WorldWideScience

Sample records for reactor core containment

  1. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  2. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  3. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  4. Water injection device for reactor container

    International Nuclear Information System (INIS)

    Sakaki, Isao.

    1996-01-01

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  5. Safety system for reactor container

    International Nuclear Information System (INIS)

    Shimizu, Miwako; Seki, Osamu; Mano, Takio.

    1995-01-01

    A slanted structure is formed below a reactor core where there is a possibility that molten reactor core materials are dropped, and above a water level of a pool which is formed by coolants flown from a reactor recycling system and accumulated on the inner bottom of the reactor container, to prevent molten fuels from dropping at once in the form of a large amount of lump. The molten materials are provisionally received on the structure, gradually formed into small pieces and then dropped. Further, the molten materials are dropped and received provisionally on a group of coolant-flowing pipelines below the structure, to lower the temperature of the molten materials, and then the reactor core molten materials are gradually formed into small pieces and dropped into the pool water. Since they are not dropped directly into the pool water but dropped gradually into the pool water as small droplets, occurrence of steam explosion can be reduced. The occurrence of steam explosion due to dropped molten reactor core material and pool water is suppressed, and the molten materials are kept in the pool water, thereby enabling to maintain the integrity of the reactor container more effectively. (N.H.)

  6. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  7. Reactor container facility

    International Nuclear Information System (INIS)

    Saito, Takashi; Nagasaka, Hideo.

    1990-01-01

    A dry-well pool for spontaneously circulating stored pool water and a suppression pool for flooding a pressure vessel by feeding water, when required, to a flooding gap by means of spontaneous falling upto the flooding position, thereby flooding the pressure vessel are contained at the inside of a reactor container. Thus, when loss of coolant accidents such as caused by main pipe rupture accidents should happen, pool water in the suppression pool is supplied to the flooding gap by spontaneously falling. Further, if the flooding water uprises exceeding a predetermined level, the flooding gap is in communication with the dry-well pool at the upper and the lower portions respectively. Accordingly, flooding water at high temperature heated by the after-heat of the reactor core is returned again into the flooding gap to cool the reactor core repeatedly. (T.M.)

  8. A reactor core/containment status evaluation flowchart for determining protective actions in emergencies

    International Nuclear Information System (INIS)

    Glissman, M.A.

    1988-01-01

    In the event of an emergency at a power reactor station, there might not be adequate time or sufficient data to fully assess radiological implications and make protective action recommendations based on projected population exposures. Thus, decision-making guidance is needed that is based on readily available plant indicators, not just on time-consuming dose calculations. In the United States, this guidance must be compatible with the recommended by the Nuclear Regulatory Commission and the Environmental Protection Agency, and it must include predetermined, measurable, site-specific parameters for assessing conditions in the reactor core and containment. The preparation of this real time guidance calls for the selection of suitable parameters and the determination of the values for these parameters that will correspond to different levels of protective action. This process is illustrated in this paper by selecting parameters and determining appropriate values for constructing a Core/Containment Status Evaluation Flowchart for an example power plant

  9. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  10. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  11. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  12. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  13. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  14. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  15. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Bunz, H.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-01-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSIM-M, UK; AEROSOLS/B1, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR. Topics considered in this paper include aerosols, containment buildings, reactor safety, fission product release, reactor cores, meltdown, and monitoring

  16. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  17. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  18. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  19. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  20. Reactor container structure

    International Nuclear Information System (INIS)

    Sato, Yoshimi; Fukuda, Yoshio.

    1993-01-01

    A main container of an FBR type reactor using liquid sodium as coolants is attached to a roof slug. The main container contains, as coolants, lower temperature sodium, and high temperature sodium above a reactor core and a partitioning plate. The main container has a structure comprising only longitudinal welded joints in parallel with axial direction in the vicinity of the liquid surface of high temperature sodium where a temperature gradient is steep and great thermal stresses are caused without disposing lateral welded joints in perpendicular to axial direction. Only the longitudinal welded joints having a great fatigue strength are thus disposed in the vicinity of the liquid surface of the high temperature sodium where axial thermal stresses are caused. This can improve reliability of strength at the welded portions of the main container against repeating thermal stresses caused in vicinity of the liquid surface of the main container from a view point of welding method. (I.N.)

  1. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  2. Nuclear reactor melt-retention structure to mitigate direct containment heating

    Science.gov (United States)

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  3. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  4. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  5. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  6. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  7. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations

  8. Upgrading of the Munich reactor with a compact core

    International Nuclear Information System (INIS)

    Boening, K.; Glaeser, W.; Meier, J.; Rau, G.; Roehrmoser, A.; Zhang, L.

    1985-01-01

    An extremely small reactor core has been proposed for the project of substantial modernization of the FRM research reactor at Munich. According to the present status this 'compact core' will be a cylinder with a diameter of about 20 cm and 70 cm high. The new high-density U 3 Si/Al dispersion fuel of about 45% enrichment is contained in 20 concentric fuel plate rings. The compact core is surrounded by a large heavy-water tank which will incorporate the user installations (beam tubes and irradiation channels). However, the primary cooling circuit will contain light water which is not only more economic but also essential for the performance of the small core. An important optimization potential to decrease easily the power density peaks in the core is to reduce further the enrichment in those fuel plate rings where the neutron flux is particularly high. Two-dimensional neutron transport calculations show that such a core, containing about 7.5 kg 235 U, should have an effective multiplication factor of about 1.22 and an unperturbed but realistic maximum thermal neutron flux in the heavy water tank of 7 to 8x10 14 cm -2 .s -1 at 20 MW reactor power. (author)

  9. Reactor-core-reactivity control device

    International Nuclear Information System (INIS)

    Miura, Teruo; Sakuranaga, Tomonobu.

    1983-01-01

    Purpose: To improve the reactor safety upon failures of control rod drives by adapting a control rod not to drop out accidentally from the reactor core but be inserted into the reactor core. Constitution: The control rod is entered or extracted as usual from the bottom of the pressure vessel. A space is provided above the reactor core within the pressure vessel, in which the moving scope of the control rod is set between the space above the reactor core and the reactor core. That is, the control rod is situated above the reactor core upon extraction thereof and, if an accident occurs to the control rod drive mechanisms to detach the control rod and the driving rod, the control rod falls gravitationally into the reactor core to improve the reactor safety. In addition, since the speed limiter is no more required to the control rod, the driving force can be decreased to reduce the size of the rod drive mechanisms. (Ikeda, J.)

  10. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  11. Simplified safety and containment systems for the iris reactor

    International Nuclear Information System (INIS)

    Conway, L.E.; Lombardi, C.; Ricotti, M.; Oriani, L.

    2001-01-01

    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  12. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  13. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  14. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  15. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  16. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  17. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  18. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  19. European ERANOS formulaire for fast reactor core analysis

    International Nuclear Information System (INIS)

    Rimpault, Gerald

    2003-01-01

    ERANOS code scheme was developed within the European collaboration on fast reactors. It contains all the functions required to calculate a complete set of core, shielding and fuel cycle parameters for LMFR cores. Nuclear data are taken from recent evaluations (JEF2.2) and adjusted on integral experiments (ERALIB1). Calculational scheme uses the ECCO cell code to generate cross section data. Whole core calculations are carried out using the spatial modules BISTRO (Sn) and TGVNARIANT (nodal method). Validation is based on integral and power reactor experiments. Integral experiments are also used for adjustment of nuclear data

  20. Fission reactor container

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1991-01-01

    Cooling water is sent without using dynamic equipments upon loss of coolants accident in a pressure vessel by improving an arrangement of a nuclear reactor pressure vessel. That is, a containing space is formed at the center of a suppression chamber for storing cooling water while being partitioned with each other, in which the pressure vessel is placed. Further, a water reservoir is formed above the pressure vessel. Then a water discharge pipe is connected to the reservoir for submerging the stored water over the pressure vessel upon occurrence of loss of coolants accident. Further, a water injection pipe is disposed between the pressure suppression chamber and the pressure vessel for injecting the cooling water in the pressure suppression chamber to the reactor core of the pressure vessel by the difference of a water head upon loss of coolants accident. With such a constitution, the pressure vessel has high earthquake proofness. Further, upon loss of coolants accident of the pressure vessel, the cooling water in the reservoir is discharged to submerge and cool the pressure vessel efficiently. Further, the reactor core of the pressure vessel can certainly be cooled by the cooling water of the pressure suppression chamber without relying on dynamic equipments. (I.S.)

  1. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  2. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  3. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  4. COMSORS: A light water reactor chemical core catcher

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.

    1997-01-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B 2 O 3 ) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation

  5. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  6. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  7. Containment loading during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Cenerino, C.; Berthion, Y.; Carvallo, G.

    1984-11-01

    The objective of the article is to study the influence of the state of the reactor cavity (dry or flooded) and of the corium coolability on the thermal-hydraulics in the containment in the case of an accident sequence involving core melting and subsequent containment basemat erosion, in a 900 MWe PWR unit. Calculations are performed by using the JERICHO thermal hydraulics code

  8. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  9. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  10. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  11. Pressure releasing device for reactor container

    International Nuclear Information System (INIS)

    Takeda, Mika.

    1994-01-01

    In the present invention, dose rate to public caused by radioactive rare gases can be decreased. That is, a reactor container contains a reactor pressure vessel incorporating a reactor core. There are disposed a pressure releasing system for releasing the pressure in the reactor pressure vessel to the outside, and a burning device for burning gases released from the pressure releasing system. An exhaustion pipe is disposed to the pressure releasing system. A burning device is disposed to the exhaustion pipe. It is effective to dispose a ventilation port at a portion of the exhaustion pipe upstream of the burning device. In addition, the burning device may preferably be disposed in a multi-stage in the axial direction of the exhaustion pipe. With such procedures, hydrogen in gases discharged along with the release of the pressure in the container is burned. Buoyancy is caused to the exhaustion gases by heat energy upon burning. Since the exhaustion gases can reach a higher level by the buoyancy, the dose rate due to the rare gases can be reduced. (I.S.)

  12. Reactor container

    International Nuclear Information System (INIS)

    Fukazawa, Masanori.

    1991-01-01

    A system for controlling combustible gases, it has been constituted at present such that the combustible gases are controlled by exhausting them to the wet well of a reactor container. In this system, however, there has been a problem, in a reactor container having plenums in addition to the wet well and the dry well, that the combustible gases in such plenums can not be controlled. In view of the above, in the present invention, suction ports or exhaust ports of the combustible gas control system are disposed to the wet well, the dry well and the plenums to control the combustible gases in the reactor container. Since this can control the combustible gases in the entire reactor container, the integrity of the reactor container can be ensured. (T.M.)

  13. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  14. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  15. Station blackout core damage frequency in an advanced nuclear reactor

    International Nuclear Information System (INIS)

    Carvalho, Luiz Sergio de

    2004-01-01

    Even though nuclear reactors are provided with protection systems so that they can be automatically shut down in the event of a station blackout, the consequences of this event can be severe. This is because many safety systems that are needed for removing residual heat from the core and for maintaining containment integrity, in the majority of the nuclear power plants, are AC dependent. In order to minimize core damage frequency, advanced reactor concepts are being developed with safety systems that use natural forces. This work shows an improvement in the safety of a small nuclear power reactor provided by a passive core residual heat removal system. Station blackout core melt frequencies, with and without this system, are both calculated. The results are also compared with available data in the literature. (author)

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  17. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  18. Bounding analysis of containment of high pressure melt ejection in advanced light water reactors

    International Nuclear Information System (INIS)

    Additon, S.L.; Fontana, M.H.; Carter, J.C.

    1990-01-01

    This paper reports on the loadings on containment due to direct containment heating (DCH) as a result of high pressure melt ejection (HPME) in advanced light water reactors (ALWR) which were estimated using conservative, bounding analyses. The purpose of the analyses was to scope the magnitude of the possible loadings and to indicate the performance needed from potential mitigation methods, such as a cavity configuration that limits energy transfer to the upper containment volume. Analyses were performed for three cases which examined the effect of availability of high pressure reactor coolant system water at the time of reactor vessel melt through and the effect of preflooding of the reactor cavity. The amount of core ejected from the vessel was varied from 100% to 0% for all cases. Results indicate that all amounts of core debris dispersal could be accommodated by the containment for the case where the reactor cavity was preflooded. For the worst case, all the energy from in-vessel hydrogen generation and combustion plus that from 45% of the entire molten core would be required to equilibrate with the containment upper volume in order to reach containment failure pressure

  19. Reactor containment

    International Nuclear Information System (INIS)

    Kawabe, Ryuhei; Yamaki, Rika.

    1990-01-01

    A water vessel is disposed and the gas phase portion of the water vessel is connected to a reactor container by a pipeline having a valve disposed at the midway thereof. A pipe in communication with external air is extended upwardly from the liquid phase portion to a considerable height so as to resist against the back pressure by a waterhead in the pipeline. Accordingly, when the pressure in the container is reduced to a negative level, air passes through the pipeline and uprises through the liquid phase portion in the water vessel in the form of bubbles and then flows into the reactor container. When the pressure inside of the reactor goes higher, since the liquid surface in the water vessel is forced down, water is pushed up into the pipeline. Since the waterhead pressure of a column of water in the pipeline and the pressure of the reactor container are well-balanced, gases in the reactor container are not leaked to the outside. Further, in a case if a great positive pressure is formed in the reactor container, the inner pressure overcomes the waterhead of the column of water, so that the gases containing radioactive aerosol uprise in the pipeline. Since water and the gases flow being in contact with each other, this can provide the effect of removing aerosol. (T.M.)

  20. Containment shells of reactor compartments at foreign NPPs

    International Nuclear Information System (INIS)

    Demidov, A.P.; Savchenko, V.A.

    1989-01-01

    The modern designes of containment shells (CS) of NPP reactor compartments is described. Much attention is paid to the PCS-3 project envisaging CS inclusion in the complex of NPP passive safety system. The PCS-3 system is developed in the USA for NPP with the improved PWR type reactor. The above system permits to cool the core quickly, to reduce steam pressure in CS down to a safe level and to prevent the discharge of radioactive products in the atmosphere in the case of accidents, even very serious, caused by loss of coolant and core dryout

  1. APROS couplings from core to containment

    International Nuclear Information System (INIS)

    Puska, E.K.; Ylijoki, J.

    2005-01-01

    APROS simulation environment is able to describe the 1-D and 3-D neutronics of the reactor core. It is also able to describe the thermal hydraulics of the core and circuits either with 5- equation or 6-equation thermal hydraulics. It can also describe the plant automation and electrical systems, as well as the behaviour of the containment. The peculiar feature of APROS in comparison to other coupled systems is that all parts in the coupled system are described with the same code instead of coupling two or three separate codes together with information exchange between the separate codes. The most recent possibility is the coupled calculation of the process and the containment. The more traditional coupling, the coupling of the process containing both the process description and the automation description with more or less detailed description of the 3-D core either for safety analysis or real-time simulation purposes has been discussed in previous work. The paper presents and discusses the capabilities of the code in coupling the plant process and automation description with the plant containment description with two example transient cases. An improved boron concentration solution with second order upwind discretization has been recently included in APROS. An example on the increased accuracy acquired in the 3-D core model has been included. (authors)

  2. Elements of thought on corium containment strategy in reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    As accidents with core fusion are taken into account for the design of third-generation nuclear reactors, this brief document presents the corium containment strategy for a reactor vessel, its limitations, as well as research programs undertaken by the IRSN in this field. The report describes the controlled management of a severe accident, the major objective being to minimise releases in the environment, that which requires to maintain the reactor containment enclosure tightness. Practical actions are briefly indicated. Key points indicating the feasibility of a strategy of containment in vessel are discussed. The impact of reactor power on the robustness of an approach with containment in vessel is also discussed. An overview of technological evolutions and contributions of researches made by the IRSN is finally proposed

  3. Lateral restraint assembly for reactor core

    Science.gov (United States)

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  4. Reactor container

    International Nuclear Information System (INIS)

    Kojima, Yoshihiro; Hosomi, Kenji; Otonari, Jun-ichiro.

