safety does not mean absolute safety. If inherent safety characteristics were all encompassing, they would have to include self-healing effects. However, inanimate matter is incapable of such self-organization. Consequently, inherent characteristics in nuclear technology by definition should include the increased use of dissipative processes in the thermal part of the plant. (author)

  14. Passive safety systems for integral reactors

    International Nuclear Information System (INIS)

    Kuul, V.S.; Samoilov, O.B.

    1996-01-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs

  15. A university contribution to reactor safety

    International Nuclear Information System (INIS)

    Hall, W.B.

    1980-01-01

    The total UK university effort available for research specifically directed towards reactor safety is certainly small in comparison with that in industry. To be worth while, the work should complement that in the industry, and ways in which this can, and in some cases does, happen, will be discussed. There is, however, another reason for university involvement: the need for an informed body of opinion on matters of reactor safety outside the industry. Without this it is difficult for the public and its representatives to assure themselves that the depth and scope of safety analysis is commensurate with the seriousness of the problem, and that the best available data and techniques are being used. An independent inspectorate is an essential element in this philosophy, but in addition there is much to be said for exposing the arguments to scrutiny by the widest possible range of informed critics. Such people will be much more effective if they are themselves involved in real problems in the field. In a university, this involvement is probably best achieved through research; as mentioned above, the type of research should preferably complement that being carried out in the industry. The current situation, and the future, are discussed. (author)

  16. Passive safety systems for integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuul, V S; Samoilov, O B [OKB Mechanical Engineering (Russian Federation)

    1996-12-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs.

  17. Uncertainties and reliability theories for reactor safety

    International Nuclear Information System (INIS)

    Veneziano, D.

    1975-01-01

    What makes the safety problem of nuclear reactors particularly challenging is the demand for high levels of reliability and the limitation of statistical information. The latter is an unfortunate circumstance, which forces deductive theories of reliability to use models and parameter values with weak factual support. The uncertainty about probabilistic models and parameters which are inferred from limited statistical evidence can be quantified and incorporated rationally into inductive theories of reliability. In such theories, the starting point is the information actually available, as opposed to an estimated probabilistic model. But, while the necessity of introducing inductive uncertainty into reliability theories has been recognized by many authors, no satisfactory inductive theory is presently available. The paper presents: a classification of uncertainties and of reliability models for reactor safety; a general methodology to include these uncertainties into reliability analysis; a discussion about the relative advantages and the limitations of various reliability theories (specifically, of inductive and deductive, parametric and nonparametric, second-moment and full-distribution theories). For example, it is shown that second-moment theories, which were originally suggested to cope with the scarcity of data, and which have been proposed recently for the safety analysis of secondary containment vessels, are the least capable of incorporating statistical uncertainty. The focus is on reliability models for external threats (seismic accelerations and tornadoes). As an application example, the effect of statistical uncertainty on seismic risk is studied using parametric full-distribution models

  18. Investigation of the possibility of a calculative reactor safety estimation in the licence procedure for nuclear reactors

    International Nuclear Information System (INIS)

    Adler, B.; Kampf, T.

    1975-12-01

    Up to now it is impossible to calculate completely the safety of nuclear reactors. Therefore the authors have collected and employed a number of at a high degree independent safety parameters for mathematical evaluation of the reactor safety. By means of computer programs such parameters from about 400 research reactors have been analysed and the fluctuation ranges of their greatest density were determined. The limits of these fluctuation ranges are quickly available and can be used as recommended values for the layout and for the safety estimation of research reactors. A comparison of the existing layout recommendations and the determined fluctuation ranges in most cases shows a good agreement. In some cases corrections and new layout recommendations have been proposed. The determined fluctuation ranges found their first practical application in the estimation of the Rossendorf Equipment for Critical Experiments (RAKE). (author)

  19. Historical summary of the heavy-section steel technology program and some related activities in light-water reactor pressure vessel safety research

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1986-03-01

    The accomplishments of the Heavy-Section Steel Technology Program and other programs having a close relationship to the development of information used in the assessment of light-water reactor pressure vessel integrity are reviewed. The early Pressure Vessel Research Committee planning, the principals contributing to program formulation, the role of the US Atomic Energy Commission, and the developments under the US Nuclear Regulatory Commission sponsorship are identified. The need for major research and development accomplishments in fracture mechanics, heavy-section steel procurement, materials properties, irradiation effects, fatigue crack growth, and structural testing are summarized. The impact of program results on regulatory issues and the development of data used in the preparation of codes, standards, and guides are discussed. Continuing activities and recommendations for future research and development in support of pressure vessel integrity assessments are presented

  20. A plan for safety and integrity of research reactor components

    International Nuclear Information System (INIS)

    Moatty, Mona S. Abdel; Khattab, M.S.

    2013-01-01

    Highlights: ► A plan for in-service inspection of research reactor components is put. ► Section XI of the ASME Code requirements is applied. ► Components subjected to inspection and their classes are defined. ► Flaw evaluation and its acceptance–rejection criteria are reviewed. ► A plan of repair or replacement is prepared. -- Abstract: Safety and integrity of a research reactor that has been operated over 40 years requires frequent and thorough inspection of all the safety-related components of the facility. The need of increasing the safety is the need of improving the reliability of its systems. Diligent and extensive planning of in-service inspection (ISI) of all reactor components has been imposed for satisfying the most stringent safety requirements. The Safeguards Officer's responsibilities of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code ASME Code have been applied. These represent the most extensive and time-consuming part of ISI program, and identify the components subjected to inspection and testing, methods of component classification, inspection and testing techniques, acceptance/rejection criteria, and the responsibilities. The paper focuses on ISI planning requirements for welded systems such as vessels, piping, valve bodies, pump casings, and control rod-housing parts. The weld in integral attachments for piping, pumps, and valves are considered too. These are taken in consideration of safety class (1, 2, 3, etc.), reactor age, and weld type. The parts involve in the frequency of inspection, the examination requirements for each inspection, the examination method are included. Moreover the flaw evaluation, the plan of repair or replacement, and the qualification of nondestructive examination personnel are considered

  1. Programming Guidelines for FBD Programs in Reactor Protection System Software

    International Nuclear Information System (INIS)

    Jung, Se Jin; Lee, Dong Ah; Kim, Eui Sub; Yoo, Jun Beom; Lee, Jang Su

    2014-01-01

    Properties of programming languages, such as reliability, traceability, etc., play important roles in software development to improve safety. Several researches are proposed guidelines about programming to increase the dependability of software which is developed for safety critical systems. Misra-c is a widely accepted programming guidelines for the C language especially in the sector of vehicle industry. NUREG/CR-6463 helps engineers in nuclear industry develop software in nuclear power plant systems more dependably. FBD (Function Block Diagram), which is one of programming languages defined in IEC 61131-3 standard, is often used for software development of PLC (programmable logic controllers) in nuclear power plants. Software development for critical systems using FBD needs strict guidelines, because FBD is a general language and has easily mistakable elements. There are researches about guidelines for IEC 61131-3 programming languages. They, however, do not specify details about how to use languages. This paper proposes new guidelines for the FBD based on NUREG/CR-6463. The paper introduces a CASE (Computer-Aided Software Engineering) tool to check FBD programs with the new guidelines and shows availability with a case study using a FBD program in a reactor protection system. The paper is organized as follows

