WorldWideScience

Sample records for reactor performance impact

  1. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  2. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  3. Gap and impact of LMR [Liquid Metal Reactor] piping systems and reactor components

    International Nuclear Information System (INIS)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1987-01-01

    Because of high operation temperature, the LMR (Liquid Metal Reactor) plant is characterized by the thin-walled piping and components. Gaps are often present to allow free thermal expansion during normal plant operation. Under dynamic loadings, such as seismic excitation, if the relative displacement between the components exceeds the gap distance, impacts will occur. Since the components and piping become brittle over their design lifetime, impact is of important concern for it may lead to fractures of components and other serious effects. This paper deals with gap and impact problems in the LMR reactor components and piping systems. Emphasis is on the impacts due to seismic motion. Eight sections are contained in this paper. The gap and impact problems in LMR piping systems are described and a parametric study is performed on the effects of gap-induced support nonlinearity on the dynamics characteristics of the LMR piping systems. Gap and impact problems in the LMR reactor components are identified and their mathematical models are illustrated, and the gap and impact problems in the seismic reactor scram are discussed. The mathematical treatments of various impact models are also described. The uncertainties in the current seismic impact analyses of LMR components and structures are presented. An impact test on a 1/10-scale LMR thermal liner is described. The test results indicated that several clusters of natural modes can be excited by the impact force. The frequency content of the excited modes depends on the duration of the impact force; the shorter the duration, the higher the frequency content

  4. Impacts of burnup-dependent swelling of metallic fuel on the performance of a compact breed-and-burn fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Heo, Woong; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

  5. Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)

  6. Nonlinear analysis of a reactor building for airplane impact loadings

    International Nuclear Information System (INIS)

    Zimmermann, T.; Rodriguez, C.; Rebora, B.

    1981-01-01

    The purpose is to analyze the influence of material nonlinear behavior on the response of a reinforced concrete reactor building and on equipment response for airplane impact loadings. Two analyses are performed: first, the impact of a slow-flying commercial airplane (Boeing 707), then the impact of a fast flying military airplane (Phantom). (orig./HP)

  7. Impact of asymmetric lamp positioning on the performance of a closed-conduit UV reactor

    Directory of Open Access Journals (Sweden)

    Tipu Sultan

    2017-06-01

    Full Text Available Computational fluid dynamics (CFD analyses for the performance improvement of a closed-conduit ultraviolet (UV reactor were performed by changing the lamp positions from symmetric to asymmetric. The asymmetric lamp positioning can be useful for UV reactor design and optimization. This goal was achieved by incorporating the two performance factors, namely reduction equivalent dose (RED and system dose performance. Four cases were carried out for asymmetric lamp positioning within the UV reactor chamber and each case consisted of four UV lamps that were simulated once symmetrically and four times asymmetrically. The results of the four asymmetric cases were compared with the symmetric one. Moreover, these results were evaluated by using CFD simulations of a closed-conduit UV reactor. The fluence rate model, UVCalc3D was employed to validate the simulations results. The simulation results provide detailed information about the dose distribution, pathogen track modeling and RED. The RED value was increased by approximately 15% by using UVCalc3D fluence rate model. Additionally, the asymmetric lamp positioning of the UV lamps had more than 50% of the pathogens received a better and a higher UV dose than in the symmetric case. Consequently, the system dose performance was improved by asymmetric lamp positioning. It was concluded that the performance parameters (higher RED and system dose performance were improved by using asymmetric lamp positioning.

  8. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  9. dynamic performance of research reactors

    International Nuclear Information System (INIS)

    Abo elnor, A.G.M.

    2007-01-01

    this work studies the dynamic performance of material testing reactor (MTR), where the dynamic performance of any reactor reflects its safety behavior and it should enhance its intrinsic characteristics s ystem corrects itself internally without introducing external corrective action . the present work analyzes and studies the dynamic performance of mtr through the transfer function. the servo system parameters can be changed to fit the system demand. the servo system is an excellent approximation to some of the practical servo system currently use in reactor control system, and a quadratic form of this sort should closely approximate the behavior of almost any type of physical equipment which might be chosen to drive a control rod. proposed changes in servo system parameters could enhance the dynamic performance of the system , but the suitable parameters can be evaluated by using the automatic reactor power control system model

  10. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  11. Reactor core performance estimating device

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinpuku, Kimihiro; Chuzen, Takuji; Nishide, Fusayo.

    1995-01-01

    The present invention can autonomously simplify a neural net model thereby enabling to conveniently estimate various amounts which represents reactor core performances by a simple calculation in a short period of time. Namely, a reactor core performance estimation device comprises a nerve circuit net which divides the reactor core into a large number of spacial regions, and receives various physical amounts for each region as input signals for input nerve cells and outputs estimation values of each amount representing the reactor core performances as output signals of output nerve cells. In this case, the nerve circuit net (1) has a structure of extended multi-layered model having direct coupling from an upper stream layer to each of downstream layers, (2) has a forgetting constant q in a corrected equation for a joined load value ω using an inverse error propagation method, (3) learns various amounts representing reactor core performances determined using the physical models as teacher signals, (4) determines the joined load value ω decreased as '0' when it is to less than a predetermined value upon learning described above, and (5) eliminates elements of the nerve circuit net having all of the joined load value decreased to 0. As a result, the neural net model comprises an autonomously simplifying means. (I.S.)

  12. Socio-economic impact of nuclear reactor decommissioning at Vandellos I NPP

    International Nuclear Information System (INIS)

    Liliana Yetta Pandi

    2013-01-01

    Currently nuclear reactors in Indonesia has been outstanding for more than 30 years, the possibility of nuclear reactors will be decommissioned. Closure of the operation or decommissioning of nuclear reactors will have socio-economic impacts. The socioeconomic impacts occur to workers, local communities and wider society. In this paper we report on socio-economic impacts of nuclear reactors decommissioning and lesson learned that can be drawn from the socio-economic impacts decommissioning Vandellos I nuclear power plant in Spain. Socio-economic impact due to decommissioning of nuclear reactor occurs at installation worker, local community and wider community. (author)

  13. Dispersion parameters: impact on calculated reactor accident consequences

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, D.C.

    1979-01-01

    Much attention has been given in recent years to the modeling of the atmospheric dispersion of pollutants released from a point source. Numerous recommendations have been made concerning the choice of appropriate dispersion parameters. A series of calculations has been performed to determine the impact of these recommendations on the calculated consequences of large reactor accidents. Results are presented and compared in this paper.

  14. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  15. Assessment of the impact of neutronic/thermal-hydraulic coupling on the design and performance of nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Aithal, S.M.; Aldemir, T.; Vafai, K.

    1994-01-01

    A series of studies has been performed to investigate the potential impact of the coupling between neutronics and thermal hydraulics on the design and performance assessment of solid core reactors for nuclear thermal space propulsion, using the particle bed reactor (PBR) concept as an example system. For a given temperature distribution in the reactor, the k eff and steady-state core power distribution are obtained from three-dimensional, continuous energy Monte Carlo simulations using the MCNP code. For a given core power distribution, determination of the temperature distribution in the core and hydrogen-filled annulus between the reflector and pressure vessel is based on a nonthermal equilibrium analysis. The results show that a realistic estimation of fuel, core size, and control requirements for PBRs using hydrogenous moderators, as well as optimization of the overall engine design, may require coupled neutronic/thermal-hydraulic studies. However, it may be possible to estimate the thermal safety margins and propellant exit temperatures based on power distributions obtained from neutronic calculations at room temperature. The results also show that, while variation of the hydrogen flow rate in the annulus has been proposed as a partial control mechanism for PBRs, such control mechanism may not be feasible for PBRs with high moderator-to-fuel ratios and hence soft core neutron spectra

  16. Impact of confinement physics on reactor design and economics

    International Nuclear Information System (INIS)

    DeFreece, D.A.; Campbell, R.B.; Waganer, L.M.

    1977-01-01

    A variety of confinement laws were employed in a transient, zero dimensional plasma code, which was coupled to the TOCOMO systems code. The purpose was to determine the impact of the confinement laws on reactor design, power costs and changes in the utility interface. A satisfactory reactor and power plant has been defined for the large majority of combinations of confinement law, power plant size and plasma shape. Trapped ion mode (TIM) has been the easiest to work with, since the plasma is thermally stable with a good power density and minimal alpha particle build up. Neoclassical and pseudoclassical along with TEMII result in satisfactory reactor performance, but require active feedback control (by injecting impurities) to prevent plasma temperature excursions. These laws also require some form and degree of confinement time spoiling to allow long burn times, otherwise, alpha particles build up to an unacceptable level. TEM I results in thermal equilibrium at 5 keV and must be driven to provide a reactor quality plasma. The continuous injected power required for a 4300 MW thermal reactor is 540 MW. This added to the other circulating loads results in a net power output of 600 MWe at a very high relative cost. Daughney (empirical) confinement results in a satisfactory, competitive reactor

  17. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  18. CANDU reactor experience: fuel performance

    International Nuclear Information System (INIS)

    Truant, P.T.; Hastings, I.J.

    1985-07-01

    Ontario Hydro has more than 126 reactor-years experience in operating CANDU reactors. Fuel performance has been excellent with 47 000 channel fuelling operations successfully completed and 99.9 percent of the more than 380 000 bundles irradiated operating as designed. Fuel performance limits and fuel defects have had a negligible effect on station safety, reliability, the environment and cost. The actual incapability charged to fuel is less than 0.1 percent over the stations' lifetimes, and more recently has been zero

  19. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  20. An evaluation on environment radiation impact of pulsed reactor

    International Nuclear Information System (INIS)

    Gao Yingwei; Pu Gongxu; Li Jian

    1991-01-01

    The dose regulation, assessment scope and assessment method adopted by the environment impact evaluation for the pulsed reactor are discussed. The compute model, the compute programme and the compute result of the dose adopted for the model pulsed reactor are introduced. The probable environment radiation impact under normal status and accident status are also appraised

  1. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  2. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2003-01-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  3. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  4. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  5. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    Notley, M.J.F.

    1983-07-01

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO 2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  6. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  7. Simplified analysis of PRISM RVACS [Reactor Vessel Auxiliary Cooling System] performance without liner spill-over

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1990-01-01

    Simplified analysis of the performance of the PRISM RVACS decay heat removal system under off-normal conditions, i.e., without the liner spill-over, is described. Without the spilling of hot-pool sodium over the liner and the resultant down-flow along the inside of the reactor vessel wall, the RVACS system performance becomes dominated by the radial heat condition and radiation. Simple estimates of the resulting heat conduction and radiation processes support GE's contention that the RVACS performance is not severely impacted by the absence of spillover, and can improve significantly if sodium has leaked into the region between the reactor and containment vessels. 7 refs

  8. A parametric study on characteristics for nuclear design of high-performance research reactor

    International Nuclear Information System (INIS)

    Joe, D. G.; Lee, C. S.; Lee, B. C.; Seo, C. G.; Chae, H. T.; Park, C.

    2003-01-01

    A conceptual design of advanced research reactor with high neutron performance has been performed at KAERI based on design and operation experience obtained from HANARO. In this study, nuclear characteristics of design parameters such as various types of fuel assemblies, structural materials of core and fuel assembly, and the number of absorber rods were analyzed. Among rod, plate and tube type fuel assemblies considered, tube type assembly seems to be preferable as a high performance research reactor fuel because of high thermal margin and neutron flux in reflector. Aluminium block as a structural material of core was shown to be superior to flow tube due to higher reactivity and thermal flux in reflector. The stiffener to fix plates in th fuel assembly had the no impact on fast flux in central trap. The reduction of thermal flux in reflector caused by the stiffener was about 7%. If the control absorber rods of 4 mm thickness were chosen, it would be possible to operate the reactor with fresh fuel assemblies from the initial core

  9. Reactor shutdown: nuclear power plant performance

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article essentially looks at the performance of nine of Sweden's nuclear reactors. A table lists the percentage of time for the first three quarters of 1981 that the reactors were operating, and the number of hours out of service for planned or other reasons. In particular, one station - Ringhals 3 - was out of action because of a damaged tube in the associated steam generator. The same fault occurred with another reactor - Ringhals 4 - before this was brought into service. The reasons for the failure and its importance are briefly discussed. (G.P.)

  10. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  11. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  12. THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

    Directory of Open Access Journals (Sweden)

    D. KASTANYA

    2013-10-01

    Full Text Available The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The CANDU® reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC and Large Break Loss of Coolant Accident (LBLOCA events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

  13. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  14. Water Reactor Fuel Performance Meeting 2008

    International Nuclear Information System (INIS)

    2008-10-01

    This meeting contains articles of the Water Reactor Fuel Performance Meeting 2008 of Korean Nuclear Society, Atomic Energy Society of Japan, Chinese Nuclear Society, European Nuclear Society and American Nuclear Society. It was held on Oct. 19-23, 2008 in Seoul, Korea and subject of Meeting is 'New Clear' Fuel - A green energy solution. This proceedings is comprised of 5 tracks. The main topic titles of track are as follows: Advances in water reactor fuel technology, Fuel performance and operational experience, Transient fuel behavior and safety-related issues, Fuel cycle, spent fuel storage and transportations and Fuel modeling and analysis. (Yi, J. H.)

  15. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  16. Study for improvement of performance of the test and research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Fumio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Current utilization needs for the test and research reactors become more advanced and diversified along with the advance of nuclear science and technology. Besides, the requested safety for the research and test reactors grows strictly every year as well as a case of the power reactors. Under this circumstance, every effort to improve reactor performance including its safety is necessary to be sustained for allowing more effective utilization of the test and research reactors as experimental apparatus for advanced researches. In this study, the following three themes i.e., JMTR high-performance fuel element, evaluation method of fast neutron irradiation dose in the JMTR, evaluation method of performance of siphon break valve as core covering system for water-cooled test and research reactors, were investigated respectively from the views of improvement of core performance as a neutron source, utilization performance as an experimental apparatus, and safety as a reactor plant. (author)

  17. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  18. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    International Nuclear Information System (INIS)

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-01-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  19. Study of impact of the AP1000{sup Registered-Sign} reactor vessel upper internals design on fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yiban; Conner, Michael; Yuan Kun; Dzodzo, Milorad B.; Karoutas, Zeses; Beltz, Steven A.; Ray, Sumit; Bissett, Teresa A. [Westinghouse Electric Company, Cranberry Township, PA 16066 (United States); Chieng, Ching-Chang, E-mail: cchieng@ess.nthu.edu.tw [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Kao, Min-Tsung; Wu, Chung-Yun [National Tsing Hua University, Hsinchu 30043, Taiwan (China)

    2012-11-15

    One aspect of the AP1000{sup Registered-Sign} reactor design is the reduction in the number of major components and simplification in manufacturing. One design change relative to current Westinghouse reactors of similar size is the reduction in the number of reactor vessel outlet nozzles/hot legs leaving the upper plenum from three to two. With regard to fuel performance, this design difference creates a different flow field in the AP1000 reactor vessel upper plenum (the region above the core). The flow exiting core and entering the upper plenum must turn 90 Degree-Sign , flow laterally through the upper plenum around support structures, and exit through one of the two outlet nozzles. While the flow in the top of the core is mostly axial, there is some lateral flow component as the core flow reacts to the flow field and pressure distribution in the upper plenum. The pressure distribution in the upper plenum varies laterally depending upon various factors including the proximity to the outlet nozzles. To determine how the lateral flow in the top of the AP1000 core compares to current Westinghouse reactors, a computational fluid dynamics (CFD) model of the flow in the upper portion of the AP1000 reactor vessel including the top region of the core, the upper plenum, the reactor vessel outlet nozzles, and a portion of the hot legs was created. Due to geometric symmetry, the computational domain was reduced to a quarter (from the top view) that includes Vulgar-Fraction-One-Quarter of the top of the core, Vulgar-Fraction-One-Quarter of the upper plenum, and Vulgar-Fraction-One-Half of an outlet nozzle. Results from this model include predicted velocity fields and pressure distributions throughout the model domain. The flow patterns inside and around guide tubes clearly demonstrate the influence of lateral flow due to the presence of the outlet nozzles. From these results, comparisons of AP1000 flow versus current Westinghouse plants were performed. Field performance

  20. Impact of source terms on distances to which reactor accident consequences occur

    International Nuclear Information System (INIS)

    Ostmeyer, R.M.

    1982-01-01

    Estimates of the distances over which reactor accident consequences might occur are important for development of siting criteria and for emergency response planning. This paper summarizes the results of a series of CRAC2 calculations performed to estimate these distances. Because of the current controversy concerning the magnitude of source terms for severe accidents, the impact of source term reductions upon distance estimates is also examined

  1. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  2. Fiscal impacts associated with power reactor siting: a paired case study

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.

    1977-01-19

    The paper examines the fiscal impacts associated with siting nuclear-powered electrical stations. First, a framework for examining fiscal impacts is constructed. This framework consists of four elements: the ability of a local community to raise revenues, the degree to which this ability is used, the uses to which tax revenues are applied, and the effect of tax/expenditure decisions on the local economy. Changes in these four elements caused by the siting are termed fiscal impacts. Second, this framework is applied to two communities, Waterford, Connecticut and Plymouth, Massachusetts, which host operating reactors. In each community the ability to raise revenues through the property tax--the prime local revenue source--approximately doubled. As a result both communities chose ultimately to reduce tax rates. Moreover, it appears that the annual revenues raised through the public sector as a result of the reactor siting exceeded income changes that resulted from increased local employment associated with each reactor's operation. It therefore appears that for these two towns, the primary economic impact occurred through the public sector. The report concludes with suggestions for further research into local fiscal and economic effects associated with power reactor siting.

  3. Fiscal impacts associated with power reactor siting: a paired case study

    International Nuclear Information System (INIS)

    Bjornstad, D.J.

    1977-01-01

    The paper examines the fiscal impacts associated with siting nuclear-powered electrical stations. First, a framework for examining fiscal impacts is constructed. This framework consists of four elements: the ability of a local community to raise revenues, the degree to which this ability is used, the uses to which tax revenues are applied, and the effect of tax/expenditure decisions on the local economy. Changes in these four elements caused by the siting are termed fiscal impacts. Second, this framework is applied to two communities, Waterford, Connecticut and Plymouth, Massachusetts, which host operating reactors. In each community the ability to raise revenues through the property tax--the prime local revenue source--approximately doubled. As a result both communities chose ultimately to reduce tax rates. Moreover, it appears that the annual revenues raised through the public sector as a result of the reactor siting exceeded income changes that resulted from increased local employment associated with each reactor's operation. It therefore appears that for these two towns, the primary economic impact occurred through the public sector. The report concludes with suggestions for further research into local fiscal and economic effects associated with power reactor siting

  4. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  5. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  7. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  8. A model to describe the performance of the UASB reactor.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno; Moreno, Luis; Liu, Longcheng

    2014-04-01

    A dynamic model to describe the performance of the Upflow Anaerobic Sludge Blanket (UASB) reactor was developed. It includes dispersion, advection, and reaction terms, as well as the resistances through which the substrate passes before its biotransformation. The UASB reactor is viewed as several continuous stirred tank reactors connected in series. The good agreement between experimental and simulated results shows that the model is able to predict the performance of the UASB reactor (i.e. substrate concentration, biomass concentration, granule size, and height of the sludge bed).

  9. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  10. Estimating the potential impacts of a nuclear reactor accident: methodology and case studies

    International Nuclear Information System (INIS)

    Cartwright, J.V.; Beemiller, R.M.; Trott, E.A. Jr.; Younger, J.M.

    1982-04-01

    This monograph describes an industrial impact model that can be used to estimate the regional industry-specific impacts of disasters. Special attention is given to the impacts of possible nuclear reactor accidents. The monograph also presents three applications of the model. The impacts estimated in the case studies are based on (1) general information and reactor-specific data, supplied by the US Nuclear Regulatory Commission (NRC), (2) regional economic models derived from the Regional Input-Output Modeling System (RIMS II) developed at the Bureau of Economic Analysis (BEA), and (3) additional methodology developed especially for taking into account the unique characteristics of a nuclear reactor accident with respect to regional industrial activity

  11. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  12. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  13. Air quality impact analysis in support of the new production reactor environmental impact statement

    International Nuclear Information System (INIS)

    Hadley, D.L.

    1991-04-01

    The Pacific Northwest Laboratory (PNL) conducted this air quality impact analysis for the US Department of Energy (DOE). The purpose of this work was to provide Argonne National Laboratory (ANL) with the required estimates of ground-level concentrations of five criteria air pollutants at the Hanford Site boundary from each of the stationary sources associated with the new production reactor (NPR) and its supporting facilities. The DOE proposes to provide new production capacity for the primary production of tritium and secondary production of plutonium to support the US nuclear weapons program. Three alternative reactor technologies are being considered by DOE: the light-water reactor, the low-temperature, heavy-water reactor, and the modular high-temperature, gas-cooled reactor. In this study, PNL provided estimates of the impacts of the proposed action on the ground-level concentration of the criteria air pollutants for each of the alternative technologies. The criteria pollutants were sulfur dioxide, nitrogen dioxide, carbon monoxide, total suspended particulates, and particulates with a diameter of less than 10 microns. Ground-level concentrations were estimated for the peak construction phase activities expected to occur in 1997 and for the operational phase activities beginning in the year 2000. Ground-level concentrations of the primary air pollutants were estimated to be well below any of the applicable national or state ambient air quality standards. 12 refs., 19 tabs

  14. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor

  15. Impact of neutron resonance treatments on reactor calculation

    International Nuclear Information System (INIS)

    Leszczynski, F.

    1988-01-01

    The neutron resonance treatment on reactor calculation is one of the not completely resolved problems of reactor theory. The calculation required on design, fuel management and accident analysis of nuclear reactors contains adjust coefficients and semi-empirical values introduced on the computer codes; these values are obtained comparing calculation results with experimental values and more exact calculation results. This is made when the characteristics of the analyzed system are such that this type of comparisons are possible. The impact that one fixed resonance treatment method have on the final evaluation of physics reactor parameters, reactivity, power distribution, etc., is useful to know. In this work, the differences between calculated parameters with two different methods of resonance treatment in cell calculations are shown. It is concluded that improvements on resonance treatment are necessary for growing the reliability on core calculations results. Finally, possible improvements, easy to implement in current computer codes, are presented. (Author) [es

  16. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  17. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  18. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  19. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  20. IRSN preliminary considerations of the Fukushima event impact on the GENIV reactors

    International Nuclear Information System (INIS)

    Blanc, Daniel

    2012-01-01

    • The IRSN study aims to identify main specific safety issues for each GEN IV concept with regards to the European Nuclear Safety Regulatory Group (ENSREG) stress tests topics: → Earthquake; → Flooding; → Loss of the heat sink; →Loss of the power supply; → Combination of the two previous ones; → Severe accident management. • These main specific safety issues are identified as far as they could have a specific impact on: → Grace times; → Cliff edge effects; → Difficulties to cope with them. • The situation is different between existing reactors and for reactors not yet designed because the hazard level may be increase for the new reactors. • Nevertheless, the “hardened safety core” concept may be kept for extreme situations and will be identified on the basis of the above mentioned main specific safety issues. This analysis is a preliminary one based of the IRSN knowledge about the six GEN IV concepts issued from safety assessment already performed (in particular on the French SFRs already built) and publications

  1. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  2. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    International Nuclear Information System (INIS)

    2009-06-01

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing facilities. - 3. Advances in Water

  3. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.; Jankhah, M.H.

    1979-01-01

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  4. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  5. Effect of beta limits on reactor performance in EBT

    International Nuclear Information System (INIS)

    Uckan, N.A.; Spong, D.A.; Nelson, D.B.

    1981-01-01

    Because of uncertainties in extrapolating results of simplified models to a reactor plasma, the parameters that influence the beta limits cannot be determined accurately at the present time. Also, the reasonable changes within the models and/or assumptions are seen to affect the core beta limits by almost an order of magnitde. Hence, at the present, these limits cannot be used as a rigid (and reliable) requirement for ELMO Bumpy Torus (EBT) reactor engineering considerations. However, sensitivity studies can be carried out to determine the boundaries of the operating regime and to demonstrate the effects of various modes, assumptions, and models on reactor performance (Q value). First, the modes believed to limit the core β and ring plasma performance are discussed, and the simplifications and/or assumptions involved in deriving these limits are highlighted. Then, the implications of these limits for a reactor are given

  6. Outage performance improvement by state of the art reactor stud tensioning

    International Nuclear Information System (INIS)

    Oehler, Horst Werner; Vervliet, Herman

    2006-01-01

    Actual methods of reactor closing, i.e. cover to vessel sealing, is based on the creation of an equal load to the sealing circumference by tensioning all reactor studs with an equal force. This method ensures leak tightness through equal compression of the reactor seal in normal circumstances and is largely applied for all types of reactors throughout many generations and designs of nuclear power stations. The tension generated in each reactor stud is controlled indirectly by measuring the reactor stud elongation while under stress. Most studs are designed to measure this elongation easily by conventional or more advanced systems (from individual clock gauge to integrated digital transmission to a computer screen). It is this elongation value, prescribed by the reactor vessel/cover manufacturer which must be respected and demonstrated during all reactor closing operations, weather they take place for initial hydro testing, refuelling operations or periodical hydraulic tests of the primary circuit. Closing (and re-opening) of reactor vessels has become a routine operation as it is required for fuel reloading of the reactor core. This operation is performed on all PWR and BWR type of reactors with a large variety of tooling. As most of the utilities have implemented maintenance optimisation programs, the refuelling outage is reduced to a sequence of activities that allow quick and efficient refuelling of the core. The performance and efficiency of instrumentation and tooling deployed during these essential activities are of the utmost importance to minimise the critical path of the refuelling outage. Today, in support of outage performance, many utilities have invested in new and refurbished tooling to allow quick and efficient opening and closing of the reactor vessel. The features and properties of the most performing multi stud tensioning machines currently in service in nuclear power stations world wide (Africa, Europe, Asia and USA) are presented in the paper

  7. Application of expert system to evaluating reactor water cleanup system performance

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nakamura, Masahiro; Nagasawa, Katsumi; Fushiki, Sumiyuki.

    1991-01-01

    Expert systems employing artificial intelligence (AI) have been developed for finding and elucidating causes of anomalies and malfunctions, presenting pertinent recommendation for countermeasures and for making precautionary diagnosis. On the other hand, further improvements in reliabilities for chemical control are required to promote BWR plant reliability and advancement. Especially, it is necessary to maintain the reactor water purity in high quality to minimize stress corrosion cracking (SCC) in primary cooling system, fuel performance degradation and radiation buildup. The reactor water quality is controlled by the reactor water cleanup (RWCU) system. So, it is very important to maintain the RWCU performance, in order to keep good reactor water quality. This paper describes an expert system used for evaluating RWCU system performance in BWR plants. (author)

  8. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  9. Performance tests of the reactor containment structures of HTTR

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Iigaki, Kazuhiko; Kawaji, Satoshi; Iyoku, Tatsuo

    1998-03-01

    The containment structures of the HTTR consist of the reactor containment vessel (CV), service area (SA) and emergency air purification system, which minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. The CV is designed to withstand the temperature and pressure transients and to be leak-tight within the specified leakage limit even in the case of a rupture of the primary concentric hot gas duct. The pressure of inside of the SA should be maintained slightly lower than that of atmosphere by the emergency air purification system. The radioactive materials are released from the stack to environment via the emergency air purification system under the accident condition. Then the emergency air purification system should remove airborne radio-activities and should maintain proper pressure in the SA. We established the method to measure leak rate of the CV with closed reactor coolant pressure boundary although it is normally measured under opened reactor coolant pressure boundary as employed in LWRs. The CV leak rate test was carried out by the newly developed method and the expected performance was obtained. The SA and emergency air purification system were also confirmed by the performance test. We concluded that the reactor containment structures were fabricated to minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. (author)

  10. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  11. Analysis of Topaz-II reactor performance using MCNP and TFEHX

    International Nuclear Information System (INIS)

    Lee, H.H.; Klein, A.C.