    1997-01-01

    In the present invention, a catalyst for oxidizing hydrogen to be disposed in a reactor container upon rupture of pipelines of a reactor primary coolant system is prevented from deposition of water droplets formed from a reactor container spray to suppress elevation of hydrogen concentration in the reactor container. Namely, a catalytic combustion gas concentration control system comprises a catalyst for oxidizing hydrogen and a support thereof. In addition, there is also disposed a water droplet deposition-preventing means for preventing deposition of water droplets in a reactor pressure vessel on the catalyst. Then, the effect of the catalyst upon catalytic oxidation reaction of hydrogen can be kept high. The local elevation of hydrogen concentration can be prevented even upon occurrence of such a phenomenon that various kinds of mobile forces in the container such as dry well cooling system are lost. (I.S.)

  5. Nuclear reactor melt-retention structure to mitigate direct containment heating

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klages, J.R.

    1991-01-01

    This patent describes a nuclear reactor melt-retention structure that functions to retain molten core material within a melt retention chamber to mitigate the extent of direct containment heating. The structure being adapted to be positioned within or adjacent to a pressurized or boiling water nuclear reactor containment building at a location such that at least a portion of the melt retention structure is lower than and to one side of the nuclear reactor pressure vessel, and such that the structure is adjacent to a gas escape channel means that communicates between the reactor cavity and the containment building of the reactor. It comprises a melt-retention chamber, wall means defining a passageway extending between the reactor cavity underneath the reactor pressure vessel and one side of the chamber, the passageway including vent means extending through an upper wall portion thereof. The vent means being in communication with the upper region of the reactor containment building, whereby gas and steam discharged from the reactor pressure vessel are vented through the passageway and vent means into the gas-escape channel means and the reactor containment building

  6. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  7. Reference Monte Carlo calculations of Maria reactor core

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.

    2002-01-01

    The reference Monte Carlo calculations of MARIA reactor core have been carried to evaluate accuracy of the calculations at each stage of its neutron-physics analysis using deterministic codes. The elementary cell has been calculated with two main goals; evaluation of effects of simplifications introduced in deterministic lattice spectrum calculations by the WIMS code and evaluation of library data in recently developed WIMS libraries. In particular the beryllium data of those libraries needed evaluation. The whole core calculations mainly the first MARIA critical experiment and the first critical core after the 8-year break in operation. Both cores contained only fresh fuel elements but only in the first critical core the beryllium blocks were not poisoned by Li-6 and He-3. Thus the MCNP k-eff results could be compared with the experiment. The MCNP calculations for the cores with beryllium poisoned suffered the deficiency of uncertainty in the poison concentration, but a comparison of power distribution shows that realistic poison levels have been carried out for the operating reactor MARIA configurations. (author)

  8. Upgrade of the Annular Core Pulse Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reuscher, J A [Sandia Laboratories, Albuquerque, NM (United States)

    1976-07-01

    elements will occupy the three rings adjacent to the irradiation cavity and the U-ZrH elements will be placed in the four outer rings. Other modifications are anticipated for the reactor systems. A completely new control system will be installed, a larger pool cooling capability is required for a higher steady-state power, and the need for a containment system is anticipated in the event of a reactor accident. Another part of the fast reactor safety research program at Sandia Laboratories is the investigation of techniques to observe the motion of molten fuel and clad during and after a reactor pulse. Such a device may require changes to the grid configuration so that a radial row of fuel elements can be removed to allow observation of an experiment in the cavity. Core design considerations for a fuel motion detection system are a part of the upgrade project. (author)

  9. Neutron radiography (NRAD) reactor 64-element core upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately ±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  10. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  11. Research on plasma core reactors

    International Nuclear Information System (INIS)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF 6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm 3 aluminum canister in the central region was fueled with UF 6 gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation

  12. Reactor core performance estimating device

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinpuku, Kimihiro; Chuzen, Takuji; Nishide, Fusayo.

    1995-01-01

    The present invention can autonomously simplify a neural net model thereby enabling to conveniently estimate various amounts which represents reactor core performances by a simple calculation in a short period of time. Namely, a reactor core performance estimation device comprises a nerve circuit net which divides the reactor core into a large number of spacial regions, and receives various physical amounts for each region as input signals for input nerve cells and outputs estimation values of each amount representing the reactor core performances as output signals of output nerve cells. In this case, the nerve circuit net (1) has a structure of extended multi-layered model having direct coupling from an upper stream layer to each of downstream layers, (2) has a forgetting constant q in a corrected equation for a joined load value ω using an inverse error propagation method, (3) learns various amounts representing reactor core performances determined using the physical models as teacher signals, (4) determines the joined load value ω decreased as '0' when it is to less than a predetermined value upon learning described above, and (5) eliminates elements of the nerve circuit net having all of the joined load value decreased to 0. As a result, the neural net model comprises an autonomously simplifying means. (I.S.)

  13. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  14. Nuclear reactor with several cores

    International Nuclear Information System (INIS)

    Swars, H.

    1977-01-01

    Several sodium-cooled cores in separate vessels with removable closures are placed in a common reactor tank. Each individual vessel is protected against the consequences of an accident in the relevant core. Maintenance devices and inlet and outlet pipes for the coolant are also arranged within the reactor tank. The individual vessels are all enclosed by coolant in a way that in case of emergency cooling or refuelling each core can be continued to be cooled by means of the coolant loops of the other cores. (HP) [de

  15. Reactor container

    International Nuclear Information System (INIS)

    Shibata, Satoru; Kawashima, Hiroaki

    1984-01-01

    Purpose: To optimize the temperature distribution of the reactor container so as to moderate the thermal stress distribution on the reactor wall of LMFBR type reactor. Constitution: A good heat conductor (made of Al or Cu) is appended on the outer side of the reactor container wall from below the liquid level to the lower face of a deck plate. Further, heat insulators are disposed to the outside of the good heat conductor. Furthermore, a gas-cooling duct is circumferentially disposed at the contact portion between the good heat conductor and the deck plate around the reactor container. This enables to flow the cold heat from the liquid metal rapidly through the good heat conductor to the cooling duct and allows to maintain the temperature distribution on the reactor wall substantially linear even with the abrupt temperature change in the liquid metal. Further, by appending the good heat conductor covered with inactive metals not only on the outer side but also on the inside of the reactor wall to introduce the heat near the liquid level to the upper portion and escape the same to the cooling layer below the roof slab, the effect can be improved further. (Ikeda, J.)

  16. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  17. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  18. Advanced core monitoring technology for WWER reactors

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Casadei, A.L.; Doshi, P.K.

    1993-01-01

    The Westinghouse BEACON online monitoring system has been developed to provide continuous core monitoring and operational support for pressurized water reactor using movable detectors (fission chamber) and core thermocouples. The basic BEACON core monitoring methodology is described. Traditional WWER reactors use rhodium fixed in-core detectors as the means to provide detailed core power distribution for surveillance purposes. An adapted version of the BEACON advanced core monitoring and support system is described which seems to be, due to the different demand/response requirements, the optimal solution (for routine surveillance and anomaly detection) for WWER reactors with existing fixed in-core detectors. (Z.S.) 4 refs

  19. Device for removing a spent reactor core instrument tube

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1980-01-01

    Purpose: To easily and exactly execute works for removing a used reactor core instrument tube to be mounted in a reactor core from the lattice space of the core or for charging the tube into the lattice of the core. Constitution: When fuel assembly is pulled out of a reactor core and a spent reactor core instrument tube is then bent and removed from the core at periodical inspection time, a lower gripping unit integral with an upper gripping unit and a bending unit is provided at the lower end of a hanging rope of a winch, and lowered to the reactor core. Then, the spent reactor core instrument tube is gripped by the upper and lower gripping units, the bending unit is operated, the spent reactor core instrument tube is bent, and the tube is then pulled upwardly by the winch to remove the tube. (Aizawa, K.)

  20. Actions to reduce radioactive emissions: prevention of containment failure by flooding Containment and Reactor Cavity

    International Nuclear Information System (INIS)

    Fornos Herrando, J.

    2013-01-01

    The reactor cavity of Asco and Vandellos II is dry type, thus a severe accident leading to vessel failure might potentially end up resulting in the loss of containment integrity, depending on the viability to cool the molten core. Therefore, significant radioactive emissions could be released to outside. In the framework of Fukushima Stress Tests, ANAV has analyzed the convenience of carrying out different actions to prevent failure of the containment integrity in order to reduce radioactive emissions. The aim of this paper is to present and describe the main phenomenological aspects associated with two of these actions: containment flooding and reactor cavity flooding.

  1. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    International Nuclear Information System (INIS)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used

  2. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  3. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-02-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSISM-M, UK; AEROSOLS/BI, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

  4. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  5. Nuclear reactor container

    International Nuclear Information System (INIS)

    Ishiyama, Takenori.

    1989-01-01

    This invention concerns a nuclear reactor container in which heat is removed from a container by external water injection. Heat is removed from the container by immersing the lower portion of the container into water and scattering spary water from above. Thus, the container can be cooled by the spray water falling down along the outer wall of the container to condensate and cool vapors filled in the container upon occurrence of accidents. Further, since the inside of the container can be cooled also during usual operation, it can also serve as a dry well cooler. Accordingly, heat is removed from the reactor container upon occurrence of accidents by the automatic operation of a spray device corresponding to the change of the internal temperature and the pressure in the reactor container. Further, since all of these devices are disposed out of container, maintenance is also facilitated. (I.S.)

  6. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  7. Reactor container

    International Nuclear Information System (INIS)

    Abe, Yoshihito; Sano, Tamotsu; Ueda, Sabuo; Tanaka, Kazuhisa.

    1987-01-01

    Purpose: To improve the liquid surface disturbance in LMFBR type reactors. Constitution: A horizontal flow suppressing mechanism mainly comprising vertical members is suspended near the free liquid surface of coolants in the upper plenum. The horizontal flow of coolants near the free liquid surface is reduced by the suppressing mechanism to effectively reduce the surface disturbance. The reduction in the liquid surface disturbance further prevails to the entire surface region with no particular vertical variations to the free liquid surface to remarkably improve the preventive performance for the liquid surface disturbance. Accordingly, it is also possible to attain the advantageous effects such as prevention for the thermal fatigue in reactor vessel walls, reactor upper mechanisms, etc. and prevention of burning damage to the reactor core due to the reduction of envolved Ar gas. (Kamimura, M.)

  8. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  9. Reactor containing facility

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1992-01-01

    A cooling space having a predetermined capacity is formed between a reactor container and concrete walls. A circulation loop disposed to the outside of the concrete walls is connected to the top and the bottom of the cooling space. The circulation loop has a circulation pump and a heat exchanger, and a cooling water supply pipe is connected to the upstream of the circulation pump for introducing cooling water from the outside. Upon occurrence of loss of coolant accident, cooling water is introduced from the cooling water supply pipe to the cooling space between the reactor container and the concrete walls after shut-down of the reactor operation. Then, cooling water is circulated while being cooled by the heat exchanger, to cool the reactor container by cooling water flown in the cooling space. This can cool the reactor container in a short period of time upon occurrence of the loss of coolant accident. Accordingly, a repairing operation for a ruptured portion can be conducted rapidly. (I.N.)

  10. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  11. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  12. Pebble bed reactor with one-zone core

    International Nuclear Information System (INIS)

    Mueller-Frank, U.; Lohnert, G.

    1977-01-01

    The claim deals with measures to differentiate the flow rate and to remove spherical fuel elements in the core of a pebble bed reactor. Hence the vertical rate of the fuel elements in the border region is for example twice as much as in the centre. A central funnel-shaped outlet on the floor of the core container over which a conical body is placed with its peak pointing upwards, or also the forming of several outlets can be used to adjust to a certain exit rate for the fuel elements. The main target of the invention is a radially extensively constant coolant outlet temperature at the outlet of the core which determines the effectiveness of the connected heat exchanger and thus contributes to economy. (UA) [de

  13. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  14. Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Loetsch, T.; Khalimonchuk, V.; Kuchin, A.

    2009-01-01

    In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)

  15. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  16. Plasma core reactor applications

    International Nuclear Information System (INIS)

    Latham, T.S.; Rodgers, R.J.

    1976-01-01

    Analytical and experimental investigations are being conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride (UF 6 ) fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Power, in the form of thermal radiation emitted from the high-temperature nuclear fuel, is transmitted through fused-silica transparent walls to working fluids which flow in axial channels embedded in segments of the cavity walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration; each cavity is approximately 1 m in diameter by 4.35 m in length. Axial working fluid channels are located along a fraction of each cavity peripheral wall

  17. The containment safety of the Dragon Reactor

    International Nuclear Information System (INIS)

    Cullington, G.R.

    1967-08-01

    The original design of the Dragon Reactor was based upon the assumption that fission product emitting fuel elements would be used, leading to two significant considerations. First, a highly active primary circuit would result in normal operation, and second, under accident conditions involving massive core damage and corrosion following a major pressure vessel failure, the bulk of the core burden of fission products would be released. The adoption of coated particle fuel able to retain fission products has changed significantly the philosophy behind the design of the containment. The new philosophy is described and its effect on operating principles is discussed. (UK)

  18. Reactor core operation management system

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1992-01-01

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.)

  19. Reactor core operation management system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomomi.

    1992-05-28

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.).

  20. Modular core component support for nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.; Anthony, A.J.

    1975-01-01

    The core of a nuclear reactor is made up of a plurality of support modules for containing components such as fuel elements, reflectors and control rods. Each module includes a component support portion located above a grid plate in a low-pressure coolant zone and a coolant inlet portion disposed within a module receptacle which depends from the grid plate into a zone of high-pressure coolant. Coolant enters the module through aligned openings within the receptacle and module inlet portion and flows upward into contact with the core components. The modules are hydraulically balanced within the receptacles to prevent expulsion by the upward coolant forces. (U.S.)

  1. Detonability of containment building atmospheres during core-meltdown accidents

    International Nuclear Information System (INIS)

    Jaung, R.; Berlad, L.; Pratt, W.

    1983-01-01

    During Core-Meltdown Accidents in Light Water Reactors, significant quantities of combustible gases could be released to the containment building. The highest possible peak pressure fields that may occur through combustion processes are associated with detonation phenomena. Accordingly, it is necessary to understand and identify the possible ways in which detonations may or may not occur. Although no comprehensive theory of detonation is currently available, there are useful guidelines, which can be derived from current theoretical concepts and the body of experimental data. This paper examines these guidelines and indicates how they may be used to evaluate the possible occurrence of detonation-related combustion processes. In particular, this study identifies three features that an initiation source must achieve if it is to ultimately result in a stable detonation. One of these features requires post-shock initial conditions that lead to very short ignition delays. This concept is used to examine the possibility of achieving quasi-steady detonation phenomena in nuclear reactor containment buildings during postulated core-melt accidents

  2. Course of pin fuel test In WWR-M reactor core

    International Nuclear Information System (INIS)

    Zakharov, A.S.; Kirsanov, G.A.; Konoplev, K.A.