  2. Programming Guidelines for FBD Programs in Reactor Protection System Software

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se Jin; Lee, Dong Ah; Kim, Eui Sub; Yoo, Jun Beom [Division of Computer Science and Engineering College of Information and Communication, Konkuk University, Seoul (Korea, Republic of); Lee, Jang Su [Man-Machine Interface System team Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Properties of programming languages, such as reliability, traceability, etc., play important roles in software development to improve safety. Several researches are proposed guidelines about programming to increase the dependability of software which is developed for safety critical systems. Misra-c is a widely accepted programming guidelines for the C language especially in the sector of vehicle industry. NUREG/CR-6463 helps engineers in nuclear industry develop software in nuclear power plant systems more dependably. FBD (Function Block Diagram), which is one of programming languages defined in IEC 61131-3 standard, is often used for software development of PLC (programmable logic controllers) in nuclear power plants. Software development for critical systems using FBD needs strict guidelines, because FBD is a general language and has easily mistakable elements. There are researches about guidelines for IEC 61131-3 programming languages. They, however, do not specify details about how to use languages. This paper proposes new guidelines for the FBD based on NUREG/CR-6463. The paper introduces a CASE (Computer-Aided Software Engineering) tool to check FBD programs with the new guidelines and shows availability with a case study using a FBD program in a reactor protection system. The paper is organized as follows.

  3. Validation of computer codes used in the safety analysis of Canadian research reactors

    International Nuclear Information System (INIS)

    Bishop, W.E.; Lee, A.G.

    1998-01-01

    AECL has embarked on a validation program for the suite of computer codes that it uses in performing the safety analyses for its research reactors. Current focus is on codes used for the analysis of the two MAPLE reactors under construction at Chalk River but the program will be extended to include additional codes that will be used for the Irradiation Research Facility. The program structure is similar to that used for the validation of codes used in the safety analyses for CANDU power reactors. (author)

  4. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  5. A bibliography of AECL publications on reactor safety

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-12-01

    AECL Publications on Reactor Safety in CANDU Reactors are listed in this bibliography. The listing is chronological and the accompanying index is by subject. The bibliography will be brought up to date annually. (auth)

  6. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology. Progress report. Reported period: July 1 to December 31, 1984

    International Nuclear Information System (INIS)

    1985-05-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  7. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  8. The human factors and the safety of experimentation reactors

    International Nuclear Information System (INIS)

    Jeffroy, F.; Delaporte-Normier, M.L.

    2007-01-01

    Inside IRSN (Institute for Radiological protection and Nuclear Safety), the mission of the Human Factors Group is to assess the way operators of nuclear installations take into account the risks related to human activities. In the last few years, IRSN has been involved in the safety analysis of different installations where Cea develops research programs, in particular experimental reactors. The first part of this article presents the methodology used by IRSN to evaluate how operators take into account risks related to human activities. This methodology is made up of 4 steps: 1) the identification of the human activities that convey a risk for the installation nuclear safety (safety-sensitive activities), for instance in the case of the Masurca reactor, it has been shown that errors made during the manufacturing of fuel tubes can lead to a criticality accident; 2) listing all the dispositions or arrangements taken to make human safety-sensitive activities more reliable; 3) checking the efficiency of such dispositions or arrangements; and 4) assessing the ability of the operators to generate the adequate dispositions or arrangements. The second part highlights the necessity to develop inside these research installations an organisation that facilitates cooperation between experimenters and operators

  9. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    Redpath, W.

    1983-01-01

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  10. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  11. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  12. Chernobyl and the safety of nuclear reactors in OECD countries

    International Nuclear Information System (INIS)

    1987-01-01

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  13. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  14. Evolvement of nuclear criticality safety programs

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1992-01-01

    Nuclear criticality safety (NCS) has developed from a discipline requiring the services of personnel with only a background in reactor physics to that involving reactor physics, process engineering, and design as well as administration of the program to ensure all its requirements are implemented. When Oak Ridge National Laboratory (ORNL) was designed and constructed, the physicists at Los Alamos National Laboratory (LANL) were performing the criticality analyses. A physicist who had no chemical process or engineering experience was brought in from LANL to determine whether the facility would be safe. It was only because of his understanding of the reactor physics principles, scientific intuition, and some luck that the design and construction of the facility led to a safe plant. It took a number of years of experience with facility operations and the dedication of personnel for NCS to reach its present status as a recognized discipline

  15. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  16. The Dutch debate on reactor safety

    International Nuclear Information System (INIS)

    Aldenkamp, F.; Biesiot, W.; Geerts, H.M.; Nienhuys, K.; Soppe, W.

    1986-06-01

    A survey is presented of the discussion on location sites for nuclear power plants in the Netherlands and the USA. It consists of two parts (A and B). This part (A) presents a summary of the discussion in the Netherlands. The name and contents of the reports which have been published are indicated briefly. Many of the Dutch reports refer to American studies on reactor safety. In order to obtain a good survey of these a description is presented of the development of the discussion in the USA after the publication of the well-known reactor safety study WASH-1400. After this survey of five important reports, an introduction is presented dealing with the background of the authors, the purposes, the main conclusions and the most salient points of criticism formulated by others. Under discussion are the reports of the IDCOR (nuclear power industry), ANS (American Nuclear Society), APS (American Physical Society), NRC (Nuclear Regulatory Commission) and UCS (Union of Concerned Scientists). 38 refs.; 5 figs.; 5 tabs

  17. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  18. Conception of electron beam-driven subcritical molten salt ultimate safety reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abalin, S.S.; Alekseev, P.N.; Ignat`ev, V.V. [Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-10-01

    This paper is a preliminary sketch of a conception to develop the {open_quotes}ultimate safety reactor{close_quotes} using modern reactor and accelerator technologies. This approach would not require a long-range R&D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of long-lived wastes. The use of the combined double molten salt reactor system allows adequate neutron multiplication to permit using an electron accelerator for the initial neutron flux. The general parameters of such a system are discussed in this paper.

  19. Role of quality assurance in reactor safety

    International Nuclear Information System (INIS)

    Roedel, J.A.

    1975-01-01

    A quality assurance program based on common sense, designed to accomplish what is reasonable and necessary, giving proper consideration to safety and economics can be an effective and essential management tool for the design, construction and operation of safe and economical nuclear power plants

  20. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400

  1. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  2. ATLAS program for advanced thermal-hydraulic safety research

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  3. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  4. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  5. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  6. Twenty-First Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database

  7. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  8. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  9. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  10. Integral Fast Reactor Program. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  11. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  12. Integral Fast Reactor Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  13. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  14. Probabilistic safety analysis applied to RBMK reactors

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Fernandez Ramos, P.