    1993-01-01

    Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances

  12. The impact of WASH-1400 on reactor safety evaluation

    International Nuclear Information System (INIS)

    Tanguy, P.Y.

    1976-01-01

    Trends in reactor safety evaluation in France following the publication of WASH-1400 (the Rasmussen Report) are presented. What is called 'the meteorite case' is first schematically presented as follows: WASH-1400 shows nuclear risk equivalent to meteorite risk and reasonable corrections cannot make many orders of magnitude, consequently present safety rules are adequate. The very impact of WASH-1400 on safety approach is then discussed as for: assistance to deterministic safety analysis, introduction of probabilistic safety criteria, acceptable level of risk, and the use of results in research and reactor operating experience

  13. Modern control technology for improved nuclear reactor performance

    International Nuclear Information System (INIS)

    Oakes, L.C.

    1986-01-01

    One of the main complaints leveled at reactor control systems by utility spokesmen is complexity. One only has to look inside a power reactor control room to appreciate this viewpoint. The high reliability and versatility of modern microprocessors makes possible distributed control systems with only performance data and abnormal conditions being relayed to the control room. In a sense, this emulates the human-body control system where routine repetitive actions are handled in an involuntary manner. The significance of expert systems to the nuclear reactor control and safety systems is their ability to capture human and other expertise and make it available, upon demand, and under almost all circumstances. Thus, human problem-solving skills acquired by the learning process over a long period of time can be captured and employed with the reliability inherent in computers. This is especially important in nuclear plants when human operators are burdened by stress and emotional factors that have a dramatic effect on performance level

  14. Selection method and device for reactor core performance calculation input indication

    International Nuclear Information System (INIS)

    Yuto, Yoshihiro.

    1994-01-01

    The position of a reactor core component on a reactor core map, which is previously designated and optionally changeable, is displayed by different colors on a CRT screen by using data of a data file incorporating results of a calculation for reactor core performance, such as incore thermal limit values. That is, an operator specifies the kind of the incore component to be sampled on a menu screen, to display the position of the incore component which satisfies a predetermined condition on the CRT screen by different colors in the form of a reactor core map. The position for the reactor core component displayed on the CRT screen by different colors is selected and designated on the screen by a touch panel, a mouse or a light pen, thereby automatically outputting detailed data of evaluation for the reactor core performance of the reactor core component at the indicated position. Retrieval of coordinates of fuel assemblies to be data sampled and input of the coordinates and demand for data sampling can be conducted at once by one menu screen. (N.H.)

  15. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  16. Impact of the 37M fuel design on reactor physics characteristics

    International Nuclear Information System (INIS)

    Perez, R.; Ta, P.

    2013-01-01

    For CANDU nuclear reactors, aging of the Heat Transport System (HTS) leads to, among other effects, a reduction on the Critical Heat Flux (CHF) and dryout margin. In an effort to mitigate the impact of aging of the HTS on safety margins, Bruce Power is introducing a design change to the standard 37-element fuel bundle known as the modified 37-element fuel bundle, or 37M for short. As part of the overall design change process it was necessary to assess the impact of the modified fuel bundle design on key reactor physics parameters. Quantification of this impact on lattice cell properties, core reactivity properties, etc., was reached through a series of calculations using state-of-the-art lattice and core physics models, and comparisons against results for the standard fuel bundle. (author)

  17. Effect of post-digestion temperature on serial CSTR biogas reactor performance

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Karakashev, Dimitar Borisov; Trably, Eric

    2009-01-01

    The effect of post-digestion temperature on a lab-scale serial continuous-flow stirred tank reactor (CSTR) system performance was investigated. The system consisted of a main reactor operated at 55 degrees C with hydraulic retention time (HRT) of 15 days followed by post-digestion reactors with HRT...

  18. Impact of nuclear data on sodium-cooled fast reactor calculations

    International Nuclear Information System (INIS)

    Aures, A.; Bostelmann, F.; Zwermann, W.; Velkov, K.

    2016-01-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors. (authors)

  19. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  20. Performance indicators for power reactors

    International Nuclear Information System (INIS)

    Gillies, C.; White, M.

    1995-11-01

    A review of Canadian and worldwide performance indicator definitions and data was performed to identify a set of indicators that could be used for comparison of performance among nuclear power plants. The results of this review are to be used as input to an AECB team developing a consistent set of performance indicators for measuring Canadian power reactor safety performance. To support the identification of performance indicators, a set of criteria was developed to assess the effectiveness of each indicator for meaningful comparison of performance information. The project identified a recommended set of performance indicators that could be used by AECB staff to compare the performance of Canadian nuclear power plants among themselves, and with international performance. The basis for selection of the recommended set and exclusion of others is provided. This report provides definitions and calculation methods for each recommended performance indicator. In addition, a spreadsheet has been developed for comparison and trending for the recommended set of indicators. Example trend graphs are included to demonstrate the use of the spreadsheet. (author). 50 refs., 11 tabs., 3 figs

  1. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  2. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  3. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  4. Impact of Pre-Initiators on PSA in Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ochirbat, Chimedtseren [KAIST, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    Most of nuclear power plants had already conducted PSA work to examine their plant safety for identifying vulnerability and preparing the mitigating strategies for severe accident. However, the PSA for research reactor has been conducted limitedly comparing with nuclear power plants due to lack of awareness and resources. Most of PSA results demonstrated that human failure events (HFEs) take a major role of risk contributor in terms of core damage frequency. HFEs are categorized as the following three types: pre-initiating event interaction (e.g., maintenance of errors, testing errors, calibration errors), initiating event related interactions (e.g., human error causing loss of power, human error causing system trip), and post-initiating event (e.g., all action actuating manual safety system backup of an automatic system). Lack of resources and utilization of research reactor calls a vicious circle in terms of safety degradation. The safety degradation poses the vulnerability of human failure during research reactor utilization process. Typically, evaluation of pre-initiators related to test and maintenance are not taking into account in PSA for research reactors. This paper aims to investigate the impact of pre-initiating events related to test and maintenance activities on PSA results in terms of core damage frequency for a research reactor.

  5. Impact of Pre-Initiators on PSA in Research Reactor

    International Nuclear Information System (INIS)

    Ochirbat, Chimedtseren; Kim, Sok Chul

    2014-01-01

    Most of nuclear power plants had already conducted PSA work to examine their plant safety for identifying vulnerability and preparing the mitigating strategies for severe accident. However, the PSA for research reactor has been conducted limitedly comparing with nuclear power plants due to lack of awareness and resources. Most of PSA results demonstrated that human failure events (HFEs) take a major role of risk contributor in terms of core damage frequency. HFEs are categorized as the following three types: pre-initiating event interaction (e.g., maintenance of errors, testing errors, calibration errors), initiating event related interactions (e.g., human error causing loss of power, human error causing system trip), and post-initiating event (e.g., all action actuating manual safety system backup of an automatic system). Lack of resources and utilization of research reactor calls a vicious circle in terms of safety degradation. The safety degradation poses the vulnerability of human failure during research reactor utilization process. Typically, evaluation of pre-initiators related to test and maintenance are not taking into account in PSA for research reactors. This paper aims to investigate the impact of pre-initiating events related to test and maintenance activities on PSA results in terms of core damage frequency for a research reactor

  6. Neutrino Mass Models: impact of non-zero reactor angle

    International Nuclear Information System (INIS)

    King, Stephen F.

    2011-01-01

    In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.

  7. Comparison of Pickering NGS performance with world power reactors, 1977

    International Nuclear Information System (INIS)

    Buhay, S.

    Pickering NGS performance is compared, in highly graphic form, with the perfomance of other nuclear power plants around the world. The four Pickering reactors score in the top six, rated by gross capacity factor. Major system suppliers for world power reactors above 500 MW are cataloged. (E.C.B.)

  8. Mixing and scale affect moving bed biofilm reactor (MBBR) performance

    NARCIS (Netherlands)

    Kamstra, Andries; Blom, Ewout; Terjesen, Bendik Fyhn

    2017-01-01

    Moving Bed Biofilm Reactors (MBBR) are used increasingly in closed systems for farming of fish. Scaling, i.e. design of units of increasing size, is an important issue in general bio-reactor design since mixing behaviour will differ between small and large scale. Research is mostly performed on

  9. Transient safety performance of the PRISM innovative liquid metal reactor

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Rhow, S.K.; Wu, T.

    1988-01-01

    The PRISM sodium-cooled reactor concept utilizes passive safety characteristics and modularity to increase performance margins, improve licensability, reduce owner's risk and reduce costs. The relatively small size of each reactor module (471 MWt) facilitates the use of passive self-shutdown and shutdown heat removal features, which permit design simplification and reduction of safety-related systems. Key to the transient performance is the inherent negative reactivity feedback characteristics of the core design resulting from the use of metal (U-Pu-Zr) swing, and very low control rod runout worth. Selected beyond design basis events relying only on these core design features are analyzed and the design margins summarized to demonstrate the advancement in reactor safety achieved with the PRISM design concept

  10. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  11. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    International Nuclear Information System (INIS)

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of 'As Low As Reasonably Achievable' would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  12. International experience and status of fuel element performance and modelling for water reactors

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    Current knowledge concerning water reactor fuel performance and technology is reviewed (212 references). The emphasis is on aspects of in-reactor performance including behaviour in accidents. Computer models for predicting fuel behaviour during the ordinary running of the reactor and during accidents are described. These codes include COMETHE, HOTROD, SLEUTH-SEER and FRAPCON. Their agreement with experimental data is examined. (U.K.)

  13. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  14. Dynamic response of aircraft impact of a reactor building with protective shell on independent foundation

    International Nuclear Information System (INIS)

    Constantopoulos, I.V.; Vardanega, C.; Attalla, I.

    1981-01-01

    Aircraft impact loading can penalize significantly the design of the equipment in a conventional containment building. An alternative scheme was developed in an attempt to reduce the aircraft impact response. A preliminary study was carried out to investigate the feasibility of the alternative scheme. This study was made in such perspective and for the purpose of comparing the response to aircraft impact of a standard reactor building, to that of a reactor building having an independently founded outer shell. In the second scheme, the outer shell is meant to receive the aircraft impact, so that the load will be transmitted to the reactor building internals only by way of the structure-soil-structure system. In both cases, the aircraft impact was postulated to occur on a linear single degree of freedom oscillator which modeled, approximately, the plastification of the impact area. The soil was considered as a half-space with properties corresponding to a medium stiff soil, and modeled by lumped soil springs and dashpots. The reactor internals, inner shell and protective outer shell were modeled with beam elements and concentrated inertias. In modeling the coupled system, soil-structure interaction and structure-to-structure interaction through the soil were represented by a global stiffness matrix corresponding to the three degrees the freedom of each foundation, i.e. horizontal, vertical and rocking. (orig./HP)

  15. Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters

    International Nuclear Information System (INIS)

    Zareian Ronizi, F.; Fadaei, A.H.; Setayeshi, S.; Shahidi, A.R.

    2015-01-01

    Highlights: • One of the most complex issues that Nu-engineers deal with is the design of NR core. • Numerous factors in nuclear core design depend on Fuel-to-Moderator volume ratio. • Aim of this research is to investigate RX performance for different lattice pitches. - Abstract: Nuclear reactor core design is one of the most complex issues that nuclear engineers deal with. The number and complexity of effective parameters and their impact on reactor design, which makes the problem difficult to solve, require precise knowledge of these parameters and their influence on the reactor operation. Numerous factors in a nuclear reactor core design depend on the Fuel-to-Moderator volume ratio, V F /V M , in a fuel cell. This ratio can be modified by changing the lattice pitch which is the thickness of water channels between fuels plates while keeping fuel slab dimensions fixed. Cooling and moderating properties of water are affected by such a change in a reactor core, and hence some parameters related to these properties might be changed. The aim of this research is to provide the suitable knowledge for nuclear core designing. To reach this goal, the first operating core of Tehran Research Reactor (TRR) with different lattice pitches is simulated, and the effect of different lattice pitches on some parameters such as effective multiplication factor (K eff ), reactor life time, distribution of neutron flux and power density in the core, as well as moderator temperature and density coefficient of reactivity are evaluated. The nuclear reactor analysis code, MTR-PC package is employed to carry out the considered calculation. Finally, the results are presented in some tables and graphs that provide useful information for nuclear engineers in the nuclear reactor core design

  16. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  17. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  18. Comparison of Ontario Hydro's performance with world power reactors - 1981

    International Nuclear Information System (INIS)

    Dumka, B.R.

    1982-04-01

    The performance of Ontario Hydro's CANDU reactors in 1981 is compared with that of 123 world nuclear power reactors rated at 500 MW(e) or greater. The report is based on data extracted from publications, as well as correspondence with a number of utilities. The basis used is the gross capacity factor, which is defined as gross unit generation divided by the perfect gross output for the period of interest. The lowest of the published turbine and generator design ratings is used to determine the perfect gross output, unless the unit has been proven capable of consistently exceeding this value. The first six reactors in the rankings were CANDU reactors operated by Ontario Hydro

  19. Microorganism selection and performance in bioslurry reactors treating PAH-contaminated soil.

    Science.gov (United States)

    Cassidy, D P; Hudak, A J

    2002-09-01

    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were operated in 81 vessels for 200 days to treat a soil contaminated with polycyclic aromatic hydrocarbons (PAH). Filtered slurry samples were used to quantify bulk biosurfactant concentrations and PAH emulsification. Concentrations of Corynebacterium aquaticum, Flavobacterium mizutaii, Mycobacterium gastri, Pseudomonas aeruginosa, and Pseudomonas putida were determined using fatty acid methyl ester (FAME) analysis. The CSTR and SS-SBR selected microbial consortia with markedly different surfactant-producing and PAH-degrading abilities. Biosurfactant levels in the SS-SBR reached 4 times the critical micelle concentration (CMC) that resulted in considerable emulsification of PAH. In contrast, CSTR operation resulted in nomeasurable biosurfactant production. Total PAH removal efficiency was 93% in the SS-SBR, compared with only 66% in the CSTR, and stripping of PAH was 3 times less in the SS-SBR. Reversing the mode of operation on day 100 caused a complete reversal in microbial consortia and in reactor performance by day 140. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  20. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor

    NARCIS (Netherlands)

    Moonen, Roel; Ras, Erik Jan; Harvey, Clare; Alles, Jeroen; Moulijn, J.A.

    2017-01-01

    Small-scale parallel trickle-bed reactors were used to evaluate the performance of a commercial hydrodesulfurization catalyst under industrially relevant conditions. Catalyst extrudates were loaded as a single string in reactor tubes. It is demonstrated that product sulfur levels and densities

  1. Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors

    DEFF Research Database (Denmark)

    Mohd Sueb, Mohd Shafiq Bin; Luo, Jianquan; Meyer, Anne S.

    2017-01-01

    In order to maximize enzymatic xylan depolymerization while simultaneously purifying the resulting monosaccharide (xylose), different ultrafiltration (UF) membrane reactor configurations were evaluated. Initial results showed that the two hydrolytic enzymes required for complete depolymerization...... which hindered enzymatic attack in addition to fouling. Reaction with both enzymes followed by UF was found to be the optimal configuration, providing at least 40% higher xylan hydrolysis than the cascade configuration (involving sequential reaction with each of the enzymes separately......) and the simultaneous reaction-filtration with both enzymes, respectively. This study thus confirmed that the reactor configuration has a crucial impact on the performance of both the reaction and the separation process of xylose during enzymatic xylan degradation, and that the type of fouling mechanism varies...

  2. Optimization of the gas turbine-modular helium reactor using statistical methods to maximize performance without compromising system design margins

    International Nuclear Information System (INIS)

    Lommers, L.J.; Parme, L.L.; Shenoy, A.S.

    1995-07-01

    This paper describes a statistical approach for determining the impact of system performance and design uncertainties on power plant performance. The objectives of this design approach are to ensure that adequate margin is provided, that excess margin is minimized, and that full advantage can be taken of unconsumed margin. It is applicable to any thermal system in which these factors are important. The method is demonstrated using the Gas Turbine Modular Helium Reactor as an example. The quantitative approach described allows the characterization of plant performance and the specification of the system design requirements necessary to achieve the desired performance with high confidence. Performance variations due to design evolution, inservice degradation, and basic performance uncertainties are considered. The impact of all performance variabilities is combined using Monte Carlo analysis to predict the range of expected operation

  3. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  4. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    Science.gov (United States)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  5. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of `As Low As Reasonably Achievable` would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  6. Neutronic performance of a 14 MW TRIGA reactor: LEU vs HEU fuel

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.; Cornella, R.J.

    1983-01-01

    A primary objective of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is to develop means for replacing, wherever possible, currently used highly-enriched uranium (HEU) fuel ( 235 U enrichment > 90%) with low-enriched uranium (LEU) fuel ( 235 U enrichment < 20%) without significantly degrading the performance of research and test reactors. The General Atomic Company has developed a low-enriched but high uranium content Er-U-ZrH/sub 1.6/ fuel to enable the conversion of TRIGA reactors (and others) from HEU to LEU. One possible application is to the water-moderated 14 MW TRIGA Steady State Reactor (SSR) at the Romanian Institute for Nuclear Power Reactors. The work reported here was undertaken for the purpose of comparing the neutronic performance of the SSR for HEU fuel with that for LEU fuel. In order to make these relative comparisons as valid as possible, identical methods and models were used for the neutronic calculations

  7. Fabrication of high performance components for Indian nuclear reactors

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  8. Restart of R reactor at SRP

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1983-01-01

    Restart of the Savannah River R-Reactor is an alternative to L-Reactor operation for increased production of defense nuclear material. R-Reactor was shut down in 1964 after 11-years operation and has been on standby for 19 years. This report presents a description of R-Reactor operation to serve as a basis for analysis of environmental impacts after restoration to meet current SRP performance standards. R-Reactor operation would differ from L-Reactor operation principally in discharge and recycle of effluent cooling water to Par Pond, rather than direct discharge to the Savannah River by way of Steel Creek. Significant differences in environmental effects could result. A costly renovation program would be required to restore R-Reactor to operability, and the reactor could not contribute to material production before about 1989

  9. AFCI : Co-extraction impacts on LWR and fast reactor fuel cycles

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Szakalay, F. J.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2007-01-01

    A systematic investigation of the impact of the co-extraction COEXTM process on reactor performance has been performed. The proliferation implication of the process was also evaluated using the critical mass, radioactivity, decay heat and neutron and gamma source rates and gamma doses as indicators. The use of LWR-spent-uranium-based MOX fuel results in a higher initial plutonium content requirement in an LWR MOX core than if natural uranium based MOX fuel is used (by about 1%); the plutonium for both cases is derived from the spent LWR spent fuel. More transuranics are consequently discharged in the spent fuel of the MOX core. The presence of U-236 in the initial fuel was also found to result in higher content of Np-237 in the spent MOX fuel and less consumption of Pu-238 and Am-241 in the MOX core. The higher quantities of Np-237 (factor of 5), Pu-238 (20%) and Am-241 (14%) decrease the effective repository utilization, relative to the use of natural uranium in the PWR MOX core. Additionally, the minor actinides continue to accumulate in the fuel cycle, even if the U-Pu co-extraction products are continuously recycled in the PWR cores, and thus a solution is required for the minor actinides. The utilization of plutonium derived from LWR spent fuel versus weapons-grade plutonium for the startup core of a 1,000 MWT advanced burner fast reactor (ABR) increases the TRU content by about 4%. Differences are negligible for the equilibrium recycle core. The impact of using reactor spent uranium instead of depleted uranium was found to be relatively smaller in the fast reactor (TRU content difference less than 0.4%). The critical masses of the co-extraction products were found to be higher than that of weapons-grade plutonium and the decay heat and radiation sources of the materials (products) were also found to be generally higher than that of weapons-grade plutonium (WG-Pu) in the transuranics content range of 0.1 to 1.0 in the heavy-metal. The magnitude of the

  10. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  11. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  12. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. Environmental impact assessment of Ar-41 released by the normal operation of TRIGA-Mark 2 research reactor

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Ziagos, J.; Demir, Z

    2007-01-01

    Full text: In accordance with the international regulation of nuclear safety and radiological protection of the environment applicable to the basic nuclear installations, category in which the Triga-Mark 2 research reactor is considered, an assesment of the impact in to the environment of the Ar-41 radioelement is accomplished. This radioelement is released by the normal operation of this reactor. The assessment is based on the characteristics of a Moroccan site (where the reactor is installed). It is carried out using CEA Gaussian models and mathematical models developed in LLNL. Considering the assumptions of impact assessments of the radioactivity in the atmosphere, the most important exposure is relatively corresponding to 1 Km from the reactor. This exposure is approximately 0,07% of the lawful limit. Beyond this locality, the exposure becomes lower than 0,02% of this limit. Beyond 5 Km, it becomes lower than ten nono-Sivert. In the basis of the site radiological baseline, the environmental impact of Ar-41 released in normal operation of the reactor is negligible in the studied case. [fr

  14. Performance of self-powered neutron detectors in pressurized water reactors

    International Nuclear Information System (INIS)

    Warren, H.D.; Bozarch, D.P.

    1977-01-01

    A typical Babcock and Wilcox pressurized water reactor (PWR) contains 364 rhodium self-powered neutron detectors (SPNDs) and 52 background detectors. The detectors are inserted into the reactor core in 52 dry, multidetector assemblies. Each assembly contains seven SPNDs and one background detector. By mid-1977, eight B and W PWRs, each fitted with SPNDs, were in operation. Many of the SPNDs have operated successfully for more than four years. This paper describes the operational performance of the SPNDs and special tests conducted to improve that performance. Topics included are (1) insulation performance versus neutron dose to the SPND, (2) background signals in the leadwire region of the SPND, and (3) depletion of the SPND emitter versus absorbed neutron dose

  15. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  16. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    Science.gov (United States)

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  18. Density dependence of reactor performance with thermal confinement scalings

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1992-03-01

    Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research

  19. WWER reactor fuel performance, modelling and experimental support. Proceedings

    International Nuclear Information System (INIS)

    Stefanova, S.; Chantoin, P.; Kolev, I.

    1994-01-01

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: 1) WWER Fuel Performance and Economics: Status and Improvement Prospects: 2) WWER Fuel Behaviour Modelling and Experimental Support; 3) Licensing of WWER Fuel and Fuel Analysis Codes; 4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items

  20. WWER reactor fuel performance, modelling and experimental support. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Chantoin, P; Kolev, I [eds.

    1994-12-31

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: (1) WWER Fuel Performance and Economics: Status and Improvement Prospects: (2) WWER Fuel Behaviour Modelling and Experimental Support; (3) Licensing of WWER Fuel and Fuel Analysis Codes; (4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items.

  1. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  2. Value addition initiatives for CANDU reactor operation performance

    International Nuclear Information System (INIS)

    Chugh, V.; Parmar, R.; Schut, J.; Sherin, J.; Xie, H.; Zobin, D.

    2013-01-01

    Recently, AMEC NSS initiated projects for CANDU® station performance engineering with potentially high returns for the utilities. This paper discusses three initiatives. Firstly, optimization of instrument calibration interval from 1 to 3 years will reduce time commitments on the maintenance resources on top of financial savings ~$3,500 per instrument. Secondly, reactor thermal power uncertainty assessment shows the level of operation which is believed to have an over-conservative margin that can be used to increase power by up to 0.75%. Finally, as an alternative means for controlling Reactor Inlet Header Temperature (RIHT), physical modifications to the High Pressure (HP) feedwater heaters can be useful for partially recovering RIHT resulting in increased production by 10-12 MWe. (author)

  3. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  4. Dynamic analysis of reactor containment subjected to aircraft impact loading

    International Nuclear Information System (INIS)

    Li Xiaotian; He Shuyan

    2004-01-01

    In this paper, dynamic character of reactor containment subjected to aircraft impact loading is analyzed with MSC.DYTRAN program. The displacement of concrete and velocity curve of airplane is obtained. The results of the different material model are compared with empirical formula. It is concluded that reasonable result can be obtained using cap model for concrete

  5. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  6. Reactor fuel performance data file, 1985 edition

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Fujita, Misao; Watanabe, Kohji.

    1986-07-01

    In safety evaluation and integrity studies of reactor fuel, data on fuel performance are the most basic materials. The Fuel Reliability Laboratory No.1 has obtained the fuel performance data by joining in some international programs to study the safety and integrity of fuel. Those data have only used for the studies in the above two fields. However, if the data are rearranged and compiled in a easily usable form, they can be utilized in other field of studies. Then, a 'data file' on fuel performance is beeing compiled by adding data from open literatures to those obtained in international programs. The present report is prepared on the basis of the data file compiled by March in 1986. (author)

  7. The need for high performance breeder reactors

    International Nuclear Information System (INIS)

    Vaughan, R.D.; Chermanne, J.

    1977-01-01

    It can be easily demonstrated, on the basis of realistic estimates of continued high oil costs, that an increasing portion of the growth in energy demand must be supplied by nuclear power and that this one might account for 20% of all the energy production by the end of the century. Such assumptions lead very quickly to the conclusion that the discovery, extraction and processing of the uranium will not be able to follow the demand; the bottleneck will essentially be related to the rate at which the ore can be discovered and extracted, and not to the existing quantities nor their grade. Figures as high as 150.000 T/annum and more would be quickly reached, and it is necessary to wonder already now if enough capital can be attracted to meet these requirements. There is only one solution to this problem: improve the conversion ratio of the nuclear system and quickly reach the breeding; this would lead to the reduction of the natural uranium consumption by a factor of about 50. However, this condition is not sufficient; the commercial breeder must have a breeding gain as high as possible because the Pu out-of-pile time and the Pu losses in the cycle could lead to an unacceptable doubling time for the system, if the breeding gain is too low. That is the reason why it is vital to develop high performance breeder reactors. The present paper indicates how the Gas-cooled Breeder Reactor [GBR] can meet the problems mentioned above, on the basis of recent and realistic studies. It briefly describes the present status of GBR development, from the predecessors in the gas cooled reactor line, particularly the AGR. It shows how the GBR fuel takes mostly profit from the LMFBR fuel irradiation experience. It compares the GBR performance on a consistent basis with that of the LMFBR. The GBR capital and fuel cycle costs are compared with those of thermal and fast reactors respectively. The conclusion is, based on a cost-benefit study, that the GBR must be quickly developed in order

  8. Evaluation of Continuous Stirred Tank Reactor Performance by Using Radioisotope Tracer

    International Nuclear Information System (INIS)

    Noor Anis Kundari; Djoko Marjanto; Ardhani Dyah W

    2009-01-01

    Research on performance evaluation of continuous stirred tank reactor (CSTR) using radioisotope tracer has been carried out. The aim of research is to assess a validity of assumption that stirring or mixing process in a CSTR is perfect. In order to follow the flow dynamics process of the fluid in the reactor, I-131 was used. The reactor was equipped with four baffles. The fluid/water leaving the reactor was sampled at 13 up to 1393 seconds and analysed its I-131 concentration. The performance of CSTR is expressed as dispersed number (D/uL) as function of retention time and Reynolds number under axial dispersed model. The experimental result show that the relation between the dispersion number and retention time is D/uL = 9X10 -4 (t s * ) 2 - 6.9X10 -1 (t s * ) + 148 and the dispersion number and Reynolds number is D/uL = 65.7 e 0.0003/Re . The dispersion number obtained were much higher than 0.01 that in between 11.08 up to 21.4. That mean the mixing process occurred in the CSTR can be assumed to be ideal. (author)

  9. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances

    DEFF Research Database (Denmark)

    Luo, Gang; De Francisci, Davide; Kougias, Panagiotis

    2015-01-01

    that stochastic factors had a minor role in shaping the profile of the microbial community composition and activity in biogas reactors. On the contrary, temperature disturbance was found to play an important role in the microbial community composition as well as process performance for biogas reactors. Although...... three different temperature disturbances were applied to each biogas reactor, the increased methane yields (around 10% higher) and decreased volatile fatty acids (VFAs) concentrations at steady state were found in all three reactors after the temperature disturbances. After the temperature disturbance...... in shaping the profile of the microbial community composition and activity in biogas reactors. New steady-state microbial community profiles and reactor performances were observed in all the biogas reactors after the temperature disturbance....