    2005-01-01

    Pin type fuel element (FE) of square form with twisted ribs was developed in VNIINM as an alternative for tube type FE of research reactors. Two variants of full-scale fuel assemblies (FA) are under test in the core of PNPI WWR-M reactor. One FA contains FE with UO 2 LEU and other - UMo LEU. Both types of FE have an aluminum matrix. Results of the first stages of the test are presented. (author)

  3. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  4. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  5. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  6. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  7. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  8. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  9. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  10. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  11. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  12. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  13. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  14. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  15. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  16. Validation of reactor core protection system

    International Nuclear Information System (INIS)

    Lee, Sang-Hoon; Bae, Jong-Sik; Baeg, Seung-Yeob; Cho, Chang-Ho; Kim, Chang-Ho; Kim, Sung-Ho; Kim, Hang-Bae; In, Wang-Kee; Park, Young-Ho

    2008-01-01

    Reactor COre Protection System (RCOPS), an advanced core protection calculator system, is a digitized one which provides core protection function based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels adapted a two-out-of-four trip logic. System configuration, hardware platform and an improved algorithm of the newly designed core protection calculator system are described in this paper. One channel of RCOPS was implemented as a single channel facility for this R and D project where we performed final integration software testing. To implement custom function blocks, pSET is used. Software test is performed by two methods. The first method is a 'Software Module Test' and the second method is a 'Software Unit Test'. New features include improvement of core thermal margin through a revised on-line DNBR algorithm, resolution of the latching problem of control element assembly signal and addition of the pre-trip alarm generation. The change of the on-line DNBR calculation algorithm is considered to improve the DNBR net margin by 2.5%-3.3%. (author)

  17. Nuclear reactor, reactor core thereof, and device for constituting the reactor

    International Nuclear Information System (INIS)

    Takiyama, Masashi.

    1994-01-01

    A reactor core is constituted by charging coolants (light water) in a reactor pressure vessel and distributing fuel assemblies, reflecting material sealing pipes, moderator (heavy water and helium gas) sealing pipes, and gas sealing pipes therein. A fuel guide tube is surrounded by a cap and the gap therebetween is made hollow and filled with coolant steams. The cap is supported by a baffle plate. The moderator sealing pipe is disposed in a flow channel of coolants in adjacent with the cap. The position of the moderator sealing tube in the reactor core is controlled by water stream from a hydraulic pump with a guide tube extending below the baffle plate being as a guide. Then, the position of the moderator sealing tube is varied to conduct power control, burnup degree compensation, and reactor shut down. With such procedures, moderator cooling facility is no more necessary to simplify the structure. Further, heat generated from the moderator is transferred to the coolants thereby improving heat efficiency of the reactor. (I.N.)

  18. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  19. Restraint system for core elements of a reactor core

    International Nuclear Information System (INIS)

    Class, G.

    1975-01-01

    In a nuclear reactor, a core element bundle formed of a plurality of side-by-side arranged core elements is surrounded by restraining elements that exert a radially inwardly directly restraining force generating friction forces between the core elements in a restraining plane that is transverse to the core element axes. The adjoining core elements are in rolling contact with one another in the restraining plane by virtue of rolling-type bearing elements supported in the core elements. (Official Gazette)

  20. Stationary liquid fuel fast reactor SLFFR – Part I: Core design

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Yang, G.; Jung, Y.S.; Yang, W.S., E-mail: yang494@purdue.edu

    2016-12-15

    Highlights: • An innovative fast reactor concept SLFFR based on liquid metal fuel is proposed for TRU burning. • A compact core design of 1000 MWt SLFFR is developed to achieve a zero conversion ratio and passive safety. • The core size and the control requirement are significantly reduced compared to the conventional solid fuel reactor with same conversion ratio. - Abstract: For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named the stationary liquid fuel fast reactor (SLFFR) has been proposed based on a stationary molten metallic fuel. A compact core design of a 1000 MWt SLFFR has been developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches have been adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses have been performed to evaluate the steady-state performance characteristics. The analysis results indicate that the SLFFR of a zero TRU conversion ratio is feasible while satisfying the conservatively imposed thermal design constraints. A theoretical maximum TRU consumption rate of 1.01 kg/day is achieved with uranium-free fuel. Compared to the solid fuel reactors with the same TRU conversion ratio, the core size and the reactivity control requirement are reduced significantly. The primary and secondary control systems provide sufficient shutdown margins, and the calculated reactivity feedback coefficients show that the prompt fuel expansion coefficient is sufficiently negative.

  1. Filtered atmospheric venting of light water reactor containments

    International Nuclear Information System (INIS)

    Hedgran, A.; Ahlstroem, P.E.; Nilsson, L.; Persson, Aa.

    1982-11-01

    The aim of filtered venting is to improve the function of the reactor containment in connection with very severe accidents. By equipping the containment with a safety valve for pressure relief and allowing the released gases to pass through an effective filter, it should be possible to achieve a considerable protective effect. The work has involved detailed studies of the core meltdown sequence, how the molten core material runs out of the reactor vessel, what effect it has on concrete and other structures and how final cooling of the molten core material takes place. On the basis of previous Swedish studies, the project has chosen to study a filter concept that consists of a gravel bed of large volume. This filter plant shall not only retain the radioactive particles that escape from the containment through the vent line, but shall also condense the accompanying steam. After the government decided in 1981 that Barsebaeck was to be equipped with filtered venting and issued specifications regarding its performance, the project aimed at obtaining results that could be used to design and verify a plant for filtered venting at the Barsebaeck nuclear power station. As far as the other Swedish nuclear power plants at Oskarshamn, Ringhals and Forsmark are concerned, the results are only applicable to a limited extent. Additional studies are required for these nuclear power plants before the value of filtered venting can be assessed. Based on the results of experiments and analyses, the project has made a safety analysis with Barsebaeck as a reference plant in order to study how the introduction of filtered venting affects the safety level at a station. In summary, the venting function appears to entail a not insignificant reduction of risks for boiling water reactors of the Barsebaeck type. For a number of types of such very severe core accident cases, the filter design studied ensures a substantial reduction of the releases. However it has not been possible within the

  2. Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2017-05-15

    This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.

  3. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  4. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  5. Nuclear reactor container

    International Nuclear Information System (INIS)

    Shioiri, Akio.

    1992-01-01

    In a nuclear reactor container, a vent tube communication port is disposed to a pressure suppression pool at a position higher than the pool water therein for communication with an upper dry well, and the upper end opening of a dry well communication pipe is disposed at a position higher than the communication port. When condensate return pipeline is ruptured in the upper dry well, water in a water source pool is injected to the pressure vessel and partially discharged out of the ruptured port and a depressurization valve connected to the pressure vessel to the inside of the upper dry well. The discharged water stays in the upper dry well and, when the water level reaches the height of the vent tube communication port, it flows into the pressure suppression pool. Even in a state that the entire amount of water in the water source pool is supplied, since water does not reach the upper opening port of the dry well communication pipe, water does not flow into a lower dry well. Accordingly, the motor of a control rod drives disposed in the lower dry well can be prevented from submerging. The reactor core can be cooled more reliably, to improve the reliability of the pressure suppression function. (N.H.)

  6. Fast reactor core monitoring device

    International Nuclear Information System (INIS)

    Sanda, Toshio; Inoue, Kotaro; Azekura, Kazuo.

    1982-01-01

    Purpose: To enable the rapid and accurate on-line identification of the state of a fast reactor core by effectively utilizing the measured data on the temperature and flow rate of the coolant. Constitution: The spacial power distribution and average assembly power are quickly calculated using an approximate calculating method, the measured values and the calculated values of the inlet and outlet temperature difference, flow rate and coolant physical values of an assembly are combined and are individually obtained, the most definite respective values and their errors are obtained by a least square method utilizing a formula of the relation between these values, and the power distribution and the temperature distribution of a reactor core are estimated in this manner. Accordingly, even when the measuring accuracy and the calculating accuracy are equal as in a fast reactor, the power distribution and the temperature distribution can be accurately estimated on-line at a high speed in a nuclear reactor, information required for the operator is provided, and the reactor can thus be safely and efficiently operated. (Yoshihara, H.)

  7. In-core fuel management for nuclear reactor

    International Nuclear Information System (INIS)

    Ross, M.F.; Visner, S.

    1986-01-01

    This patent describes in-core fuel management for nuclear reactor in which the first cycle of a pressurized water nuclear power reactor has a multiplicity of elongated, square fuel assemblies supported side-by-side to form a generally cylindrical, stationary core consisting entirely of fresh fuel assemblies. Each assembly of the first type has a substantially similar low average fissile enrichment of at least about 1.8 weight percent U-235, each assembly of the second type having a substantially similar intermediate average fissile enrichment at least about 0.4 weight percent greater than that of the first type, and each assembly of the third type having a substantially similar high average fissile enrichment at least about 0.4 weight percent greater than that of the intermediate type, the arrangement of the low, intermediate, and high enrichment assembly types which consists of: a generally cylindrical inner core region consisting of approximately two-thirds the total assemblies in the core and forming a figurative checkerboard array having a first checkerboard component at least two-thirds of which consists of high enrichment and intermediate enrichment assemblies, at least some of the high enrichment assemblies containing fixed burnable poison shims, and a second checkerboard component consisting of assemblies other than the high enrichment type; and a generally annular outer region consisting of the remaining assemblies and including at least some but less than two-thirds of the high enrichment type assemblies

  8. Method for refuelling a nuclear reactor core

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This invention relates to an improved method for refuelling a nuclear reactor core inside a reactor vessel. The technique allows a substantial reduction in the refuelling time as compared with previously known methods and permits fewer out of core operations and smaller temporary storage space. (U.K.)

  9. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  10. Thermohydraulics in a high-temperature gas-cooled reactor prestressed-concrete reactor vessel during unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Araj, K.

    1983-01-01

    The hypothetical accident considered for siting considerations in High Temperature Gas-Cooled Reactors (HTGR) is the so called Unrestricted Core Heatup Accident (UCHA), in which all forced circulation is lost at initiation, and none of the auxillary cooling loops can be started. The result is a gradual slow core heatup, extending over days. Whether the liner cooling system (LCS) operates during this time is of crucial importance. If it does not, the resulting concrete decomposition of the prestressed concrete reactor vessel (PCRV) will ultimately cause containment building (CB) failure after about 6 to 10 days. The primary objective of the work described here was to establish for such accident conditions the core temperatures and approximate fuel failure rates, to check for potential thermal barrier failures, and to follow the PCRV concrete temperatures, as well as PCRV gas releases from concrete decomposition. The work was done for the General Atomic Corporation Base Line Zero reactor of 2240 MW(t). Most results apply at least qualitatively also to other large HTGR steam cycle designs

  11. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    International Nuclear Information System (INIS)

    Sforza, P.M.; Cresci, R.J.

    1997-01-01

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical

  12. Analysis of core and core barrel heat-up under conditions simulating severe reactor accidents

    International Nuclear Information System (INIS)

    Chellaiah, S.; Viskanta, R.; Ranganathan, P.; Anand, N.K.

    1987-01-01

    This paper reports on the development of a model for estimating the temperature distributions in the reactor core, core barrel, thermal shield and reactor pressure vessel of a PWR during an undercooling transient. A number of numerical calculations simulating the core uncovering of the TMI-2 reactor and the subsequent heat-up of the core have been performed. The results of the calculations show that the exothermic heat release due to Zircaloy oxidation contributes to the sharp heat-up of the core. However, the core barrel temperature rise which is driven by the temperature increase of the edge of the core (e.g., the core baffle) is very modest. The maximum temperature of the core barrel never exceeded 610 K (at a system pressure of 68 bar) after a 75 minute simulation following the start of core uncovering

  13. Neutronic design of a traveling wave reactor core

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2010-10-01

    The traveling wave reactor is an innovative kind of fast breeder reactor, capable of operate for decades without refueling and whose operation requires only a small amount of enriched fuel for the ignition. Also, one of its advantages is its versatility; it can be designed as small modules of about 100 M We or large scale units of 1000 M We. In this paper the behaviour of the traveling wave reactor core is studied in order to determine whether the traveling breeding/burning wave moves (as theoretically predicted) or not. To achieve this, we consider a two pieces cylinder, the first one, the ignition zone, containing highly enriched fuel and the second, the breeding zone, which is the larger, containing natural or depleted uranium or thorium. We consider that both zones are homogeneous mixtures of fuel, sodium as coolant and iron as structural material. We also include a reflector material outside the cylinder to reduce the neutron leakages. Simulations were run with MCNPX version 2.6 code. We observed that the wave does move as time passes as predicted by theory, and reactor remains supercritical in the time we have simulated (3000 days). Also, we found that thorium does not perform as well as uranium for breeding in this type of reactor. Further test with different reflectors are planned for both U-Pu and Th-U fuel cycles. (Author)

  14. Experimental study on air ingress during a primary pipe rupture accident with a graphite reactor core simulator

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Hishida, Makoto; Baba, Shinichi

    1991-11-01

    When a primary coolant pipe of a High Temperature Gas Cooled Reactor (HTGR) ruptures, helium gas in the reactor core blows out into the container, and the primary cooling system reduces the pressure. After the pressures are balanced between the reactor and the container, air is expected to enter into the reactor core from the breach. It seems to be probable that the graphite structures is oxidized by air. Hence, it is necessary to investigate the air ingress process and the behavior of the generating gases by the oxidation reactions. The previous experimental study is performed on the molecular diffusion and natural convection of the two component gas mixtures using a test model simulating simply the reactor. Objective of the study was to investigate the air ingress process during the early stage of the primary pipe rupture accident. However, since the model did not have any kind of graphite components, the reaction between graphite and oxygen was not simulated. The present model includes the reactor core and the high temperature plenum simulators made of graphite. The major results obtained in the present study are summarized in the followings: (1) The air ingress process with graphite oxidation reaction is similar to that without the reaction qualitatively. (2) When the reactor core simulator is maintained at low temperatures (lower than 450degC), the initiation time of the natural circulation of air is almost equal to that of the natural circulation of nitrogen. On the other hand, when the temperature of the reactor core simulator is high (more than 500degC), the initiation time of the natural circulation of air is earlier than that of nitrogen. (3) When the temperature of the reactor core simulator is higher than 600degC, oxygen is almost dissipated by the graphite structures. When the temperature of the reactor core simulator is below 700degC, carbon dioxide mainly is generated by the oxidation reactions. (author)

  15. Cavity temperature and flow characteristics in a gas-core test reactor

    Science.gov (United States)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  16. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  17. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  18. CONTAIN LMR/1B-Mod.1, A computer code for containment analysis of accidents in liquid-metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Murata, K.K.; Carroll, D.E.; Bergeron, K.D.; Valdez, G.D.