    1995-01-01

    The project financed by the European Union ''Revision of RBMK Reactor Safety was divided into nine Topic Groups dealing with different aspects of safety. The area covered by Topic Group 9 was Probabilistic Safety Analysis. TG9 will have touched on some of the problems discussed by other groups, although in terms of the systematic quantification of the impact of design characteristics and RBMK reactor operating practices on the risk of core damage. On account of the reduced time scale and the resources available for the project, the analysis was made using a simplified method based on the results of PSAs conducted in Western countries and on the judgement of the group members. The simplifies method is based on the concepts of Qualification, Redundancy and Automatic Actuation of the systems considered. PSA experience shows that systems complying with the above-mentioned concepts have a failure probability of 1.0E-3 when redundancy is simple, ie two similar equipment items capable of carrying out the same function. In general terms, this value can be considered to be dominated by potential common cause failures. The value considered above changes according to factors that have a positive effect upon it, such as an additional redundancy with a different equipment item (eg a turbo pumps and a motor pump), individual trains with good separations, etc, or a negative effect, such as the absence of suitable periodical tests, the need for operators to perform manual operations, etc. Similarly, possible actions required by the operator during accident sequences are assigned failure probability values between 1 and 1.0E-4, according to the complexity of the action (including local actions to be performed outside the control room) and the time available

  15. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  16. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  17. Old and new ways in reactor technology. Reactor concepts and reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R

    1989-01-01

    Compared to developments of other technical-scale systems, the period between the recognition of the underlying physics of nuclear fission and the development of a functioning nuclear reactor and its further development to the present level of maturity has been relatively short. The whole development is based on the chain reaction and is rendered safe by the possible auto-stabilization of this reaction. Consequently, the safety of nuclear reactors properly designed is based on automatic mechanisms, which prevent spreads of radioactivity even in major accidents. Controversial opinions about nuclear power uses are mostly based on wrong perceptions both of reactor safety and of radioactive waste, unless they are characterized by sheer ideology. The use of nuclear power worldwide has assumed an important, growing role in the combined uses of a variety energy sources in a surprisingly short period of time and will continue to make a safe, economic, and thus responsible contribution in the long run.

  18. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  19. List of reports on reactor safety research by the BMFT and the USNRC

    International Nuclear Information System (INIS)

    1977-05-01

    This list reviews reports from the Federal Republic of Germany and from the United States of America concerning special problems in the field of Reactor Safety Research which have been collected in the Gesellschaft fuer Reaktorsicherheit. The list pursues the following order: Country of origin, problem area concerned according to the Reactor Safety Research Program of BMFT, reporting organisation. The list or reports appears quarterly. This edition contains all reports as registered from January through March 1977. (orig./HK) [de

  20. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  1. AEC controlled area safety program

    International Nuclear Information System (INIS)

    Hendricks, D.W.

    1969-01-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  2. AEC controlled area safety program

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, D W [Nevada Operations Office, Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  3. A cost-effective methodology to internalize nuclear safety in nuclear reactor conceptual design

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2003-01-01

    A new methodology to perform nuclear reactor design, balancing safety and economics at the conceptual engineering stage, is presented in this work. The goal of this integral methodology is to take into account safety aspects in an optimization design process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behavior during accidents (safety performance indicators), are synthesized on Design Maps. These maps allow one to compare the safety indicator with limits, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimization process, by means of additional rules to the neutronic, thermal-hydraulic, and mechanical calculations. An application of the methodology, implemented in Integrated Reactor Evaluation Program 3 (IREP3) code, to optimize safety systems of CAREM prototype is presented. It consists in balancing the designs of the Emergency Injection System (EIS), the Residual Heat Removal System (RHRS), the primary circuit water inventory and the containment height, to cope with loss of coolant and loss of heat sink (LOHS) accidental sequences, taking into account cost and reactor performance. This methodology turns out to be promising to internalize cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels

  4. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  5. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  6. Flooding Experiments and Modeling for Improved Reactor Safety

    International Nuclear Information System (INIS)

    Solmos, M.; Hogan, K.J.; VIerow, K.

    2008-01-01

    Countercurrent two-phase flow and 'flooding' phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing

  7. Lessons from feedback of safety operating experience for reactor physics

    International Nuclear Information System (INIS)

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  8. Safety in the utilization and modification of research reactors

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the safe utilization and modification of research reactors. While the Guide is most applicable to existing reactors, it is also recommended for use by organizations planning to put a new reactor into operation. 1 fig

  9. Acceptable risk in reactor safety studies

    International Nuclear Information System (INIS)

    Benjamin, J.R.; Shinozuka, M.; Shah, H.C.

    1975-01-01

    Acceptable risk is defined in terms of its five basic parameters: the hazard or problem; the probability of occurrence; the consequence; the possible alternative actions; and the value system of the community or the society. The problem of consistency in design at a site and between differing sites is discussed and solutions are suggested. Techniques for consistent deterministic and probabilistic setting limits and design standards are illustrated using data from AEC Reactor Safety Study, WASH-1400. The influence of level of consequence is discussed and a general methodology for decision analysis in resource allocation problem is briefly introduced and illustrated. The concept of acceptable risk is put in a quantitative format that can be used by engineers and planners. Bayesian statistical methods are introduced to develop the methodologies

  10. Proceedings of the Third Scientific Presentation on Reactor Safety Technology

    International Nuclear Information System (INIS)

    1998-01-01

    These proceedings contains the results of research and development on reactor safety technology which carried out by Reactor Safety Technology Centre, National Atomic Energy Agency, Serpong, Indonesia during 1997/1998 fiscal year. The presentation was held on 13-14 May 1998 at Serpong,Indonesia

  11. 17. meeting of the Society for Reactor Safety. Proceedings

    International Nuclear Information System (INIS)

    1994-06-01

    An autonomous and independent reactor safety research in Germany is indispensable. Three out of the four papers of the meeting deal with the protective aim concept of NPP. Deterministic safety assessment during periodic in-service inspections, a new generation of information engineering, and the incorporation of serious accidents in the containment design of new reactors are considered in detail. (DG) [de

  12. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  13. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  14. Improved inherent safety in liquid fuel reactors

    International Nuclear Information System (INIS)

    Taube, M.

    1982-01-01

    The molten salt reactor system divided into core (thermal and fast) and breeding zone (fission breeder reactor, fusion hybrid system, accelerator-spallation system) has some unique inherent safety properties: a) reduced inventory of fission products during normal operation due to on-line chemical reprocessing and in-core gas purging; b) fast removal of freshly bred fissile nuclides and fission products from the breeding zone (the so called suppressed fission system); c) pressureless fuel and primary coolant system; d) elimination of the possibility of a violent exoenergetic chemical reaction with air, water or metals; e) elimination of the possibility of gaseous hydrogen production during an accident; f) provides a non-engineered feature of dumping of fuel from the core and heat exchanger to a safe drain tank; g) presence of a large heat sink in the form of an inactive diluent salt; h) possibility of natural convection heat removal during an accident and even normal operation (by means of gas lifting); i) dissipation of the remaining decayheat by spraying water on the containment from outside, which allows to manage the worst accident; i) Even in the case of the destruction in the war by conventional or nuclear weapon the contaminated land is significantly reduced. The world-wide present activity in the field of molten salt technology is reviewed. (orig.)