  10. Proceedings of the Topical meeting on the reactor fuel performance - TopFuel 2012 Transactions

    International Nuclear Information System (INIS)

    2012-01-01

    TopFuel is an annual topical meeting organised by ENS, the American Nuclear Society and the Atomic Energy Society of Japan. TopFuel's primary objective is to bring together leading specialists in the field from around the world to analyse advances in nuclear fuel management technology and to use the findings of the latest cutting-edge research to help manufacture the high performance nuclear fuels of today and tomorrow. Aim is to discuss the challenges facing the developers and manufacturers of new high-performance nuclear fuels - fuels that will help meet current and future energy demand and reduce man's over dependence upon CO 2 -emitting fossil fuels. The technical scope of Top Fuel 2012 includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. (authors)

  11. Thorium Fuel Performance in a Tight-Pitch Light Water Reactor Lattice

    International Nuclear Information System (INIS)

    Kim, Taek Kyum; Downar, Thomas J.

    2002-01-01

    Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238 U fertile fuels. However, unlike 238 U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238 U with 232 Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor

  12. Aging impact on the safety and operability of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Irradiation embrittlement causes a loss of reactor vessel material fracture toughness as nuclear plants age. Fracture mechanics based regulatory requirements limit the permissible level of irradiation embrittlement such that essential fracture prevention margins are maintained throughout the plant operating life. This paper reviews the regulatory requirements and the underlying fracture mechanics technology. Issues identified with that technology are identified and research programs implemented to resolve the issues are described. Where possible, an assessment is given of the anticipated impact on the research program output will have on the reactor vessel fracture-margin assessment process

  13. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    Science.gov (United States)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  14. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped

  15. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  16. Scram and nonlinear reactor system seismic analysis for a liquid metal fast reactor

    International Nuclear Information System (INIS)

    Morrone, A.; Brussalis, W.G.

    1975-01-01

    The paper presents the analysis and results for a LMFBR system which was analyzed for both scram times and seismic responses such as bending moments, accelerations and forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node (translational and rotational). The model was developed to incorporate as many reactor components as possible without exceeding computer limitations. It consists of 12 reactor components with a total of 71 nodes, 69 beam and pin-jointed elements and 27 gap elements. The gap elements were defined by their clearances, impact spring constants and impact damping constants based on a 50% coefficient of restitution. The horizontal excitation input to the model was the response of the containment building at the location of the reactor vessel supports. It consists of a ten seconds Safe Shutdown Earthquake acceleration-time history at 0.005 seconds intervals and with a maximum acceleration of 0.408 g. The analysis was performed with two Westinghouse special purpose computer programs. The first program calculated the reactor system seismic responses and stored the impact forces on tape. The impact forces on the control rod driveline were converted into vertical frictional forces by multiplying them by a coefficient of friction, and then used by the second program for the scram time determination. The results give time history plots of various seismic responses, and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. The bending moment and shear force responses were used as input for the structural analysis (stresses, deflections, fatigue) of the various components, in combination with the other applicable loading conditions. (orig./HP) [de

  17. Modified-open fuel cycle performance with breed-and-burn advanced reactor concepts

    International Nuclear Information System (INIS)

    Heidet, Florent; Kim, Taek K.; Taiwo, Temitope A.

    2011-01-01

    Recent advances in fast reactor designs enable significant increase in the uranium utilization in an advanced fuel cycle. The category of fast reactors, collectively termed breed-and-burn reactor concepts, can use a large amount of depleted uranium as fuel without requiring enrichment with the exception of the initial core critical loading. Among those advanced concepts, some are foreseen to operate within a once-through fuel cycle such as the Traveling Wave Reactor, CANDLE reactor or Ultra-Long Life Fast Reactor, while others are intended to operate within a modified-open fuel cycle, such as the Breed-and-Burn reactor and the Energy Multiplier Module. This study assesses and compares the performance of the latter category of breed-and-burn reactors at equilibrium state. It is found that the two reactor concepts operating within a modified-open fuel cycle can significantly improve the sustainability and security of the nuclear fuel cycle by decreasing the uranium resources and enrichment requirements even further than the breed-and-burn core concepts operating within the once-through fuel cycle. Their waste characteristics per unit of energy are also found to be favorable, compared to that of currently operating PWRs. However, a number of feasibility issues need to be addressed in order to enable deployment of these breed-and-burn reactor concepts. (author)

  18. Performance of a UASB reactor treating coffee wet wastewater

    International Nuclear Information System (INIS)

    Guardia Puebla, Yans; Rodríguez Pérez, Suyén; Janet Jiménez Hernández; Sánchez Girón, Víctor

    2014-01-01

    The present work shows the results obtained in the anaerobic digestion process of coffee wet wastewater processing. An UASB anaerobic reactor was operated in single-stage in mesophilic temperature controlled conditions (37±1ºC). The effect of both organic loading rate (OLR) and hydraulic retention time (HRT) in the anaerobic digestion of coffee wet wastewater was investigated. The OLR values considered in the single-stage UASB reactor varied in a range of 3,6-4,1 kgCOD m-3 d-1 and the HRT stayed in a range of 21,5-15,5 hours. The evaluation results show that the best performance of UASB reactor in single-stage was obtained at OLR of 3,6 kg COD m-3 d-1 with an average value of total and soluble COD removal of 77,2% and 83,4%, respectively, and average methane concentration in biogas of 61%. The present study suggests that the anaerobic digestion is suitable to treating coffee wet wastewater. (author)

  19. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 2, Sections 1-6

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains the analysis of programmatic alternatives, project alternatives, affected environment of alternative sites, environmental consequences, and environmental regulations and permit requirements.

  20. Thermal performances of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; Le Det, M.; Denis, R.

    1974-12-01

    This report describes the thermal and technological tests performed on a multilayer thermal insulation system for high temperature gas reactors. It includes the description of test facilities, global tests, interpretation of data, and technological tests. Results obtained make it possible to predetermine with a satisfactory precision thermal performances under various nominal conditions

  1. Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Sivaraman, N.; Subramaniam, S.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2002-01-01

    Burn-up measurements on thermal as well as fast reactor fuels were carried out using high performance liquid chromatography (HPLC). A column chromatographic technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) coated column was employed for the isolation of lanthanides from uranium, plutonium and other fission products. Ion-pair HPLC was used for the separation of individual lanthanides. The atom percent fissions were calculated from the concentrations of the lanthanide (neodymium in the case of thermal reactor and lanthanum for the fast reactor fuels) and from uranium and plutonium contents of the dissolver solutions. The HPLC method was also used for determining the fractional fissions from uranium and plutonium for the thermal reactor fuel. (author)

  2. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  3. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  4. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  5. Thermal performance and efficiency of supercritical nuclear reactors

    International Nuclear Information System (INIS)

    Romney Duffey; Tracy Zhou; Hussam Khartabil

    2009-01-01

    The paper reviews the major advances and innovative aspects of the thermal performance of recent concepts for super-critical water-cooled nuclear reactors (SCWR). The concepts are based on the extensive experience in the thermal power industry with super and ultra-supercritical boilers and turbines. The challenges and goals of increased efficiency, reduced cost, enhanced safety and co-generation have been pursued over the last ten years, and have resulted both in viable concepts and a vibrant defined R and D effort. The supercritical concept has wide acceptance among industry, as it reflects standard engineering practices and current thermal plant technology that is being already deployed. The SCWR concept represents a continuous development of water-cooled reactor technology, which utilizes the best and latest advances made in the thermal power industry. (author)

  6. The intermittent contact impact problem in piping systems of nuclear reactor

    International Nuclear Information System (INIS)

    Martin, A.; Ricard, A.; Millard, A.

    1981-09-01

    The intermittent contact problem is important in many pipe whip studies, specially as to the safety of nuclear reactors. The impact concept adopted is that of instantaneous impact, so that at the time of impact the two impacting structures instantaneously acquire the same velocity in the impact direction. Energy is dissipated by some mechanism whose spatial and temporal scale is small compared to these scales in the discrete model. This dissipation is associated with local plastic deformation. Different solutions are presented for solving this problem. The first one is a generalization of the modal superposition method, when the nonlinearities of the structure are only due to impact between structural components; the other ones are included in a step by step time history and can take in account geometrical non linearities and of behavior. Some industrial applications in nuclear technology are presented

  7. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    Science.gov (United States)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  8. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  9. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  10. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  11. Performance of water cooled nuclear power reactor fuels in India – Defects, failures and their mitigation

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy

    2015-01-01

    Water cooled and moderated nuclear power reactors account for more than 95% of the operating reactors in the world today. Light water reactors (LWRs) consisting of pressurized water reactor (PWR), their Russian counterpart namely VVER and boiling water reactor (BWR) will continue to dominate the nuclear power market. Pressurized heavy water reactor (PHWR), also known as CANDU, is the backbone of the nuclear power program in India. Updates on LWR and PHWR fuel performance are being periodically published by IAEA, OECD-NEA and the World Nuclear Association (WNA), highlighting fuel failure rate and the mitigation of fuel defects and failures. These reports clearly indicate that there has been significant improvement in in – pile fuel performance over the years and the present focus is to achieve zero fuel failure in high burn up and high performance fuels. The present paper summarizes the status of PHWR and LWR fuel performance in India, highlighting the manufacturing and the related quality control and inspection steps that are being followed at the PHWR fuel fabrication plant in order to achieve zero manufacturing defect which could contribute to achieving zero in – pile failure rate in operating and upcoming PHWR units in India. (author)

  12. The analysis of thermal-hydraulic performances of nuclear ship reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Shinshichi; Hamada, Masao

    1975-01-01

    Thermal-hydraulic performances in the core of nuclear ship reactor was analysed by thermal-hydraulic analyser codes, AMRTC and COBRA-11+DNBCAL. This reactor is of a pressurized water type and incorporates the steam generator within the reactor vessel with the rated power of 330 MWt, which is developed by Nuclear Ship Research Panel Seven (NSR-7) in The Shipbuilding Research Association of Japan. Fuel temperature distributions, coolant temperature distributions, void fractions in coolant and minimum burn out ratio etc. were calculated. Results are as follows; a) The maximum temperature of fuel center is 1,472 0 C that corresponds to 53% as small as the melting point (2,800 0 C). b) Subcooled boiling exists in the core and the maximum void fraction is less than 4%. c) The minimum burn out ratio is not less than the minimum allowable limit of 1.25. It was found from the results of analysis that this reactor was able to be operated wide margin with respect to thermal-hydraulic design limits at the rated power. (auth.)

  13. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  14. Design requirements and performance requirements for reactor fuel recycle manipulator systems

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1975-01-01

    The development of a new generation of remote handling devices for remote production work in support of reactor fuel recycle systems is discussed. These devices require greater mobility, speed and visual capability than remote handling systems used in research activities. An upgraded manipulator system proposed for a High-Temperature Gas-Cooled Reactor fuel refabrication facility is described. Design and performance criteria for the manipulators, cranes, and TV cameras in the proposed system are enumerated

  15. Impact of different libraries on the performance calculation of a modul-type pebble bed HTR

    International Nuclear Information System (INIS)

    Ohlig, U.; Brockmann, H.; Haas, K.A.; Teuchert, E.

    1991-01-01

    A new multigroup library for the GAM-THERMOS spectrum codes has been compiled from the sources ENDF/B-V and JEF-1. The progress in comparison to the 20 years old standard library has been studied for one specific reactor design of the Modular High Temperature Reactor. The study covers various aspects of the performance of the reactor both for the initial core and for the equilibrium cycle. For the multiplication factor k eff the different amounts to Δ k eff = 0.0164 in the startup reactor, which is mainly due to changes in the cross sections of 235 U. At the turn to the equilibrium cycle the difference reduces to Δ k eff = 0.0017 as due to various opposite tendencies in the data of the many involved nuclides. The change in the mass balance of the fissile materials is about 5%. The impact on the temperature coefficients is in the order of 4%, and the influence on other safety related properties of the reactor is lower than about 1 or 2 percent, confirming the confidence in formerly received results. (author). 10 refs, 3 figs, 6 tabs

  16. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  17. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    International Nuclear Information System (INIS)

    Azarm, M.A.; Boccio, J.L.; Mitra, S.

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs

  18. The influence of fast reactor emergency conditions upon fuel element performance

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.E.; Buksha, Yu.K.; Zabudko, L.M.; Likhachev, Yu.I.

    1985-01-01

    Fuel-pin cladding is one of the most important protective barriers preventing the release and propagation of radioactive contamination. By now the calculated determination of fast-reactor fuel-element performance under stationary conditions has been considered in detail but the investigation of the influence of emergency conditions has been given less attention. Under emergency conditions of the fast reactor operation there arise short-duration excesses of rated parameters (temperature, energy release, etc.) which are confined within tolerable limits with the use of the safety system. Some features of the sodium-cooled fast reactors (small mean prompt-neutron lifetime, relatively weak reactivity feedback, etc.) complicate the work of safety systems. Therefore, the tolerable deviations of parameters should be carefully validated

  19. Overcoming the effects of stress on reactor operator performance

    International Nuclear Information System (INIS)

    He Xuhong; Wei Li; Zhao Bingquan

    2003-01-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  20. Overcoming the effects of stress on reactor operator performance

    Energy Technology Data Exchange (ETDEWEB)

    He Xuhong; Wei Li; Zhao Bingquan [Tsinghua Univ., Nuclear Power Plant Simulation Training Center, Beijing (China)

    2003-03-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  1. Photocatalytic treatment of bioaerosols: impact of the reactor design.

    Science.gov (United States)

    Josset, Sébastien; Taranto, Jérôme; Keller, Nicolas; Keller, Valérie; Lett, Marie-Claire

    2010-04-01

    Comparing the UV-A photocatalytic treatment of bioaerosols contaminated with different airborne microorganisms such as L. pneumophila bacteria, T2 bacteriophage viruses and B. atrophaeus bacterial spores, pointed out a decontamination sensitivity following the bacteria > virus > bacterial spore ranking order, differing from that obtained for liquid-phase or surface UV-A photocatalytic disinfection. First-principles CFD investigation applied to a model annular photoreactor evidenced that larger the microorganism size, higher the hit probability with the photocatalytic surfaces. Applied to a commercial photocatalytic purifier case-study, the CFD calculations showed that the performances of the studied purifier could strongly benefit from rational reactor design engineering. The results obtained highlighted the required necessity to specifically investigate the removal of airborne microorganisms in terms of reactor design, and not to simply transpose the results obtained from studies performed toward chemical pollutants, especially for a successful commercial implementation of air decontamination photoreactors. This illustrated the importance of the aerodynamics in air decontamination, directly resulting from the microorganism morphology.

  2. Performance of nuclear fuel in the Krsko reactor; Spremljanje delovanja jedrskega goriva v reaktorju NE Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Jurcevic, M; Kurincic, B; Levstek, M F; Sambo, B; Vrcko, P [Nuklearna elektrana Krsko, Krsko (Yugoslavia)

    1987-07-01

    In this paper activities to follow performance of the nuclear fuel and operational status of the reactor of Nuclear Power Plant Krsko are presented. Short descriptions of the methods as well as nuclear and process instrumentation used for surveillance of the reactor performance are given. The purpose of the subject activities is to assure safe operation of the reactor in accordance with the Final safety Analysis Report of NPP Krsko. (author)

  3. The environmental impact of radioactive releases from accidents in nuclear power reactors

    International Nuclear Information System (INIS)

    Beattie, J.R.; Griffiths, R.F.; Kaiser, G.D.; Kinchin, G.H.

    1978-01-01

    A survey of accidental releases of radioactivity from thermal and fast reactors is presented. Following a general discussion on the hazards involved, the nature of the environmental impact of radioactive releases is examined. This includes a brief review of the natural radiation background, the effect on human health of various levels of radiation and radioactivity, permissible and reference levels, and the type of hazards from both passing clouds of airbourne radioactive material and from ground deposited material. The problem of atmospheric dispersion and methods of calculations of radioactive materials in the atmosphere are examined in order for the consequences of accidental release to be analysed. National accidents and their environmental consequences are then examined. Finally there is a review of the risks to which man is always exposed because of his environment. Common and collective risks are also considered. Conclusions are reached as to the acceptibility or otherwise of the environmental impact of reactor accidents. (U.K.)

  4. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  5. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, New York (United States)

    2007-07-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat.

  6. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan; Kim, Yeon Soo

    2007-01-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat

  7. Performance of a continuously operated flocculent sludge UASB reactor with slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Zeeuw, W. de

    1988-01-01

    This investigation was carried out to assess the performance of a continuously operated, one-stage, flocculent sludge upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater at a process temperature of 30/sup 0/C. The results indicate that the type of substrate ingredients, coarse suspended solids, colloidal and soluble compounds in the wastewater, affect the performance of the reactor because of different mechanisms involved in their removal and their subsequent conversion into methane. Two different mechanisms are distinguished. An entrapment mechanism prevails for the elimination of coarse suspended solids while an adsorption mechanism is involved in the removal of the colloidal and soluble fractions of the wastewater. The results obtained lead to the conclusion that the system can satisfactorily handle organic space loads up to 5 kg COD m/sup -3/ day/sup -1/ at 30/sup 0/C. The data indicate, however, that continuing heavy accumulation of substrate components in the reactor is detrimental to the stability of the anaerobic treatment process as the accumulation can lead to sludge flotation and consequently to a complete loss of the active biomass from the reactor.

  8. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  9. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    International Nuclear Information System (INIS)

    Seppaelae, Malla

    2008-01-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  10. Safety case methodology for decommissioning of research reactors. Assessment of the long term impact of a flooding scenario

    International Nuclear Information System (INIS)

    Vladescu, G.; Banciu, O.

    1999-01-01

    The paper contains the assessment methodology of a Safety Case fuel decommissioning of research reactors, taking into account the international approach principles. The paper also includes the assessment of a flooding scenario for a decommissioned research reactor (stage 1 of decommissioning). The scenario presents the flooding of reactor basement, radionuclide migration through environment and long term radiological impact for public. (authors)

  11. Design and performance of subgrade biogeochemical reactors.

    Science.gov (United States)

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-12-15

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  12. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  13. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  14. Reactor vessel decommissioning project. Final report

    International Nuclear Information System (INIS)

    Schoonen, D.H.

    1984-09-01

    This report describes a reactor vessel decommissioning project; it documents and explains the project objectives, scope, performance results, and sodium removal process. The project was successfully completed in FY-1983, within budget and without significant problems or adverse impact on the environment. Waste generated by the operation included the reactor vessel, drained sodium, and liquid, solid, and gaseous wastes which were significantly less than project estimates. Personnel radiation exposures were minimized, such that the project total was one-half the predicted exposure level. Except for the sodium removed, the material remaining in the reactor vessel is essentially the same as when the vessel arrived for processing

  15. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  16. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  17. Impact on breeding rate of different Molten Salt reactor core structures

    International Nuclear Information System (INIS)

    Wang Haiwei; Mei Longwei; Cai Xiangzhou; Chen Jingen; Guo Wei; Jiang Dazhen

    2013-01-01

    Background: Molten Salt Reactor (MSR) has several advantages over the other Generation IV reactor. Referred to the French CNRS research and compared to the fast reactor, super epithermal neutron spectrum reactor type is slightly lower and beading rate reaches 1.002. Purpose: The aim is to explore the best conversion zone layout scheme in the super epithermal neutron spectrum reactor. This study can make nuclear fuel as one way to solve the energy problems of mankind in future. Methods: Firstly, SCALE program is used for molten salt reactor graphite channel, molten salt core structure, control rods, graphite reflector and layer cladding structure. And the SMART modules are used to record the important actinides isotopes and their related reaction values of each reaction channel. Secondly, the thorium-uranium conversion rate is calculated. Finally, the better molten salt reactor core optimum layout scheme is studied comparing with various beading rates. Results: Breading zone layout scheme has an important influence on the breading rate of MSR. Central graphite channels in the core can get higher neutron flux irradiation. And more 233 Th can convert to 233 Pa, which then undergoes beta decay to become 233 U. The graphite in the breading zone gets much lower neutron flux irradiation, so the life span of this graphite can be much longer than that of others. Because neutron flux irradiation in the uranium molten salt graphite has nearly 10 times higher than the graphite in the breading zone, it has great impact on the thorium-uranium conversion rates. For the super epithermal neutron spectrum molten salt reactors, double salt design cannot get higher thorium-uranium conversion rates. The single molten salt can get the same thorium-uranium conversion rate, meanwhile it can greatly extend the life of graphite in the core. Conclusions: From the analysis of calculation results, Blanket breeding area in different locations in the core can change the breeding rates of thorium

  18. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.

    Science.gov (United States)

    Denac, M; Dunn, I J

    1988-07-05

    Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted

  19. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  20. Understanding protocol performance: impact of test performance.

    Science.gov (United States)

    Turner, Robert G

    2013-01-01

    This is the second of two articles that examine the factors that determine protocol performance. The objective of these articles is to provide a general understanding of protocol performance that can be used to estimate performance, establish limits on performance, decide if a protocol is justified, and ultimately select a protocol. The first article was concerned with protocol criterion and test correlation. It demonstrated the advantages and disadvantages of different criterion when all tests had the same performance. It also examined the impact of increasing test correlation on protocol performance and the characteristics of the different criteria. To examine the impact on protocol performance when individual tests in a protocol have different performance. This is evaluated for different criteria and test correlations. The results of the two articles are combined and summarized. A mathematical model is used to calculate protocol performance for different protocol criteria and test correlations when there are small to large variations in the performance of individual tests in the protocol. The performance of the individual tests that make up a protocol has a significant impact on the performance of the protocol. As expected, the better the performance of the individual tests, the better the performance of the protocol. Many of the characteristics of the different criteria are relatively independent of the variation in the performance of the individual tests. However, increasing test variation degrades some criteria advantages and causes a new disadvantage to appear. This negative impact increases as test variation increases and as more tests are added to the protocol. Best protocol performance is obtained when individual tests are uncorrelated and have the same performance. In general, the greater the variation in the performance of tests in the protocol, the more detrimental this variation is to protocol performance. Since this negative impact is increased as

  1. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities

    International Nuclear Information System (INIS)

    Yu Fangbo; Ali, Shinawar Waseem; Guan Libo; Li Shunpeng; Zhou Shan

    2010-01-01

    This study demonstrates the feasibility of using Pseudomonasputida ONBA-17 to bioaugment a sequencing batch reactor (SBR) treating o-nitrobenzaldehyde (ONBA) synthetic wastewater. To monitor its survival, the strain was chromosomally marked with gfp gene. After a transient adaptation, almost 100% degradation of ONBA was obtained within 8 days as compared with 23.47% of the non-inoculated control. The bioaugmented reactor has a better chemical oxygen demand (COD) removal performance (96.28%) than that (79.26%) of the control. The bioaugmentation not only enhanced the removal capability of target compound, but shortened system start-up time. After the increase in ONBA load, performance fluctuation of two reactors was observed, and the final treating effects of them were comparable. What is more, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes via a combination of pattern comparison and sequence phylogenetic analysis was performed to uncover changes in sludge microbial communities. Only the members of alpha, beta and gamma subdivisions of Proteobacteria were identified. To isolate ONBA-degrading relevant microorganisms, spread plate was used and four bacterial strains were obtained. Subsequent systematic studies on these bacteria characterized their traits which to some extent explained why such bacteria could be kept in the system. This study will help future research in better understanding of the bioreactor bioaugmentation.

  2. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses.

    Science.gov (United States)

    López-López, Alberto; León-Becerril, Elizabeth; Rosales-Contreras, María Elena; Villegas-García, Edgardo

    2015-01-01

    The main problem linked to the stability of upflow anaerobic sludge blanket (UASB) reactors during the treatment of Tequila vinasse is the high acidity and the null alkalinity present in this effluent. This research evaluates the effect of alkalinity and volatile fatty acids (VFAs) concentration on the performance of an UASB reactor with recirculation of the effluent for removing organic matter and biogas production from Tequila vinasses. Recirculation of the effluent reduces the impact of VFAs and organic matter concentration present in the influent, inducing the stability of the reactor. The UASB reactor was operated during 235 days at organic loading rates from 2.5 to 20.0 kg m(-3) d(-1), attaining a removal efficiency of COD greater than 75% with a methane yield of 335 ml CH4 g(-1) COD at SPT, maintaining a ratio of VFAs/Alk ≤ 0.5. Therefore, an optimal ratio of VFAs/Alk was established for the system operating in stable conditions for the treatment of Tequila vinasses. Under these conditions, the alkalinity was recuperated by the system itself, without the addition of external alkalinity.

  4. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  5. Impact of closed Brayton cycle test results on gas cooled reactor operation and safety

    International Nuclear Information System (INIS)

    Wright, St.A.; Pickard, P.S.

    2007-01-01

    This report summarizes the measurements and model predictions for a series of tests supported by the U.S. Department of Energy that were performed using the recently constructed Sandia Brayton Loop (SBL-30). From the test results we have developed steady-state power operating curves, controls methodologies, and transient data for normal and off-normal behavior, such as loss of load events, and for decay heat removal conditions after shutdown. These tests and models show that because the turbomachinery operates off of the temperature difference (between the heat source and the heat sink), that the turbomachinery can continue to operate (off of sensible heat) for long periods of time without auxiliary power. For our test hardware, operations up to one hour have been observed. This effect can provide significant operations and safety benefits for nuclear reactors that are coupled to a Brayton cycles because the operating turbomachinery continues to provide cooling to the reactor. These capabilities mean that the decay-heat removal can be accommodated by properly managing the electrical power produced by the generator/alternator. In some conditions, it may even be possible to produce sufficient power to continue operating auxiliary systems including the waste heat circulatory system. In addition, the Brayton plant impacts the consequences of off-normal and accident events including loss of load and loss of on-site power. We have observed that for a loss of load or a loss of on-site power event, with a reactor scram, the transient consists initially of a turbomachinery speed increase to a new stable operating point. Because the turbomachinery is still spinning, the reactor is still being cooled provided the ultimate heat sink remains available. These highly desirable operational characteristics were observed in the Sandia Brayton loop. This type of behavior is also predicted by our models. Ultimately, these results provide the designers the opportunity to design gas

  6. A novel approach to the design and operation scheduling of heterogeneous catalytic reactors

    International Nuclear Information System (INIS)

    Ghodasara, Kamlesh; Smith, Robin; Hwang, Sungwon

    2014-01-01

    A number of studies have been conducted to reduce the overall level of catalyst deactivation in heterogeneous catalytic reactors, and improve the performance of reactors, such as yield, conversion or selectivity. The methodology generally includes optimization of the following: (1) operating conditions of the reaction system, such as feed temperature, normal operating temperature, pressure, and composition of feed streams; (2) reactor design parameters, such as dimension of the reactor, side stream distribution along the axis of the reactor beds, the mixing ratio of inert catalyst at each bed; and (3) catalyst design parameters, such as the pore size distribution across the pellet, active material distribution, size and shape of the catalyst, etc. Few studies have examined optimization of the overall catalyst reactor performance throughout the catalyst lifetime, considering catalyst deactivation. Furthermore, little attention has been given to the impact of various configurations of reactor networks and scheduling of the reactor operation (i.e., online and offline-regeneration) on the overall reactor performance throughout the catalyst lifetime. Therefore, we developed a range of feasible sequences of reactors and scheduling of reactors for operation and regeneration, and compared the overall reactor performance of multiple cases. Furthermore, a superstructure of reactor networks was developed and optimized to determine the optimum reactor network that shows the maximum overall reactor performance. The operating schedule of each reactor in the network was considered further. Lastly, the methodology was illustrated using a case study of the MTO (methanol to olefin) process

  7. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    Science.gov (United States)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release

  8. Performance Variation of Spent Resin in Mixed Bed From Water Purifying System of Xi'an Pulse Reactor

    International Nuclear Information System (INIS)

    Li Hua; Ma Yan; Xiao Yan; Liu Yueheng; Yang Yongqing

    2010-01-01

    Detailed physical and chemical characteristic analysis was performed on the spent cation and anion resins in the mixed bed from Xi'an Pulse Reactor water purifying system.The exchange performance variations of used resins and the contributions from different factors to the variation were discussed.Based on the obtained information of the impurities in the used resin, the contamination state of the water in the Xi'an Pulse Reactor water pool, the corrosion state of the structural material in the reactor was presented. The spent anion resin almost completely losses its exchange performance,while the remaining exchange capacity in the spent cation resin is still high.The radiation field from the reactor operation contributes little to the degradation of the performance of the resins. The exchange capacity loss of the spent anion resin is due to the exchange of its active groups into abundant carbonate and a certain amount of organics. The impurity amount in the anion and cation exchange resins is low,which suggests(that) the water in the Xi'an Pulse Reactor water pool is little contaminated. A certain extent of corrosion is occurred on the structural material in the swimming pool of the reactor. The results provide important referential data for the operational safety of the water purifying system of similar research reactor. (authors)

  9. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

  10. Effect of inlet conditions on the performance of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.; Arzu, P.; Costello, A.