    1993-01-01

    The CONTAIN computer code is a best-estimate, integrated analysis tool for predicting the physical, chemical, and radiological conditions inside a nuclear reactor containment building following the release of core material from the primary system. CONTAIN is supported primarily by the U. S. Nuclear Regulatory Commission (USNRC), and the official code versions produced with this support are intended primarily for the analysis of light water reactors (LWR). The present manual describes CONTAIN LMR/1B-Mod. 1, a code version designed for the analysis of reactors with liquid metal coolant. It is a variant of the official CONTAIN 1.11 LWR code version. Some of the features of CONTAIN-LMR for treating the behavior of liquid metal coolant are in fact present in the LWR code versions but are discussed here rather than in the User's Manual for the LWR versions. These features include models for sodium pool and spray fires. In addition to these models, new or substantially improved models have been installed in CONTAIN-LMR. The latter include models for treating two condensables (sodium and water) simultaneously, sodium atmosphere and pool chemistry, sodium condensation on aerosols, heat transfer from core-debris beds and to sodium pools, and sodium-concrete interactions. A detailed description of each of the above models is given, along with the code input requirements

  19. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  20. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  1. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.

    1996-01-01

    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  2. Measuring device for the coolant flowrate in a reactor core

    International Nuclear Information System (INIS)

    Sawa, Toshihiko.

    1983-01-01

    Purpose: To improve the operation performance by enabling direct and accurate measurement for the reactor core recycling flowrate. Constitution: A control rod guide is disposed to the upper end of a control rod drive mechanism housing passing through the bottom of a reactor pressure vessel and it is inserted into the through hole of a reactor core support plate. A water flow passage is formed through the reactor core support plate for the flowrate measurement of coolants recycled within the reactor core. The static pressure difference between the upper and the lower sides of the reactor core support plate is measured by a pressure difference detector of a pressure difference measuring mechanism, and an output signal from the pressure different detector is inputted to a calculation means, in which the amount of the coolants passing through the water flow passage is calculated based on the output signal corresponding to the pressure difference. Then, the total recycling flowrate in the reactor core is determined in the calculation means based on the relation between the measured flowrate and a predetermined total reactor core recycling flowrate. (Horiuchi, T.)

  3. Passive pH adjustment of nuclear reactor containment flood water

    International Nuclear Information System (INIS)

    Gerlowski, T.J.

    1986-01-01

    A method is described of automatically and passively adjusting the pH of the recirculating liquid used to flood the containment structure of a nuclear reactor upon the occurence of an accident in order to cool the reactor core, wherein the containment structure has a concrete floor which is provided with at least one sump from which the liquid is withdrawn for recirculation via at least one outlet pipe. The method consists of: prior to flooding and during or prior to normal operation of the reactor, providing at least one perforated basket within at least one sump with the basket containing crystals of a pH adjusting chemical which is soluble in the liquid, and covering each basket with a plastic coating which is likewise soluble in the liquid, whereby upon flooding of the containment structure the liquid in the sump will reach the level of the baskets, causing the coating and the crystals to be dissolved and the chemical to mix with the recirculating liquid to adjust the pH

  4. Nuclear reactor container

    International Nuclear Information System (INIS)

    Yamaki, Rika; Kawabe, Ryuhei.

    1989-01-01

    A venturi scrubber is connected to a nuclear reactor container. Gases containing radioactive aerosols in the container are introduced into the venturi scrubber in the form of a high speed stream under the pressure of the container. The radioactive aerosols are captured by inertia collision due to the velocity difference between the high speed gas stream and water droplets. In the case of the present invention, since the high pressure of the reactor container generated upon accident is utilized, compressor, etc. is no more required, thereby enabling to reduce the size of the aerosol removing device. Further, since no external power is used, the radioactive aerosols can be removed with no starting failure upon accidents. (T.M.)

  5. Modeling of hydrogen stratification in a pressurized water reactor containment with the contain computer code

    International Nuclear Information System (INIS)

    Kljenak, I.; Skerlavaj, A.; Parzer, I.

    1999-01-01

    Hydrogen distribution during a severe accident in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN computer code. The accidents is initiated by a large-break loss-of-coolant accident which is nit successfully mitigated by the action of the emergency core cooling system. Cases with and without successful actuation of spray systems and fan coolers were considered. The simulations predicted hydrogen stratification within the containment main compartment with intensive hydrogen mixing in the containment dome region. Pressure and temperature responses were analyzed as well.(author)

  6. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Science.gov (United States)

    2013-09-12

    ... 52 [Docket No. PRM-50-105; NRC-2012-0056] In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core AGENCY: Nuclear Regulatory Commission. ACTION: Petition for rulemaking; denial...-core thermocouples at different elevations and radial positions throughout the reactor core to enable...

  7. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  8. Safety assessment to support NUE fuel full core implementation in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.Z.; Laurie, T.; Siddiqi, A.; Li, Z.P.; Rouben, D.; Zhu, W.; Lau, V.; Cottrell, C.M. [CANDU Energy Inc., Mississauga, Ontario (Canada)

    2013-07-01

    The Natural Uranium Equivalent (NUE) fuel contains a combination of recycled uranium and depleted uranium, in such a manner that the resulting mixture is similar to the natural uranium currently used in CANDU® reactors. Based on successful preliminary results of 24 bundles of NUE fuel demonstration irradiation in Qinshan CANDU 6 Unit 1, the NUE full core implementation program has been developed in cooperation with the Third Qinshan Nuclear Power Company and Candu Energy Inc, which has recently received Chinese government policy and funding support from their National-Level Energy Innovation program. This paper presents the safety assessment results to technically support NUE fuel full core implementation in CANDU reactors. (author)

  9. Initial charge reactor core

    International Nuclear Information System (INIS)

    Kiyono, Takeshi

    1984-01-01

    Purpose: To effectivity burn fuels and improve the economical performance in an inital charge reactor core of BWR type reactors or the likes. Constitution: In a reactor core constituted with a plurality of fuel assemblies which are to be partially replaced upon fuel replacement, the density of the fissionable materials and the moderator - fuel ratio of a fuel assembly is set corresponding to the period till that fuel assembly is replaced, in which the density of the nuclear fissionable materials is lowered and the moderator - fuel ratio is increased for the fuel assembly with a shorter period from the fueling to the fuel exchange and, while on the other hand, the density of the fissionable materials is increased and the moderator - fuel ratio is decreased for the fuel assembly with a longer period from the fueling to the replacement. Accordingly, since the moderator - fuel ratio is increased for the fuel assembly to be replaced in a shorter period, the neutrons moderating effect is increased to increase the reactivity. (Horiuchi, T.)

  10. Nuclear detectors for in-core power-reactors

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-12-01

    Nuclear reactor control is commonly obtained through neutronic measurements, ex-core and in-core. In large size reactors flux instabilities may take place. For a good monitoring of them, local in-core power measurements become particularly useful. This paper intends to review the questions about neutronic sensors with could be used in-core. A historical account about methods is given first, from early power reactors with brief description of each system. Sensors presently used (ionization fission chambers, self-powered detectors) are then considered and also those which could be developped such as gamma thermometers. Their physical basis, main characteristics and operation modes are detailed. Preliminary tests and works needed for an extension of their life-time are indicated. As an example present irradiation tests at the CEA are then proposed. Two tables will help comparing the characteristics of each type in terms of its precise purpose: fuel monitoring, safety or power control. Finally a table summarizes the kind of sensors mounted on working power reactors and another one is a review of characteristics for some detectors from obtainable commercial sheets [fr

  11. Emergency reactor container cooling facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Matsumoto, Tomoyuki.

    1992-01-01

    The present invention concerns an emergency cooling facility for a nuclear reactor container having a pressure suppression chamber, in which water in the suppression chamber is effectively used for cooling the reactor container. That is, the lower portion of a water pool in the pressure suppression chamber and the inside of the reactor container are connected by a pipeline. The lower end of the pipeline and a pressurized incombustible gas tank disposed to the outside of the reactor container are connected by a pipeline by way of valves. Then, when the temperature of the lower end of the pressure vessel exceeds a predetermined value, the valves are opened. If the valves are opened, the incombustible gas flows into the lower end of the pipeline connecting the lower portion of the water pool in the pressure suppression chamber and the inside of the reactor container. Since the inside of the pipeline is a two phase flow comprising a mixture of a gas phase and a liquid phase, the average density is decreased. Therefore, the water level of the two phase flow is risen by the level difference between the inside and the outside of the pipeline and, finally, the two phase mixture is released into the reactor container. As a result, the reactor container can be cooled by water in the suppression chamber by a static means without requiring pumps. (I.S.)

  12. Device for protecting deformations of reactor cores

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Urushihara, Hiroshi.

    1975-01-01

    Object: To provide a fluid pressure cylinder, which is operated according to change in temperature of coolant for a reactor to restrain or release a core, to simply and effectively protect deformation of the core. Structure: A closed fluid pressure cylinder interiorly filled with suitable fluid is disposed in peripherally equally spaced relation in an annular space between a core barrel of a reactor and a reactor vessel. A piston is mounted in fluid-tight fashion in a plurality of piston openings made in the cylinder, the piston being slidably moved according to expansion and contraction of the fluid filled in the cylinder. The piston has a movable frame mounted at the foremost end thereof, the movable frame being moved integral with the piston, and the surface opposite the mount thereof biasing the outermost peripheral surface of the core. (Kamimura, M.)

  13. Neutronic and mechanical design of the reactor core of the Opus system

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X.; Pascal, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DM2S), 91 - Gif sur Yvette (France)

    2007-07-01

    Since a few years now, Cea decided to maintain a waking state in its space nuclear activities by carrying out some conceptual studies of embarked nuclear power systems in the range of 100-500 kWe. Results stemming from these ongoing studies are gathered in the project OPUS -Optimized Propulsion Unit System-. This nuclear power system relies on a fast gas-cooled reactor concept coupled either to a Brayton cycle or to a more ambitious energy conversion system using a Hirn cycle to dramatically reduce the size of the radiator. The OPUS reactor core consists of an arrangement of enriched graphite elements of hexagonal cross-section. Their length is equal to the core diameter (48 cm). Coated fuel particles containing enriched (93%) uranium are embedded in these fuel elements. Each fuel element is designed with a centered axial channel through which flows the working fluid: a mixture of helium and xenon gas. This reactor is expected to have an operating life of over 2000 days at full power. In fact the main questions remain on the fuel element manufacturing and on the mechanical design (type and size of particles, packing fraction in the matrix, final core diameter and mass). Especially, the nuclear reactor has been defined considering the possible synergies with the next generation of terrestrial nuclear reactor (International Generation IV Forum). Based on relatively short-term technologies, the same reactor is designed to cover a wide range of power: 100 to 500 kWe without core design modification. The final reactor design presented in this paper is the result of a coupled analysis between the thermomechanical and the neutronic aspects.

  14. Primary circuit and reactor core T-H characteristics determination of WWER 440 reactors

    International Nuclear Information System (INIS)

    Hermansky, J.; Petenyi, V.; Zavodsky, M.

    2010-01-01

    The WWER-440 nuclear fuel vendor permanently improves the assortment of produced nuclear fuel assemblies for achieving better fuel cycle economy and reactor operation safety. During unit refuelling there also could be made some other changes in hydraulic parameters of primary circuit (change of impeller wheels, hydraulic resistance coefficient changes of internal parts of primary circuit, etc.). Therefore it is necessary to determine real coolant flow rate through the reactor during units start-up after their refuelling, and also to have the skilled methodology and computing code for analyzing factors, which affecting the inaccuracy of coolant flow redistribution determination through reactor on flows through separate parts of reactor core in any case of parallel operation of different assembly types. Computing code TH-VCR and CORFLO are used for reactor core characteristics determination for one type of fuel and control assemblies and also in case of parallel operation of different assembly types. The code TH-VCR is able to calculate coolant flow rate for different combinations of three different fuel assembly channel types and three different control assembly channel types. The CORFLO code deals the area of the reactor core which consists of 312 fuel assemblies and 37 control assemblies. Regarding the rotational 60 deg symmetry of reactor core only 1/6 of reactor core with 59 fuel assemblies is taken into account. Computing code CORFLO is verified and validated at this time. Paper presents some results from measurements of coolant flow rate through reactors during start-up after unit refuelling and short description of computing code TH-VCR and CORFLO with some calculated results. (Authors)

  15. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  16. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  17. Nuclear power reactor core melt accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Jacquemain, Didier; Cenerino, Gerard; Corenwinder, Francois; Raimond, Emmanuel IRSN; Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Couturier, Jean; Debaudringhien, Cecile; Duprat, Anna; Dupuy, Patricia; Evrard, Jean-Michel; Nicaise, Gregory; Berthoud, Georges; Studer, Etienne; Boulaud, Denis; Chaumont, Bernard; Clement, Bernard; Gonzalez, Richard; Queniart, Daniel; Peltier, Jean; Goue, Georges; Lefevre, Odile; Marano, Sandrine; Gobin, Jean-Dominique; Schwarz, Michel; Repussard, Jacques; Haste, Tim; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno; Durin, Michel; Andreo, Francois; Atkhen, Kresna; Daguse, Thierry; Dubreuil-Chambardel, Alain; Kappler, Francois; Labadie, Gerard; Schumm, Andreas; Gauntt, Randall O.; Birchley, Jonathan

    2015-11-01

    accidents and, secondly, the physical phenomena, studies and analyses described in Chapters 5 to 8. Chapter 5 is devoted to describing the physical phenomena liable to occur during a core melt accident, in the reactor vessel and the reactor containment. It also presents the sequence of events and the methods for mitigating their impact. For each of the subjects covered, a summary of the physical phenomena involved is followed by a description of the past, present and planned experiments designed to study these phenomena, along with their modelling, the validation of which is based on the test results. The chapter then describes the computer codes that couple all of the models and provide the best current state of knowledge of the phenomena. Lastly, this knowledge is reviewed while taking into account the gaps and uncertainties, and the outlook for the future is presented, notably regarding experimental programmes and the development of modelling and numerical simulation tools. Chapter 6 focuses on the behaviour of the containment enclosures during a core melt accident. After summarising the potential leakage paths of radioactive substances through the different containments in the case of the accidents chosen in the design phase, it presents the studies of the mechanical behaviour of the different containments under the loadings that can result from the hazards linked with the phenomena described in Chapter 5. Chapter 6 also discusses the risks of containment building bypass in a core melt accident situation. Chapter 7 presents the lessons learned regarding the phenomenology of core melt accidents and the improvement of nuclear reactor safety. Lastly, Chapter 8 presents a review of development and validation efforts regarding the main computer codes dealing with 'severe accidents', which draw on and build upon the knowledge mainly acquired through the research programmes: ASTEC (IRSN and GRS), MAAP-4 (FAI (US)) and used by EDF and by utilities in many other

  18. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  19. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  20. Gas core reactor power plants designed for low proliferation potential

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF 6 and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on 233 U born from thorium. Fission product removal was continuous. Newly born 233 U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of 233 U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors

  1. Reactor physics data for safety analysis of CANFLEX-NU CANDU-6 core

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun

    2001-08-01

    This report contains the reactor physics data for safety analysis of CANFLEX-NU fuel CANDU-6 core. First, the physics parameters for time-average core have been described, which include the channel power and maximum bundle power map, channel axial power shape and bundle burnup. And, next the data for fuel performance such as relative ring power distribution and bundle burnup conversion ratio are represented. The transition core data from 0 to 900 full power day are represented by 100 full power day interval. Also, the data for reactivity devices of time-average core and 300 full power day of transition core are given.

  2. Support structure for reactor core constituent element

    International Nuclear Information System (INIS)

    Aida, Yasuhiko.