  15. 1980 Annual status report reactor safety

    International Nuclear Information System (INIS)

    1981-01-01

    The JRC reactor safety programme involves theoretical and experimental activities to analyse accidents and their consequences for LWRs and LMFBRs. The first project deals with the improvement and the application of methodologies for risk and reliability assessment. This activity involves the identification and modelling of accident sequences and events and the analysis of fault trees. In this project, the implementation of a centralized data bank system (European Reliability Data System) is foreseen, which should provide the information needed for risk assessment studies. In project 2 a major effort on LWRs is centered on the study of the loss-of-coolant accident following large, intermediate or small breaks of the primary circuit. These accidents are simulated out of pile in the LOBI facility. In project 3 a contribution is made to solve material problems and to provide data and calculation methods for end of life predictions of reactor components. It involves a contribution to the programme for the inspection of steel components (PISC) as well as the study of fracture and creep fatigue properties of stainless steel. In the project 4 and 5 a deterministic approach is adopted to solve some problems of large hypothetical accidents in an LMFBR. The calculation tools developed concern sodium thermohydraulics in fuel element bundles, fuel coolant interaction, whole core accident analysis, containment loading and response and post accident heat removal

  16. Public Health Service Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J R [Southwestern Radiological Health Laboratory, Las Vegas, NV (United States)

    1969-07-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  17. Public Health Service Safety Program

    International Nuclear Information System (INIS)

    McBride, J.R.

    1969-01-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  18. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  19. Progress and status of the integral fast reactor (IFR) development program

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    This paper discusses the Integral Fast Reactor (IFR) development program, in which the entire reactor system - reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are also presented

  20. Gas-cooled fast reactor safety

    International Nuclear Information System (INIS)

    Rickard, C.L.; Simon, R.H.; Buttemer, D.R.

    1977-01-01

    Initial conceptual design work on the GCFR began in the USA in the early 1960s and since the later 1960s has proceeded with considerable international cooperation. A 300 MWe GCFR demonstration plant employing three main cooling loops is currently being developed at General Atomic. A major preapplication licensing review of this demonstration plant was initiated in 1971 leading in 1974 to publication of a Safety Evaluation Report by the USAEC Directorate of Licensing. The preapplication review is continuing by addressing areas of concern identified in this report such that a major part of the work necessary to support the actual licensing of a GCFR demonstration plant has been established. The safety performance of the GCFR demonstration plant is based upon its inherent safety characteristics among which are the single phase and chemically inert coolant which is not activated and has a low reactivity worth, the negative core power and temperature reactivity coefficients and the small and negative steam reactivity worth. Recent studies of larger core designs indicate that as the reactor size increases central fuel, clad and coolant reactivity worths decrease and the Doppler coefficient becomes more negative. These inherent safety characteristics are complemented by safety design features such as enclosing the entire primary coolant system within a prestressed concrete pressure vessel (PCRV), providing two independent and diverse shutdown systems and residual heat removal (RHR) systems, limiting the worth of control rods to less than $1, employing pressure-equalized fuel rods, a core supported rigidly at its upper end and otherwise unrestrained and coolant downflow within the core to enhance debris removal should local melting occur. The structurally redundant PCRV design allows the potential depressurization leak area to be controlled and, since the PCRV is located within a containment building, coolant is present even after a depressurization accident and each RHR

  1. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  2. NRC/DAE reactor safety research Data Bank

    International Nuclear Information System (INIS)

    Laats, E.T.

    1982-01-01

    In 1976, the United States Nuclear Regulatory Commission (NRC) established the NRC/Division of Accident Evaluation (DAE) Data Bank to collect, store, and make available data from the many domestic and foreign water reactor safety research programs. This program has since grown from the conceptual stage to a useful, usable service for computer code development, code assessment, and experimentation groups in meeting the needs of the nuclear industry. Data from 20 facilities are now processed and permanently stored in the Data Bank, which utilizes the Control Data Corporation (CDC) CYBER 176 computer system located at the Idaho National Engineering Laboratory (INEL). New data and data sources are continually being added to the Data Bank. In addition to providing data storage and access software, the Data Bank program supplies data entry, documentation, and training and advisory services to users and the NRC. Management of the NRC/DAE Data Bank is provided by EG and G Idaho, Inc

  3. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  4. Passive and inherent safety technologies for light-water nuclear reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs

  5. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  6. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  7. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  8. Computer code qualification program for the Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.

    2003-01-01

    Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)

  9. Research program plan: reactor vessels. Volume 1

    International Nuclear Information System (INIS)

    Vagins, M.; Taboada, A.

    1985-07-01

    The ability of the licensing staff of the NRC to make decisions concerning the present and continuing safety of nuclear reactor pressure vessels under both normal and abnormal operating conditions is dependent upon the existence of verified analysis methods and a solid background of applicable experimental data. It is the role of this program to provide both the analytical methods and the experimental data needed. Specifically, this program develops fracture mechanics analysis methods and design criteria for predicting the stress levels and flaw sizes required for crack initiation, propagation, and arrest in LWR pressure vessels under all known and postulated operations conditions. To do this, not only must the methods be developed but they must be experimentally validated. Further, the materials data necessary for input to these analytical methods must be developed. Thus, in addition to methods development and large scale experimental verification this program also develops data to show that slow-load fracture toughness, rapid-load fracture toughness, and crack arrest toughness obtained from small laboratory specimens are truly representative of the toughness characteristics of the material behavior in pressure vessels in both the unirradiated and the irradiated conditions

  10. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1980-11-01

    This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. Some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors. At the end, a few considerations are given to the consequences of the Osiris core conversion

  11. Small nuclear reactor safety design requirements for autonomous operation

    International Nuclear Information System (INIS)

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  12. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  13. PSA in design of passive/active safety reactors

    International Nuclear Information System (INIS)

    Sato, T.; Tanabe, A.; Kondo, S.

    1995-01-01

    PSAs in the design of advanced reactors are applied mainly in level 1 PSA areas. However, even in level 1 PSA, there are certain areas where special care must be taken depending on plant design concepts. This paper identifies these areas both for passive and active safety reactor concepts. For example, 'long-term PSA' and shutdown PSA are very important for a passive safety reactor concept from the standpoint of effectiveness of a grace period and passive safety systems. External events are also important for an active safety reactor concept. These kinds of special PSAs are difficult to conduct precisely in a conceptual design stage. This paper shows methods of conducting these kinds of special PSAs simply and conveniently and the use of acquired insights for the design of advanced reactors. This paper also clarifies the meaning or definition of a grace period from the standpoint of PSA

  14. Analysis of dynamic stability and safety of the reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    This document defines the approximations done for establishing a mathematical model of a reactor. Since the model should be used for safety analysis, it was important to choose a mathematical model less stable than the reactor itself. The analysis was performed on the analog computer RAS. Results obtained and conclusions concerned with three possible reactor accidents are presented [sr

  15. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  16. The impact of WASH-1400 on reactor safety evaluation

    International Nuclear Information System (INIS)

    Tanguy, P.Y.