    1997-10-01

    Palladium membrane reactors (PMR) will be used to remove tritium and other hydrogen isotopes from impurities, such as tritiated methane and tritiated water, in the exhaust of the International Thermonuclear Experimental Reactor. In addition to fusion-fuel processing, the PMR system can be used to recover tritium from tritiated waste water. This paper investigates the effect of inlet conditions on the performance of a PMR. A set of experiments were run to determine, independently, the effect of inlet compositions and residence time on performance. Also, the experiments were designed to determine if the injected form of hydrogen (CH 4 or H 2 O) effects performance. Results show that the PMR operates at optimal hydrogen recovery with a broad range of inlet compositions and performance is shown to increase with increased residence time. PMR performance is shown to be independent of whether hydrogen is injected in the form of CH 4 or H 2 O

  11. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Davis, Cliff B.

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  12. Microbiology and performance of a methanogenic biofilm reactor during the start-up period.

    Science.gov (United States)

    Cresson, R; Dabert, P; Bernet, N

    2009-03-01

    To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor. Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR-SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm. This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm. The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.

  13. Human performance analysis in the frame of probabilistic safety assessment of research reactors

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Nitoi, Mirela; Apostol, Minodora; Turcu, I.; Florescu, Gh.

    2005-01-01

    Full text: The analysis of operating experience has identified the importance of human performance in reliability and safety of research reactors. In Probabilistic Safety Assessment (PSA) of nuclear facilities, human performance analysis (HPA) is used in order to estimate human error contribution to the failure of system components or functions. HPA is a qualitative and quantitative analysis of human actions identified for error-likely situations or accident-prone situations. Qualitative analysis is used to identify all man-machine interfaces that can lead to an accident, types of human interactions which may mitigate or exacerbate the accident, types of human errors and performance shaping factors. Quantitative analysis is used to develop estimates of human error probability as effects of human performance in reliability and safety. The goal of this paper is to accomplish a HPA in the PSA frame for research reactors. Human error probabilities estimated as results of human actions analysis could be included in system event tree and/or system fault tree. The achieved sensitivity analyses determine human performance sensibility at systematically variations both for dependencies level between human actions and for operator stress level. The necessary information was obtained from operating experience of research reactor TRIGA from INR Pitesti. The required data were obtained from generic data bases. (authors)

  14. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  15. Containment design, performance criteria and research needs for advanced reactor designs

    International Nuclear Information System (INIS)

    Bagdi, G.; Ali, S.; Costello, J

    2004-01-01

    This paper points out some important shifts in the basic expectations in the performance requirements for containment structures and discusses the areas where the containment structure design requirements and acceptance criteria can be integrated with ultimate test based insights. Although there has not been any new reactor construction in the United States for over thirty years, several designs of evolutionary and advanced reactors have already been certified. Performance requirements for containment structures under design basis and severe accident conditions and explicit consideration of seismic margins have been used in the design certification process. In the United States, the containment structure design code is the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE-Class MC for the steel containment and Section III, Division 2 for reinforced and prestressed concrete reactor vessels and containments. This containment design code was based on the early concept of applying design basis internal pressure and associated load combinations that included the operating basis and safe shutdown earthquake ground motion. These early design criteria served the nuclear industry and the regulatory authorities in maintaining public health and safety. However, these early design criteria do not incorporate the performance criteria related to containment function in an integrated fashion. Research in large scale model testing of containment structures to failure from over pressurization and shake table testing using simulated ground motion, have produced insights related to failure modes and material behavior at failure. The results of this research provide the opportunity to integrate these observations into design and acceptance criteria. This integration process would identify 'gaps' in the present knowledge and future research needs. This knowledge base is important for gleaning risk-informed insights into

  16. Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor

    Science.gov (United States)

    Übeyli, Mustafa; Tel, Eyyüp

    2003-06-01

    Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.

  17. Passive containment cooling system performance in the simplified boiling water reactor

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Gamble, R.E.; Yadigaroglu, G.

    1997-01-01

    The Simplified Boiling Water Reactor (SBWR) incorporates a passive system for decay heat removal from the containment in the event of a postulated Loss-of-Coolant Accident (LOCA). Decay heat is removed by condensation of the steam discharged from the reactor pressure vessel (RPV) in three condensers which comprise the Passive Containment Cooling System (PCCS). These condensers are designed to carry the heat load while transporting a mixture of steam and noncondensible gas (primarily nitrogen) from the drywell to the suppression chamber. This paper describes the expected LOCA response of the SBWR with respect to the PCCS performance, based on analysis and test results. The results confirm that the PCCS has excess capacity for decay heat removal and that overall system performance is very robust. 12 refs., 8 figs

  18. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  19. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  20. Numerical Simulation to Phenomenon of Main Vessel Free Surface Flow Impact Coping for Fast Reactor by Moving Particle Semi-implicit Method

    International Nuclear Information System (INIS)

    Wei Yuanyuan; Lu Daogang

    2009-01-01

    There is the free surface in the main vessel of fast reactor, when long period earthquakes happen, the fluid will impact the coping of vessel and make the reactor dangerous. The flow of the fluid was simulated by moving particle semi-implicit method. The phenomenon on sloshing response of the free surface in the main vessel of fast reactor excited by 3 sine waves was simulated. The impact pressure from the research can provide important loadings for the integrality analysis of the main vessel. (authors)

  1. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  2. Theoretical Study of Palladium Membrane Reactor Performance During Propane Dehydrogenation Using CFD Method

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemzadeh

    2017-04-01

    Full Text Available This study presents a 2D-axisymmetric computational fluid dynamic (CFD model to investigate the performance Pd membrane reactor (MR during propane dehydrogenation process for hydrogen production. The proposed CFD model provided the local information of temperature and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of CFD model results was carried out by other modeling data and a good agreement between CFD model results and theoretical data was achieved. Indeed, in the present model, a tubular reactor with length of 150 mm was considered, in which the Pt-Sn-K/Al2O3 as catalyst were filled in reaction zone. Hence, the effects of the important operating parameter (reaction temperature on the performances of membrane reactor (MR were studied in terms of propane conversion and hydrogen yield. The CFD results showed that the suggested MR system during propane dehydrogenation reaction presents higher performance with respect to once obtained in the conventional reactor (CR. In particular, by applying Pd membrane, was found that propane conversion can be increased from 41% to 49%. Moreover, the highest value of propane conversion (X = 91% was reached in case of Pd-Ag MR. It was also established that the feed flow rate of the MR is to be the one of the most important factors defining efficiency of the propane dehydrogenation process.

  3. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    International Nuclear Information System (INIS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-01-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ −1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ −1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ −1 higher, respectively, than in the PBD reactor at 53 J l −1 . The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment. (paper)

  4. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  5. A study on the establishment of component/equipment performance criteria considering Heavy Water Reactor characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kwon, Young Chul; Lee, Min Kyu; Lee, Yun Soo [Sunmoon Univ., Asan (Korea, Republic of); Chang, Seong Hoong; Ryo, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Soong Pyung; Hwnag, Jung Rye; Chung, Chul Kee [Chosun Univ., Gwangju (Korea, Republic of)

    2002-03-15

    Foreign and domestic technology trends, regulatory requirements, design and researches for heavy water reactors are analyzed. Safety design guides of Canada industry and regulatory documents and consultative documents of Canada regulatory agency are reviewed. Applicability of MOST guidance 16 Revision 'guidance for technical criteria of nuclear reactor facility' is reviewed. Specific performance criteria are established for components and facilities for heavy water reactor.

  6. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Yingnan; Tsukahara, Kenichiro; Sawayama, Shigeki

    2007-01-01

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 o C) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  7. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  8. Irradiation performance of experimental fast reactor 'JOYO' MK-1 driver fuel assemblies

    International Nuclear Information System (INIS)

    Itaki, Toshiyuki; Kono, Keiichi; Tachi, Hirokatsu; Yamanouchi, Sadamu; Yuhara, Shunichi; Shibahara, Itaru

    1985-01-01

    The experimental fast reactor ''JOYO'' completed it's breeder core (MK-I) operation in January 1982. The MK-I driver fuel assemblies were removed from the core sequencially in order of burnup increase and have been under postirradiation examination (PIE). The PIE has almost been completed for 30 assemblies including the highest burnup assemblies of 48,000 MWD/MTM. It has been confirmed that all fuel assemblies have exhibited satisfactory performance without detrimental assembly deformation or without any indications of fuel pin breach. The irradiation conditions of the MK-I core were somewhat more moderate than those conditions envisioned for prototypic reactor. However the results of the examination revealed the typical irradiation behavior of LMFBR fuels, although such characteristics were benign as compared with those anticipated in high burnup fuels. Systematic performance data have been accumulated through the fuel fabrication, irradiation and postirradiation examination processes. Based on these data, the MK-I fuel designing and fabrication techniques were totally confirmed. This technical experience and the associated insight into irradiation behavior have established a milestone to the next step of fast reactor fuel development. (author)

  9. Radiological impact assessment of the shut-down Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Riekstina, D.; Berzins, J.; Veveris, O.; Alksnis, J.

    2004-01-01

    The aim of the present work is to gain an overview about the background level of radioactivity and gamma radiation in the 3x3 km area around the Salaspils (Latvia) nuclear reactor after its shutting down. The ultimate design of the project is to assess the impact environmental background level during its 37 years long working time. For this purpose we have carried out: 1) the determination of radioactivity in soils; 2) the determination of radioactivity in groundwater; 3) the measurement of gamma-ray background in the checkpoints. The net density for the collection of soil samples (5 cm thick layer was gathered) and the gamma background measuring was 500x500 m and the total number of checkpoints was 113. The gamma-spectrometric analysis of the groundwater taken from 34 places: in the reactor territory (4-10 m depth) and from the wells of surrounding farms (8-12 m depth) was performed. The soil samples were dried at the temperature 105 0 C until the constant weight, and sifted. The high-resolution gamma spectrometry was used for measurement within the energy range of 50-2000 keV; the time of measuring - 20 hours. The uncertainty of measurements is within a range of 3-10%, but the minimal detectable activity - from 0.3 up to 1 Bq/kg. Cs-137 and natural radionuclides Th-232, U-238, K-40 were detected in soils. The concentration of Cs-137 varies in the range 0.3-227 Bq/kg or 20-1940 Bq/m 2 . It was established that the concentration of Cs-137 in neighbouring checkpoints can differ significantly. It could be explained by the type of soil and the collection place (coniferous or leafy forest, grassland, plough land etc.). The differences of the U-238, Th-232, and K-40 content in samples taken from various places are due to the type of soil and the fertilizers used. The concentration of these radionuclides is significantly lower in the turf. In all water samples the concentration of Cs-137 was lower than the minimal detectable activity. The determined radionuclide

  10. DUPIC fuel performance from reactor physics viewpoint

    International Nuclear Information System (INIS)

    Choi, H.; Rhee, B.W.; Park, H.

    1995-01-01

    A preliminary study was performed for the evaluation of Stress Corrosion Cracking (SCC) parameters of nominal DUPIC fuel in CANDU reactor. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increase of the 43-element DUPIC fuel in the equilibrium core are below the SCC thresholds of CANDU natural uranium fuel. For 4-bundle shift refueling scheme, the envelope of element ramped power and power increase upon refueling are 8% and 44% higher than those of 2-bundle shift refueling scheme on the average, respectively, and both schemes are not expected to cause SCC failures. (author)

  11. Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater.

    Science.gov (United States)

    Ramakrishnan, Anushuya; Surampalli, Rao Y

    2012-11-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor and an anaerobic hybrid reactor (AHR) was investigated for the treatment of simulated coal wastewater containing toxic phenolics at different hydraulic retention times (0.75-0.33d). Fast start-up and granulation of biomass could be achieved in an AHR (45d) than UASB (58d) reactor. Reduction of HRT from 1.5 to 0.33d resulted in a decline in phenolics removal efficiency from 99% to 77% in AHR and 95% to 68% in UASB reactor respectively. AHR could withstand 2.5 times the selected phenolics loading compared to UASB reactor that could not withstand even 1.2 times the selected phenolics loading. Residence time distribution (RTD) study revealed a plug flow regime in the AHR and completely mixed regime in UASB reactor respectively. Energy economics of the reactors revealed that 12,159MJd(-1) more energy can be generated using AHR than UASB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    ) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.

  13. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  14. Recent performance experience with US light water reactor self-actuating safety and relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  15. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  16. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  17. Structural evaluation of the Shippingport Reactor Pressure Vessel and Neutron Shield Tank package for impact and puncture loads

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Lo, T.; Schwartz, M.W.

    1988-06-01

    A structural evaluation of Shippingport Reactor Pressure Vessel and Neutron Shield Tank package for impact and puncture loads under the normal and hypothetical accident conditions of 10 CFR 71 was performed. Component performance criteria for the Shippingport package and the corresponding structural acceptance criteria for these components were developed based on a review of the package geometry, the planned transport environment, and the external radiation standards and dispersal limits of 10 CFR 71. The evaluation was performed using structural analysis methods. A demonstration combining simplified model tests and nonlinear finite element analyses was made to substantiate the structural analysis methods used to evaluate the Shippingport package. The package was analyzed and the results indicate that the package meets external radiation standards and release limits of 10 CFR 71. 13 refs., 50 figs., 19 tabs

  18. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  19. Impact of design options on natural circulation performance of the AFR-300 advanced fast reactor

    International Nuclear Information System (INIS)

    Dunn, F. D.

    2002-01-01

    The AFR-300, Advanced Fast Reactor (300 Mwe), has been proposed as a Generation IV concept. It could also be used to dispose of surplus weapons grade plutonium or as an actinide burner for transmutation of high level radioactive waste. AFR-300 uses metallic fuel and sodium coolant. The design of AFR-300 takes account of the successful design and operation of EBR-II, but the AFR-300 design includes a number of advances such as an advanced fuel cycle, inspectability and improved economics. One significant difference between AFR-300 and EBR-II is that AFR-300 is considerably larger. Another significant difference is that AFR-300 has no auxiliary EM pump in the primary loop to guarantee positive core flow when the main primary pumps are shut down. Thus, one question that has come up in connection with the AFR-300 design is whether natural circulation flow is sufficient to prevent damage to the core if the primary pumps fail. Insufficient natural circulation flow through the core could result in high cladding temperatures and cladding failure due to eutectic penetration of the cladding by the metal fuel. The rate of eutectic penetration of the cladding is strongly temperature dependent, so cladding failure depends on how hot the cladding gets and how long it is at elevated temperatures. To investigate the adequacy of natural circulation flow, a number of pump failure transients and a number of design options have been analyzed with the SASSYS-1 systems analysis code. This code has been validated for natural circulation behavior by analysis of Shutdown Heat Removal Tests performed in EBR-II. The AFR-300 design includes flywheels on the primary pumps to extend the pump coastdown times, and the size of the flywheels can be picked to give optimum coastdown times. One series of transients that has been run consists of protected loss-of-flow transients with various values for the combined moment of inertia of the pump, the motor and the flywheel giving coastdown times from 70

  20. Automated surveillance of reactor coolant pump performance

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-01-01

    An artificial intelligence based expert system has been developed for continuous surveillance and diagnosis of centrifugal-type reactor coolant pump (RCP) performance and operability. The expert system continuously monitors digitized signals from a variety of physical variables (speed, vibration level, motor power, discharge pressure) associated with RCP performance for annunciation of the incipience or onset of off-normal operation. The system employs an extremely sensitive pattern-recognition technique, the sequential probability ratio test (SPRT) for rapid identification of pump operability degradation. The sequential statistical analysis of the signal noise has been shown to provide the theoretically shortest sampling time to detect disturbances and thus has the potential of providing incipient fault detection information to operators sufficiently early to avoid forced plant shutdowns. The sensitivity and response time of the expert system are analyzed in this paper using monte carlo simulation techniques

  1. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-01

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  2. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  3. Reactor accidents and the environment

    International Nuclear Information System (INIS)

    Beattie, J.R.; Griffiths, R.F.; Kaiser, G.D.; Kinchin, G.H.

    1978-01-01

    This is a condensed version of a paper, entitled 'The Environmental Impact of Radioactive Releases from Accidents in Nuclear Power Reactors', by the authors, presented to the Nuclear Energy Panel of the International Atomic Energy Agency/United Nations Environmental Programme. Headings include - Effects of ionising radiation on man; number of deaths expected from leukaemia and other cancers; risk estimates for incidence of benign nodules and thyroid cancer; maximum permissible levels and emergency levels of radiation and radioactivity; ICRP recommended dose limits for members of the general public; atmospheric dispersion and modelling; ICRP emergency reference levels for 1 131 , Cs 137 , Ru 106 and Sr 90 ; environmental consequences of accidental releases from nuclear power reactors; environmental impact of accidents to Magnox gas-cooled reactors; environmental impact of accidents to advanced gas-cooled reactors; environmental impact of accidents to fast reactors; and nature of risks. consequences are examined in terms of early and late biological effects on man, and contamination of land areas. Serious accidents are of low probability of occurrence, and the risk of accidents to nuclear power reactors is estimated to be very small. 43 references. (U.K.)

  4. Commission of the European Communities: Review of fast reactor activities performed during 1990

    International Nuclear Information System (INIS)

    Balz, W.

    1991-01-01

    In the field of fast reactors the Commission of the European Communities (CEC) is conducting coordination and harmonization activities at the Brussels headquarters and performing research in its Joint Research Center. The Fast Reactor Coordinating Committee (FRCC) is performing coordination and harmonization activities taking account of the collaboration agreements within the European Fast Reactor (EFR) context. Since the EFR collaboration does not involve all Member States of the European Community the FRCC should establish a link between the EFR countries and other countries. The FRCC discussed R and D activities suitable for a concerted action in a community frame. The Committee also discussed actinide transmutation aspects in LMFBRs. The discussions were based on the results of a study sponsored by the CEC to assess the characteristics of a large core (3600 MWth) with variable actinide content (3-15%). The FRCC received regularly reports on results from current R and D programmes, especially from those related to EFR. (author). 2 figs, 2 tabs

  5. Description of the french graphite reactor and of the experiments performed in 1956

    International Nuclear Information System (INIS)

    Bussac, J.; Leduc, C.; Zaleski, C.P.

    1957-01-01

    This paper is an introduction to the experiments performed on the G1 reactor, experiments fully described in the papers following (670 'B to P'). The main results are given together with some comments. The neutronic parameters of the core, a description of the most important structures, and a few words of the tests leading to normal operation of the reactor under load complete our survey. (author) [fr

  6. Steam generator tube performance. Experience with water-cooled nuclear power reactors during 1985

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.

    1988-12-01

    The performance of steam generator tubes at water-cooled reactors during 1985 has been reviewed. Seventy-three of 168 reactors in the survey experienced tube degradation sufficient for the tubes to be plugged. The number of tubes plugged was 6837 or 0.28% of those in service. The leading cause of tube failure was stress corrosion cracking from the primary side. Stress corrosion cracking or intergranular attack from the secondary side and pitting were also major causes of tube failure. Unlike most previous years, fretting was a substantial problem at some reactors. Overall, corrosion continued to account for more than 80% of the defects. 20 refs

  7. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    International Nuclear Information System (INIS)

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan

  8. Very-high-temperature gas reactor environmental impacts assessment

    International Nuclear Information System (INIS)

    Baumann, C.D.; Barton, C.J.; Compere, E.L.; Row, T.H.

    1977-08-01

    The operation of a Very High Temperature Reactor (VHTR), a slightly modified General Atomic type High Temperature Gas-Cooled Reactor (HTGR) with 1600 F primary coolant, as a source of process heat for the 1400 0 F steam-methanation reformer step in a hydrogen producing plant (via hydrogasification of coal liquids) was examined. It was found that: (a) from the viewpoint of product contamination by fission and activation products, an Intermediate Heat Exchanger (IHX) is probably not necessary; and (b) long term steam corrosion of the core support posts may require increasing their diameter (a relatively minor design adjustment). However, the hydrogen contaminant in the primary coolant which permeates the reformer may reduce steam corrosion but may produce other problems which have not as yet been resolved. An IHX in parallel with both the reformer and steam generator would solve these problems, but probably at greater cost than that of increasing the size of the core support posts. It is recommended that this corrosion problem be examined in more detail, especially by investigating the performance of current fossil fuel heated reformers in industry. Detailed safety analysis of the VHTR would be required to establish definitely whether the IHX can be eliminated. Water and hydrogen ingress into the reactor system are potential problems which can be alleviated by an IHX. These problems will require analysis, research and development within the program required for development of the VHTR

  9. Operational impacts of low-enrichment uranium fuel conversion on the Ford Nuclear Reactor

    International Nuclear Information System (INIS)

    Bernal, F.E.; Brannon, C.C.; Burgard, N.E.; Burn, R.R.; Cook, G.M.; Simpson, P.A.

    1985-01-01

    The University of Michigan Department of Nuclear Engineering and the Michigan Memorial-Phoenix Project have been engaged in a cooperative effort with Argonne National Laboratory to test and analyze low-enrichment fuel in the Ford Nuclear Reactor (FNR). The effort was begun in 1979, as part of the Reduced Enrichment Research and Test Reactor Program, to demonstrate on a whole-core basis the feasibility of enrichment reduction from 93% to <20% in Materials Test Reactor-type fuel designs. The first low-enrichment uranium (LEU) core was loaded into the FNR and criticality was achieved on December 8, 1981. The final LEU core was established October 11, 1984. No significant operational impacts have resulted from conversion of the FNR to LEU fuel. Thermal flux in the core has decreased slightly; thermal leakage flux has increased. Rod worths, temperature coefficient, and void coefficient have changed imperceptibly. Impressions from the operators are that power defect has increased slightly and that fuel lifetime has increased

  10. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  11. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    Science.gov (United States)

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Halden Boiling Water Reactor. Plant Performance and Heavy-Water Management

    Energy Technology Data Exchange (ETDEWEB)

    Aas, S.; Jamne, E.; Wullum, T.; Fjellestad, K. [Institutt for Atomenergi, OECD Halden Reactor Project, Halden (Norway)

    1968-04-15

    The Halden boiling heavy-water reactor, designed and built by the Norwegian Institutt for Atomenergi, has since June 1958 been operated as an international project. On its second charge the reactor was operated at power levels up to 25 MW and most of the time at a pressure of 28.5 kg/cm{sup 2}. During the period from July 1964 to December 1966 the plant availability was close to 64% including shutdowns because of test fuel failures and loading/unloading of fuel. Disregarding such stops, the availability was close to 90%. The average burnup of the core is about 6200 MWd/t UO{sub 2} : the most highly exposed elements have reached 10000 MWd/t UO{sub 2}. The transition temperature of the reactor tank has been followed closely. The results of the surveillance programme and the implication on the reactor operation are discussed. The reactor is located in a cave in a rock. Some experiences with such a containment are given. To locate failed test-fuel elements a fuel failure location system has been installed. A fission gas collection system has saved valuable reactor time during clean-up of the reactor system following test fuel failures. Apart from one incident with two of the control stations, the plant control and instrumentation systems have functioned satisfactorily. Two incidents with losses of 150 and 200 kg of heavy water have occurred. However, after improved methods for leakage detection had been developed, the losses have been kept better than 50 g/h . Since April 1962 the isotopic purity of the heavy water (14 t) has decreased from 99.75 to 99.62%. The tritium concentration is now slightly above 700 {mu}C/cm{sup 3}. This activity level has not created any serious operational or maintenance problems. An extensive series of water chemistry experiments has been performed to study the influence of various operating parameters on radiolytic gas formation. The main results of these experiments will be reported. Different materials such as mild steel, ferritic steel

  13. Summary report of the experimental fast reactor JOYO MK-III performance test

    International Nuclear Information System (INIS)

    Maeda, Yukimoto; Aoyama, Takafumi; Yoshida, Akihiro

    2004-03-01

    An upgrading project (MK-III project) was started to improve the irradiation capability of the experimental fast reactor JOYO. In this project, core replacement and increase of the reactor thermal power by the factor 1.4 were necessary for increasing the maximum fast neutron flux by the factor 1.3 and doubling the capacity for irradiation rigs. The modification of the cooling system that included the replacement of the main intermediate heat exchangers and the dump heat exchangers was completed in September 2000. After a series of system function tests, the performance test, of which objective is to fully characterize the upgraded core and heat transfer system, was started in June 2003. Twenty eight tests were selected and carried out as performance test, in order to confirm that the whole plant satisfy the design criteria and have sufficient characteristics (data necessary for safe and steady operation, core management, reactor control and monitoring) as an irradiation bed. After attaining the initial criticality of the core on 2nd July 2003, core characteristics (the excess reactivity, the isotherm temperature reactivity coefficient, the power reactivity coefficient and so on), plant characteristics (the plant heat balance, the adjustment of the temperature control system, the plant behavior at transient), shielding characteristics (dose rate distribution). As the result, it was confirmed that all the criteria regulated was satisfied and the core and plant have sufficient margins for full power operation, which was increased by the factor 1.4. Especially, nuclear analysis accuracy was verified by comparing the calculation with measured core characteristics of the initial core which consists of fifty five fresh fuel subassemblies. The operational data which is supposed to be useful for developing in-core anomaly detection system were also obtained. The operation manual and training simulator and design of next reactor development were revised based on the results

  14. Specialist committee's review reports for experimental fast reactor JOYO' MK-III performance tests

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu; Okubo, Toshiyuki; Kamide, Hideki

    2004-02-01

    Performance tests (startup-physics tests and power elevation tests) were planed for experimental fast reactor 'JOYO' MK-III where irradiation performances were upgraded by power increase from 100 to 140 MW. The reactor safety committee of O-arai Engineering Center has established a specialist committee for 'JOYO' MK-III Performance Tests at the first meeting of 2003 on 23th. April 2003, to accomplish the tests successfully. Subjects of the specialist committee were reviews of following items covering a wide range. 1) Contents of modification works. 2) Reflections of functional test results to the plant and facilities. 3) Reflections of safety rule modification to instruction and manual for operation. 4) Quality assurances and pre-calculation for performance test. 5) Inspection plan and its results. 6) Adequacy of performance test plan. 7) Confirmation of performance test results. Before test-starts, the specialist committee has confirmed by reviewing the items from 1) to 6) based on explanations and documents of the Division of Experimental Reactor, that the test plan and pre-inspections are adequate. After the tests, the specialist committee had confirmed by reviewing the item 7) in the same way, that the each test result satisfies the corresponding criterion. The specialist committee has concluded from these review's results before and after the tests that the 'JOYO' MK-III Performance Tests were carried out appropriately. Besides, the first criticality of the JOYO MK-III was achieved on 2nd. July 2003, and the continuous full power operation was carried on 20th. Nov. 2003. Finally, all performance tests were completed by the pass of the last governmental pre-serviced inspection (dose rate measurement during the shut down condition). (author)

  15. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    International Nuclear Information System (INIS)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m 2 and a surface heat flux of 1 MW/m 2 . The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO 2 rods. The helium coolant pressure is 5 MPa, entering the module at 297 0 C and exiting at 550 0 C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter

  16. Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community

    DEFF Research Database (Denmark)

    Mladenovska, Z; Hartmann, H.; Kvist, T.