    1993-01-01

    A connection pipe having an entrance nozzle inserted therein as a reactor core constituent element is protruded above the upper surface of a reactor core support plate. A through hole is disposed to the protruding portion of the connection pipe. The through hole and a through hole disposed to the reactor core support plate are connected by a communication pipe. A shear rod is disposed in a horizontal portion at the inside of the communication pipe and is supported by a spring horizontally movably. Further, a groove is disposed at a position of the entrance nozzle opposing to the shear rod. The shear rod is urged out of the communication pipe by the pressure of the high pressure plenum and the top end portion of the shear rod is inserted to the groove of the entrance nozzle during operation. Accordingly, the shear rod is positioned in a state where it is extended from the through hole of the communication pipe to the groove of the entrance nozzle. This can mechanically constrain the rising of the reactor core constituent elements by the shear rod upon occurrence of earthquakes. (I.N.)

  3. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  4. Preliminary concept of a zero power nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D.

    2011-01-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  5. Preliminary concept of a zero power nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D., E-mail: lamai@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  6. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  7. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  8. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  9. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  10. Heat removing device for nuclear reactor container facility

    Energy Technology Data Exchange (ETDEWEB)

    Tateno, Seiya; Tominaga, Kenji; Iwata, Yasutaka; Kinoshita, Shoichiro; Niino, Tsuyoshi

    1994-09-30

    A pressure suppression chamber incorporating pool water is disposed inside of a reactor container for condensating steams released to a dry well upon occurrence of abnormality. A pool is disposed at the outer circumference of the pressure suppression chamber having a steel wall surface of the reactor container as a partition wall. The outer circumferential pool is in communication with ocean by way of a lower communication pipeline and an upper communication pipeline. During normal plant operation state, partitioning valves disposed respectively to the upper and lower communication pipelines are closed, so that the outer circumferential pool is kept empty. After occurrence loss of coolant accident, steams generated by after-heat of the reactor core are condensated by pool water of the pressure suppression chamber, and the temperature of water in the pressure suppression chamber is gradually elevated. During the process, the partition valves of the upper and lower communication pipelines are opened to introduce cold seawater to the outer circumferential pool. With such procedures, heat of the outer circumferential pool is released to the sea by natural convection of seawater, thereby enabling to remove residual heat without dynamic equipments. (I.N.).

  11. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  12. Development of a double containment concept for the European pressurized water reactor

    International Nuclear Information System (INIS)

    Costaz, J.L.; Bonhomme, N.; L'Huby, Y.; Sidaner, J.F.

    1994-01-01

    This paper addresses the development of a double containment concept for the European Pressurized Water Reactor. Specification of containment leak tightness during severe hazards resulting from core melt scenarios is part of the safety goals defined for the EPR project. These safety goals include retention of molten core, mitigation of hydrogen deflagration or explosion risks and decay heat removal. The main new containment structural design loads which have been defined, including containment pressure and temperature conditions following possible postulated-core melt events, are recalled in the paper. The feasibility of a double containment with a prestressed concrete inner containment taking into account these new design loads but based upon experience gained within the well tested concept of concrete double wall containment used in 1400 MW nuclear power plants which have already been built in France, is presented. The main characteristics of such a prestressed inner containment are described. Limits and further possible optimization for even more severe design loads (including liner option) are indicated. Experimental works including a large scale mock up are already under way. (author). 2 refs., 4 figs

  13. Selection method and device for reactor core performance calculation input indication

    International Nuclear Information System (INIS)

    Yuto, Yoshihiro.

    1994-01-01

    The position of a reactor core component on a reactor core map, which is previously designated and optionally changeable, is displayed by different colors on a CRT screen by using data of a data file incorporating results of a calculation for reactor core performance, such as incore thermal limit values. That is, an operator specifies the kind of the incore component to be sampled on a menu screen, to display the position of the incore component which satisfies a predetermined condition on the CRT screen by different colors in the form of a reactor core map. The position for the reactor core component displayed on the CRT screen by different colors is selected and designated on the screen by a touch panel, a mouse or a light pen, thereby automatically outputting detailed data of evaluation for the reactor core performance of the reactor core component at the indicated position. Retrieval of coordinates of fuel assemblies to be data sampled and input of the coordinates and demand for data sampling can be conducted at once by one menu screen. (N.H.)

  14. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  15. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  16. Research reactor core conversion guidebook. V.1: Summary

    International Nuclear Information System (INIS)

    1992-04-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety and licensing issues for conversion of their reactor cores from the use of HEU fuel to the use of low enriched uranium fuel. This Guidebook, in five volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor. Refs, figs, bibliographies and tabs

  17. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  18. Emergency reactor core cooling facility

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka.

    1996-01-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  19. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  20. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  1. A complete fuel development facility utilizing a dual core TRIGA reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, A; Law, G C [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    A TRIGA Dual Core Reactor System has been chosen by the Romanian Government as the heart of a new fuel development facility which will be operated by the Romanian Institute for Nuclear Technologies. The Facility, which will be operational in 1976, is an integral part of the Romanian National Program for Power Reactor Development, with particular emphasis being placed on fuel development. The unique combination of a new 14 MW steady state TRIGA reactor, and the well-proven TRIGA Annular Core Pulsing Reactor (ACPR) in one below-ground reactor pool resulted in a substantial construction cost savings and gives the facility remarkable experimental flexibility. The inherent safety of the TRIGA fuel elements in both reactor cores means that a secondary containment building is not necessary, resulting in further construction cost savings. The 14 MW steady state reactor gives acceptably high neutron fluxes for long- term testing of various prototype fuel-cladding-coolant combinations; and the TRIGA ACPR high pulse capability allows transient testing of fuel specimens, which is so important for accurate prediction of the performance of power reactor fuel elements under postulated failure conditions. The 14 MW steady state reactor has one large and three small in-core irradiation loop positions, two large irradiation loop positions adjacent to the core face, and twenty small holes in the beryllium reflector for small capsule irradiation. The power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position approaching 3.0 x 10{sup 14} n/cm{sup 2}-sec. The ACPR has one large dry central experimental cavity which can be loaded at pool level through a shielded offset loading tube; a small diameter in-core flux trap; and an in-core pneumatically-operated capsule irradiation position. A peak pulse of 15,000 MW will yield a peak fast neutron flux in the central experimental cavity of about 1.5 x 10{sup 17} n/cm{sup 2}-sec. The pulse width at

  2. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  3. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  4. The WINCON programme - validation of fast reactor primary containment codes

    International Nuclear Information System (INIS)

    Sidoli, J.E.A.; Kendall, K.C.

    1988-01-01

    In the United Kingdom safety studies for the Commercial Demonstration Fast Reactor (CDFR) include an assessment of the capability of the primary containment in providing an adequate containment for defence against the hazards resulting from a hypothetical Whole Core Accident (WCA). The assessment is based on calculational estimates using computer codes supported by measured evidence from small-scale experiments. The hydrodynamic containment code SEURBNUK-EURDYN is capable of representing a prescribed energy release, the sodium coolant and cover gas, and the main containment and safety related internal structures. Containment loadings estimated using SEURBNUK-EURDYN are used in the structural dynamic code EURDYN-03 for the prediction of the containment response. The experiments serve two purposes, they demonstrate the response of the CDFR containment to accident loadings and provide data for the validation of the codes. This paper summarises the recently completed WINfrith CONtainment (WINCON) experiments that studied the response of specific features of current CDFR design options to WCA loadings. The codes have been applied to some of the experiments and a satisfactory prediction of the global response of the model containment is obtained. This provides confidence in the use of the codes in reactor assessments. (author)

  5. Conceptual core model for the reactor core test

    International Nuclear Information System (INIS)

    Swenson, L.D.

    1970-01-01

    Several design options for the ZrH Flight System Reactor were investigated which involved tradeoffs of core excess reactivity, reactor control, coolant mixing and cladding thickness. A design point was selected which is to be the basis for more detailed evaluation in the preliminary design phase. The selected design utilizes 295 elements with 0.670 inch element-to-element pitch, 32 mil thick Incoloy cladding, 18.00 inches long fuel meat, hydrogen content of 6.3 x 10 22 atoms/cc fuel, 10.5 w/o uranium, and a spiraled fin configuration with alternate elements having fins with spiral to the right, spiral to the left, and no fin at all (R-L-N fin configuration). Fin height is 30 mils for the center region of the core and 15 mils for the outer region. (U.S.)

  6. GCRA review and appraisal of HTGR reactor-core-design program

    International Nuclear Information System (INIS)

    1980-09-01

    The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation

  7. Conversion, core redesign and upgrade of the Rhode Island Atomic Energy Commission Reactor

    International Nuclear Information System (INIS)

    DiMeglio, A.F.

    1987-01-01

    The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more Uranium-235 than the current HEU plate. These differences, coupled with the fact that the conversion should be accomplished without serious degradation of reactor characteristics and capability, has resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during the course of its 23 years of operation, it has become clear that the main uses of the reactor are neutron scattering and neutron activation analysis. The requirement to convert to LEU presents an opportunity during the conversion to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper will present the preliminary conclusions of both aspects. (Author)

  8. Core arrangement in BWR type reactors

    International Nuclear Information System (INIS)

    Asano, Masayuki.

    1981-01-01

    Purpose: To decrease the number of fuel assemblies whose locations are to be changed upon fuel exchange, as well as unify the power distribution in the core by arranging, in a chess board configuration, a plurality pattern of unit reactor lattices each containing fuel assemblies of different burnup degrees in orthogonal positions to each other. Constitution: A first pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 1 and fuel assemblies of burnup degree 3 at orthogonal positions to each other. A second pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 2 and fuel assemblies of burnup degree 1 at orthogonal positions to each other. The unit lattices each in such a dispositions are arranged in a chess board arrangement. Since, the fuel assemblies of the burnup degree 1 in the first pattern unit lattices proceed to the burnup degree 2 and the fuel assemblies of the burnup degree 2 in the second pattern unit lattices proceed to the burnup degree 3 up to the fuel exchange stage, fuel exchange and movement have only to be made, not for those fuel assemblies, but for another half of the fuel assemblies. (Kawakami, Y.)

  9. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  10. Nuclear reactor core servicing apparatus

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved core servicing apparatus for a nuclear reactor of the type having a reactor vessel, a vessel head having a head penetration therethrough, a removable plug adapted to fit in the head penetration, and a core of the type having an array of elongated assemblies. The improved core servicing apparatus comprises a plurality of support columns suspended from the removable plug and extending downward toward the nuclear core, rigid support means carried by each of the support columns, and a plurality of servicing means for each of the support columns for servicing a plurality of assemblies. Each of the plurality of servicing means for each of the support columns is fixedly supported in a fixed array from the rigid support means. Means are provided for rotating the rigid support means and servicing means between condensed and expanded positions. When in the condensed position, the rigid support means and servicing means lie completely within the coextensive boundaries of the plug, and when in the expanded position, some of the rigid support means and servicing means lie without the coextensive boundaries of the plug

  11. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  12. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  13. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  14. Degraded core accidents: review of aerosol behaviour in the containment of a PWR

    International Nuclear Information System (INIS)

    Nichols, A.L.; Walker, B.C.

    1981-09-01

    Low probability-high consequence accidents have become an important issue in reactor safety studies. Such accidents would involve damage to the core and the subsequent release of radioactive fission products into the environment. Aerosols play a major role in the transport and removal of these fission products in the reactor building containment. The aerosol mechanisms, computer modelling codes and experimental studies used to predict aerosol behaviour in the containment of a PWR are reviewed. There are significant uncertainties in the aerosol source terms and specific recommendations have been made for further studies, particularly with respect to code development and high density aerosol-fission product transport within closed systems. (author)

  15. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  16. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  17. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  18. The 2nd reactor core of the NS Otto Hahn

    International Nuclear Information System (INIS)

    Manthey, H.J.; Kracht, H.

    1979-01-01

    Details of the design of the 2nd reactor core are given, followed by a brief report summarising the operating experience gained with this 2nd core, as well as by an evaluation of measured data and statements concerning the usefulness of the knowledge gained for the development of future reactor cores. Quite a number of these data have been used to improve the concept and thus the specifications for the fuel elements of the 3rd core of the reactor of the NS Otto Hahn. (orig./HP) [de

  19. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  20. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  1. Lighting system for the lower core plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Feuillet, P.; Bonin, J.P.

    1986-01-01

    The invention proposes a grazing lighting system for the lower core plate, creating an excellent contrast and offering a good estimation of the relief; it can stay at the same place during the whole or at least the greater part of the core refueling operation. This lighting system is proposed for a reactor of which the lower core plate has fuel assembly centering elements. It has a sealed vessel with a transparent side wall containing several lights independently controlled and each one illuminating a sector of its wall. The vessel has a bottom aimed at resting on the lower plate and provided with centering and holding means acting with several of the said centering means through the plate, and/or apertures for coolant through the plate, and an upper container provided with gripping and handling elements and sealed conduits for electrical cables feeding the lights [fr

  2. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  3. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Chetal, S.C.; Bhoje, S.B.; Lal, H.; Sethi, V.S.

    2003-01-01

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  4. Optimal power and distribution control for weakly-coupled-core reactor

    International Nuclear Information System (INIS)

    Oohori, Takahumi; Kaji, Ikuo

    1977-01-01

    A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)

  5. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  6. Transient analysis for PWR reactor core using neural networks predictors

    International Nuclear Information System (INIS)

    Gueray, B.S.

    2001-01-01

    In this study, transient analysis for a Pressurized Water Reactor core has been performed. A lumped parameter approximation is preferred for that purpose, to describe the reactor core together with mechanism which play an important role in dynamic analysis. The dynamic behavior of the reactor core during transients is analyzed considering the transient initiating events, wich are an essential part of Safety Analysis Reports. several transients are simulated based on the employed core model. Simulation results are in accord the physical expectations. A neural network is developed to predict the future response of the reactor core, in advance. The neural network is trained using the simulation results of a number of representative transients. Structure of the neural network is optimized by proper selection of transfer functions for the neurons. Trained neural network is used to predict the future responses following an early observation of the changes in system variables. Estimated behaviour using the neural network is in good agreement with the simulation results for various for types of transients. Results of this study indicate that the designed neural network can be used as an estimator of the time dependent behavior of the reactor core under transient conditions

  7. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  8. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  9. Nuclear reactor core safety device

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The danger of a steam explosion from a nuclear reactor core melt-down can be greatly reduced by adding a gasifying agent to the fuel that releases a large amount of gas at a predetermined pre-melt-down temperature that ruptures the bottom end of the fuel rod and blows the finely divided fuel into a residual coolant bath at the bottom of the reactor. This residual bath should be equipped with a secondary cooling loop

  10. Vessel core seismic interaction for a fast reactor

    International Nuclear Information System (INIS)

    Martelli, A.; Maresca, G.

    1984-01-01

    This report deals with the analysis carried out in collaboration between ENEA and NIRA for optimizing the iterative procedure applied for the evaluation of the effects of the vessel core dynamic interaction for a fast reactor in the case of a earthquake. In fact, as shown in a previous report the convergence of such procedure was very slow for the design solution adopted for the PEC reactor, i.e. with a core restraint plate located close to the top of the core elements. This study, although performed making use of preliminary data (the same of the cited previous report) demonstrates that the convergence is fast if a suitable linear core model is applied in the first iteration linear calculations carried out by NIRA, with an intermediate stiffness with respect to those corresponding to the two limit models previously assumed and increased damping coefficients. Thus, the optimized iterative procedures is now applied in the PEC reactor block seismic verification analysis

  11. Reactor container

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Hatamiya, Shigeo; Kawasaki, Terufumi; Fukui, Toru; Suzuki, Hiroaki; Kataoka, Yoshiyuki; Kawabe, Ryuhei; Murase, Michio; Naito, Masanori.