    1976-01-01

    Trends in reactor safety evaluation in France following the publication of WASH-1400 (the Rasmussen Report) are presented. What is called 'the meteorite case' is first schematically presented as follows: WASH-1400 shows nuclear risk equivalent to meteorite risk and reasonable corrections cannot make many orders of magnitude, consequently present safety rules are adequate. The very impact of WASH-1400 on safety approach is then discussed as for: assistance to deterministic safety analysis, introduction of probabilistic safety criteria, acceptable level of risk, and the use of results in research and reactor operating experience

  17. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  18. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  19. Light Water Reactor Sustainability Program Integrated Program Plan

    International Nuclear Information System (INIS)

    Griffith, George; Youngblood, Robert; Busby, Jeremy; Hallbert, Bruce; Barnard, Cathy; McCarthy, Kathryn

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  20. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  1. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  2. Materials surveillance program for C-E NSSS reactor vessels

    International Nuclear Information System (INIS)

    Koziol, J.J.

    1977-01-01

    Irradiation surveillance programs for light water NSSS reactor vessels provide the means by which the utility can assess the extent of neutron-induced changes in the reactor vessel materials. These programs are conducted to verify, by direct measurement, the conservatism in the predicted radiation-induced changes and hence the operational parameters (i.e., heat-up, cooldown, and pressurization rates). In addition, such programs provide assurance that the scheduled adjustments in the operational parameters are made with ample margin for safe operation of the plant. During the past 3 years, several documents have been promulgated establishing the criteria for determining both the initial properties of the reactor vessel materials as well as measurement of changes in these initial properties as a result of irradiation. These documents, ASTM E-185-73, ''Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels,'' and Appendix H to 10 CFR 50, ''Reactor Vessel Material Surveillance Program Requirements,'' are complementary to each other. They are the result of a change in the basic philosophy regarding the design and analysis of reactor vessels. In effect, the empirical ''transition temperature approach,'' which was used for design, was replaced by the ''analytical fracture mechanics approach.'' The implementation of this technique was described in Welding Research Council Bulletin 1975 and Appendix G to ASME Code Section III. Further definition of requirements appears in Appendix G to 10 CFR 50 published in July 1973. It is the intent of this paper to describe (1) a typical materials surveillance program for the reactor vessel of a Combustion Engineering NSSS, and (2) how the results of such programs, as well as experimental programs provide feed-back for improvement of materials to enhance their radiation resistance and thereby further improve the safety and reliability of future plants. (author)

  3. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  4. Passive safety features in current and future water cooled reactors

    International Nuclear Information System (INIS)

    1990-11-01

    Better understanding of the passive safety systems and components in current and future water-cooled reactors may enhance the safety of present reactors, to the extend passive features are backfitted. This better understanding should also improve the safety of future reactors, which can incorporate more of these features. Passive safety systems and components may help to prevent accidents, core damage, or release radionuclides to the environment. The Technical Committee Meeting which was hosted by the USSR State Committee for Utilization of Nuclear Energy was attended by about 80 experts from 16 IAEA Member States and the NEA-OECD. A total of 21 papers were presented during the meeting. The objective of the meeting was to review and discuss passive safety systems and features of current and future water cooled reactor designs and to exchange information in this area of activity. A separate abstract was prepared for each of the 21 papers published in this proceedings. Refs, figs and tabs

  5. Research reactor management. Safety improvement activities in HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Hong, Sung Taek; Ahn, Guk-Hoon

    2012-01-01

    Safety activities in HANARO have been continuously conducted to enhance its safe operation. Great effort has been placed on a normalization and improvement of the safety attitude of the regular staff and other employees working at the reactor and other experimental facilities. This paper introduces the activities on safety improvement that were performed over the last few years. (author)

  6. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    International Nuclear Information System (INIS)

    Schaffrath, Andreas

    2014-01-01

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  7. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  8. Safety Technology Research Program in the field of pressurized water reactors. 1. Technical report on advancement project RS 36/2. Emergency cooling program service life experiments: reflooding experiments involving the primary loop systems

    International Nuclear Information System (INIS)

    Schweickert, H.; Kremin, H.; Mandl, R.; Riedle, V.; Ruthrof, K.; Sarkar, J.; Schmidt, H.

    The reflooding of the hot reactor core is to be examined for a pressurized water reactor (PWR), using a model of the entire primary loop system. The scale of the model is to be 1:340 in cross-section, with the heights represented full-scale. In addition to the goals of the project, a description of the test facility, including data collection and control equipment is presented. The instrumentation, the planned test program and the test procedure are briefly set forth

  9. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  10. Safety philosophy and research program of the LWR development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Nickel, H.

    1978-11-01

    In this paper the framework of the reactor safety concept in the Federal Republic of Germany will be described. It is grounded on several cornerstones the most important of which are a closed fuel cycle concept, a statutory licensing and supervision procedure, a set of compulsory safety-engineering requirements and comprehensive research in the field of reactor-safety. The main part of this last area is the Reactor Safety Research Program sponsored by the Federal Minister for Research and Technology. Furthermore, in this paper emphasis is laid on safety requirements particularly with regard to the quality of the reactor pressure vessel. (orig.) [de

  11. OPG waterways public safety program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has 64 hydroelectric generating stations, 241 dams, and 109 dams in Ontario's registry with the International Commission on Large Dams (ICOLD). In 1986, it launched a formal dam safety program. This presentation addressed the importance of public safety around dams. The safety measures are timely because of increasing public interaction around dams; the public's unawareness of hazards; public interest in extreme sports; easier access by recreational vehicles; the perceived right of public to access sites; and the remote operation of hydroelectric stations. The presentation outlined the OPG managed system approach, with particular reference to governance; principles; standards and procedures; and aspects of implementation. Specific guidelines and governing documents for public safety around dams were identified, including guidelines for public safety of waterways; booms and buoys; audible warning devices and lights; public safety signage; fencing and barricades; and risk assessment for public safety around waterways. The presentation concluded with a discussion of audits and management reviews to determine if safety objectives and targets have been met. figs.

  12. Progress in the U.S. department of energy sponsored in-depth safety assessments of VVER and RBMK reactors

    International Nuclear Information System (INIS)

    Binder, J.L.; Petri, M.C.; Pasedag, W.F.

    2001-01-01

    Since the disastrous accident at Chernobyl Nuclear Power Plant Unit 4 in 1986, there has been international recognition of the safety concerns posed by the operation of 67 Soviet-designed commercial nuclear reactors. These reactors are operated in eight countries from the former Soviet Union and its former satellite states in Central and Eastern Europe. The majority of these plants are in the Russian Federation (30 units) and Ukraine (14 units). New plants are in various stages of construction. U.S. support to improve the safety of Soviet-designed reactors over the past decade has been intended to enhance operational safety, provide for risk-reduction measures, and enhance regulatory capability. The U.S. approach to improving the safety of Soviet-designed reactors has matured into a large multi-year program known as the Soviet-Designed Reactor Safety Program that is managed by the U.S. Department of Energy (US DOE). The mission of the program is to implement a self-sustaining nuclear safety improvement program that would lead to internationally accepted safety practices at the plants. Those practices would create a safety culture that would be reflected in the operation, regulation, and professional attitudes of the designers, operators, and regulators of the nuclear facilities. A key component of this larger program has been the Plant Safety Evaluation Program, which supports in-depth safety assessments of VVER and RBMK plants. (author)

  13. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1987-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat

  14. Design and safety aspects of nuclear district heating reactors

    International Nuclear Information System (INIS)

    Brogli, R.; Mathews, D.; Pelloni, S.