    2006-01-01

    Application of thermal treatment at 100-140 degrees C as a pretreatment method prior to anaerobic digestion of a mixture of cattle and swine manure was investigated. In a batch test, biogasification of manure with thermally pretreated solid fraction proceeded faster and resulted in the increase...... of methane yield. The performances of two thermophilic continuously stirred tank reactors (CSTR) treating manure with solid fraction pretreated for 40 minutes at 140 degrees C and non-treated manure were compared. The digester fed with the thermally pretreated manure had a higher methane productivity...... and butyrate - was low. The kinetic parameters of the VFA conversion revealed a reduced affinity of the microbial community from the CSTR fed with thermally pre-treated manure for acetate, propionate and butyrate. The bacterial and archaeal populations identified by t-RLFP analysis of 16S rRNA genes were found...

  17. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsige-Tamirat, H.; Ammirabile, L.; D' Agata, E.; Fuetterer, M.; Ranguelova, V. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755LE Petten (Netherlands)

    2010-07-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  18. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ammirabile, L.; D'Agata, E.; Fuetterer, M.; Ranguelova, V.

    2010-01-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  19. Thermodynamic performance of a gas-core fission reactor

    International Nuclear Information System (INIS)

    Klein, W.

    1987-01-01

    The purpose of this thesis was to investigate the thermodynamic behaviour of a critical quantity of gaseous uranium-fluorides in chemical equilibrium with a graphite wall. From the very beginning a container was considered with cooled walls. As it was evident that a nuclear reactor working with gaseous fuel should run at much higher temperatures than classical LWR or HTGR reactors, most of the investigations were performed for walls with a surface temperature of 1800 to 2000 K. It was supposed that such a surface temperature would be technologically possible for a heat load between 1 and 5 MWatt m -2 . Cooling with high pressure helium-gas has to keep balance with this heat flux. The technical construction of such a wall will be a problem in itself. It is thought that the experiences with re-entry-vessels in space-technology can be used. A basic assumption in all the calculations is that the U-C-F reactor gas 'sees' a graphite wall, possibly graphite tiles supported by heat resistant materials like SiN 2 , SiC 2 and at a lower temperature level by niobium-steel. Such a gastight compound-system is not necessarily of high-tensile strength materials. It has to be surrounded by a cooled neutron moderator-reflector which in its turn must be supported by a steel-wall at room temperature holding pressure of the order of 100 bar (10 MPa). The design of such a compound-wall is a task for the future. 116 refs.; 28 figs.; 29 tabs

  20. Enhanced Westinghouse WWER-1000 fuel design for Ukraine reactors

    International Nuclear Information System (INIS)

    Dye, M.; Shah, H.

    2015-01-01

    Westinghouse has completed design, development, and region quantity delivery of an enhanced Westinghouse fuel assembly for WWER-1000 reactors to support continued safe reactor operations. The enhanced design builds on the successful performance of an earlier generation design which has operated in the South Ukraine 3 reactor for multiple cycles without any fuel rod failures. Incorporated design enhancements include a thicker spacer grid outer strap, an enhanced spacer grid outer strap profile to limit the risk for, and impact of, mechanical interaction/interference with coresident fuel, an all Alloy 718 grid structure for improved stability and strength, and improvements to the top and bottom nozzles. Capable of meeting increased lateral loads generated from using a higher axial trip limit for the refueling machine crane, the design was verified by extensive mechanical and thermalhydraulic testing, which included a newly developed fuel assembly-to-fuel assembly handling test rig to assess performance during bounding core loading and unloading conditions. Through these extensive design enhancements and comprehensive testing program, the enhanced WWER-1000 design provides additional performance, handling, and reliability margins for safe reactor operation. (authors)

  1. Probabilistic assessment of light water reactor fuel performance

    International Nuclear Information System (INIS)

    Misfeldt, I.

    1978-10-01

    A computer system for the statistical evaluation of LWR fuel performance has been developed. The computer code FRP, Fuel Reliability Predictor, calculates the distributions for parameters characterizing the fuel performance and failure probability. The statistical methods employed are either Monte Carlo simulations or low order Taylor approximation. Included in the computer system is a deterministic fuel performance code, which has been verified by comparison with data from irradiation experiments. The distributions for all material data utilized in the fuel simulations are estimations from the best available information in the literature. For the failure prediction, a stress corrosion failure criterion has been derived. The failure criterion is based on data from out-of-reactor stress corrosion experiments performed on unirradiated and irradiated zircaloy with iodine present. By means of an example the typical distributions of the variables characterizing the fuel performance and the accuracy of the methods themselves have been investigated. The application of the computer system is illustrated by a number of examples, these include the evaluation of irradiation experiments, design comparisons, and analyses of minor accidents. (author)

  2. Aircraft Impact Assessment of APR1400 Reactor Containment Building

    International Nuclear Information System (INIS)

    Moon, Il Hwan; Kim, Do Yeon; Kim, Jae Hee; Kim, Sang Yun

    2011-01-01

    The implementation of a protection to withstand aircraft impact on safety-related structures and systems is basically based on a probabilistic evaluation for each site, if the licensing body doesn't require a deterministic approach. Existing nuclear power plants in Korea were designed based on the probabilistic approach, and the aircraft impact hazard remained less than a probability of 10 -7 . However, a man-made aircraft impact have been considered as a possible external accident for the nuclear power plant. New plant designs that are to be constructed in the U.S. after July 2009 must consider the effect of impact from a large commercial aircraft according to the requirements of 10 CFR 50.150. Especially, Reactor Containment Building (RCB) housing the safety-related equipment and fuels should be protected safely against aircraft crash without perforation and scabbing failure of external wall. APR1400 RCB is constructed as a prestressed concrete containment vessel (PCCV) which is surrounded by the auxiliary building housing additional safety-related equipment and other systems. In this study, the aircraft impact analyses for the RCB are carried out using Riera forcing function and aircraft model. Considered external wall thickness is 4 ft 6 in. for the cylindrical wall and 4 ft for the dome. Actual strengths of concrete and steel are considered as the material properties. For these analyses, the dynamic increment factor and concrete aging effect are considered in accordance with NEI 07-13(2011)

  3. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  4. Considerations of Human Factors in the Design and Operation of Research Reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    The feedback from the severe accidents occurred at nuclear power plants showed that safety of nuclear installations does not depend only on technical matters but also on human performance. Human errors can initiate an event or can make , by intervention, the event consequences worse. Human factors are of a particular importance for research reactors since the status of these facilities change frequently and the operators have an easy access to the reactor core and to the associated experimental facilities. This paper discusses the experience with human factors and their impact on the safety of research reactors and application of technical and administrative provisions to address these factors in the design and operation phases of research reactors for continuous improvements in safety and performance of these facilities

  5. Evaluating the impacts of triclosan on wastewater treatment performance during startup and acclimation.

    Science.gov (United States)

    Holzem, R M; Gardner, C M; Gunsch, C K

    2018-01-01

    Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH 4 + removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH 4 + removal. Elevated levels of NO 3 - and NO 2 - were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.

  6. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    Science.gov (United States)

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  8. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  9. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  10. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    International Nuclear Information System (INIS)

    Iracane, Daniel; Bignan, Gilles; Lindbaeck, Jan-Erik; Blomgren, Jan

    2010-01-01

    The development of sustainable nuclear energy requires R and D on fuel and material behaviour under irradiation with a high level of performance in order to meet the needs and challenges for the benefit of industry, research and public bodies. These stakes require a sustainable and secured access to an up-to-date high performance Material Testing Reactor. Following a broad survey within the European Research Area, the international community agreed that the need for Material Test Reactors in support of nuclear power plant safety and operation will continue in the context of sustainable nuclear energy. The Jules Horowitz Reactor project (JHR) copes with this context. JHR is designed as a user facility addressing the needs of the international community. This means: - flexibility with irradiation loops able to reproduce a large variation in operation conditions of different power reactor technologies, - high flux capacity to address Generations II, III, and IV needs. JHR is designed, built and operated as an international user facility because: - Given the maturity and globalization of the industry, domestic tools have no more the required level of economic and technical efficiency. Meanwhile, countries with nuclear energy need an access to high performance irradiation experimental capabilities to support technical skill and guarantee the competitiveness and safety of nuclear energy. - Many research items related to safety or public policy (waste management, etc.) require international cooperation to share costs and benefits of resulting consensus. JHR design is optimised for offering high performance material and fuel irradiation capability for the coming decades. This project is driven and funded by an international consortium gathering vendors, utilities and public stakeholders. This consortium has been set up in March 2007 when the construction began. The construction is in progress and the start of operation is scheduled for 2014. The JHR is a research

  11. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  12. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  13. A study for structural safety of ISER reactor building under impact load

    International Nuclear Information System (INIS)

    Takeuchi, Yoichiro; Hasegawa, Toshiyasu; Mutoh, Atsushi; Wakabayashi, Hiroaki.

    1991-01-01

    ISER (Inherently Safe and Economical Reactor) proposed in Japan by an academic circle and industries is expected to be used world-wide particularly in developing countries where an energy crunch is feared in the 21-st century. A certain level of hardened structures for plant safety seems to be effective and may be required by the regulatory body, since the ISER is claimed to be inherently safe even against a kind of external load. This paper concerns impact resistant design of ISER. A brief state-of-the-art review on related works, impact resistant design flow and results of some preliminary analysis of a proposed ISER model is also presented. (author)

  14. Improved Performances of a Fluidized Bed Photo reactor by a Microscale Illumination System

    International Nuclear Information System (INIS)

    Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Mazzei, R.S.; Ciambelli, P.; Sannino, D.

    2009-01-01

    The performances of a gas-solid two-dimensional fluidized bed reactor in photo catalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UV A-LEDs), have been compared. In the photo catalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO 2 -A1 2 O 3 catalyst the use of UV A-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UV A-LEDs are due to the UV A-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photo reactor windows, reducing the dispersion outside of photo reactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx-A1 2 O 3 and ethanol to acetaldehyde on VOx/TiO 2 .

  15. Theoretical and experimental analysis of fast reactor fuel performance

    International Nuclear Information System (INIS)

    Kummerer, K.R.; Freund, D.; Steiner, H.

    1982-09-01

    In order to predict behavior, performance, and capability of prototypic fuel pins a standard operational scheme for the SNR-300 fast breeder reactor is established considering besides normal operation unscheduled power changes and shutdowns. The behavior during the whole lifetime is calculated using the updated SATURN codes and - for special conditions as power transients and skewed fuel rod power - the new TRANSIENT and TEXDIF codes. The results of these calculations are compared to experimental findings. It is demonstrated that the level of modeling and the knowledge of material properties under irradiation are sufficient for a quantitative description of the fuel pin performance under the above mentioned conditions. (orig.) [de

  16. Performance of core modifications to reduce the reactor pressure vessel fluence

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.; Lisdat, R.; Sommer, D.

    1997-01-01

    It's often discussed that nuclear power plants (NPP) are designed for an operation of 40 years equivalent to 32 full power years (FPY) assuming a load factor of 0.8. Such fixed plant life times are subjects of US operating licenses but not, as in most other countries, in the Federal Republic of Germany. Here the operating licenses are issued for an indefinite period. However, the German utilities are continuously upgrading their plants to attain a safety level that meets all current requirements. These upgrading measures also include the replacement of bigger components like e.g. the steam generator. The reactor pressure vessel (RPV), however, has a special status. Unlike most other components of a NPP which most likely will be exchanged during its service life a replacement or annealing treatment of the RPV certainly require more efforts to be economically justified. Thus the embrittlement of the RPV has an essential impact on the life time of a NPP. The end-of-life (EOL) RPV material toughness in essential depends on the steel quality and the accumulated neutron fluence. For a given NPP the reduction of the neutron flux at the inner surface of the RPV is the only way to limit its embrittlement. The resulting modifications for the core loadings in combination with the insertion of additional core components like steel elements are described and the impact on core performance and RPV fluence considered. (UK)

  17. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  18. Analysis of impact of mixing flow on the pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Hao Chen; Li Fu; Guo Jiong

    2014-01-01

    The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)

  19. An analysis of CDTN performance in the reactors technology area

    International Nuclear Information System (INIS)

    Pinheiro, R.B.

    1985-01-01

    The author makes an analysis of CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) performance in the reactors technology area, showing difficulties and failures, but emphasizing the particular competence and capacity acquired in this area, as for example: the capacity in codes and methods are of neutronic calculations and nuclear projects, experimental thermohydraulic program, tests services in components and the others. (C.M.) [pt

  20. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    Science.gov (United States)

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Solar membrane natural gas steam-reforming process: evaluation of reactor performance

    NARCIS (Netherlands)

    de Falco, M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  2. Solar membrane natural gas steam-reforming process : evaluation of reactor performance

    NARCIS (Netherlands)

    Falco, de M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  3. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    International Nuclear Information System (INIS)

    2014-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  4. Comparison of performance indicators of different types of reactors based on ISOE database

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2005-01-01

    The optimisation of the operation of a nuclear power plant (NPP) is a challenging issue due to the fact that besides general management issues, a risk associated to nuclear facilities should be included. In order to optimise the radiation protection programmes in around 440 reactors in operation with more than 500 000 monitored workers each year, the international exchange of performance indicators (PI) related to radiation protection issues seems to be essential. Those indicators are a function of a type of a reactor as well as the age and the quality of the management of the reactor. in general three main types of radiation protection PI could be recognised. These are: occupational exposure of workers, public exposure and management of PI related to radioactive waste. The occupational exposure could be efficiently studied using ISOC database. The dependence of occupational exposure on different types of reactors, e.g. PWR, BWR, are given, analysed and compared. (authors)

  5. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  6. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  7. Overview of U.S. Fast Reactor Technology Program

    International Nuclear Information System (INIS)

    Hill, Robert

    2013-01-01

    • Concept development studies guide R&D tasks by evaluating system impact for broad variety of technology options: – Small-scale facilities for R&D on key technology; – No near-term plan for demonstration reactor. • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction): – Advanced Structural Materials; – Advanced Energy Conversion; – Advanced Modeling and Simulation. • Other R&D is conducted to address known technology challenges: – Safety and Licensing; – Fuels Development; – Undersodium Viewing

  8. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1978. Tube failures occurred at 31 of the 86 reactors surveyed. Causes of these failures and procedures designed to deal with them are described. A dramatic decrease in the number of tubes plugged was evident in 1978 compared to the previous year. This is attributed to diligent application of techniques developed from in-plant experience and research and development programs over the past several years. (auth)

  9. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1977

    International Nuclear Information System (INIS)

    Pathania, R.S.; Tatone, O.S.

    1979-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1977. Failures were reported in 34 of the 79 reactors surveyed. Causes of these failures and inspection and repair procedures designed to deal with them are presented. Although corrosion remained the leading cause of tube failures, specific mechanisms have been identified and methods of dealing with them developed. These methods are being applied and should lead to a reduction of corrosion failures in future. (author)

  10. Environmental impacts of radiological consequences during the anticipated transients without scram (ATWS) events in nuclear power reactors

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    2011-01-01

    Anticipated transients without scram (ATWS), is one of the (worst case) accidents could happen if the system that provides a highly reliable means of shutting down the reactor (scram system )fails to work during a reactor event (anticipated transient).It has two general characteristics: (1) Initiation by a transient anticipated to occur one or more times in the life of reactor and ,(2) Assumed to proceed without scram.The types of events considered are those used for designing the plant .The evaluation of the radiological consequences during the assessment of the nuclear events,especially ATWS in nuclear power reactors, is very essential for environmental studies and public safety. In this paper, the root cases for nuclear events and dose calculation are presented. Scenario of accident sequences together with radiological impacts is illustrated for loss of coolant accident (LOCA) for a typical pressurized water reactor nuclear power plant. Recommendations for mitigating or preventing the release of radiation and high radioactive materials to environment are presented.

  11. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  12. Thermal performance of Egypt's research reactor core (ET-RR-1)

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.

    1986-01-01

    The steady state thermal performance of the ET-RR-1 core system is theoretically investigated by different models describing the heat flux and the coolant mass flow rate. The magnitude of the heat generated by a fuel element depends upon its position in the core. Normal and uniform distributions for heat flux and coolant mass flow rate are considered. The clad and coolant temperatures at different core positions are evaluated and compared with the experimental measurements at different operating conditions. The results indicated large discrepancy between the predicted and the experimental results. Therefore, the previous models and the experimental results are evaluated in order to develop the best model that describes the thermal performance of the ET-RR-1 core. The adapted model gives 99.5% significant confidence limit. The effect of increasing the heat flux or decreasing the mass flow rate by 20% from its maximum recommended operating condition is tested and discussed. Also, the thermal behaviour towards increasing the reactor power more than its maximum operating condition is discussed. The present work could also be used in extending the investigation to other PWR reactor operating conditions

  13. Socioeconomic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Tawil, J.J.; Callaway, J.W.; Coles, B.L.; Cronin, F.J.; Currie, J.W.; Imhoff, K.L.; Lewis, P.M.; Nesse, R.J.; Strenge, D.L.

    1984-06-01

    This report identifies and characterizes the off-site socioeconomic consequences that would likely result from a severe radiological accident at a nuclear power plant. The types of impacts that are addressed include economic impacts, health impacts, social/psychological impacts and institutional impacts. These impacts are identified for each of several phases of a reactor accident - from the warning phase through the post-resettlement phase. The relative importance of the impact during each accident phase and the degree to which the impact can be predicted are indicated. The report also examines the methods that are currently used for assessing nuclear reactor accidents, including development of accident scenarios and the estimating of socioeconomic accident consequences with various models. Finally, a critical evaluation is made regarding the use of impact analyses in estimating the contribution of socioeconomic consequences to nuclear accident reactor accident risk. 116 references, 7 figures, 15 tables

  14. Safety analysis for K reactor and impact of cooling tower installation

    International Nuclear Information System (INIS)

    Fields, C.C.; Wooten, L.A.; Geeting, M.W.; Morgan, C.E.; Buczek, J.A.; Smith, D.C.

    1993-01-01

    This paper describes the safety analysis of the Savannah River site K-reactor loss-of-cooling-water-supply (LOCWS) event and the impact on the analysis of a natural-draft cooling tower, which was installed in 1992. Historically (1954 to 1992), the K-reactor secondary cooling system [called the cooling water system (CWS)] used water from the Savannah River pumped to a 25-million-gal basin adjacent to the reactor. Approximately 170 000 gal/min were pumped from the basin through heat exchangers to remove heat from the primary cooling system. This water then entered a smaller basin, where it flowed over a weir and eventually returned to the Savannah River. The 25-million-gal basin is at a higher elevation than the heat exchangers and the smaller basin to supply cooling by gravity flow (which is sufficient to remove decay heat) if power to the CWS pumps is interrupted. Small amounts of cooling water are also used for other essential equipment such as diesels, motors, and oil coolers. With the cooling tower installed, ∼85% of the cooling water flows from the small basin by gravity to the cooling tower instead of returning to the Savannah River. After being cooled, it is pumped back to the 25-million-gal basin. River water is supplied only to make up for evaporation and the blowdown stream

  15. Status report on the R and D studies performed in Italy for fast reactor seismic analysis

    International Nuclear Information System (INIS)

    Martelli, A.; Cecchini, F.; Forni, M.

    1988-01-01

    After some notes on the high levels of the design earthquakes adopted for PEC and the important features of this reactor (making it particularly sensitive to seismic excitation), this paper presents the fundamentals of the numerical and experimental studies that were carried out by ENEA in co-operation with ANSALDO, ISMES and AGIP for the PEC seismic verification. More precisely, the paper focuses on the wide-ranging research and development programme that has been performed (and recently completed) on the reactor building, the reactor-block, the main vessel, the core and the shutdown system. The needs of these detailed studies are stressed and the feed-back on the PEC design, necessary to satisfy the seismic safety requirements, are recalled. The general validity of the analyses in the framework of the research and development activities for fast reactors is also pointed out. Some notes on piping studies and LMFBR component analysis performed in Italy are also contained: in this framework, seismic tests performed on a SPX-1 primary pump shaft in the CPV-1 test rig at the ENEA Center of Brasimone are recalled. (author). 20 refs, 17 figs

  16. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor

    International Nuclear Information System (INIS)

    Nie, Baojie; Ni, Muyi; Jiang, Jieqiong; Wu, Yican

    2015-01-01

    As one of the key safety issues of fusion reactors, tritium environmental impact of fusion accidents has attracted great attention. In this work, the dynamic tritium concentrations in the air and human body were evaluated on the time scale based on accidental release scenarios under the extreme environmental conditions. The radiation dose through various exposure pathways was assessed to find out the potential relationships among them. Based on this work, the limits of HT and HTO release amount for arbitrary accidents were proposed for the fusion reactor according to dose limit of ITER. The dynamic results aim to give practical guidance for establishment of fusion emergency standard and design of fusion tritium system. - Highlights: • Dynamic tritium concentration in the air and human body evaluated on the time scale. • Different intake forms and relevant radiation dose assessed to find out the potential relationships. • HT and HTO release amount limits for arbitrary accidents proposed for the fusion reactor according to dose limit

  17. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  18. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  19. Radiation impact caused by the rupture of a radioactive tank within the Reactor Auxiliary Building of Angra 2

    International Nuclear Information System (INIS)

    Passos, Erivaldo Mario dos; Alves, Antonio Sergio de Martin

    2002-01-01

    This paper aims to show the methodology, the parameters and some results of the radionuclide migration simulation in order to determine the radiation impact to the biosphere due to an accidental radionuclide release associated with the rupture of a radioactive tank within the Reactor Auxiliary Building of Angra 2. After tank rupture, the radionuclides are supposed to reach the sea via the aquifer of the Angra 2 site. This radiological impact is evaluated with the aid of the activity concentration at the sea and dose received by members of the public. Activity concentration for each radionuclide is calculated according to the ANSI/ANS - 2.17 - 1980, which shows the methodology for calculation of activity concentration in the aquifer in case of accidental radionuclide releases of nuclear power plants, whereas the dose calculation follows recognized international procedures. The migration analysis for the mentioned radionuclides is performed through the aquifer and allows to estimate the maximum activity concentration near the sea boundary and the annual dose to the member of the public. Based on the safety analysis performed for the investigated case one can conclude the annual dose impact is lower than that corresponding to one year of normal operation of the Angra 2 plant. (author)

  20. Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Giovanni Camera-Roda

    2014-02-01

    Full Text Available In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a “process intensification”, a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented. To this end, the phenomena that control the permeation of both vanillin and the reactant (ferulic acid are analyzed, since they ultimately affect the performances of the membrane reactor. The results show that diffusion of the aromatic compounds takes place in the presence of low concentration gradients, so that the process is controlled by other phenomena, in particular by the equilibrium with the vapor at the membrane-permeate interface. On this basis, it is demonstrated that the performances are enhanced by increasing the membrane thickness and/or the temperature, whereas the pH begins to limit the process only at values higher than 6.5.

  1. Performance of an innovative multi-stage anaerobic reactor during ...

    African Journals Online (AJOL)

    Start-up of an anaerobic reactor is a relatively delicate process and depends on various factors such as wastewater composition, available inoculum, operating conditions and reactor configuration. Accordingly, systematized operational procedures are important, mainly during the start-up of an anaerobic reactor.

  2. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  3. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  4. Enhanced performance of solid oxide electrolysis cells by integration with a partial oxidation reactor: Energy and exergy analyses

    International Nuclear Information System (INIS)

    Visitdumrongkul, Nuttawut; Tippawan, Phanicha; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2016-01-01

    Highlights: • Process design of solid oxide electrolyzer integrated with a partial oxidation reactor is studied. • Effect of key operating parameters of partial oxidation reactor on the electrolyzer performance is presented. • Exergy analysis of the electrolyzer process is performed. • Partial oxidation reactor can enhance the solid oxide electrolyzer performance. • Partial oxidation reactor in the process is the highest exergy destruction unit. - Abstract: Hydrogen production without carbon dioxide emission has received a large amount of attention recently. A solid oxide electrolysis cell (SOEC) can produce pure hydrogen and oxygen via a steam electrolysis reaction that does not emit greenhouse gases. Due to the high operating temperature of SOEC, an external heat source is required for operation, which also helps to improve SOEC performance and reduce operating electricity. The non-catalytic partial oxidation reaction (POX), which is a highly exothermic reaction, can be used as an external heat source and can be integrated with SOEC. Therefore, the aim of this work is to study the effect of operating parameters of non-catalytic POX (i.e., the oxygen to carbon ratio, operating temperature and pressure) on SOEC performance, including exergy analysis of the process. The study indicates that non-catalytic partial oxidation can enhance the hydrogen production rate and efficiency of the system. In terms of exergy analysis, the non-catalytic partial oxidation reactor is demonstrated to be the highest exergy destruction unit due to irreversible chemical reactions taking place, whereas SOEC is a low exergy destruction unit. This result indicates that the partial oxidation reactor should be improved and optimally designed to obtain a high energy and exergy system efficiency.