    1990-01-01

    In order to suppress the pressure elevation in a reactor container due to high temperature and high pressure steams jetted out upon pipeway rupture accidents in the reactor container, the steams are introduced to a pressure suppression chamber for condensating them in stored coolants. However, the ability for suppressing the pressure elevation and steam coagulation are deteriorated due to the presence of inactive incondensible gases. Then, there are disposed a vent channel for introducing the steams in a dry well to a pressure suppression chamber in the reactor pressure vessel, a closed space disposed at the position lower than a usual liquid level, a first channel having an inlet in the pressure suppression chamber and an exit in the closed space and a second means connected by way of a backflow checking means for preventing the flow directing to the closed space. The first paths are present by plurality, a portion of which constitutes a syphon. The incondensible gases and the steams are discharged to the dry well at high pressure by using the difference of the water head for a long cooling time after the pipeway rupture accident. Then, safety can be improved without using dynamic equipments as driving source. (N.H.)

  12. Synthesis of Ni-SiO2/silicalite-1 core-shell micromembrane reactors and their reaction/diffusion performance

    KAUST Repository

    Khan, Easir A.

    2010-12-15

    Core-shell micromembrane reactors are a novel class of materials where a catalyst and a shape-selective membrane are synergistically housed in a single particle. In this work, we report the synthesis of micrometer -sized core-shell particles containing a catalyst core and a thin permselective zeolite shell and their application as a micromembrane reactor for the selective hydrogenation of the 1-hexene and 3,3-dimethyl-1-butene isomers. The bare catalyst, which is made from porous silica loaded with catalytically active nickel, showed no reactant selectivity between hexene isomers, but the core-shell particles showed high selectivities up to 300 for a 1-hexene conversion of 90%. © 2010 American Chemical Society.

  13. WWER-440 type reactor core

    International Nuclear Information System (INIS)

    Mizov, J.; Svec, P.; Rajci, T.

    1987-01-01

    Assemblies with patly spent fuel of enrichment within 5 and 36 MWd/kg U or lower than the maximum enrichment of freshly charged fuel are placed in at least one of the peripheral positions of each hexagonal sector of the WWER-440 reactor type core. This increases fuel availability and reduces the integral neutron dose to the reactor vessel. The duration is extended of the reactor campaign and/or the mean fuel enrichment necessary for the required duration of the period between refuellings is reduced. Thus, fuel costs are reduced by 1 up to 3%. The results obtained in the experiment are tabulated. (J.B.). 1 fig., 3 tabs

  14. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  15. Research reactor core conversion guidebook. V. 3: Analytical verification (Appendices G and H)

    International Nuclear Information System (INIS)

    1992-04-01

    Volume 3 consists of Appendix G which contains detailed results of a safety-related benchmark problem for an idealized reactor and Appendix H which contains detailed comparisons of calculated and measured data for actual cores with moderately enriched uranium and low enriched uranium fuels. The results of the benchmark calculations in Appendix G are summarized in Chapter 7 of Volume 1 and the results of the comparisons between calculations and measurements are summarized in Chapter 8 of Volume 1. Both the approaches described in these appendices are very useful in ensuring that the calculational methods employed in the preparation of a Safety Report are accurate. As a first step, it is recommended that reactor operators/physicists use their own methods and codes to first calculate the benchmark problem, and then compare the results of calculations with measurements in their own reactor or in one of the reactors for which measured data is available in Appendix H. (author). Refs, figs and tabs

  16. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  17. Apparatus for simulating a reactor core

    International Nuclear Information System (INIS)

    Yokomizo, Osamu; Kiguchi, Takashi; Motoda, Hiroshi; Takeda, Renzo.

    1975-01-01

    Object: To facilitate searching of input and output of information and to efficiently perform trial-and-error in a short time. Structure: Kinds of necessary input information are stored in an input information converter and are displayed by an image display through an image control. An operator operates an information input device to input information. This input information is converted by the input information converter into a form used in a reactor core simulation counter. The reactor core simulation counter simulates a state of the core to the input information converted, and outputs it as an output information. An output information converter converts output information into a form that may be displayed as an image and feeds it to the image control. The operator may correct the input information while viewing the output information displayed on the image display to immediately perform succeeding calculation. (Kamimura, M.)

  18. Modeling of the reactor core

    International Nuclear Information System (INIS)

    1999-01-01

    In order to improve technical - economical parameters fuel with 2.4% enrichment and burnable absorber is started to be used at Ignalina NPP. Using code QUABOX/CUBBOX the main neutronic - physical characteristics were calculated for selected reactor core conditions

  19. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  20. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  1. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Akiba, Miyuki.

    1996-01-01

    In a cooling device for a reactor container, a low pressure vessel is connected to an incondensible gas vent tube by way of an opening/closing valve. Upon occurrence of a loss of coolant accident, among steams and incondensible gases contained in the reactor container, steams are cooled and condensed in a heat exchanger. The incondensible gases are at first discharged from the heat exchanger to a suppression pool by way of the incondensible gas vent tube, but subsequently, they are stagnated in the incondensible gas vent tube to hinder heat exchanging and steam cooling and condensing effects in the heat exchanger thereby raising temperature and pressure in the reactor. However, if the opening/closing valve is opened when the incondensible gases are stagnated in the incondensible gas vent tube, since the incondensible gases stagnated in the heat exchanger are sucked and discharged to the low pressure vessel, the performance of the heat exchanger is maintained satisfactorily thereby enabling to suppress elevation of temperature and pressure in the reactor container. (N.H.)

  2. Overheating preventive system for reactor core fuels

    International Nuclear Information System (INIS)

    Ito, Daiju

    1981-01-01

    Purpose: To ensure the cooling function of reactor water in a cooling system in case of erroneous indication or misoperation by reliable temperature measurement for fuels and actuating relays through the conversion output obtained therefrom. Constitution: Thermometers are disposed laterally and vertically in a reactor core in contact with core fuels so as to correspond to the change of status in the reactor core. When there is a high temperature signal issued from one of the thermometers or one of conversion circuits, the function of relay contacts does not provide the closed state as a whole. When high temperature signals are issued from two or more thermometers of conversion circuits from independent OR circuits, the function of the relay contacts provides the closure state as a whole. Consequently, in the use of 2-out of 3-circuits, the entire closure state, that is, the misoperation of the relay contacts for the thermometer or the conversion circuits can be avoided. In this way, by the application of the output from the conversion circuits to the logic circuit and, in turn, application of the output therefrom to the relay groups in 2-out of 3-constitution, the reactor safety can be improved. (Horiuchi, T.)

  3. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  4. 3D computer visualization and animation of CANDU reactor core

    International Nuclear Information System (INIS)

    Qian, T.; Echlin, M.; Tonner, P.; Sur, B.

    1999-01-01

    Three-dimensional (3D) computer visualization and animation models of typical CANDU reactor cores (Darlington, Point Lepreau) have been developed using world-wide-web (WWW) browser based tools: JavaScript, hyper-text-markup language (HTML) and virtual reality modeling language (VRML). The 3D models provide three-dimensional views of internal control and monitoring structures in the reactor core, such as fuel channels, flux detectors, liquid zone controllers, zone boundaries, shutoff rods, poison injection tubes, ion chambers. Animations have been developed based on real in-core flux detector responses and rod position data from reactor shutdown. The animations show flux changing inside the reactor core with the drop of shutoff rods and/or the injection of liquid poison. The 3D models also provide hypertext links to documents giving specifications and historical data for particular components. Data in HTML format (or other format such as PDF, etc.) can be shown in text, tables, plots, drawings, etc., and further links to other sources of data can also be embedded. This paper summarizes the use of these WWW browser based tools, and describes the resulting 3D reactor core static and dynamic models. Potential applications of the models are discussed. (author)

  5. The probability of containment failure by direct containment heating in surry

    International Nuclear Information System (INIS)

    Pilch, M.M.; Allen, M.D.; Bergeron, K.D.; Tadios, E.L.; Stamps, D.W.; Spencer, B.W.; Quick, K.S.; Knudson, D.L.

    1995-05-01

    In a light-water reactor core melt accident, if the reactor pressure vessel (RPV) fails while the reactor coolant system (RCS) at high pressure, the expulsion of molten core debris may pressurize the reactor containment building (RCB) beyond its failure pressure. A failure in the bottom head of the RPV, followed by melt expulsion and blowdown of the RCS, will entrain molten core debris in the high-velocity steam blowdown gas. This chain of events is called a high-pressure melt ejection (HPME). Four mechanisms may cause a rapid increase in pressure and temperature in the reactor containment: (1) blowdown of the RCS, (2) efficient debris-to-gas heat transfer, (3) exothermic metal-steam and metal-oxygen reactions, and (4) hydrogen combustion. These processes, which lead to increased loads on the containment building, are collectively referred to as direct containment heating (DCH). It is necessary to understand factors that enhance or mitigate DCH because the pressure load imposed on the RCB may lead to early failure of the containment

  6. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  7. Nuclear reactor container

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1988-01-01

    Cables coverd with non-halogen covering material are used as electric wire cables wired for supplying electric power to a reactor recycling pump. Silicone rubber having specified molecular formula is used for the non-halogen covering material. As a result, formation of chlorine in a nuclear reactor container can be eliminated and increase in the deposited salts to SUS pipeways, etc. can be prevented, to avoid the occurrence of stress corrosion cracks. (H.T.)

  8. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  9. Refurbishment, core conversion and safety analysis of Apsara reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K.; Sasidharan, K.; Sengupta, S. [Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: nram@@apsara.barc.ernet.in

    1998-07-01

    Apsara, a 1 MWt pool type reactor using HEU fuel has been in operation at the Bhabha Atomic Research Centre, Trombay since 1956. In view of the long service period seen by the reactor it is now planned to carry out extensive refurbishment of the reactor with a view to extend its useful life. It is also proposed to modify the design of the reactor wherein the core will be surrounded by a heavy water reflector tank to obtain a good thermal neutron flux over a large radial distance from the core. Beam holes and the majority of the irradiation facilities will be located inside the reflector tank. The coolant flow direction through the core will be changed from the existing upward flow to downward flow. A delay tank, located inside the pool, is provided to facilitate decay of short lived radioactivity in the coolant outlet from the core in order to bring down radiation field in the operating areas. Analysis of various anticipated operational occurrences and accident conditions like loss of normal power, core coolant flow bypass, fuel channel blockage and degradation of primary coolant pressure boundary have been performed for the proposed design. Details of the proposed design modifications and the safety analyses are given in the paper. (author)

  10. A reactor core with accurately positioned fuel-batteries

    International Nuclear Information System (INIS)

    Borrman, B.E.

    1976-01-01

    A reactor core of containing a grid for a plurality of fuel batteries each of which is constituted by several claddings containing fuel-rods, said grid comprising square members mainly and being located at the core upper-end, each square member surrounding a group of four fuel batteries, spring-contacts being mounted between the fuel batteries and the grid, slots being provided between the batteries for the four arms of a centrally mounted cross-slaped control-rod, each slot being provided at the grid-level, with a flexible spacing device, the overall spacing of whork determining the (a+2b)- dimension is equal to, or higher than, the largest thickness of arm D of the above-mentioned control-rod, said spacing device constituting one of the control-rails the fuel batteries fixed to the fuel-element envelope, as well as the control-rails fixed to the grid, characterized in that each battery control-rail forms a closing surface at right angles to the wall of the adjacent battery and directed toward the grid nearest surface in contact with the above-mentioned control-rail. (author)

  11. Innovative research reactor core designed. Estimation and analysis of gamma heating distribution

    International Nuclear Information System (INIS)

    Setiyanto

    2014-01-01

    The Gamma heating value is an important factor needed for safety analysis of each experiments that will be realized on research reactor core. Gamma heat is internal heat source occurs in each irradiation facilities or any material irradiated in reactor core. This value should be determined correctly because of the safety related problems. The gamma heating value is in general depend on. reactor core characteristics, different one and other, and then each new reactor design should be completed by gamma heating data. The Innovative Research Reactor is one of the new reactor design that should be completed with any safety data, including the gamma heating value. For this reasons, calculation and analysis of gamma heating in the hole of reactor core and irradiation facilities in reflector had been done by using of modified and validated Gamset computer code. The result shown that gamma heating value of 11.75 W/g is the highest value at the center of reactor core, higher than gamma heating value of RSG-GAS. However, placement of all irradiation facilities in reflector show that safety characteristics for irradiation facilities of innovative research reactor more better than RSG-GAS reactor. Regarding the results obtained, and based on placement of irradiation facilities in reflector, can be concluded that innovative research reactor more safe for any irradiation used. (author)

  12. Heterogeneous cores for fast breeder reactor

    International Nuclear Information System (INIS)

    Schroeder, R.; Spenke, H.

    1980-01-01

    Firstly, the motivation for heterogeneous cores is discussed. This is followed by an outline of two reactor designs, both of which are variants of the combined ring and island core. These designs are presented by means of figures and detailed tables. Subsequently, a description of two international projects at fast critical zero energy facilities is given. Both of them support the nuclear design of heterogeneous cores. In addition to a survey of these projects, a typical experiment is discussed: the measurement of rate distributions. (orig.) [de

  13. Joint European contribution to phase 5 of the BN600 hybrid reactor benchmark core analysis (European ERANOS formulaire for fast reactor core analysis)

    International Nuclear Information System (INIS)

    Rimpault, G.

    2004-01-01

    Hybrid UOX/MOX fueled core of the BN-600 reactor was endorsed as an international benchmark. BFS-2 critical facility was designed for full size simulation of core and shielding of large fast reactors (up tp 3000 MWe). Wide experimental programme including measurements of criticality, fission rates, rod worths, and SVRE was established. Four BFS-62 critical assemblies have been designed to study changes in BN-600 reactor physics-when moving to a hybrid MOX core. BFS-62-3A assembly is a full scale model of the BN-600 reactor hybrid core. it consists of three regions of UO 2 fuel, axial and radial fertile blankets, MOX fuel added in a ring between MC and OC zones, 120 deg sector of stainless steel reflector included within radial blanket. Joint European contribution to the Phase 5 benchmark analysis was performed by Serco Assurance Winfrith (UK) and CEA Cadarache (France). Analysis was carried out using Version 1.2 of the ERANOS code; and data system for advanced and fast reactor core applications. Nuclear data is based on the JEF2.2 nuclear data evaluation (including sodium). Results for Phase 5 of the BN-600 benchmark have been determined for criticality and SVRE in both diffusion and transport theory. Full details of the results are presented in a paper posted on the IAEA Business Collaborator website nad a brief summary is provided in this paper

  14. Development of high performance core for large fast breeder reactors

    International Nuclear Information System (INIS)

    Inoue, Kotaro; Kawashima, Katsuyuki; Watari, Yoshio.