    1989-01-01

    Extensive studies on the rationale, the potential and the technology of nuclear district heating have been performed in Switzerland. Beside economics the safety aspects were of primary importance. Due to the high costs to transport heat the heating reactor tend to be small and therefore, minimally staffed and located close to population centers. Stringed safety rules are therefore applying. Gas cooled reactors are well suited as district heating reactors since they have due to their characteristics several inherent features, significant safety margins and a remarkable radioactivity retention potential. Some ways to mitigate the effects of water ingress and graphite corrosion are under investigation. (author). 5 refs, 3 figs

  15. Refurbishment and safety up-gradation of Cirus Reactor

    International Nuclear Information System (INIS)

    Rao, D.V.H.

    2004-01-01

    Cirus, a 40 MWth, vertical tank type research reactor, having a wide range of research facilities, was commissioned in 1960. This research facility has been operated and utilized extensively for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out. Based on this, refurbishment work for life extension was undertaken. During this work, additional safety features were incorporated to improve the overall safety of the reactor. This lecture details the methodologies used for ageing studies and refurbishment activities for life extension with enhanced safety. (author)

  16. Safety Analysis for Medium/Small Size Integral Reactor: Evaluation of Safety Characteristics for Small and Medium Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hho jung; Seul, K W; Ahn, S K; Bang, Y S; Park, D G; Kim, B K; Kim, W S; Lee, J H; Kim, W K; Shim, T M; Choi, H S; Ahn, H J; Jung, D W; Kim, G I; Park, Y M; Lee, Y J [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)

    1997-07-01

    The Small and medium integral reactor is developed to be utilized for non-electric areas such as district heating and steam production for desalination and other industrial purposes, and then these applications may typically imply a closeness between the reactor and the user. It requires the reactor to be designed with the adoption of special functional and inherent safety features to ensure and promote a high level of safety and reliability, in comparison with the existing nuclear power plants. The objective of the present study is to establish the bases for the development of regulatory requirements and technical guides to address the special safety characteristics of the small and medium integral reactor. In addition, the study aims to identify and to propose resolutions to the possible safety concerns in the design of the small and medium integral reactor. 34 refs., 20 tabs. (author)

  17. Safety vessels for explosive fusion reactor

    International Nuclear Information System (INIS)

    Mineev, V.

    1994-01-01

    The failure of several types of geometrically similar cylindrical and spherical steel and glass fibers vessels filled with water or air was investigated when an explosive charge of TNT was detonated in the center. Vessels had radius 50-1000 mm, thickness of walls 2-20%. The detonation on TNT imitated energy release. The parameter: K = M/mf is a measure of the strength of the vessel where M is the mass of the vessel, and mf is the mass of TNT for which the vessel fails. This demanded 2-4 destroyed and nondestroyed shots. It may be showed that: K=A/σ f where σ f is the fracture stress of the material vessel, and A = const = F(energy TNT, characteristic of elasticity of vessel material). The chief results are the following: (1) A similar increase in the geometrical dimensions of steel vessels by a factor of 10 leads to the increase of parameter K in about 5 times and to decrease of failure deformation in 7 times (scale effect). (2) For glass fibers, scale effect is absent. (3) This problem is solved in terms of theory energetic scale effect. (4) The concept of TNT equivalent explosive makes it possible to use these investigations to evaluate the response of safety vessels for explosive fusion reactor

  18. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  19. Effective safety training program design

    International Nuclear Information System (INIS)

    Chilton, D.A.; Lombardo, G.J.; Pater, R.F.

    1991-01-01

    Changes in the oil industry require new strategies to reduce costs and retain valuable employees. Training is a potentially powerful tool for changing the culture of an organization, resulting in improved safety awareness, lower-risk behaviors and ultimately, statistical improvements. Too often, safety training falters, especially when applied to pervasive, long-standing problems. Stepping, Handling and Lifting injuries (SHL) more commonly known as back injuries and slips, trips and falls have plagued mankind throughout the ages. They are also a major problem throughout the petroleum industry. Although not as widely publicized as other immediately-fatal accidents, injuries from stepping, materials handling, and lifting are among the leading causes of employee suffering, lost time and diminished productivity throughout the industry. Traditional approaches have not turned the tide of these widespread injuries. a systematic safety training program, developed by Anadrill Schlumberger with the input of new training technology, has the potential to simultaneously reduce costs, preserve employee safety, and increase morale. This paper: reviews the components of an example safety training program, and illustrates how a systematic approach to safety training can make a positive impact on Stepping, Handling and Lifting injuries

  20. Fusion Safety Program annual report, fiscal year 1992

    International Nuclear Information System (INIS)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG ampersand G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study

  1. Development of Realistic Safety Analysis Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Rho, G. H.

    2010-04-01

    The following 3 research items have been studied to develop and establish the realistic safety analysis and the associated technologies for a CANDU reactor. At the first, WIMS-CANDU which is physics cell code for a CANDU has been improved and validated against the physics criticality experiment data transferred through the international cooperation programs. Also an improved physics model to take into account the pressure tube creep was developed and utilized to assess the effects of the pressure tube creep of 0%, 2.5% and 5% diametral increase of pressure tube on core physics parameters. Secondly, the interfacing module between physics and thermal-hydraulics codes has been developed to provide the enhancement of reliability and convenience of the calculation results of the physics parameters such as power coefficient which was calculated by independent code systems. Finally, the important parameters related to the complex heat transfer mechanisms in the crept pressure tubes were identified to find how to improve the existing fuel channel models. One of the important parameters such as the oxidation model of Zr-steam reaction was identified, implemented and verified with the experimental data of the high pressure and temperature fuel channel and its model was utilized for CFD analysis of the crept pressure tube effect on the reactor safety. The results were also provided to validate the CATNENA models of the crept pressure tube and the effects of the pressure tube creep on the blowdown and post-blowdown phase during LOCA was assessed. The results of this study can be used to assess the uncertainty analysis of coolant void reactivity and the effects of the creep deformed pressure tubes on physics/TH/safety issues. Also, those results will be used to improve the current design and operational safety analysis codes, and to technically support the related issues to resolve their problems

  2. Fusion Safety Program annual report, Fiscal Year 1993

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1993-12-01

    This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG ampersand G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies

  3. Safety features and research needs of westinghouse advanced reactors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Winters, J.W.; Cummins, W.E.; Bruschi, H.J.