  5. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  6. Evaluation of Radiological Impacts on the Operating Kartini Reactor and Natural Radioactivity of the Site Plan of Nuclear Power Plant Area

    International Nuclear Information System (INIS)

    Yazid, M; Sutresna, G; Sulistyono, A; Ngasifudin

    1996-01-01

    This radiological impacts evaluation covered of radioactivity in water, soil, grass, air samples and ambient gamma radiation that have been carried out in the Kartini reactor area and in the site plan of nuclear power plan are at Ujung Lemah Abang, Jepara, Central Java. The aim of this research was to determine that radiological impacts in the environment around the Kartini reactor compared to natural radioactivity for site plan of nuclear power plan area. The radioactivity in the water, soil and grass samples ware measured by low background beta counting system and were identified by low background gamma spectrometer. The radioactivity in the air samples was measured by beta portable counting system and the ambient gamma radiation was measured by portable high pressurized ionization chamber model RSS-112 Reuther-Stokes. The reactor data measurement was compared to the site plan of nuclear power plant area data for evaluation of radiological impacts on the operating reactor. From the evaluation and comparison can be concluded there are no indication of the radionuclide release from the reactor operation. The average radiactivity in the water, soil grass and air sample from the reactor area were between 0.17 - 0.61 Bq/1; 0,47 - 0,74 Bq/g; 4.43 - 4.60 Bq/g.ash and 49.53 - 70.90 x 10 Bq/cc. The average radioactivity of those sample from the nuclear power plant area were between 0.06-0.90 Bq/I; 0.02-0.86 Bq/g; 1.68-8.07 Bq/g.ash and 65.0-152.3 x 10 Bq/cc. The ambient gamma radiation were between 6.9-36.7 urad/h for the reactor area and 6.8-19.2 urad/h for the nuclear power plant area

  7. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Science.gov (United States)

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Performance Assessment of Turbulence Models for the Prediction of the Reactor Internal Flow in the Scale-down APR+

    International Nuclear Information System (INIS)

    Lee, Gonghee; Bang, Youngseok; Woo, Swengwoong; Kim, Dohyeong; Kang, Minku

    2013-01-01

    The types of errors in CFD simulation can be divided into the two main categories: numerical errors and model errors. Turbulence model is one of the important sources for model errors. In this study, in order to assess the prediction performance of Reynolds-averaged Navier-Stokes (RANS)-based two equations turbulence models for the analysis of flow distribution inside a 1/5 scale-down APR+, the simulation was conducted with the commercial CFD software, ANSYS CFX V. 14. In this study, in order to assess the prediction performance of turbulence models for the analysis of flow distribution inside a 1/5 scale-down APR+, the simulation was conducted with the commercial CFD software, ANSYS CFX V. 14. Both standard k-ε model and SST model predicted the similar flow pattern inside reactor. Therefore it was concluded that the prediction performance of both turbulence models was nearly same. Complex thermal-hydraulic characteristics exist inside reactor because the reactor internals consist of fuel assembly, control rod assembly, and the internal structures. Either flow distribution test for the scale-down reactor model or computational fluid dynamics (CFD) simulation have been conducted to understand these complex thermal-hydraulic features inside reactor

  9. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  10. Impact of wind velocity on the performance of the RVACS decay heat removal system

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1997-01-01

    The impact of wind velocity on the performance of the reactor vessel auxiliary cooling system (RVACS) of an advanced liquid-metal reactor design is analyzed, and design modifications that mitigate adverse wind effects are investigated. In the reference design, the reactor is served by four communicating RVACS stacks, and each stack has two air inlets. In this two-inlet stack design, winds blowing in a direction 90 deg from the axis formed by the two stack inlets result in pressure distributions around the stacks that drastically change the desired airflow pattern in the RVACS. This leads to significantly elevated RVACS air temperatures and significant azimuthal guard vessel temperature variations. For example, a 27 m/s (60 mph) wind leads to an air temperature at the exit of the RVACS heated section that is ∼115 C higher than that under no-wind conditions. The addition of two more inlets per stack, one inlet per stack side, significantly improves RVACS performance. The air temperature at the exit of the heated RVACS section is significantly reduced below that of the two-inlet design, and this temperature decreases as the wind speed increases. An increase in wind speed from 3 to 27 m/s leads to an air temperature change from 186 to 165 C. The azimuthal temperature variation is also improved. At the top of the guard vessel, this variation is reduced from 62.5 to 8.5 C at the low wind speed of 3 m/s and from 85.0 to 30.5 C at the high wind speed of 27 m/s

  11. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  12. An innovative fuel design concept for improved Light Water Reactor performance and safety

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1993-01-01

    The primary goal of this research is to develop a new fuel design which will have improved thermal/mechanical performance characteristics greatly superior to current thermal and mechanical design performance. The mechanical/thermal constraints define the lifetime of the fuel, the maximum power at which the fuel can be operated, the probability of fuel failure over core lifetime, and the integrity of a core during a transient excursion. The thermal/mechanical limits act to degrade fuel integrity when they are violated. The purpose of this project is to investigate a novel design for light water reactor fuel which will extend fuel performance limits and improve reactor safety even further than is currently achieved. This project is investigating liquid metal bonding of LWR fuel in order to radically decrease fuel centerline temperatures which has major performance and safety benefits. The project will verify the compatibility of the liquid metal bond with both the fuel pellets and cladding material, verify the performance enhancement features of the new design over the fuel lifetime, and verify the economic fabricability of the concept and will show how this concept will benefit the LWR nuclear industry

  13. Results of the mid-term assessment of the 'High Performance Light Water Reactor Phase 2' project

    International Nuclear Information System (INIS)

    Starflinger, J.; Schulenberg, T.; Marsault, P.

    2009-01-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (p>22.1 MPa). In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within the second year of the project, the design of the reactor core, the pressure vessel and its internals have been analysed in detail by means of advanced codes and methods. The mechanical design has been assessed and shows that stresses inside components and possible deformations keep within acceptable limits. The neutronics and the flow inside the core have been investigated. The addition of a water layer in the reflector helps to flatten the radial power profile. The moderator flow path must be changed because of possible reverse flow in the gaps between the assemblies (downward flow). First calculations of transients showed an acceptable behaviour of the cladding temperatures. Material oxidation experiments were successfully performed. The auxiliary loop of the Supercritical Water Loop has been constructed. Heat transfer has been investigated numerically analysing heat transfer deterioration (HTD) and flow around fuel pins with wire wrap spacers. (author)

  14. Evaluation of environmental impact of radioactive waste from reactor operation

    International Nuclear Information System (INIS)

    Lombard, J.; Pages, P.

    1989-10-01

    This paper evaluates the environmental impact of radioactive wastes from reactors operation. We estimate a case of a plant of 20 GWe power operating for 30 years which is equivalent to 600 tons of uranium per year. According to the properties, the waste is stored on surface (Aube site). Starting from the year of storage, we have defined the maximum dose equivalent for an individual from the reference group. The calculation depends on water of outlet water in which some initially stored radionuclides have migrated. Under the most pessimistic estimation, maximum annual dose was of the order of magnitude 0.5 μ Sv (0.05 mrem) for the storage 400 years after opening the site, and after 4000 years. Compared to the values obtained for the radioactive waste storage, the value of this impact is five times higher than the respective surface storage, but two time less than values for underground storage [fr

  15. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  16. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  17. Trickle bed reactor model to simulate the performance of commercial diesel hydrotreating unit

    Energy Technology Data Exchange (ETDEWEB)

    C. Murali; R.K. Voolapalli; N. Ravichander; D.T. Gokak; N.V. Choudary [Bharat Petroleum Corporation Ltd., Udyog Kendra (India). Corporate R& amp; D Centre

    2007-05-15

    A two phase mathematical model was developed to simulate the performance of bench scale and commercial hydrotreating reactors. Major hydrotreating reactions, namely, hydrodesulphurization, hydrodearomatization and olefins saturation were modeled. Experiments were carried out in a fixed bed reactor to study the effect of different process variables and these results were used for estimating kinetic parameters. Significant amount of feed vaporization (20-50%) was estimated under normal operating conditions of DHDS suggesting the importance of considering feed vaporization in DHDS modeling. The model was validated with plant operating data, under close to ultra low sulphur levels by correctly accounting for feed vaporization in heat balance relations and appropriate use of hydrodynamic correlations. The model could predict the product quality, reactor bed temperature profiles and chemical hydrogen consumption in commercial plant adequately. 14 refs., 7 figs., 6 tabs.

  18. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  19. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  20. Country logistics performance and disaster impact.

    Science.gov (United States)

    Vaillancourt, Alain; Haavisto, Ira

    2016-04-01

    The aim of this paper is to deepen the understanding of the relationship between country logistics performance and disaster impact. The relationship is analysed through correlation analysis and regression models for 117 countries for the years 2007 to 2012 with disaster impact variables from the International Disaster Database (EM-DAT) and logistics performance indicators from the World Bank. The results show a significant relationship between country logistics performance and disaster impact overall and for five out of six specific logistic performance indicators. These specific indicators were further used to explore the relationship between country logistic performance and disaster impact for three specific disaster types (epidemic, flood and storm). The findings enhance the understanding of the role of logistics in a humanitarian context with empirical evidence of the importance of country logistics performance in disaster response operations. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  1. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor.

    Science.gov (United States)

    Nie, Baojie; Ni, Muyi; Jiang, Jieqiong; Wu, Yican

    2015-10-01

    As one of the key safety issues of fusion reactors, tritium environmental impact of fusion accidents has attracted great attention. In this work, the dynamic tritium concentrations in the air and human body were evaluated on the time scale based on accidental release scenarios under the extreme environmental conditions. The radiation dose through various exposure pathways was assessed to find out the potential relationships among them. Based on this work, the limits of HT and HTO release amount for arbitrary accidents were proposed for the fusion reactor according to dose limit of ITER. The dynamic results aim to give practical guidance for establishment of fusion emergency standard and design of fusion tritium system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  3. Steam-generator tube performance: world experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-01-01

    The performance of steam-generator tubes in water-cooled nuclear power reactors during 1978 is reviewed. Tube failures occurred at 31 of the 86 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The number of tubes plugged has decreased dramatically in 1978 compared to the previous year. This is attributed to the diligent application of techniques developed through in-plant experience and research and development programs over the past several years

  4. Identifying subassemblies by ultrasound to prevent fuel handling error in sodium fast reactors: First test performed in water

    International Nuclear Information System (INIS)

    Paumel, Kevin; Lhuillier, Christian

    2015-01-01

    Identifying subassemblies by ultrasound is a method that is being considered to prevent handling errors in sodium fast reactors. It is based on the reading of a code (aligned notches) engraved on the subassembly head by an emitting/receiving ultrasonic sensor. This reading is carried out in sodium with high temperature transducers. The resulting one-dimensional C-scan can be likened to a binary code expressing the subassembly type and number. The first test performed in water investigated two parameters: width and depth of the notches. The code remained legible for notches as thin as 1.6 mm wide. The impact of the depth seems minor in the range under investigation. (authors)

  5. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1983-01-01

    Purpose : To flatten the radial power distribution in the reactor core thereby improve the thermal performance of the reactor core by making the moderator-fuel ratio of fuel assemblies different depending on their position in the reactor core. Constitution : The volume of fuels disposed in the peripheral area of the reactor core is decreased by the increase of the volume of moderators in fuel assemblies disposed in the peripheral area of the reactor core to thereby make the moderator-fuel volume greater in the peripheral area than that in the central area. The moderator-fuel ratio adjustment is attained by making the number of water rods greater, decreasing the diameter of fuel pellets or decreasing the number of fuel pins in fuel assemblies disposed at the peripheral area of the reactor core as compared with fuel assemblies disposed at the central area of the reactor core. In this way, the infinite multiplication factors of fuels can be increased to thereby improve the reactor core performance. (Aizawa, K.)

  6. Effect of different materials in the performance of solar reactors deployed in Jaiba, Minas Gerais state

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Marcia Aparecida; Soares, Antonio Alves; Soares, Adilson Rodrigues; Batista, Rafael Oliveira; Leite, Caio Vinicius [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    This study aimed to analyze the effect of different materials (masonry, butyl canvas and fiberglass) in the performance of solar reactors deployed in the city of Jaiba, Minas Gerais State. To do so, mini-stations to treat the domestic sewage were assembled. During the tests, samples of the effluent were collected upstream and downstream of the septic tank and the solar reactor. Fecal coliforms, BOD and COD were quantified in laboratory. The results indicated that the materials tested for construction of the reactor did not influence the solar disinfection of fecal coliforms. (author)

  7. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  8. Performance Evaluation of a Printed Circuit Steam Generator for Integral Reactors: A Feasibility Test

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hun Sik; Kang, Han-Ok; Yoon, Juhyeon; Kim, Young In; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of); Seo, Jang-won; Choi, Brain [Alfa Laval Korea Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    SMART (System-integrated Modular Advanced ReacTor) is a small-sized integral type pressurized water reactor. It adopts advanced design features such as structural safety improvement, system simplification, and component modularization to achieve highly enhanced safety and improved economics. The design issues related to further safety enhancement and cost reduction have received significant attention to increase its competitiveness in the global small reactor market. For the cost reduction, it is important to design the reactor vessel as small as possible. Thus, it is necessary to reduce the volume of main components such as a steam generator. Its manufacturing processes of the chemical etching and diffusion bonding provide high effectiveness, high compactness, and inherent structural safety under high temperatures and high pressures. Thus, it is expected to be an alternative to the conventional shell and tube type steam generator in SMART. In this paper, simple thermal-hydraulic performance measurement of a small-scale printed circuit steam generator (PCSG) is conducted to investigate the feasibility of applying it to SMART. The simple thermal-hydraulic performance of the PCSG has been experimentally evaluated. A small-scale PCHE is employed to investigate the feasibility of operating it as a steam generator. The performance assessment reveals that the PCSG stably produces superheated steam, and the increased degree of superheat is obtained at lower water flow rate. However, the flow instability is increased with the decrease of the water flow rate. Thus, it is required to apply the orifice design into the cold side plate to suppress the density-wave oscillations. The pressure drops and heat transfer rates increase with the water flow rate.

  9. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  10. Nuclear performance calculations for the ELMO Bumpy Torus Reactor (EBTR) reference design

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1977-12-01

    The nuclear performance of the ELMO Bumpy Torus Reactor reference design has been calculated using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV transport cross-section data and nuclear response functions. The calculated results include estimates of the spatial and integral heating rate with emphasis on the recovery of fusion neutron energy in the blanket assembly and minimization of the energy deposition rates in the cryogenic magnet coil assemblies. The tritium breeding ratio in the natural lithium-laden blanket was calculated to be 1.29 tritium nuclei per incident neutron. The radiation damage in the reactor structural material and in the magnet assembly is also given

  11. Safety aspects on dependability management for a TRIGA research reactor in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    Safety on the management for a nuclear research reactor involves a 'good dependability management' of the activities, such as: reliability, availability, maintainability and maintenance support. In order to evaluate the safety management aspects intended to be applied at a research reactor management, the performance dependability indicators and their impact over the availability and reactor safety have to be established. The document ISO 9000-4/IEC 300-1 'Dependability Management' (1995), describes five internationally agreed indicators of the reactor equipment dependability, each of them can be used for corrective maintenance or for preventive maintenance, such as: I 1 - equipment Maintenance Frequency; I 2 - equipment Maintenance Effort; I-3 - equipment Maintenance Downtime Factor; I 4 - equipment Maintenance Contribution to the System Function Downtime Factor; I 5 - equipment Maintenance Contribution to the reactor Capability Loss Factor. The paper presents an evaluation of those 5 mentioned indicators with referring only at the primary circuit of the INR's TRIGA research reactor and conclusion. The analyzed period was stated between 1994-1999. It is to be noted that this type of analyze is performed for the first time for a research reactor. (author)

  12. Australia's new high performance research reactor

    International Nuclear Information System (INIS)

    Miller, R.; Abbate, P.M.

    2003-01-01

    A contract for the design and construction of the Replacement Research Reactor was signed in July 2000 between ANSTO and INVAP from Argentina. Since then the detailed design has been completed, a construction authorization has been obtained, and construction has commenced. The reactor design embodies modern safety thinking together with innovative solutions to ensure a highly safe and reliable plant. Also significant effort has been placed on providing the facility with diverse and ample facilities to maximize its use for irradiating material for radioisotope production as well as providing high neutron fluxes for neutron beam research. The project management organization and planing is commensurate with the complexity of the project and the number of players involved. (author)

  13. A new high performance research reactor

    International Nuclear Information System (INIS)

    Abbate, Pablo M.

    2002-01-01

    A contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000 between Australia authorities and INVAP from Argentina. Since then the detailed design has been completed, an application for a construction license was made in May 2001 and the construction authorisation was issued on 4 th April 2002. This paper explains the safety philosophy embedded into the design together with the approach taken for main elements of the design and their relation to the proposed applications of the reactor. Also information is provided on the suit of neutron beam facilities and irradiation facilities being constructed. Finally it is presented an outline of the project management organisation, project planing and schedule. (author)

  14. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-01-01

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins

  15. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  16. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  17. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  18. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  19. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors. Refs, figs, tabs.

  20. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors

  1. Cost assessment of demo fusion reactor with considering maintenance

    International Nuclear Information System (INIS)

    Hashizume, Hidetoshi; Kitagoh, Kazutoshi

    2003-01-01

    The purpose of this study is to perform cost assessment of nuclear fusion reactors in order to draw up commercial plants. A fusion reactor may have a complex configuration to achieve high beta value, which leads to low and instable availability when maintenance is taken into account. Therefore, reactor's availability must be evaluated with considering the influence of the configuration complexity. Furthermore the availability has the strong impact on COE (Cost of Electricity), that is, a fusion reactor with low availability will not be accepted as a commercial plant. Therefore, we developed a new method to calculate availabilities with random numbers, in which the complexity of reactor's configuration could become considered. In addition, we considered the reduction of superconducting coil's maintenance time by introducing remountable magnet system because the coil maintenance requires quite long time in the present technology. The results show that the availability becomes relatively large if the short maintenance time of coils could be achieved, for example, by remountable magnetic systems. (author)

  2. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE in a solvent-free system

    Directory of Open Access Journals (Sweden)

    Aline Simões

    2015-06-01

    Full Text Available The transesterification reaction of babassu oil with ethanol mediated by Burkholderia cepacia lipase immobilized on SiO2-PVA composite was assessed in a packed bed reactor running in the continuous mode. Experiments were performed in a solvent-free system at 50 °C. The performance of the reactor (14 mm ×210 mm was evaluated using babassu oil and ethanol at two molar ratios of 1:7 and 1:12, respectively, and operational limits in terms of substrate flow rate were determined. The system’s performance was quantified for different flow rates corresponding to space times between 7 and 13 h. Under each condition, the impact of the space time on the ethyl esters formation, the transesterification yield and productivity were determined. The oil to ethanol molar ratio was found as a critical parameter in the conversion of babassu oil into the correspondent ethyl esters. The highest transesterification yield of 96.0 ± 0.9% and productivity of 41.1 ± 1.6 mgester gcatalyst-1h-1 were achieved at the oil to ethanol molar ratio of 1:12 and for space times equal or higher than 11 h. Moreover, the immobilized lipase was found stable with respect to its catalytic characteristics, exhibiting a half-life of 32 d.

  3. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  4. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Carmine; Paciello, Lucia [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy); Alteriis, Elisabetta de [Dept. Biologia Strutturale e Funzionale, Universita degli Studi di Napoli ' Federico II' , Via Cinthia, 80100 Napoli (Italy); Brambilla, Luca [Dept. Biotecnologie e Bioscienze, Universita Milano-Bicocca, Piazza della Scienza, 20126 Milano (Italy); Parascandola, Palma, E-mail: pparascandola@unisa.it [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The paper contributes to fill the gap existing between the basic and applied research. Black-Right-Pointing-Pointer Mathematical model sheds light on the physiology of auxotrophic yeast strains. Black-Right-Pointing-Pointer Yeast behavior in fed-batch is influenced by biological and environmental determinants. Black-Right-Pointing-Pointer Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  5. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    International Nuclear Information System (INIS)

    Landi, Carmine; Paciello, Lucia; Alteriis, Elisabetta de; Brambilla, Luca; Parascandola, Palma

    2011-01-01

    Highlights: ► The paper contributes to fill the gap existing between the basic and applied research. ► Mathematical model sheds light on the physiology of auxotrophic yeast strains. ► Yeast behavior in fed-batch is influenced by biological and environmental determinants. ► Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  6. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts.

    Science.gov (United States)

    Chiu, Sam L H; Lo, Irene M C

    2016-12-01

    In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.

  7. A seismic performance and cost comparison of top and bottom supported liquid metal reactor vessels

    International Nuclear Information System (INIS)

    Carlson, T.M.; Kiciman, O.K.; Petrozelli, J.F.

    1989-01-01

    It is the premise of this paper that the revision of a pool LMR from a TSRV configuration to a specific bottom supported reactor vessel (BSRV) configuration can resolve the above TSRV disadvantages related to load path length and diversity, thereby improving seismic performance and simultaneously reducing RV block costs by reducing weights. This paper demonstrates this premise by comparing a reference TSRV block with a specific BSRV block design. Recent capital cost estimates ($/kWe) for U.S. liquid metal reactor (LMR) plant designs reveal that the balance of plant costs could be reduced below that of the balance of plant costs for a comparable light water reactor plant. However, in regions of high seismicity, non-seismically isolated LMR nuclear steam supply system weights are costs per kWe are two to three times the weights and costs of light water reactor nuclear steam supply systems. While all portions of the LMR nuclear steam supply system require examination for potential cost reductions, the focus of this paper is the reactor vessel (RV) block for a large pool plant

  8. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    DEFF Research Database (Denmark)

    Stadler, Lauren B.; Su, Lijuan; Moline, Christopher J.

    2015-01-01

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox...... under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them...... and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation...

  9. Environmental aspects of fusion reactors 1985

    International Nuclear Information System (INIS)

    Casini, G.; Ponti, C.; Rocco, P.

    1986-01-01

    The aspects of the environmental impact as expected from future fusion reactors are reviewed. The radioactive inventories consist in tritium and neutron-induced radioactivity in the structures. An analysis is performed of the radioactive releases from the different plant's systems in normal and accident conditions and typical emissions to the ambient are defined. Information is given on the waste management problems. Two appendixes give general information on tritium and safety guidelines

  10. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1994-01-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software

  11. Some aspects related to the management of maintenance for a TRIGA research reactor In Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2003-01-01

    Safety management for a nuclear research reactor involves 'good dependability management' of operations activities, such as: reliability, availability, maintainability and maintenance support. In order to evaluate the safety management aspects intended to be applied by research reactor management, the performance dependability indicators and their impact on reactor availability and reactor safety have to be established. The document ISO 9000-4/IEC 300-1 'Dependability Management' (1995), describes five internationally agreed indicators of reactor equipment dependability. Each of them can be used for corrective maintenance or for preventive maintenance, such as: I 1 - equipment Maintenance Frequency; I 2 - equipment Maintenance Effort; I 3 - equipment Maintenance Downtime Factor; I 4 - equipment Maintenance Contribution to the System Function Downtime Factor; I 5 - equipment Maintenance Contribution to the reactor Capability Loss Factor. This paper presents an evaluation of those 5 mentioned indicators with reference to the primary circuit of the INR's TRIGA research reactor and conclusion. The analyzed period was between 1994- 1999. It is to be noted that this type of analysis is performed for the first time for a research reactor. (author)

  12. Assessments of the probabilities of aircraft impact with the Sandia Pulsed Reactor and Building 836, Sandia Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    Biringer, B.E.

    1976-11-01

    This report documents a study of the annual probabilities of aircraft impact with the Sandia Pulsed Reactor (SPR) and Bldg. 836 at Sandia Laboratories, Albuquerque. The probability of aircraft impact into each structure was estimated using total yearly operations, effective structure area, structure location relative to air activity, and accident rate per kilometer. The estimated probability for an aircraft impact with SPR is 1.1 x 10 -4 per year; the estimated probability for impact with Bldg. 836 is 1.0 x 10 -3 per year

  13. A WIMS E analysis of zero energy experiments performed on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lancefield, M. J.; Broadhouse, B.; Woloch, F.

    1974-10-15

    UKAEA methods embodied in the WINS-E modular scheme of codes are described in their application to the analysis of zero energy experiments performed on the DRAGON reactor. Measured reactivity and reaction rate distributions are compared with the predictions of the analysis.

  14. Impact of reducing sodium void worth on the severe accident response of metallic-fueled sodium-cooled reactors

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    Analyses have performed on the severe accident response of four 90 MWth reactor cores, all designed using the metallic fuel of the Integrated Fast Reactor (IFR) concept. The four core designs have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation is to determine the improvement in safety, as measured by the severe accident consequences, that can be achieved from a reduction in the sodium void worth for reactor cores designed using the IFR concept

  15. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  16. Performance analyses of the communication networks of a modern supervision and control system of research reactors

    International Nuclear Information System (INIS)

    El-Madbouly, E.I.; Shaat, M.K.; Shokr, A.M.; Elrefaei, G.H.

    2009-01-01

    The functions of the Instrumentation and Control (I and C) system in research reactors, the changes in its design according to the advances in the technology, and the internationally established safety requirements on the design and operational performance of this system are reviewed. The main features of the communication networks commonly used in the Supervision and Control systems (SCS) are presented. A methodology for the performance analysis of the communication networks of computer-based distributed SCS is developed and presented along with discussions. Application of this methodology to a modern SCS of a typical research reactor is illustrated. (orig.)

  17. Performance analyses of the communication networks of a modern supervision and control system of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    El-Madbouly, E.I. [Menoufia Univ., Menouf (Egypt). Faculty of Electronics Engineering; Shaat, M.K.; Shokr, A.M.; Elrefaei, G.H. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor

    2009-04-15

    The functions of the Instrumentation and Control (I and C) system in research reactors, the changes in its design according to the advances in the technology, and the internationally established safety requirements on the design and operational performance of this system are reviewed. The main features of the communication networks commonly used in the Supervision and Control systems (SCS) are presented. A methodology for the performance analysis of the communication networks of computer-based distributed SCS is developed and presented along with discussions. Application of this methodology to a modern SCS of a typical research reactor is illustrated. (orig.)

  18. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  19. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    International Nuclear Information System (INIS)

    Shen, W.

    2012-01-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  20. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W. [Candu Energy Inc., 2285 Speakman Dr., Mississauga, ON L5B 1K (Canada)

    2012-07-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  1. Performance evaluation of full scale UASB reactor in treating stillage wastewater

    Directory of Open Access Journals (Sweden)

    A.Mirsepasi , H. R. Honary , A. R. Mesdaghinia, A. H. Mahvi , H. Vahid , H. Karyab

    2006-04-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactors have been widely used for treatment of industrial wastewater. In this study two full-scale UASB reactors were investigated. Volume of each reactor was 420 m3. Conventional parameters such as pH, temperature and efficiency of COD, BOD, TOC removal in each reactor were investigated. Also several initial parameters in designing and operating of UASB reactors, such as upflow velocity, organic loading rate (OLR and hydraulic retention time were investigated. After modifying in operation conditions in UASB-2 reactor, average COD removal efficiency at OLR of 10–11 kg COD / m3 day was 55 percent. In order to prevent solids from settling, upflow velocity was increased to 0.35 m/h. Also to prevent solids from settling, the hydraulic retention time of wastewater in UASB-2 reactor was increased from 200 to 20 hours. This was expected that with good operation of UASB-2 reactor and with expanding of granules in the bed of the reactor, COD removal efficiency will be increased to more than 80 percent. But, because of deficiency on granulation and operation in UASB-2 reactor, this was not achieved. COD removal efficiency in the UASB-1 reactor was little. To enhance COD efficiency of UASB-1 reactor, several parameters were needed to be changed. These changes included enhancing of OLRs and upflow velocity, decreasing hydraulic retention time and operating with new sludge.

  2. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  3. Numerical Investigations of the Influencing Factors on a Rotary Regenerator-Type Catalytic Combustion Reactor

    Directory of Open Access Journals (Sweden)

    Zhenkun Sang

    2018-04-01

    Full Text Available Ultra-low calorific value gas (ULCVG not only poses a problem for environmental pollution, but also createsa waste of energy resources if not utilized. A novel reactor, a rotary regenerator-type catalytic combustion reactor (RRCCR, which integrates the functions of a regenerator and combustor into one component, is proposed for the elimination and utilization of ULCVG. Compared to reversal-flow reactor, the operation of the RRCCR is achieved by incremental rotation rather than by valve control, and it has many outstanding characteristics, such as a compact structure, flexible application, and limited energy for circulation. Due to the effects of the variation of the gas flow and concentration on the performance of the reactor, different inlet velocities and concentrations are analyzed by numerical investigations. The results reveal that the two factors have a major impact on the performance of the reactor. The performance of the reactor is more sensitive to the increase of velocity and the decrease of methane concentration. When the inlet concentration (2%vol. is reduced by 50%, to maintain the methane conversion over 90%, the inlet velocity can be reduced by more than three times. Finally, the highly-efficient and stable operating envelope of the reactor is drawn.

  4. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  5. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.