    1982-01-01

    Subsequently to the fast breeder prototype reactor ''Monju'', the construction of a demonstration reactor with 1000 MWe output is planned. This research aims at the establishment of the concept of a large core with excellent fuel breeding property and safety for a demonstration and commercial reactors. For the purpose, the optimum specification of fuel design as a large core was clarified, and the new construction of a core was examined, in which a disk-shaped blanket with thin peripheral edge is introduced at the center of a core. As the result, such prospect was obtained that the time for fuel doubling would be 1/2, and the energy generated in a core collapse accident would be about 1/5 as compared with a large core using the same fuel as ''Monju''. Generally, as a core is enlarged, the rate of breeding lowers. If a worst core collapse accident occurs, the scale of accident will be very large in the case of a ''Monju'' type large core. In an unhomogeneous core, an internal blanket is provided in the core for the purpose of improving the breeding property and safety. Hitachi Ltd. developed the concept of a large core unhomogeneous in axial direction and proposed it. The research on the fuel design for a large core, an unhomogeneous core and its core collapse accident is reported. (Kako, I.)

  15. Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3

    International Nuclear Information System (INIS)

    Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias

    2009-01-01

    The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.

  16. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  17. Modelling perspectives on radiation chemistry in BWR reactor core

    International Nuclear Information System (INIS)

    Ibe, Eishi

    1991-01-01

    Development of a full-system boiling water reactor core model started in 1982. The model included a two-region reactor core, one with and one without boiling. Key design parameters consider variable dose rates in a three-layer liquid downcomer. Dose rates in the core and downcomer include both generation and recombination reactions of species. Agreement is good between calculations and experimental data of oxygen concentration as a function of hydrogen concentration for different bubble sizes. Oxygen concentration is reduced in the reactor pressure vessel (RPV) by increasing bubble size. The multilayer model follows the oxygen data better than a single-layered model at high concentrations of hydrogen. Key reactions are reduced to five radiolysis reactions and four decomposition reactions for hydrogen peroxide. Calculations by the DOT 3 code showed dose rates from neutrons and gamma rays in various parts of the core. Concentrations of oxygen, hydrogen peroxide, and hydrogen were calculated by the model as a function of time from core inlet. Similar calculations for NWC and HWC were made as a function of height from core inlet both in the boiling channel an the bypass channel. Finally the model was applied to calculate the oxygen plus half the hydrogen peroxide concentrations as a function of hydrogen concentration to compare with data from five plants. Power density distribution with core height was given for an early stage and an end stage of a cycle. Increases of dose rates in the turbine for seven plants were shown as a function of increased hydrogen concentration in the reactor water

  18. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  19. Device for supporting a nuclear reactor core

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The core of a light-water reactor which is enclosed in a prestressed concrete pressure vessel and held within a diffuser basket is supported by a device consisting of a cylindrical shell which surrounds the basket and is rigidly fixed to a plurality of frusto-conical skirts having concurrent axes and located substantially at right angles to the axis of the reactor core. The small base of each skirt is rigidly fixed to the shell and the large base is anchored in openings formed in the reactor vessel for the penetration of coolant inlet and outlet pipes. The top portion of the shell is secured to the top portion of the diffuser basket, a flat surface being formed on the shell at the point of connection with each frusto-conical skirt so as to ensure rigid suspension while permitting thermal expansion

  20. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  1. Improvements to the sodium supply system of a nuclear reactor core

    International Nuclear Information System (INIS)

    Chevallier, Rene; Marchais, Christian.

    1981-01-01

    This invention concerns an improvement to the sodium supply system of a nuclear reactor core and, in particular, concerns the area included between the outlet of the primary circulation pumps and the core proper. A simplified structure and a lightening of all this linking area between the circulation pumps and the distribution tank under the core is achieved and this results in a very significant reduction in the risks of deterioration and in a definite increase in the reliability of the reactor. The invention is therefore an improvement to the sodium supply system of the nuclear reactor core vessel with incorporated exchangers, in which the cool sodium, after passing through the primary exchangers, is collected in a ring compartment from whence it is taken up by the pumps and moved to at least one pipe reaching a distribution tank located under the reactor core [fr

  2. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  3. Containment vessel construction for nuclear power reactors

    International Nuclear Information System (INIS)

    Sulzer, H.D.; Coletti, J.L.

    1975-01-01

    A nuclear containment vessel houses an inner reactor housing structure whose outer wall is closely spaced from the inner wall of the containment vessel. The inner reactor housing structure is divided by an intermediate floor providing an upper chamber for housing the reactor and associated steam generators and a lower chamber directly therebeneath containing a pressure suppression pool. Communication between the upper chamber and the pressure suppression pool is established by conduits extending through the intermediate floor which terminate beneath the level of the pressure suppression pool and by inlet openings in the reactor housing wall beneath the level of the pressure suppression pool which communicate with the annulus formed between the outer wall of the reactor housing structure and the inner wall of the containment vessel. (Official Gazette)

  4. Japanese contributions to containment structure, assembly and maintenance and reactor building for ITER

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Honda, Tsutomu; Kanamori, Naokazu

    1991-06-01

    Joint design work on Conceptual Design Activity of International Thermonuclear Experimental Reactor (ITER) with four parties, Japan, the United States, the Soviet Union and the European Community began in April 1988 and was successfully completed in December 1990. In Japan, the home team was established in wide range of collaboration between JAERI and national institute, universities and heavy industries. The Fusion Experimental Reactor (FER) Team at JAERI is assigned as a core of the Japanese home team to support the joint Team activity and mainly conducted the design and R and D in the area of containment structure, remote handling and plant system. This report mainly describes the Japanese contribution on the ITER containment structure, remote handling and reactor building design. Main areas of contributions are vacuum vessel, attaching locks, electromagnetic analysis, cryostat, port and service line layout for containment structure, in-vessel handling equipment design and analysis, blanket handling equipment design and related short term R and D for assembly and maintenance, and finally reactor building design and analysis based on the equipment and service line layout and components flow during assembly and maintenance. (author)

  5. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  6. Development of in-core measurements in the reactor KS-150

    International Nuclear Information System (INIS)

    Rana, S.B.

    1977-01-01

    Mapping of the neutron flux density distribution and of the neutron fluence distribution in the KS-150 reactor core was carried out using an in-core measuring system. The system allows the in-service monitoring of important operating properties of the reactor core and fuel elements and consists of a mapping fuel element assembly with built-in SPN detectors, of transmission paths and a computer facility. The measurement of the neutron flux, neutron fluence and temperature fields in the reactor core was carried out during the power start-up of the reactor using self-powered DPZ-1 detectors. The obtained data are given and the axial distribution of neutron flux is graphically represented for different values of burnup at the same configuration of regulating rods, as is the axial distribution of neutron fluence for different configurations of the regulating rods during operation, and the in-service neutron fluence distribution. The maximal fuel temperature of 500.2 degC was found at a distance of 291.2 cm from the upper boundary of the reactor core, at a neutron flux of 1.46x10 14 n/cm 2 s. In comparison with other methods, this method proved easy and quick, the results reliable, reactivity perturbance negligible and the fuel element cost increase a negligible 4%. Neutron flux mapping using in-core self-powered detectors will be performed on a wider scale. (J.P./J.O.)

  7. Transients in a reactor containment after a HCDA

    International Nuclear Information System (INIS)

    Ghosh, A.K.

    1984-01-01

    The consequences of a hypothetical core meltdown accident in a fast reactor is analysed. Shock waves are generated in the surrounding medium after the energy release, which is assumed to be instantaneous and at a point. After discussing the difference in the predicted and experimentally observed peak pressure a semi-empirical approach is taken to arrive at a better estimate. This defines the loading on the containment, which is idealised as a combination of a shell and a plate. To simplify the analysis the shell is assumed to be in plane strain and axial symmetry is assumed for both components. The shell response is evaluated by using elasticity theory. Numerical results are presented for peak overpressure and pressure-time history and dynamic stresses in the containment. (Author) [pt

  8. Site Investigation for Detection of KIJANG Reactor Core Center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyun; Kim, Jun Yeon; Kim, Jeeyoung [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    It was planned for the end of March 2017 and extended to April 2018 according to the government budget adjustment. The KJRR project is intended for filling the self-sufficiency of RI demand including Mo-99, increasing the NTD capacity and developing technologies related to the research reactor. In project, site investigation is the first activity that defines seismologic and related geologic aspects of the site. Site investigation was carried out from Oct. 2012 to Jan. 2014 and this study is intended to describe detail procedures in locating the reactor core center. The location of the reactor core center was determined by collectively reviewing not only geological information but also information from architects engineering. EL 50m was selected as ground level by levering construction cost. Four recommended locations (R-1a - R-1d) are displayed for the reactor core center. R-1a was found optimal in consideration of medium rock contour, portion of medium rock covering reactor buildings, construction cost, physical protection and electrical resistivity. It is noted that engineering properties of the medium rock is TCR/RQD 100/53, elastic modulus 7,710 - 8,720MPa, permeability coefficient 2.92E-06cm/s, and S-wave velocity 1,380m/s, sound for foundations of reactor buildings.

  9. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  10. TMI-2 reactor-vessel head removal and damaged-core-removal planning

    International Nuclear Information System (INIS)

    Logan, J.A.; Hultman, C.W.; Lewis, T.J.

    1982-01-01

    A major milestone in the cleanup and recovery effort at TMI-2 will be the removal of the reactor vessel closure head, planum, and damaged core fuel material. The data collected during these operations will provide the nuclear power industry with valuable information on the effects of high-temperature-dissociated coolant on fuel cladding, fuel materials, fuel support structural materials, neutron absorber material, and other materials used in reactor structural support components and drive mechanisms. In addition, examination of these materials will also be used to determine accident time-temperature histories in various regions of the core. Procedures for removing the reactor vessel head and reactor core are presented

  11. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  12. Integrated analysis of core debris interactions and their effects on containment integrity using the CONTAIN computer code

    International Nuclear Information System (INIS)

    Carroll, D.E.; Bergeron, K.D.; Williams, D.C.; Tills, J.L.; Valdez, G.D.

    1987-01-01

    The CONTAIN computer code includes a versatile system of phenomenological models for analyzing the physical, chemical and radiological conditions inside the containment building during severe reactor accidents. Important contributors to these conditions are the interactions which may occur between released corium and cavity concrete. The phenomena associated with interactions between ejected corium debris and the containment atmosphere (Direct Containment Heating or DCH) also pose a potential threat to containment integrity. In this paper, we describe recent enhancements of the CONTAIN code which allow an integrated analysis of these effects in the presence of other mitigating or aggravating physical processes. In particular, the recent inclusion of the CORCON and VANESA models is described and a calculation example presented. With this capability CONTAIN can model core-concrete interactions occurring simultaneously in multiple compartments and can couple the aerosols thereby generated to the mechanistic description of all atmospheric aerosol components. Also discussed are some recent results of modeling the phenomena involved in Direct Containment Heating. (orig.)

  13. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  14. Reactor physics innovations of the advanced CANDU reactor core: adaptable and efficient

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Hopwood, J.M.; Bonechi, M.

    2003-01-01

    The Advanced CANDU Reactor (ACR) is designed to have a benign, operator-friendly core physics characteristic, including a slightly negative coolant-void reactivity and a moderately negative power coefficient. The discharge fuel burnup is about three times that of natural uranium fuel in current CANDU reactors. Key features of the reactor physics innovations in the ACR core include the use of H 2 O coolant, slightly enriched uranium (SEU) fuel, and D 2 O moderator in a reduced lattice pitch. These innovations result in substantial improvements in economics, as well as significant enhancements in reactor performance and waste reduction over the current reactor design. The ACR can be readily adapted to different power outputs by increasing or decreasing the number of fuel channels, while maintaining identical fuel and fuel-channel characteristics. The flexibility provided by on-power refuelling and simple fuel bundle design enables the ACR to easily adapt to the use of plutonium and thorium fuel cycles. No major modifications to the basic ACR design are required because the benign neutronic characteristics of the SEU fuel cycle are also inherent in these advanced fuel cycles. (author)

  15. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  16. The in-core experimental program at the MIT Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kohse, G.E.; Hu, L-W., E-mail: kohse@mit.edu [Massachusetts Inst. of Technology, Nuclear Reactor Lab., Cambridge, Massachusetts (United States)

    2014-07-01

    This paper describes the program of in-core experiments at the Massachusetts Institute of Technology Research Reactor (MITR), a 6 MW research reactor. The MITR has a neutron flux and spectrum similar to those in water-cooled power reactors and therefore provides a useful test environment for materials and fuels research. In-core facilities include: a water loop operating at pressurized water or boiling water reactor conditions, an inert gas irradiation facility operating at temperature up to 850 {sup o}C and special purpose facilities including fuel irradiation experiments. Recent and ongoing tests include: water loop investigations of corrosion and thermal and mechanical property evolution of SiC/SiC composites for fuel cladding, irradiation of advanced materials and in-core sensors at elevated temperatures, irradiation in molten fluoride salt at 700 {sup o}C of metal alloy, graphite and composite materials for power reactor applications and instrumented irradiations of metal-bonded hydride fuel. (author)

  17. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  18. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  19. An evaluation of designed passive Core Makeup Tank (CMT) for China pressurized reactor (CPR1000)

    International Nuclear Information System (INIS)

    Wang, Mingjun; Tian, Wenxi; Qiu, Suizheng; Su, Guanghui; Zhang, Yapei

    2013-01-01

    Highlights: ► Only PRHRS is not sufficient to maintain reactor safety in case of SGTR accident. ► The Core Makeup Tank (CMT) is designed for CPR1000. ► Joint operation of PRHRS and CMT can keep reactor safety during the SGTR transient. ► CMT is a vital supplement for CPR1000 passive safety system design. - Abstract: Emergency Passive Safety System (EPSS) is an innovative design to improve reliability of nuclear power plants. In this work, the EPSS consists of secondary passive residual heat removal system (PRHRS) and the reactor Core Makeup Tank (CMT) system. The PRHRS, which has been studied in our previous paper, can effectively remove the core residual heat and passively improve the inherent safety by passive methods. The designed CMT, representing the safety improvement for CPR1000, is used to inject cool boron-containing water into the primary system during the loss of coolant accident. In this study, the behaviors of EPSS and transient characteristics of the primary loop system during the Steam Generator Tube Rupture (SGTR) accident are investigated using the nuclear reactor thermal hydraulic code RELAP5/MOD3.4. The results show that the designed CMT can protect the reactor primary loop from boiling and maintain primary loop coolant in single phase state. Both PRHRS and CMT operation ensures reactor safety during the SGTR accident. Results reported in this paper show that the designed CMT is a further safety improvement for CPR1000

  20. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  1. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  2. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  3. Transport-diffusion coupling for Candu reactor core follow-Up

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.; Chambon, R.

    2003-01-01

    We couple the finite reactor diffusion code DONJON and the lattice code DRAGON, called for simplicity DD, to perform reactor follow-up calculations using a history-based approach. In order to do this, a new DD module is developed. This module manages the transfer of information between standard DONJON and DRAGON data structures. Moreover, it stores in a history data structure the global and local parameters required for cell calculations as well as the isotopic composition of the various materials present in each cell of the reactor. We then implement in DD a parallel algorithm to perform history-based Candu reactor calculations. Here, we assign to each processor a specific number of fuel channels to be analyzed. The DRAGON cell calculations for each of the fuel bundles associated with the specified channels are performed on the same processor in order to minimize communication time. Only the macroscopic cross section libraries are exchanged between the processor. Since the amount of data exchanged is relatively small, we expect to obtain an ideal speed-up. The coupling is tested for the analysis of a simplified Candu reactor model with 4 x 4 channels each containing 4 bundles. A 100 full-power days core tracking sequence with 16 refueling steps is studied. Results are coherent with those obtained using more approximate approaches. Parallel speed-up is near optimal indicating that the use of this approach for more realistic reactor calculations should be pursued. (authors)

  4. Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Nacir, B.; Boulaich, Y.; Chakir, E.; El Bardouni, T.; El Bakkari, B.; El Younoussi, C.