    2002-01-01

    The three Westinghouse advanced reactors - AP600, AP1000 and IRIS - are at different levels of readiness. AP600 has received a Design Certification, its larger size version AP1000 is currently in the design certification process and IRIS has just completed its conceptual design and will initiate soon a licensing pre-application. The safety features of the passive designs AP600/AP1000 are presented, followed by the features of the more revolutionary IRIS, a small size modular integral reactor. A discussion of the IRIS safety by design approach is given. The AP600/AP1000 design certification is backed by completed testing and development which is summarized, together with a research program currently in progress which will extend AP600 severe accident test data to AP1000 conditions. While IRIS will of course rely on applicable AP600/1000 data, a very extensive testing campaign is being planned to address all the unique aspects of its design. Finally, IRIS plans to use a risk-informed approach in its licensing process. (authors)

  4. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  5. Operating experience feedback from safety significant events at research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  6. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  7. Operating experience feedback from safety significant events at research reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  8. Reactor safety. Annual technical progress report, Government fiscal year 1979

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented on LMFBR reactor safety concerning the energetics effects of sodium spray fires; sodium drop and spray burning; core debris accommodation; attenuation in containment; and attenuation in the environment

  9. Safety systems and features of boiling and pressurized water reactors

    International Nuclear Information System (INIS)

    Khair, H. O. M.

    2012-06-01

    The safe operation of nuclear power plants (NPP) requires a deep understanding of the functioning of physical processes and systems involved. This study was carried out to present an overview of the features of safety systems of boiling and pressurized water reactors that are available commercially. Brief description of purposes and functions of the various safety systems that are employed in these reactors was discussed and a brief comparison between the safety systems of BWRs and PWRs was made in an effort to emphasize of safety in NPPs.(Author)

  10. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  11. Reactor Safety Research: Semiannual report, July-December 1986

    International Nuclear Information System (INIS)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions

  12. A study of passive safety conditions for fast reactor core

    International Nuclear Information System (INIS)

    Shimizu, Akinao

    1991-01-01

    A study has been made for passive safety conditions of fast reactor cores. Objective of the study is to develop a concept of a core with passive safety as well as a simple safety philosophy. A simple safety philosophy, which is wore easy to explain to the public, is needed to enhance the public acceptance for nuclear reactors. The present paper describes a conceptual plan of the study including the definition of the problem a method of approach and identification of tasks to be solved

  13. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  14. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  15. Fusion reactor passive safety and ignitor risk-based regulation

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1995-01-01

    Passive design features are more reliable than operator action of successful operation of active safety systems. Passive safety has usually been adopted for fission. The achievement of an inventory-based passive safety is difficult if the fusion reactor uses neutronic reactions. Ignitor is a high-magnetic field tokamak designed to study the physics of ignited plasmas. The safety goal for Ignitor is classification as a mobility-based passively safe machine

  16. Acoustic Waves: A Route to Enhance Sodium Fast Reactor Safety

    International Nuclear Information System (INIS)

    Jeannot, Jean-Philippe; Baque, François; Cavaro, Matthieu; Gastaldi, Olivier; Lhuilier, Christian; Massacret, Nicolas; Moriot, Jérémy; Paumel, Kévin; Vandergaegen, Matthias; Rodriguez, Gilles

    2013-01-01

    Improvement to prevent core meltdown and to provide a more robust safety demonstration → Safety objectives: - A level of safety at least equivalent to EPR’s level, - Consolidation of the defence-in-depth principle, - A more robust safety demonstration than those of the Phenix and Superphenix reactor. Acoustic techniques: - Low attenuation by the sodium medium - High velocity of US wave (2289 m.s-1 at 550°C) →

  17. The evaluation of research reactor TRIGA MARK II safety

    International Nuclear Information System (INIS)

    Jordan, R.; Kozuh, M.; Mavko, B.

    1994-01-01

    In the paper the Probabilistic Safety Analysis (PSA) of a research reactor is described. Five different initiating events were selected and analyzed with the use of event trees. Seven reactor systems were modeled with fault trees. Three groups of radiation releases were introduced - Success, Reactor-Hall, Environment - and their frequencies were estimated. The importance factors of initiating events, human errors and basic events were calculated regarding the consequence groups. (author)

  18. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  19. VVER Reactor Safety in Eastern Europe and Former Soviet Union

    Science.gov (United States)

    Papadopoulou, Demetra

    2012-02-01

    VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.

  20. Steam--water mixing in nuclear reactor safety loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Naff, S.A.; Schwarz, W.F.

    1978-01-01

    Computer models used to predict the response of reactors to hypothesized accidents necessarily incorporate approximating assumptions. To verify the models by comparing predicted and measured responses in test facilities, these assumptions must be confirmed to be realistic. Recent experiments in facilities capable of repeatedly duplicating the transient behavior of a pressurized water reactor undergoing a pipe rupture show that the assumption of complete water-steam mixing during the transient results in the predicted decompression being faster than that observed. Water reactor safety studies currently in progress include programs aimed at the verification of computer models or ''codes'' used to predict reactor system responses to various hypothesized accidents. The approach is to compare code predictions of transients with the actual test transients in experimental facilities. The purpose of this paper is to explain an important instance in which predictions and data are not in complete agreement and to indicate the significance to water reactor safety studies

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Busby, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barnard, Cathy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  2. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  3. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  4. Core conversion effects on the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1982-07-01

    The safety related parameters of the 5 MW Democritus research reactor that will be affected by the scheduled core conversion to use LEU instead of HEU are considered. The analysis of the safety related items involved in such a core conversion, mainly the consequences due to MCA, DBA, etc., is of a general nature and can, therefore, be applied to other similar pool type reactors as well. (T.A.)

  5. The action of the project coordinator with respect to reactor safety

    International Nuclear Information System (INIS)

    Leclercq, Jacques

    1981-01-01

    Before describing the various actions of the project coordinator (EDF) entrusted with the building of nuclear power stations, with respect to reactor safety in France, the definition of reactor safety and the various participants are mentioned first. These participants are: the Government Departments and the Experts involved (the Department of Nuclear Safety of the 'Institut de Protection et de Surete Nucleaire' forming the first technical support) and the applicant, namely the EDF. The reactor safety actions of the project coordinator are defined as from the following components: 1 - The targets laid down with respect to safety, the final objective being the protection of workers and the public against the potential dangers of the installations, principally against radiation. 2 - The safety methodology at the design stage of the power station: 'barrier' method, defence method in depth at three levels, lines of assurance method, and probabilistic method. 3 - Safety actions at the construction stage within the context of an assurance of quality programe. 4 - Safety at the trials, commissioning and operating stage, with the backing of the 'Groupe Operationnel de Demarrage (G.O.D.)' and the 'Commission d'Essais sur Site (C.E.S.)'. An initial balance sheet of the reactor safety actions for the PWR units built by the EDF is presented [fr

  6. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  7. I. Reactor safety (including comments on criticisms of WASH-1400)

    International Nuclear Information System (INIS)

    1976-01-01

    A major concern in any nuclear power programme is a reactor accident resulting in a large release of radioactivity to the environment. Serious reactor accidents are possible and the risk of such accidents cannot be reduced to zero i.e. absolute safety cannot be assured. All that can be expected is that the measures used to ensure safety in the design and operation of a reactor are such that the risk of accident is reduced to acceptably low levels. No member of the general public is known to have died or been injured as a result of an accident in over 1000 commercial nuclear power reactor-years. Some accidents in power reactors in operation today have come close enough to an environmental release of radioactivity to cause serious public concern about future safety. Apparent inadequacies in safety practices disclosed by former members of the nuclear power industry have added to this concern. To obtain an objective appraisal of the reactor safety issue this report examines the measures taken in the design and operation of nuclear reactors to reduce the probability of accident to acceptably low levels

  8. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  9. Program summary for the Civilian Reactor Development Program

    International Nuclear Information System (INIS)

    1982-07-01

    This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program

  10. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  11. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  12. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  13. Developmental Light-Water Reactor Program

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-12-01

    This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities

  14. AFRRI TRIGA Reactor water quality monitoring program

    International Nuclear Information System (INIS)

    Moore, Mark; George, Robert; Spence, Harry; Nguyen, John

    1992-01-01

    AFRRI has started a water quality monitoring program to provide base line data for early detection of tank leaks. This program revealed problems with growth of algae and bacteria in the pool as a result of contamination with nitrogenous matter. Steps have been taken to reduce the nitrogen levels and to kill and remove algae and bacteria from the reactor pool. (author)

  15. Safety of research reactors. Topical issues paper no. 4

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Ferraz-Bastos, J.L.; Kim, S.C.; Voth, M.; Boeck, H.; Dimeglio, F.; Litai, D.