    1999-01-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  6. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D. [Vietnam Atomic Energy Agency, Hanoi (Viet Nam)

    1999-08-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  7. Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: Long-term performance and inherent deficiencies.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Chen, Mo; Kubota, Kengo; Li, Yu-You

    2015-12-01

    Long-term performance of methanol biocatalysis conversion in a lab-scale UASB reactor was evaluated. Properties of granules were traced to examine the impact of methanol on granulation. Methanolic wastewater could be stably treated during initial 240d with the highest biogas production rate of 18.6 ± 5.7 L/Ld at OLR 48 g-COD/Ld. However, the reactor subsequently showed severe granule disintegration, inducing granule washout and process upsets. Some steps (e.g. increasing influent Ca(2+) concentration, etc.) were taken to prevent rising dispersion, but no clear improvement was observed. Further characterizations in granules revealed that several biotic/abiotic factors all caused the dispersion: (1) depletion of extracellular polymeric substances (EPS) and imbalance of protein/polysaccharide ratio in EPS; (2) restricted formation of hard core and weak Ca-EPS bridge effect due to insufficient calcium supply; and (3) simplification of species with the methanol acclimation. More efforts are required to solve the technical deficiencies observed in methanolic wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  9. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  10. The safety culture change process performed in Polish research reactor MARIA

    International Nuclear Information System (INIS)

    Golab, Andrzej

    2002-01-01

    The Safety Culture Change Process Performed in research reactor MARIA is described in this paper. The essential issues fulfilled in realization of the Safety Culture Enhancement Programme are related to the attitude and behaviour of top management, co-operating groups, operational personnel, relations between the operating organization and the supervising and advising organizations. Realization of this programme is based on changing the employees understanding of safety, changing their attitudes and behaviours by means of adequate training, requalification process and performing the broad self-assessment programme. Also a high level Quality Assurance Programme helps in development of the Safety Culture. (author)

  11. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  12. An analysis of fast reactor fuel assembly performance taking into account their mechanical interaction in the core and refuelling line capabilities

    International Nuclear Information System (INIS)

    Buksha, Yu.K.; Zabudko, L.M.; Kravchenko, I.N.; Matveenko, L.V.; Meshkov, M.N.

    1984-01-01

    An approach to assessment of fast reactor fuel assembly performance has been considered. A concept of passive restraint of fuel assemblies in a reactor adopted in the USSR is described. Some methods for calculating the interassembly interactions during operation are briefly outlined, some calculated results are presented. A problem of fuel assembly performance during refuelling taking into account the refuelling line capabilities is considered. Some results from fuel assemblies operation experience in the BN-600 reactor are given. (author)

  13. PERFORMANCE IMPROVEMENT OF A CHEMICAL REACTOR BY NONLINEAR NATURAL OSCILLATIONS

    NARCIS (Netherlands)

    RAY, AK

    1995-01-01

    The dynamic behaviour of two coupled continuous stirred tank reactors in sequence is studied when the first reactor is being operated under limit cycle regimes producing self-sustained natural oscillations. The periodic output from the first reactor is then used as a forced input into the second

  14. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  15. Experiment study on thermal mixing performance of HTR-PM reactor outlet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yangping, E-mail: zhouyp@mail.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); Hao, Pengfei [School of Aerospace, Tsinghua University, Beijing 100084 (China); Li, Fu; Shi, Lei [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); He, Feng [School of Aerospace, Tsinghua University, Beijing 100084 (China); Dong, Yujie; Zhang, Zuoyi [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    A model experiment is proposed to investigate the thermal mixing performance of HTR-PM reactor outlet. The design of the test facility is introduced, which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main mixing structure, hot gas duct, exhaust pipe system and I&C system. Experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed, which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis results show the mixing efficiency of the test facility is higher than that required by the steam generator of HTR-PM, which indicates that the thermal mixing structure of HTR-PM fulfills its design requirement.

  16. Analytical model for performance verification of liquid poison injection system of a nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2014-01-01

    Highlights: • One-dimensional modelling of shut down system-2. • Semi-empirical correlation poison jet progression. • Validation of code. - Abstract: Shut down system-2 (SDS-2) in advanced vertical pressure tube type reactor, provides rapid reactor shutdown by high pressure injection of a neutron absorbing liquid called poison, into the moderator in the calandria. Poison inside the calandria is distributed by poison jets issued from holes provided in the injection tubes. Effectiveness of the system depends on the rate and spread of the poison in the moderator. In this study, a transient one-dimensional (1D) hydraulic code, COPJET is developed, to predict the performance of system by predicting progression of poison jet with time. Validation of the COPJET is done with the data available in literature. Thereafter, it is applied for advanced vertical pressure type reactor

  17. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  18. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  19. Water reactor fuel element fabrication, with special emphasis on its effects on fuel performance

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The performance of nuclear fuel has improved over the years and is now a minor cause of outages and of power limitations in nuclear power plants. On the other hand, an increasing number of countries are in the process of developing or implementing their own capability for manufacturing fuel elements. In this context, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) advised that a symposium be organized devoted to the relationship between fuel fabrication and performance The Czechoslovak Atomic Energy Commission agreed to co-operate in the organization of this symposium and to host it in Prague. Those factors which influence fuel fabrication requirements are now well ascertained: as little reactor primary circuit contamination as possible, the tendency to increased burnups, reactor manoeuverability to match power grid demands, the desirability of an autonomous fabrication capability. It is the general experience of fuel element suppliers that fuel quality and performance has increased over the years, the importance of quality assurance and process monitoring has been decisive in this respect The ever increasing mass-production aspect of nuclear fuel leads to some processing steps being revised and alternatives being developed. The relation between fabrication processes and fuel performance characteristics, although generally well perceived, are still the subject of a large amount of experiment and assessment in most countries, both industrial and developing This evidence is most encouraging; it means indeed that nuclear power, which is already amongst the cheapest and safest sources of energy, will continue to be improved. The performance of Zircaloy fuel cladding - presently the material used in most water reactors - is under particular consideration. Better understanding of this quite recent alloy will pave the way for broader fuel utilization limits in the future. The panel discussion, which noted some

  20. Assessment of beam tube performance for the maple research reactor

    International Nuclear Information System (INIS)

    Lee, A.G.

    1986-06-01

    The MAPLE research reactor is a versatile new research facility that can be adapted to meet the requirements of a variety of reactor applications. A particular group of reactor applications involves the use of beams of radiation extracted from the reactor core via tubes that penetrate through the biological shield and terminate in the reflector surrounding the fuelled core. An assessment is given of the neutron and gamma radiation fields entering beam tubes that are located radially or tangentially with respect to the core

  1. The Chernobyl reactor accident and its impact on the aquatic environment (marine and freshwater)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The impact of the Chernobyl reactor accident of 1986 on the freshwater and marine environment of the British Isles is discussed. Particular reference is made to the monitoring of radionuclide concentrations in foodstuffs such as shellfish, molluscs, trout, watercress and laverbread and the possible restrictions on their consumption by the public. Attention is drawn to the effects of the accident on the marine environment in a wider context. (U.K.)

  2. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  3. Fuel technology and performance of non-water cooled reactors. Proceedings of an advisory group meeting held in Vienna, 5-8 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The IAEA Division of Nuclear Fuel Cycle and Waste Management has been closely involved for many years in the collection, analysis and exchange of information relating to the global development of advanced reactor fuel technology and performance. Meetings of experts in this field have been held in 1984 and 1989 and more recently in December 1994 as part of the IAEA`s programme. This publication reviews progress in advanced reactor fuel technology and performance over the past five years, principally related to non-water cooled reactors, namely high temperature gas reactors (HTGRs) and fast reactors (FRs), as well as developments pertaining to thorium fuels and the fuel fabrication technologies. It includes papers from the participants and provides recommendations in key areas where further global co-operation in this field might be usefully initiated or strengthened. The previous two Advisory Group Meetings on Advanced Fuel Technology and Performance, on which separate reports have been published (IAEA-TECDOC-352 (1985) and IAEA-TECDOC-577 (1990)), focused on all types of commercial nuclear reactors. Refs, figs and tabs.

  4. Design, construction and operating experience of demonstration LMFBRs. The application of core and fuel performance experience in British reactors to commercial fast reactor design

    International Nuclear Information System (INIS)

    Bagley, K.Q.

    1978-01-01

    The Prototype Fast Reactor (PFR) sub-assembly design is described with particular emphasis on the choice of factors that are important in determining satisfactory performance. Reasons for the adoption of specific clad and fuel design details are given in their historical context, and irradiation experience - mostly from the Dounreay Fast Reactor (DFR) - in support of the choices is described. The implications of factors that are now better understood than when the PFR fuel was designed, notably neutron-induced void swelling and irradiation creep, are then considered. It is shown that the 'free-standing' core design used in PFR, in which the sub-assembly is unsupported above the level of the lower axial breeder, relies on the availability of low-swelling, preferably irradiation-creep-resistant alloys as sub-assembly structural materials in order to achieve the prescribed burn-up target. The advantages of a 'restrained core', which makes use of irradiation creep to redress the effects of material swelling, are noted briefly, and the application of this concept to the Commercial Demonstration Fast Reactor (CDFR) core design is described. Probable future trends in pin and sub-assembly design are reviewed and the scope of associated irradiation testing programmes defined. Arrangements for monitoring and evaluating fuel performance, both in reactor and post-irradiation, are outlined and the provisions for endorsement of CDFR pin, sub-assembly and core design details in PFR are indicated. (author)

  5. Performance of Fragema fuel in pressurized water reactors

    International Nuclear Information System (INIS)

    Dumont, A.; Ravier, G.; Ballot, B.

    1986-06-01

    FRAGEMA fuel operating experience in power reactors is very extensive. Performance over a range of power and burnup levels for various operating conditions is quite satisfactory. However significant development programs are presently in progress to further extend our knowledge under increasingly severe operating conditions. In particular, upcoming data acquisition programs (1985-1988) will cover site and hot cell measurements on Gd poison rods, 4.5 % overenriched fuel rods over four operating cycles, 17 x 17 AFA fuel assemblies. For these products the same surveillance strategy as the one used for the standard assembly has been adopted, in order to continuously provide more data which can be used to upgrade design models and pave the way for the development of future products

  6. A performance evaluation of a microchannel reactor for the production of hydrogen from formic acid for electrochemical energy applications

    CSIR Research Space (South Africa)

    Ndlovu, IM

    2017-12-01

    Full Text Available An experimental evaluation of a microchannel reactor was completed to assess the reactor performance for the catalytic decomposition of vaporised formic acid (FA) for H2 production. Initially, X-ray powder diffraction (XRD), elemental mapping using...

  7. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  8. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  9. Environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Coffman, F.E.; Williams, J.M.

    1975-01-01

    With the continued depletion of fossil and uranium resources in the coming decades, the U. S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a ''nuclear explosion'' or a ''nuclear runaway,'' the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necesary, and the absence of special nuclear materials such as 235 U or 239 Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern

  10. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  11. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  12. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  13. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  14. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  15. Leadership impact in organizational performance

    Directory of Open Access Journals (Sweden)

    Venet Shala

    2018-03-01

    Full Text Available The aim of this paper is to understand the impact of organizational leadership and its performance analyzing the concepts and styles of leadership behaviors within organization, in our study case LOGI-KOS, describing good performance through successful leadership impact and its values. Throughout the study, different leadership theories are mentioned. There are two methods which are used to gather information, qualitative and quantitative method. Eye to eye interviews have been organized with the CEO of the organization which is part of our study case and surveys are filled by employees. Empiric study is made possible through surveys in which took part over 28 out of 36 employees. As of the information which was gathered, it indicates that in our case study the leadership behaviors had huge impact within the performance of the organization, which is one of the key factors for success.

  16. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  17. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  18. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  19. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  20. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  1. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  2. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  3. RA Reactor

    International Nuclear Information System (INIS)

    1989-01-01

    This chapter includes the following: General description of the RA reactor, organization of work, responsibilities of leadership and operators team, regulations concerning operation and behaviour in the reactor building, regulations for performing experiments, regulations and instructions for inserting samples into experimental channels [sr

  4. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  5. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  6. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  7. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    International Nuclear Information System (INIS)

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent's response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO's view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  8. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  9. Use of biofilters and suspended-growth reactors to treat VOC's

    Energy Technology Data Exchange (ETDEWEB)

    Neal, A.B.; Loehr, R.C.

    2000-07-01

    The greater limits placed on volatile organic compound (VOC) emissions by the Clean Air Act Amendments have stimulated evaluation of various VOC treatment methods. Two applicable gas phase treatment technologies are biofiltration and suspended growth reactors. Biofiltration removes contaminants from gas streams that are passed through a bed of biologically active solids. An aerobic suspended-growth reactor (SGR) removes VOCs by biologically treating contaminated air bubbled through an aqueous suspension of active microorganisms. This research compared the performance of a typical compost biofilter to a SGR for the removal of a common VOC (toluene) from gas streams. The objective was to evaluate the impact of mass loading on process performance. Major performance parameters investigated were (1) mass emitted and elimination capacity, (2) off-gas concentrations exiting each type of reactor for various mass loadings, and (3) removal efficiencies obtained by each type of reactor. The results indicated that SGRs can effectively treat gases containing VOCs. For mass loadings ranging from 5 to 30 mg/l-h, the biofilters and SGRs achieved similar VOC removals, in the range of 96--99.7%. Drying of the biofilter medium occurred a high mass loadings. In the SGRs, at mass loadings greater than 17 mg/l-h, process performance decreased when an unknown colored substance was present.

  10. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  11. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  12. Multi-stage-flash desalination plants of relative small performance with integrated pressurized water reactors as a nuclear heat source

    International Nuclear Information System (INIS)

    Petersen, G.; Peltzer, M.

    1977-01-01

    In the Krupp-GKSS joint study MINIPLEX the requirements for seawater-desalination plants with a performance in the range of 10 000 to 80 000 m 3 distillate per day heated by a nuclear reactor are investigated. The reactor concept is similar to the Integrated Pressurized Water Reactor (IPWR) of the nuclear ship OTTO HAHN. The design study shows that IPWR systems have specific advantages up to 200 MWth compared to other reactor types at least being adapted for single- and dual-purpose desalination plants. The calculated costs of the desalinated water show that due to fuel cost advantages of reactors small and medium nuclear desalination plants are economically competetive with oil-fired plants since the steep rise of oil price in autumn 1973. (author)

  13. Fast Breeder Reactor Development in France During 1987

    International Nuclear Information System (INIS)

    Asty, M.; Cambillard, E.

    1988-01-01

    On March 8, 1987, a ''sodium leak'' alarm signal was received in the Creys-Malville control room. By the end of March, it had been established beyond all doubt that sodium was, in fact, leaking into the fuel storage drum inter-vessel gap. The reactor has been shut down since May 26. The origin of the leak was located on September 5, after complete drainage of the main tank. Despite the fact that the leak was confined, had had no radiological consequences and cast no doubts on the safe operation of the reactor, the impact of this incident on public opinion, both in France and in the neighbouring European states, was considerable. Two facts would appear to have been decisive. The first was that the reactor had not been shut down immediately, the second was that the leak was only detected and localized in September: it was difficult for people to understand that before its exact position could be determined, certain operations (transfer of a few subassemblies to the reactor core, unloading of the fuel storage drum) had to be performed

  14. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  15. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  16. Environmental consequences of alternatives to L Reactor restart

    International Nuclear Information System (INIS)

    1983-01-01

    Alternatives to renewed L-Reactor operation for increased production of nuclear materials are: restart of R Reactor, construction and operation of a New Production Reactor (NPR), increased throughput of SRP reactors C, K, and P and N Reactor at Hanford, restart of K Reactors at Hanford, and no action - standby ready state for L Reactor. This report compares the environmental consequences from the proposed L-Reactor restart and these alternatives. The environmental consequences considered are radiological releases, radiocesium remobilization, nonradiological releases, ecological impacts and transportation

  17. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  18. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  19. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  20. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  1. Superconducting magnet radiation limit considerations for fusion reactors

    International Nuclear Information System (INIS)

    Sawan, M.E.; Walstrom, P.L.

    1986-01-01

    The radiation limits for fusion reactor magnets have a direct impact on the cost of electricity. For example, reducing the inboard shield by 1 cm saves up to $3 million in the Tokamak Fusion Core Experiment cost. The magnet components most sensitive to radiation damage are the superconductor, stabilizer, and insulators. Nuclear heating in the magnet affects the design and also impacts the economic performance of the reactor through increased refrigeration costs. The radiation effects in the different components of the magnet are related, as all of them are determined by the flux level in the magnet. Hence, in efforts to push radiation limits, these effects should be considered simultaneously. Furthermore, the levels of radiation effects that correspond to the optimum nuclear heating determined from economic trade-off analysis will be useful in specifying the fluence, dose, and stabilization limit goals for the magnet development program. In this paper, we review the available irradiation data and assess the need for achieving higher irradiation levels

  2. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  3. INDIAN POINT REACTOR STARTUP AND PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Deddens, J. C.; Batch, M. L.

    1963-09-15

    The testing program for the Indian Point Reactor is discussed. The thermal and hydraulic evaluation of the primary coolant system is discussed. Analyses of fuel loading and initial criticality, measurement of operating coefficients of reactivity, control rod group reactivity worths, and xenon evaluation are presented. (R.E.U.)

  4. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  5. An economic evaluation of the economics of the Rancho Seco nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, P P [California Univ., Davis, CA (USA). Dept. of Applied Science; Marcus, W B [JBS Energy, Inc., Broderick, CA (USA)

    1991-03-01

    Escalating costs of operating reactors may make it economically advantageous to close them down and purchase small, cheap technologies such as combined-cycle systems. We examine the arguments pro and con for the Rancho Seco nuclear reactor, owned by the Sacramento Municipal Utility District (SMUD) and now permanently shut-down. We conclude that if the reactor could be run no better than it has run in the past, there was no clear advantage to continued operation. Optimistic scenarios show a net advantage to running it, and pessimistic scenarios show a net disadvantage. The total range of plausible costs is narrow; the financial impact of either choice on consumers would have been small. The analysis suggests that decisions on whether to close down existing reactors are highly case specific, but that strong economic arguments for shut-down can exist if reactor performance is poor and/or if maintenance expenses are high. (author).

  6. An economic evaluation of the economics of the Rancho Seco nuclear reactor

    International Nuclear Information System (INIS)

    Craig, P.P.

    1991-01-01

    Escalating costs of operating reactors may make it economically advantageous to close them down and purchase small, cheap technologies such as combined-cycle systems. We examine the arguments pro and con for the Rancho Seco nuclear reactor, owned by the Sacramento Municipal Utility District (SMUD) and now permanently shut-down. We conclude that if the reactor could be run no better than it has run in the past, there was no clear advantage to continued operation. Optimistic scenarios show a net advantage to running it, and pessimistic scenarios show a net disadvantage. The total range of plausible costs is narrow; the financial impact of either choice on consumers would have been small. The analysis suggests that decisions on whether to close down existing reactors are highly case specific, but that strong economic arguments for shut-down can exist if reactor performance is poor and/or if maintenance expenses are high. (author)

  7. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1983 and 1984

    International Nuclear Information System (INIS)

    Tatone, O.S.; Meindl, P.; Taylor, G.F.

    1986-06-01

    A review of the performance of steam generator tubes in water-cooled nuclear power reactors showed that tubes were plugged at 47 (35.6%) of the reactors in 1983 and at 63 (42.6%) of the reactors during 1984. In 1983 and 1984 3291 and 3335 tubes, respectively, were removed from service, about the same as in 1982. The leading causes assigned to tube failure were stress corrosion cracking from the primary side and stress corrosion cracking or intergranular attack from the secondary side. In addition 5668 tubes were repaired for further service by installation of internal sleeves. Most of these were believed to have deteriorated by one of the above mechanisms or by pitting. There is a continuing trend towards high-integrity condenser tube materials at sites cooled by brackish or sea water. 31 refs

  8. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  9. Study of the impact of atmospheric emissions (41AR) during operation of a nuclear reactor research

    International Nuclear Information System (INIS)

    Alves, Simone F.; Barreto, Alberto A.; Jacomino, Vanusa Maria F.; Rodrigues, Paulo Cesar H.

    2013-01-01

    The knowledge of the atmosphere dispersion of radionuclides, resulting from a nuclear reactor emissions during normal operation, is an important step in the process of nuclear licensing and environmental. This step requires a study to evaluate the radiological environmental impact. The results of this study are used by radiation protection agents to control the exposure of public to radiation during the operation of nuclear facilities. The elaboration of environmental impact assessment due to atmospheric emissions is based on a study of atmospheric dispersion. The aim of this study is estimate the concentrations of radionuclides in different compartments of the ecosystem and calculate the dose received by man as a result of radiation exposure in different scenarios of interest. This paper deals with the case study of the impact of atmospheric emissions of 41 Ar during operation of a nuclear research reactor. This study was accomplished with the application of the dispersion model ARTM (Radionuclide Transport Atmospheric Model), along with the geoprocessing resources. Among the results are: the spatial distribution of population by age; topography of the region, local wind rose, atmospheric stability and the estimate of the concentration of radionuclide 41 Ar and of dose. The results indicate that the dose, by external irradiation due to immersion in the cloud, was below the limits established by regulatory agencies. (author)

  10. Ageing management program for reactor components in HANARO

    International Nuclear Information System (INIS)

    Cho, Yeong-Garp; Wu, Sang-Ik; Lee, Jung-Hee; Ryu, Jeong-Soo; Park, Yong-Chul; Wu, Jong-Sup; Jun, Byung Jin

    2003-01-01

    The HANARO, an open-tank-in-pool type research reactor of 30MWth power in Korea, has operated for 8 years since its initial criticality in February of 1995. The reactor power has been gradually increased to 24 MWth through the service period. Therefore the reactor age is very young from the viewpoint of the ageing effect on the reactor structure and components by neutron irradiation considering the expected reactor lifetime. But, we have a few programs to manage the ageing from the aspect of design lifetime of reactor components. This paper summarizes the overall progress and plan for the ageing management for the reactor components including lifetime extension and design improvement, remote measurements and in-service inspections. The shutoff units and control absorber units have aged more rapidly than other structures or components because the number of rod drop cycles was higher than expected at the design stage. The system commissioning tests, periodic performance tests, and weekly operation for the stable supply of medical radioisotopes overriding the normal cycle operation have contributed to the high frequency of rod drop. Therefore, we have instituted a program to extend the lifetime of the shutoff units and the control absorber units. This program includes an endurance test to verify the performance for the extended number of drops and the management of shutdown methods to minimize the drop cycles for both the shutoff units and the control absorber units. The program also includes the design improvement of the damper mechanism of the control absorber units to reduce the impact force caused by rod drop. The inner shell of the reflector vessel surrounding the core is the most critical part from the viewpoint of neutron irradiation. The periodic measurement of the dimensional change in the vertical straightness of the inner shell is considered as one of the in-service inspections. We developed a few tools and verified the performance to measure the

  11. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  12. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    International Nuclear Information System (INIS)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs

  13. Consequence analysis for nuclear reactors, Yongbyon

    International Nuclear Information System (INIS)

    Kang, Taewook; Jae, Moosung

    2017-01-01

    Since the Fukushima nuclear power plant accidents in 2011, there have been an increased public anxiety about the safety of nuclear power plants in Korea. The lack of safeguards and facility aging issues at the Yongbyon nuclear facilities have increased doubts. In this study, the consequence analysis for the 5-MWe graphite-moderated reactor in North Korea was performed. Various accident scenarios including accidents at the interim spent fuel pool in the 5-MWe reactor have been developed and evaluated quantitatively. Since data on the design and safety system of nuclear facilities are currently insufficient, the release fractions were set by applying the alternative source terms made for utilization in the analysis of a severe accident by integrating the results of studies of severe accidents occurred before. The calculation results show the early fatality zero deaths and latent cancer fatality about only 13 deaths in Seoul. Thus, actual impacts of a radiological release will be psychological in terms of downwind perceptions and anxiety on the part of potentially exposed populations. Even considering the simultaneous accident occurrence in both 5-MWe graphite-moderated reactor and 100-MWt light water reactor, the consequence analysis using the MACCS2 code shows no significant damage to people in South Korea. (author)

  14. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  15. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  16. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  17. Reflector Performance Study in Ultra-long Cycle Fast Reactor

    International Nuclear Information System (INIS)

    Tak, Taewoo; Kong, Chidong; Choe, Jiwon; Lee, Deokjung

    2013-01-01

    There are reflector assemblies outside the fuel region, surrounding the fuel assemblies and axial reflector is located at the bottom of the core to control the neutron leakage fraction which is an important factor in fast reactor system. HT-9 was used as a reflector material as well as a structure material. In this study, alternative reflector materials were proposed and their reflection performance was tested and studied focused on its physics. ODS-MA957 and SiC were chosen from iron based alloy and ceramic respectively. The two materials were tested and compared with HT-9 in UCFR-1000 as a radial and an axial reflector and it was evaluated from the neutronics point of view with comparing the core life and the coolant void reactivity. The calculation and evaluation were performed by McCARD Monte Carlo code. The reflector materials for UCFR-1000 have been investigated in the aspect of neutronics. The reflection effect shows different performance corresponding to reflector material used. Also, the neutron energy spectrum is affected by changing materials which causes spectrum softening but it is not enough to influence the core life. With more reflector material candidates such as lead-based liquid metal, reflection performance and core parameter study will be investigated for next step

  18. Evaluation of performance of select fusion experiments and projected reactors. Final report

    International Nuclear Information System (INIS)

    Miley, G.H.

    1978-10-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters

  19. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    Science.gov (United States)

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  20. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    2009-08-01

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  1. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  2. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  3. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  4. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  5. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  7. Steam generator tube performance: world experience with water-cooled nuclear power reactors during 1979

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1981-01-01

    The performance of steam generator tubes in water-cooled nuclear power reactors is reviewed for 1979. Tube failures occurred at 38 of the 93 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The defect rate, although higher than that in 1978, was still lower than the rates of the two previous years. Methods being employed to detect defects include the increased use of multifrequency eddy-current testing and a trend to full-length inspection of all tubes. To reduce the incidence of tube failure by corrosion, plant operators are turning to full-flow condensate demineralization and more leak-resistant condenser tubes. 10 tables

  8. Materials Degradation in Light Water Reactors: Life After 60,

    International Nuclear Information System (INIS)

    Busby, Jeremy T; Nanstad, Randy K; Stoller, Roger E; Feng, Zhili; Naus, Dan J

    2008-01-01

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the key issue with materials aging and cable/piping as the top concerns for plant reliability. Materials degradation within a nuclear power plant is very complex. There are many different types of materials within the reactor itself: over 25 different metal alloys can be found with can be found within the primary and secondary systems, not to mention the concrete containment vessel, instrumentation and control, and other support facilities. When this diverse set of materials is placed in the complex and harsh environment coupled with load, degradation over an extended life is indeed quite complicated. To address this issue, the USNRC has developed a Progressive Materials Degradation Approach (NUREG/CR-6923). This approach is intended to develop a foundation for appropriate actions to keep materials degradation from adversely impacting component integrity and safety and identify materials and locations where degradation can reasonably be expected in the future. Clearly, materials degradation will impact reactor reliability, availability, and potentially, safe operation. Routine surveillance and component replacement can mitigate these factors, although failures still occur. With reactor life extensions to 60 years or beyond or power uprates, many components must tolerate the reactor environment for even longer times. This may increase

  9. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    We analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy's (DOE) Office of Defense Programs. Two separate shipment programs were analyzed. The shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). To perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. The risks of transporting spent nuclear fuel and other radioactive materials by all modes have been analyzed extensively. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  10. Materials Performance in Sodium-Cooled Fast Reactors: Past, Present, and Future

    International Nuclear Information System (INIS)

    Natesan, K.; Li Meimei

    2013-01-01

    • This paper gives an overview of the requirements, selection, and performance of materials for in-core and out-of-core components in SFRs. • Globally, sodium-cooled fast reactors have been designed, built, and operated in several countries. A substantial database exists for the existing materials on their functional and mechanical performance. • The 60-yr design life of the SFR presents a significant challenge to the development of database, extrapolation/prediction of long-term performance, and high-temperature design methodology for the structural components. • Licensing of SFR requires a valid assessment of the environmental effects (irradiation, thermal aging, and sodium) on materials performance. • Advanced materials such as, ODS alloys for cladding, Gr91 and 92 F/M steels, and austenitic alloys such as NF709 for structures can improve the economy, safety, and flexibility of SFRs. A substantial database is needed for all these materials and global effort is underway to develop the needed information through experimentation and modeling

  11. Investigation of the use of thorium in LWRs for improving reactor core performance

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah

    2012-01-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins

  12. Investigation of the use of thorium in LWRs for improving reactor core performance

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Cheuk Wah

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins.