    2001-01-01

    Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety review of the research reactor facility and to verify compliance with the IAEA Safety Standards. The methods used during an INSARR mission have been collected and analysed. Some of the important issues identified are the following: general ageing of the facility; uncertain status of many research reactors (in extended shutdown); indefinite deferral of return to operation or decommissioning; inadequate regulatory supervision; insufficient systematic (periodic) reassessment of safety; lack of quality assurance (QA) programmes; lack of an international safety convention or arrangement; lack of financial support for safety measures (e.g. safety reassessment, safety upgrading, decommissioning) and utilization; lack of clear utilization programmes; inadequate emergency preparedness; inadequate safety documentation (e.g. safety analysis report, operating rules and procedures, emergency plan); inadequate funding of shutdown reactors; weak safety culture; loss of expertise and corporate memory; loss of information concerning radioactive materials contained in retired experimental devices stored in the facility indefinitely; obsolescence of equipment and lack of spare parts; inadequate training and qualifications of regulators and operators; safety implications of new fuel types. These issues have been addressed by the IAEA Secretariat and the chairman of the International Nuclear Safety Advisory Group (INSAG). INSAG has identified three major safety issues that are: the increasing age of research reactors, the number of research reactors that are not operating anymore but have not been decommissioned, and the number of research reactors in countries that do not have appropriate regulatory authorities. This issue paper discusses the concerns generated by an analysis of the results of INSARR missions and those expressed by INSAG. The

  16. Reactor design and safety approach for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Davies, S.M.; Yamaki, Hideo; Goodman, L.

    1984-06-01

    A tank type plant has been designed that offers compactness, high reliability under seismic and thermal transients, and a safety design approach that provides a balance between public safety and plant availability. This report provides a description of the design philosophy and safety features of the reactor

  17. EDF view on next generation reactor safety and operability issues

    International Nuclear Information System (INIS)

    Serviere, G.

    2002-01-01

    In the foreseeable future, EDF will have to compete in an economically de-regulated market. Nuclear currently accounts for more than 80% of the electricity generated by the company, and generation costs are quite competitive compared to that of other competing energies. It is so likely that nuclear units will remain the backbone of EDF generating fleet in the years to come. However, to remain a viable option for electricity generation in the longer term, nuclear will have to maintain both its cost-effectiveness and a very high safety level. This could seem quite straightforward considering the current situation where safety records are at an all time high and Operating and Maintenance costs are under tight control. In fact, it could be a real challenge. Competing fossil technologies progress and there is a concurrent trend to try and improve the performance of future nuclear units. However, in most cases, proposed designs depart from the well-known Light Water Reactor (LWR) technology. They are either new concepts or designs already tested in the past and modified to address some of their perceived drawbacks. Contrary to the prevailing situation where short-term alternatives like the EPR, the ABWR or the AP600 largely build upon experience gathered on operating units, most designs contemplated for implementation beyond 2020 or 2030 cannot be considered proven. Considering the above mentioned uncertainties, EDF have confirmed their preference for proven designs with higher outputs, such as the EPR. However, it would appear unreasonable to consider that new designs are doomed to fail: they could well turn out to be adequate for specific niches in a de-regulated market and provide reasonable alternatives for the utility. Nevertheless, for such an alternative to be considered, additional evidence is needed that utility preferences are reflected in the design, and that all potential technical issues have been identified, adequately addressed and resolved. Currently, EDF

  18. Reports on BMBF-sponsored research projects in the field of reactor safety. Reporting period 1 July - 31 December 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit informs of the status of LWR tasks and projects on the safety of advanced reactors. Each progress report represents a compilation of individual reports about objectives, the work performed, the results, and the next steps of the works. The individual reports of quality assurance, safety of reactor component, emergency core cooling, lors of coolant, meltdown, fission product release, risk and reliability, are classified according to projects to the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC. (DG)

  19. Safety of NPP with WWER-440 and WWER-1000 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Balabanov, E [Energoproekt, Sofia (Bulgaria); Gledachev, J; Angelov, D [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    The WWER-440 and WWER-1000 reactors used at the Kozloduy NPP have been analyzed in terms of safety. There are currently 4 reactors WWER-440/230 and 2 reactors WWER-1000/320. The former do not comply completely with the modern safety requirements due to the regulations acted in the sixties when they have been designed. The main features of these reactors are: low power density in the core; three levels of reactor control and protection; six primary loops; horizontal steam generators; two turbines; large number of cross-unit connections. The low thermal density in the core, the low specific thermal loading in the rods and the large coolant inventory enhance the safety, while the major deficiencies are identified as follows: insufficient capabilities for emergency core cooling; low diversification and physical separation of the safety systems; old fashioned control systems; inadequate fire protection; lack of full containment. It is pointed out that several design and operation actions have been completed in the Kozloduy NPP in order to enhance their safety. The WWER-1000 units are 320 model and feature a high safety level, complying completely with OPB-82 regulations and with all current international safety standards. 3 refs., 7 figs., 1 tab.

  20. Safety of NPP with WWER-440 and WWER-1000 reactors

    International Nuclear Information System (INIS)

    Balabanov, E.; Gledachev, J.; Angelov, D.

    1995-01-01

    The WWER-440 and WWER-1000 reactors used at the Kozloduy NPP have been analyzed in terms of safety. There are currently 4 reactors WWER-440/230 and 2 reactors WWER-1000/320. The former do not comply completely with the modern safety requirements due to the regulations acted in the sixties when they have been designed. The main features of these reactors are: low power density in the core; three levels of reactor control and protection; six primary loops; horizontal steam generators; two turbines; large number of cross-unit connections. The low thermal density in the core, the low specific thermal loading in the rods and the large coolant inventory enhance the safety, while the major deficiencies are identified as follows: insufficient capabilities for emergency core cooling; low diversification and physical separation of the safety systems; old fashioned control systems; inadequate fire protection; lack of full containment. It is pointed out that several design and operation actions have been completed in the Kozloduy NPP in order to enhance their safety. The WWER-1000 units are 320 model and feature a high safety level, complying completely with OPB-82 regulations and with all current international safety standards. 3 refs., 7 figs., 1 tab