  13. Material and geometry options and performance characteristics for a test reactor

    International Nuclear Information System (INIS)

    Jahshan, S.N.; Fletcher, C.D.; Terry, W.K.

    1993-01-01

    For the past 3 yr, an Idaho National Engineering Laboratory (INEL) design team has studied design options for a new test reactor to provide continued testing services after several aging test reactors in the United States are decommissioned. This new reactor, the Broad Application Test Reactor (BATR), would also fill other currently unmet needs, such as medical isotope production and space reactor component testing. Consideration of user needs, safety requirements, developmental uncertainties, and other factors led to the selection of an evolutionary design with plate fuel and several independently cooled test loops. The fuel would be cooled by light water, but most neutron moderation would come from heavy water or beryllium. The BATR design was tentatively scaled to the Advanced Test Reactor (ATR), an existing reactor at INEL: The power output of BATR is 250 MW(thermal), and the active core heights is 1 m. For safety in loss-of-flow events, the coolant flows upward through the core. The BATR design has one large test loop (with a test space diameter of 15.0 cm) along the central axis of the core and six smaller test loops (with test space diameters of 8.0 cm) centered at 6-deg azimuthal intervals on a 24.71-cm-diam circle around the central core axis

  14. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  15. Optimization of advanced gas-cooled reactor fuel performance by a stochastic method

    International Nuclear Information System (INIS)

    Parks, G.T.

    1987-01-01

    A brief description is presented of a model representing the in-core behaviour of a single advanced gas-cooled reactor fuel channel, developed specifically for optimization studies. The performances of the only suitable Numerical Algorithms Group (NAG) library package and a Metropolis algorithm routine on this problem are discussed and contrasted. It is concluded that, for the problem in question, the stochastic Metropolis algorithm has distinct advantages over the deterministic NAG routine. (author)

  16. Comparative study of fast critical burner reactors and subcritical accelerator driven systems and the impact on transuranics inventory in a regional fuel cycle

    International Nuclear Information System (INIS)

    Romanello, V.; Salvatores, M.; Schwenk-Ferrero, A.; Gabrielli, F.; Maschek, W.; Vezzoni, B.

    2011-01-01

    Research highlights: → Double-strata fuel cycle has a potential to minimize transuranics mass in Europe. → European Minor Actinides legacy can be reduced down to 0 before the end of century. → 40% higher capacity needed to burn MA for fast critical reactor then for EFIT fleet. → Na cooled fast reactor cores with high content of MA and low CR have been assessed. → Fast critical and ADS-EFIT reactors show comparable MA transmutation performance. - Abstract: In the frame of Partitioning and Transmutation (P and T) strategies, many solutions have been proposed in order to burn transuranics (TRU) discharged from conventional thermal reactors in fast reactor systems. This is due to the favourable feature of neutron fission to capture cross section ratio in a fast neutron spectrum for most TRU. However the majority of studies performed use the Accelerator Driven Systems (ADS), due to their potential flexibility to utilize various fuel types, loaded with significant amounts of TRU having very different Minor Actinides (MA) over Pu ratios. Recently the potential of low conversion ratio critical fast reactors has been rediscovered, with very attractive burning capabilities. In the present paper the burning performances of two systems are directly compared: a sodium cooled critical fast reactor with a low conversion ratio, and the European lead cooled subcritical ADS-EFIT reactor loaded with fertile-free fuel. Comparison is done for characteristics of both the intrinsic core and the regional fuel cycle within a European double-strata scenario. Results of the simulations, obtained by use of French COSI6 code, show comparable performance and confirm that in a double strata fuel cycle the same goals could be achieved by deploying dedicated fast critical or ADS-EFIT type reactors. However the critical fast burner reactor fleet requires ∼30-40% higher installed power then the ADS-EFIT one. Therefore full comparative assessment and ranking can be done only by a

  17. Current safety issues related to research reactor operation

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    2000-01-01

    The Agency has included activities on research reactor safety in its Programme and Budget (P and B) since its inception in 1957. Since then, these activities have traditionally been oriented to fulfil the Agency's functions and obligations. At the end of the decade of the eighties, the Agency's Research Reactor Safety Programme (RRSP) consisted of a limited number of tasks related to the preparation of safety related publications and the conduct of safety missions to research reactor facilities. It was at the beginning of the nineties when the RRSP was upgraded and expanded as a subprogramme of the Agency's P and B. This subprogramme continued including activities related to the above subjects and started addressing an increasing number of issues related to the current situation of research reactors (in operation and shut down) around the world such as reactor ageing, modifications and decommissioning. The present paper discusses some of the above issues as recognised by various external review or advisory groups (e.g., Peer Review Groups under the Agency's Performance Programme Appraisal System (PPAS) or the standing International Nuclear Safety Advisory Group (INSAG)) and the impact of their recommendations on the preparation and implementation of the part of the Agency's P and B relating to the above subject. (author)

  18. Reactor safety impact of functional test intervals: an application of Bayesian decision theory

    International Nuclear Information System (INIS)

    Buoni, F.B.

    1978-01-01

    Functional test intervals for important nuclear reactor systems can be obtained by viewing safety assessment as a decision process and functional testing as a Bayesian learning or information process. A preposterior analysis is used as the analytical model to find the preposterior expected reliability of a system as a function of test intervals. Persistent and transitory failure models are shown to yield different results. Functional tests of systems subject to persistent failure are effective in maintaining system reliability goals. Functional testing is not effective for systems subject to transitory failure; preventive maintenance must be used. A Bayesian posterior analysis of testing data can discriminate between persistent and transitory failure. The role of functional testing is seen to be an aid in assessing the future performance of reactor systems

  19. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  20. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  1. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    Science.gov (United States)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  2. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    The Transportation Technology Center at Sandia National Laboratories has analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy (DOE) Office of Defense Programs. This effort represents the first comprehensive analytical evaluation of the risks of transporting high-, medium-, and low-enriched uranium spent research reactor fuel by both sea and land. Two separate shipment programs have been analyzed: the shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). In order to perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  3. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  4. Impact of nuclear library difference on neutronic characteristics of thorium-loaded light water reactor fuel

    International Nuclear Information System (INIS)

    Unesaki, H.; Isaka, S.; Nakagome, Y.

    2006-01-01

    Impact of nuclear library difference on neutronic characteristics of thorium-loaded light water reactor fuel is investigated through cell burnup calculations using SRAC code system. Comparison of k ∞ and nuclide composition was made between the results obtained by JENDL-3.3, ENDF/B-VI.8 and JEFF3.0 for (U, Th)O 2 fuels as well as UO 2 fuels, with special interest on the burnup dependence of the neutronic characteristics. The impact of nuclear data library difference on k ∞ of (U, Th)O 2 fuels was found to be significantly large compared to that of UO 2 fuels. Notable difference was also found in nuclide concentration of TRU nuclides. (authors)

  5. Performance of static var compensator control type thyristor controlled reactor and thyristor switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Josias M. de; Yung, Chou Shaw; Rose, Eber H; Pantoja, Antonio L.A. [ELETRONORTE, Belem, PA (Brazil); Fouesnant, Thomas; Boissier, Luc

    1994-12-31

    This paper has the objective of presenting the philosophy of Static Var Compensator (SVC) Control as well the necessary adjustments in the project of control system to guarantee suitable performance under different operating conditions. The verification on the performance of the SVC control has been done by Transient Network Analyzer (TNA/CEPEL) studies, commissioning tests and a factory tests. The SVC is the type of Thyristor Controlled Reactor (TCR) and Thyristor Switched Capacitor (TSC). (author) 3 refs., 12 figs.

  6. A multi-stage-flash desalination plant of relative small performance with an integrated pressurized water reactor as a nuclear heat source

    International Nuclear Information System (INIS)

    Peltzer, M.; Petersen, G.

    1976-01-01

    In the Krupp-GKSS joint study MINIPLEX the requirements for seawater-desalination-plants with a performance in the range of 10,000 to 80,000 m 3 /d heated by a nuclear reactor are investigated. The reactor concept is similar to the integrated pressurized water reactor (IPWR) of the nuclear ship OTTO HAHN. The calculated costs of the desalinated water show, that due to the fuel cost advantages of reactors small and medium nuclear desalination plants are economically competetive with oil-fired plants since the steep rise of oil price in autumn 1973. (orig.) [de

  7. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  8. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  9. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  10. Using the model release ARTM associated with resources for simulation geoprocessing radiological environmental impact of atmospheric emissions from a research reactor

    International Nuclear Information System (INIS)

    Alves, Simone Fonseca

    2013-01-01

    The knowledge of the dispersion of radionuclides emissions into the atmosphere arising from a nuclear reactor, in normal operation, is an important step in the process of the nuclear and environmental assessment study. These processes require an assessment study of the radiological environmental impact. However, to estimate this impact a simulation of the transport mechanisms and deposition of pollutants released into the atmosphere is required. The present study aimed at the application of the dispersion model ARTM (Atmospheric Radionuclide Transport Model), together with the powerful tools of the GIS (Geographic Information System) for the environmental impact assessment of a radiological nuclear reactor under typically routine and conditions. Therefore some important information from the national project for a research reactor known as Brazilian Multipurpose Reactor (RMB) was considered. The information of the atmospheric emissions of the reactor, needed for the simulation of this project, was based on data of the Open Pool Australian Light Water (OPAL).Other important data that had to be collected and analyzed were the source term, the topography, the meteorology and the environmental data. The radionuclides analyzed as pollutants were 41 Ar; 140 Ba; 51 Cr; 137 Cs; 131 I; 133 I; 85m Kr; 87 Kr; 88 Kr; 140 La; 133 Xe; 135 Xe; 3 H; 90 Sr. The model was run for two chronological scenarios according to their meteorological data for the years 2009 and 2010, respectively. The adoption of GIS techniques was relevant in planning, data preprocessing and in the post-processing of results as well. After pre-processing, the input data were processed by the ARTM dispersion model. Maps, charts, and tables were then produced and evaluated. According to the simulated and evaluated scenarios it could be concluded that exposure pathways that mostly contributed to the dose for individual public were 41 Ar, for immersion in the plume, and 133 I, for inhalation. Nevertheless, even

  11. Economic and environmental performance of oil transesterification in supercritical methanol at different reaction conditions: Experimental study with a batch reactor

    International Nuclear Information System (INIS)

    Tomic, Milan; Micic, Radoslav; Kiss, Ferenc; Dedovic, Nebojsa; Simikic, Mirko

    2015-01-01

    Highlights: • Influence of reaction parameters on FAME yields has been investigated. • The highest yield (93%) was achieved after 15 min at 350 °C and 12 MPa. • Models which predict with high certainty yields at different reaction conditions. • Economic and environmental performance of supercritical transesterification. • The lowest costs and impacts are always achieved at the highest yields. - Abstract: This study aims to investigate the influence of various reaction parameters (temperatures, working pressures and reaction time) on biodiesel yields and environmental and economic performance of rapeseed oil transesterification in supercritical methanol. Experiments were carried out in a laboratory-scale batch reactor. Results were statistically analysed and multiple regression models which describe and predict biodiesel yields with high certainty at different reaction conditions were provided. The highest biodiesel yield (93 wt%) was achieved at 350 °C and 12 MPa after 15 min of reaction. The lowest direct costs and life cycle environmental impacts (in terms of GHG emissions and fossil energy demand) are achieved at the highest yield due to the lowest oil consumption per unit of biodiesel produced. The results of sensitivity analysis showed that even at significantly lower oil feedstock prices this observation stands firm

  12. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  13. A structural evaluation of the Shippingport reactor pressure vessel for transport impact conditions

    International Nuclear Information System (INIS)

    Witte, M.C.; Chou, C.K.

    1989-01-01

    The Shippingport Atomic Power Station in Shippingport, Pennsylvania, is being decommissioned and dismantled. This government-leased property will be returned, in a radiologically safe condition, to its owner. All radioactive material is being removed from the Shippingport Station and transported for burial to the DOE Hanford Reservation in Richland, Washington. The reactor pressure vessel (RPV) will be transported by barge to Hanford. This paper describes an evaluation of the structural response of the RPV to the normal and accident impact test conditions as required by the Code of Federal Regulations. 3 refs., 5 figs., 3 tabs

  14. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  15. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  16. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  17. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  18. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  19. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  20. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    Kobayasi, S.; Ishijima, K.; Tanzawa, S.; Fujishiro, T.; Horiki, O.

    1990-01-01

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  1. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Cunningham, G.W.

    1977-01-01

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  2. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  3. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  4. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  5. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  6. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Hurni, Juerg

    2014-01-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  7. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  8. Reactor operation monitor

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1982-01-01

    Purpose: To improve the working performance of a reactor by extending the range for the power conditioning due to the control rod operation and flow rate control. Constitution: The results of calculations for the power distribution and the burn-up degree distribution of the reactor core from a reactor performance computer that processes each of measuring signals in a nuclear power plant are used as the inputs for a computing device of the fuel rod power hysteresis to form the power hysteresis for each of the fuel rods up to the present time. The data are used as the inputs for the computing device of the fuel rod performance index, and the fuel rod performance index representing the critical values for the stresses in the fuel rod cladding tubes and the critical values for the duration of the stresses determined from the power hysteresis and the burn-up degree of the fuel rod are calculated for each of the fuel rods. Accordingly, the power conditioning can be carried out upon power-up in the reactor while monitoring the fuel rod performance index f(t) for each of the fuel assemblies, whereby the range for the power conditioning due to the control rod operation and the flow rate control can be extended relative to fuel assemblies in which f(t) is smaller than 1. (Yoshino, Y.)

  9. Balancing human and technical reliability in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Papin, Bernard

    2011-01-01

    Highlights: ► Human factors exigencies are often overseen during the early design phases of NPP. ► Optimization of reactors safety is only based on technical reliability considerations. ► The search for more technical reliability often leads to more system complexity. ► System complexity is a major contributor to the operator's poor performance. ► Our method enables to assess plant complexity and it's impact on human performance. - Abstract: The strong influence of human factors (HF) on the safety of nuclear facilities is nowadays recognised and the designers are now enforced to consider HF requirements in the design of new facilities. Yet, this consideration of human factors requirements is still more or less restricted to the latest phases of the projects, essentially for the design of human-system interfaces (HSI's) and control rooms, although the design options influencing at most the human performance in operation are indeed fixed during the very early phases of the new reactors projects. The main reason of this late consideration of HF is that there exist few methods and models for anticipating the influence of fundamental design options on the future performance of operation teams. This paper describes a set of new tools permitting (i) determination of the impact of the fundamental process design options on the future activity of the operation teams and (ii) assessment of the influence of these operational constraints on teams performance. These tools are intended to guide the design of future 4th generation (GEN4) reactors, within the frame of a global risk-informed design approach, considering technical and human reliability exigencies in a balanced way.

  10. A study on the sealing performance of metallic C-rings in reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaohong, E-mail: jiaxh@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Chen, Huaming [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Li, Xinggen [Ningbo Tiansheng Sealing Packing Co., Ltd, Ningbo 315302 (China); Wang, Yuming [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Wang, Longke [Eaton Corporation, MN (United States)

    2014-10-15

    Highlights: • FE analysis on compression–resilience of metallic C-ring is performed and validated by experiments. • Model of RPV sealing system including the C-rings is developed. • Deformation data from factory hydraulic test of the RPV are used to verify the model. • C-rings’ behavior under designing condition is analyzed. • The model provides a reliable evaluation on the sealing performance of RPV. - Abstract: Double metallic C-rings are used in pressure vessel of pressurized water reactor (PWR) to seal the bolt-connected flanges. To evaluate the sealing performance, it is necessary to study both the C-rings’ intrinsic properties and their behavior in reactor pressure vessel (RPV) under various loading conditions. The compression–resilience property and linear load are the basic information to evaluate the performance of a well-designed C-ring's. An equivalent model of C-ring is constructed by means of ANSYS to analyze its intrinsic properties, and is also validated by experiments on scaled samples. This model is applied to develop a 2D-axisymmetric FE model of sealing system including RPV and C-rings with the consideration of nonlinear material, contacting problem and multiple coupled effects. The simulation results of RPV deformation under the hydraulic test condition agree well with the data of factory hydraulic test. With the verified model, an analysis under the designing condition is performed to study C-rings’ behavior in the RPV, and then provides a reliable evaluation on the sealing performance of RPV.

  11. Impact of the Fukushima Accident on Current Fast Reactor Monju

    International Nuclear Information System (INIS)

    Ohira, Hiroaki

    2012-01-01

    Conclusions: • Based on the lessons learned from the Fukushima Dai-ichi NPS accidents, the emergency safety countermeasures and the enhanced countermeasures for the reactor, EVST and SFP have been conducted in Monju as of March 2012. • Plant dynamics analysis using possible conditions were also performed to confirm the cooling capabilities when a tsunami-induced SBO continued over a long period. • These results indicated that the decay heat produced from the core and the EVST could be removed safely by the natural circulation in the cooling systems, and that from the SFP could also removed only if water would be supplied in a few months interval

  12. Implementation plan of the environmental impact statement on a proposed policy for acceptance of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Matos, J.E.

    1996-01-01

    This paper provides a summary of selected portions of the United States Department of Energy's ''Implementation Plan for the Environmental Impact Statement on a Proposed Policy for Acceptance of Foreign Research Reactor Spent Nuclear Fuel'', DOE/EIS-0218, October 1994

  13. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Irina S.; Amorim, Catarina L. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Ribeiro, Ana R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD (Portugal); Mesquita, Raquel B.R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); and others

    2015-04-28

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load.

  14. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    International Nuclear Information System (INIS)

    Moreira, Irina S.; Amorim, Catarina L.; Ribeiro, Ana R.; Mesquita, Raquel B.R.

    2015-01-01

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load

  15. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  16. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  17. Establishment of design concept of large capacity passive reactor KP1000 and performance evaluation of safety system for LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O.; Hwang, Young Dong; Kim, Young In; Chang, Moon Hee

    1997-03-01

    This study was performed to establish the design concepts and to evaluate the performance of safety features of large capacity passive reactor (1000 MWe grade). The design concepts of the large capacity passive reactor `KP1000` were established to generate 1000 MW electric power based on the AP600 of Westinghouse by increasing the number of reactor coolant loop and by increasing the size of reactor internals/core. To implement the analysis of the LBLOCA for KP1000, various kinds of computer codes being considered, it was concluded that RELAP5 was the most appropriate one in availability and operations in present situation. By the analysis of the computer code `RELAP5/Mod3.2.1.2`, following conclusions were derived as described below. First, by spectrum analysis of the discharge factor of the berak part, the most conservative discharge factor C{sub D}=1.2 and the PCT value of KP1000 was 1254F, which is slightly higher than the value of AP600 but is much less than the existing active reactor `Kori 3 and 4` where blowdown PCT value is 1693.4 deg F and reflooding PCT is 1918.4 deg F. Second, after the 200 seconds from the initiation of LBLOCA, IRWST water was supplied in a stable state and the maximum temperature of clad were maintained in a saturated condition. Therefore, it was concluded that the passive safety features of KP1000 keep reactor core from being damaged for large break LOCA. (author). 11 refs., 28 tabs., 37 figs.

  18. Recommendations concerning models and parameters best suited to breeder reactor environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.; Baes, C.F. III; Dunning, D.E. Jr.

    1980-05-01

    Recommendations are presented concerning the models and parameters best suited for assessing the impact of radionuclide releases to the environment by breeder reactor facilities. These recommendations are based on the model and parameter evaluations performed during this project to date. Seven different areas are covered in separate sections

  19. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors

    KAUST Repository

    Labarge, Nicole; Ye, Yaoli; Kim, Kyoung Yeol; Yilmazel, Yasemin Dilsad; Saikaly, Pascal; Hong, Pei-Ying; Logan, Bruce E.

    2016-01-01

    of the granular activated carbon (GAC) used in the reactor were examined here to determine their impact on chemical oxygen demand (COD) removal and microbial community composition of domestic wastewater-fed AFMBRs. AFMBRs inoculated with anaerobic digester sludge

  20. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Golay, M.W.

    1990-01-01

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  1. Computer modelling of water reactor fuel element performance and life time

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Golovnin, I.S.; Elesin, V.F.

    1983-01-01

    Well calibrated models and methods of calculation permit the confident prediction of fuel element behaviour under most different operational conditions; based on the prediction of this kind one can improve designs and fuel element behaviour. Therefore, in the Soviet Union in the development of reactor cores for NPP one of the leading parts is given to design problems associated with computer modelling of fuel element performance and reliability. Special attention is paid to methods of calculation that permit the prediction of fuel element behaviour under conditions which either make experimental studies very complicated (practically impossible) or require laborious and expensive in-pile tests. Primarily it concerns accidents of different types, off-normal conditions, transients, fuel element behaviour at high burn-up, when an accumulation of a great amount of fission fragments is accompanied by changes in physical and mechanical properties as induced by irradiation damage, mechanical fatigue, physical and chemical reactions with a coolant, fission products etc. Some major computer modelling programs for the prediction of water reactor fuel behaviour are briefly described below and tendencies in the further development of work in this area are summarized

  2. Principles, design and fuel performance characteristics of gas cooled thermal reactors

    International Nuclear Information System (INIS)

    Boocock, P.M.; Eaton, J.R.P.

    1989-01-01

    Reactor output and availability are closely related to fuel design and performance and the SSEB, in collaboration with the Central Electricity Generating Board have followed a policy of continuous analysis and improvement. The position reached is set out and some views on further improvements, are given. The strategy of increasing fuel burn-up on Hunterston A power station has brought significant dividends in the form of major benefits in fuel cycle cost and station availability. Significant improvements in output and availability at Hunterston B have resulted from increasing the fuel cycle burn-up, from 18 GWd/t U to 21 GWd/t U and introducing on-load refuelling. Additional benefits are soon to be obtained by further extending the burn-up to 24 GWd/t U. Further reduction of typically Pound 2-7 million/year in fuel cycle costs over the remaining life of the stations would be made by extending the burn-up to 30 GWd/t U at Hunterston B and Torness. There would be additional savings of about Pound 4 million/year in replacement fuel costs if the reactors continued to be refuelled at 30% power at Hunterston B and 40% power at Torness. (author)

  3. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  4. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  5. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  6. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  7. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  8. The parallel processing impact in the optimization of the reactors neutronic by genetic algorithms

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Universidade Federal, Rio de Janeiro, RJ; Lapa, Celso M.F.; Mol, Antonio C.A.

    2002-01-01

    Nowadays, many optimization problems found in nuclear engineering has been solved through genetic algorithms (GA). The robustness of such methods is strongly related to the nature of search process which is based on populations of solution candidates, and this fact implies high computational cost in the optimization process. The use of GA become more critical when the evaluation process of a solution candidate is highly time consuming. Problems of this nature are common in the nuclear engineering, and an example is the reactor design optimization, where neutronic codes, which consume high CPU time, must be run. Aiming to investigate the impact of the use of parallel computation in the solution, through GA, of a reactor design optimization problem, a parallel genetic algorithm (PGA), using the Island Model, was developed. Exhaustive experiments, then 1500 processing hours in 550 MHz personal computers, have been done, in order to compare the conventional GA with the PGA. Such experiments have demonstrating the superiority of the PGA not only in terms of execution time, but also, in the optimization results. (author)

  9. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  10. Study of reactivity of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Rammsy, J.E.M.

    1985-01-01

    The reactor physics calculations of a 19 module Fluidized Bed Nuclear Reactor using Leopard and Odog codes are performed. The behaviour of the reactor was studied by calculating the reactivity of the reactor as a function of the parameters governing the operational and accidental conditions of the reactor. The effects of temperature, pressure, and vapor generation in the core on the reactivity are calculated. Also the start up behaviour of the reactor is analyzed. For the purpose of the study of a prototype research reactor, the calculations on a one module reactor have been performed. (Author) [pt

  11. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  12. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  13. Advanced operational strategy for the IRIS reactor: Load follow through mechanical shim (MSHIM)

    International Nuclear Information System (INIS)

    Franceschini, Fausto; Petrovic, Bojan

    2008-01-01

    The renaissance of nuclear power brings more attention to advanced reactor designs and their improved performance and flexibility, including their enhanced load follow capability. Reactor control strategy used to perform transients including power changes has impact on the overall control system design. In particular, as the power change is performed within a load follow maneuver, several modifications occur in the core from a neutronic view point: the fuel and moderator temperature change, the xenon concentration and distribution are modified, the power distribution skewed axially, etc. These changes need to be adequately counterbalanced to keep both the core critical and the power distribution acceptable. The traditional approach in PWRs is to compensate for the reactivity change due to the power variation by adjusting the soluble boron concentration and moving a limited number of control rod banks. However, advanced reactors may adopt a different strategy for a variety of reasons. For example, water-cooled reactors that do not use soluble boron in coolant obviously cannot use its adjustment for this purpose. Moreover, Integral Primary System Reactors (IPSRs) using soluble boron, due to their integral design, have a large inventory of primary coolant. Therefore dilution/boration strategy, while in principle an option, becomes expensive for short time changes and leads to large volume of liquid effluent, in particular toward the end of cycle. Therefore, a capability to perform load follow without changing soluble boron concentration is very desirable for a range of reactor designs. International Reactor Innovative and Secure (IRIS) is an advanced medium-size IPSR that has been selected as the reference reactor for the purpose of this study. A capability to perform load follow maneuvers without changing soluble boron concentration has been examined and demonstrated through implementation of the Westinghouse Mechanical Shim (MSHIM) control strategy. A control bank

  14. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    Descleve, P.; Barrau, P.

    1988-01-01

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  15. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team

  16. Particle bed reactor propulsion vehicle performance and characteristics as an orbital transfer rocket

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Lazareth, O.W.

    1986-01-01

    The particle bed reactor designed for 100 to 300 MW power output using hydrogen as a coolant is capable of specific impulses up to 1000 seconds as a nuclear rocket. A single space shuttle compatible vehicle can perform extensive missions from LEO to 3 times GEO and return with multi-ton payloads. The use of hydrogen to directly cool particulate reactor fuel results in a compact, lightweight rocket vehicle, whose duration of usefulness is dependent only upon hydrogen resupply availability. The LEO to GEO mission had a payload capability of 15.4 metric tons with 3.4 meters of shuttle bay. To increase the volume limitation of the shuttle bay, the use of ammonia in the initial boost phase from LEO is used to give greater payload volume with a small decrease in payload mass, 8.7 meters and 12.7 m-tons. 5 refs., 15 figs

  17. Automatic examination of nuclear reactor vessels with focused search units. Status and typical application to inspections performed in accordance with ASME code

    International Nuclear Information System (INIS)

    Verger, B.; Saglio, R.

    1981-05-01

    The use of focused search units in nuclear reactor vessel examinations has significantly increased the capability of flaw indication detection and characterization. These search units especially allow a more accurate sizing of indications and a more efficient follow up of their history. In this aspect, they are a unique tool in the area of safety and reliability of installations. It was this type of search unit which was adopted to perform the examinations required within the scope of inservice inspections of all P.W.R. reactors of the French nuclear program. This paper summarizes the results gathered through the 4l examinations performed over the last five years. A typical application of focused search units in automated inspections performed in accordance with ASME code requirements on P.W.R. nuclear reactor vessels is then described

  18. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  19. Comparison of three ICF reactor designs

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Three concepts for inertial confinement fusion (ICF) reactors are described and compared with each other, and with magnetic fusion and fission reactors on the basis of environmental impact, safety and efficiency. The critical technical developments of each concept are described. The three concepts represent alternative development paths for inertial fusion

  20. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.