    2014-01-01

    Highlights: • Additional fresh fuel elements must be added to the reactor core. • TRIGA reactor could safely operate around 2 MW power with 12% fuel elements. • Thermal–hydraulic parameters were calculated and the safety margins are respected. • The 12% fuel elements will have no influence on the safety of the reactor. - Abstract: The Moroccan TRIGA MARK II reactor core is loaded with 8.5% in weight of uranium standard fuel elements. Additional fresh fuel elements must periodically be added to the core in order to remedy the observed low power and to return to the initial reactivity excess at the End Of Cycle. 12%-uranium fuel elements are available to relatively improve the short fuel lifetime associated with standard TRIGA elements. These elements have the same dimensions as standards elements, but with different uranium weight. The objective in this study is to demonstrate that the Moroccan TRIGA reactor could safely operate, around 2 MW power, with new configurations containing these 12% fuel elements. For this purpose, different safety related thermal–hydraulic parameters have been calculated in order to ensure that the safety margins are largely respected. Therefore, the PARET model for this TRIGA reactor that was previously developed and combined with the MCNP transport code in order to calculate the 3-D temperature distribution in the core and all the most important parameters like the axial distribution of DNBR (Departure from Nucleate Boiling Ratio) across the hottest channel. The most important conclusion is that the 12% fuel elements utilization will have no influence on the safety of the reactor while working around 2 MW power especially for configurations based on insertions in C and D-rings

  5. Shock loading of reactor vessel following hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Srinivas, G.; Doshi, J.B.

    1990-01-01

    Hypothetical Core Disruptive Accident (HCDA) has been historically considered as the maximum credible accident in Fast Breeder Reactor systems. Environmental consequences of such an accident depends to a great extent on the ability of the reactor vessel to maintain integrity during the shock loading following an HCDA. In the present paper, a computational model of the reactor core and the surrounding coolant with a free surface is numerical technique. The equations for conservation of mass, momentum and energy along with an equation of state are considered in two dimensional cylindrical geometry. The reactor core at the end of HCDA is taken as a bubble of hot, vaporized fuel at high temperature and pressure, formed at the center of the reactor vessel and expanding against the surrounding liquid sodium coolant. The free surface of sodium at the top of the vessel and the movement of the core bubble-liquid coolant interface are tracked by Marker and Cell (MAC) procedure. The results are obtained for the transient pressure at the vessel wall and also for the loading on the roof plug by the impact of the slug of liquid sodium. The computer code developed is validated against a benchmark experiment chosen to be ISPRA experiment reported in literature. The computer code is next applied to predict the loading on the Indian Prototype Fast Breeder Reactor (PFBR) being developed at Kalpakkam

  6. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  7. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    International Nuclear Information System (INIS)

    Samim Anghaie

    2002-01-01

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  8. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    Science.gov (United States)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  9. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  10. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  11. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1977-01-01

    The aim is an optimization of load distribution in the core so that the load decreases in the direction of coolant flow (with gas cooling from above downwards) but so that it remains constant in horizontal layers to the edge of the core. The former produces optimum cooling, because the coolant has to take up decreasing heat output in the direction of flow. The latter simplifies refueling, because replacement of a whole layer having the same burn-up takes place. The upper two layers with the highest output and the shortest dwell time are replaced every 300 days, for example, the third layer is replaced after double this time and 5 more layers after four times this dwell time. After the simultaneous replacement of all layers, the reactor is in the same state as at commissioning. The fuel cells consist of hexagonal graphite blocks about 1.65 metres in height and 0.75 wide, for example. Each block contains about 100 through cooling channels and about 200 fuel channels closed on both sides. A large number of columns each consisting of 8 blocks is arranged in a tight honeycomb pattern and forms the core. Within each of the 8 horizontal layers of blocks, each fuel cell contains the same fuel mixture with predetermined dwell time. The fuel mixture is suited to the dwell time planned for each layer. The various fuel cells are kept at the same output by burnable neutron poisons in special channels provided for this purpose in the fuel cell and/or by absorber rods, or a planned load distribution is maintained. (HP) [de

  12. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  13. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  14. Reactor container and controlling method thereof

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1990-01-01

    An object of the present invention is to prevent stress corrosion crack caused in pipelines made of stainless steels by preventing deposition of chlorine, etc. on the surface, etc. of the pipelines. That is, an internal evolving gas elimination system comprises a gas extraction device for extracting gases in the reactor container, an obstacle elimination device for eliminating obstacles contained in the extracted gases and an internal gas elimination device for eliminating internal evolving gases contained in the extracted gases. Further, gases in the upper portion of the reactor container are extracted and then the ingredients of the internal evolving gases contained in the gases are eliminated and, thereafter, the gases are supplied to the lower portion of the container to keep the relative humidity in the reactor container to less than 20%RH. As a result, since the internal evolving gases are eliminated and the relative humidity at the inside is kept to less than 20%RH, deposition of chlorine or salts on the pipelines can be prevented to thereby prevent the stress corrosion cracks. (I.S.)

  15. Canada-India Reactor (CIR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1960-12-15

    Design information on the Canada-India Reactor is presented. Data are given on reactor physics, the core, fuel elements, core heat transfer, control, reactor vessel, fluid flow, reflector and shielding, containment, cost estimates, and research facilities. Drawings of vertical and horizontal sections of the reactor and fluid flow are included. (M.C.G.)

  16. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  17. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  18. Containment for small pressurized water reactors

    International Nuclear Information System (INIS)

    Siler, W.C.; Marda, R.S.; Smith, W.R.

    1977-01-01

    Babcock and Wilcox Company has prepared studies under ERDA contract of small and intermediate size (313, 365 and 1200 MWt) PWR reactor plants, for industrial cogeneration or electric power generation. Studies and experience with nuclear plants in this size range indicate unfavorable economics. To offset this disadvantage, modular characteristics of an integral reactor and close-coupled vapor suppression containment have been exploited to shorten construction schedules and reduce construction costs. The resulting compact reactor/containment complex is illustrated. Economic studies to date indicate that the containment design and the innovative construction techniques developed to shorten erection schedules have been important factors in reducing estimated project costs, thus potentially making such smaller plants competetive with competing energy sources

  19. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  20. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex-core

  1. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  2. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  3. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  4. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  5. Neutronic Core Performance of CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Villarino, Eduardo; Hergenreder, Daniel; Matzkin, S

    2000-01-01

    The actual design state of core of CAREM-25 reactor is presented.It is shown that the core design complains with the safety and operation established requirements.It is analyzed the behavior of the reactor safety and control systems (single failure of the fast shut down system, single failure of the shut down system, single failure of the second shut down system, reactivity worth of the adjust and control system in normal operation and hot shut down, reactivity worth of the adjust and control system and the scheme of movement of the control rod during the operation cycle).It is shown the burnup profile of fuel elements with the proposed scheme of refueling and the burnup and power density distribution at different moments of the operation cycle.The power peaking factor of the equilibrium core is 2.56, the minimum DNBR is 1.90 and its average is 2.09 during the operation cycle

  6. The application of mechanical desktop in the design of the reactor core structure of China advanced research reactor

    International Nuclear Information System (INIS)

    Lang Ruifeng

    2002-01-01

    The three-dimensional parameterization design method is introduced to the design of reactor core structure for China advanced research reactor. Based on the modeling and dimension variable driving of the main parts as well as the modification of dimension variable, the preliminary design and modification of reactor core is carried out with high design efficiency and quality as well as short periods

  7. 77 FR 30435 - In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Science.gov (United States)

    2012-05-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [Docket No. PRM-50-105; NRC-2012-0056] In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core AGENCY: Nuclear Regulatory Commission... of operating licenses for nuclear power plants (``NPP'') to operate NPPs with in-core thermocouples...

  8. Evaluation of final vapor pressures in the loss of flow accident in an irradiation device of a pool reactor core

    International Nuclear Information System (INIS)

    Verri, A.

    1987-01-01

    The reliability feature, are described for a device containing samples, at a temperatures of 300 grade centigrades, in a reactor core for a long time. After an examination of the maximum accident event, the maximum vapour pressure originated by the inlet of reactor cooling water into the experimental device, is evaluated

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  10. Effect of core burnup on the dynamic behavior of fast reactors

    International Nuclear Information System (INIS)

    Ilberg, D.; Saphier, D.; Yiftah, S.

    1977-01-01

    Performance of a dynamic analysis, taking burnup changes into account, requires fission-product nuclear data of relatively small uncertainty, suitable burnup calculation models, and dynamic computer programs. These were prepared and used with the following results: (1) Significant changes in static and dynamic parameters were observed when investigating the effect of burnup. These changes were found to be larger than differences introduced by the uncertainty of the fission-product nuclear data. (2) A one-dimensional burnup computer program was prepared. It was found that a burnup model based on the generalized radioactive decay scheme is suitable for accurate fast reactor calculations. (3) Space-time dynamic calculations of fast reactors having different burnup levels were performed. The stability difference between ''clean'' and high burnup cores is greater when local rather than uniform perturbations are inserted along the entire core length. The magnitude by which the ''end-of-life'' core increases the transient excursion over that of the clean core depends on the particular region in which the perturbation is inserted. The end-of-life core will magnify the transient excursion more than the clean core whenever the perturbation is inserted into a region having a higher adjoint flux level than that of the clean core. However, when a reactor safety system operates successfully, the difference in the temperature transient of the clean and end-of-life cores will be relatively small. It is suggested that only the analysis of large local perturbations be performed for end-of-life cores as well as for clean cores in the safety evaluation of fast reactors

  11. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  12. Operational report, Formation of the XXVII reactor core, plan of fuel exchange

    International Nuclear Information System (INIS)

    Martinc, R.

    1977-01-01

    Plan for fuel exchange for formation of the reactor core No. XXVII is presented. This report includes: the quantity of 80% enriched fuel which is input in the core, description of the fuel 'transfer' through the core within this fuelling scheme. It covers the review of reactor safety operating with the core No. XXVII related to reactivity change, thermal load of the fuel channels and fuel burnup. These data result from the analysis based on the same correlated calculation method which was applied for planning the first regular fuel exchange with 80% enriched fuel (core No. XXVI configuration), which has been approved in february 1977. Based on the enclosed data and the fuel exchange according to the proposed procedure it is expected that the reactor operation with core No. XXVII configuration will be safe [sr

  13. Leak monitoring method for a reactor container

    International Nuclear Information System (INIS)

    Uehara, Toshio.

    1987-01-01

    Purpose: To confirm leakages from a container upon nuclear reactor operation. Method: Leakages from a nuclear reactor container has been prevented by lowering the inner pressure of the container relative to the external pressure. In the conventional method of calculating the leakage by applying an inner pressure to the container and measuring the pressure change, etc. after the elapse of a pre-determined time, the measurement has to be conducted at periodical inspection when the nuclear reactor is shut-down. In view of the above, the leak test is conducted in the present invention by applying a slight inner pressure to the inside of the reactor container by supplying gases from a gas supply system and detecting the flow rate of the gases in the gas supply system while maintaining the slight inner pressure constant by controlling the supply and discharge of the gases. By applying such a inner pressure as causing no effect to the reactor operation, it is possible to monitor the leaks during operation and to detect the flow rate value surely and continuously if the leak is resulted. (Kamimura, M.)

  14. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  15. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  16. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  17. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  18. Hualong One's nuclear reactor core design and relative safety issues research

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H., E-mail: yuhong_xing@126.com [Nuclear Power Inst. of China, Design and Research Sub-Inst., Chengdu, Sichuan (China)

    2015-07-01

    'Full text:' Hualong One, a third generation 1000MWe-class pressurized water reactor, is developed by China National Nuclear Cooperation (CNNC), based on the self-reliant technologies and experiences from China 40 years designing, construction, operation and maintenance of NPPs. In China, it has been approved to construct at Fuqing 5&6 and Fangchenggang 3&4. The Hualong One adopts advanced design features to dramatically enhance plant safety, economic efficiency and convenience of operation and maintenance. It consists of three loops with nominal thermal power output 3060 MWt and a 60-year design life. Its reactor core has 177 fuel assemblies, 18 month refueling interval (after initial cycle), and more than 15% thermal margin. It adopts low leakage loading pattern which can achieve better economy of the neutron, higher reactivity and lower radiation damage of pressure vessel. For the safety design, incorporating the feedback of Fukushima accident, the Hualong One has a combination of active and passive safety systems, a single station layout, double containment structure, and comprehensive implementation of defence-in-depth design principles. The new design features has been successfully evaluated to ensure that they enhance the performance and safety of Hualong One. Several experimental activates have been conducted, such as cavity injection and cooling system testing, passive containment heat removal system testing, and passive residual heat removal system of secondary side testing. The future improvements of Hualong reactor will focus on better economic core design and more reliable safety system. (author)

  19. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  20. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  1. Fuel density effect on parameter of reactivity coefficient of the Innovative Research Reactor core

    International Nuclear Information System (INIS)

    Rokhmadi; Tukiran S

    2013-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research reactor in Indonesia right now is already 25 year old. Therefor, it is needed to design a new research reactor as a alternative called it innovative research reactor (IRR) and then as an exchanger for old research reactor. The aim of this research is to complete RRI core design data as a requirement for design license. Calculation done is to get the RRI core reactivity coefficients with 5 x 5 core configuration and 20 MW of power, has more than 40 days cycle of length. The RRI core reactivity coefficient calculation is done for new U-"9Mo-Al fuel with variation of densities. The calculation is done by using WIMSD-5B and BATAN-FUEL computer codes. The result of calculation for conceptual design showed that the equilibrium RRI core with 5 x 5 configuration, 450 g, 550 g and 700 g of fuel loadings have negative reactivity coefficients of fuel temperature, moderator temperature, void fraction and density of moderator but the values of the reactivities are very variation. This results has met the safety criteria for RRI core conceptual design. (author)

  2. Nuclear core catchers

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1976-01-01

    A receptacle is described for taking the molten fragments of a nuclear reactor during a reactor core fusion accident. The receptacle is placed under the reactor. It includes at least one receptacle for the reactor core fragments, with a dome shaped part to distribute the molten fragments and at least one outside layer of alumina bricks around the dome. The characteristic of this receptacle is that the outer layer of bricks contains neutron poison rods which pass through the bricks and protrude in relation to them [fr

  3. Design and construction of reactor containment systems of the prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ikeda, Makinori; Kawata, Koji; Sato, Masaki; Ito, Masashi; Hayashi, Kazutoshi; Kunishima, Shigeru.

    1991-01-01

    The MONJU reactor containment systems consist of a reactor containment vessel, reactor cavity walls and cell liners. The reactor containment vessel is strengthened by ring stiffeners for earthquake stresses. To verify its earthquake-resistant strength, vibration and buckling tests were carried out by using 1/19 scale models. The reactor cavity walls, which form biological shield and support the reactor vessel, are constructed of steel plate frames filled with concrete. The cell liner consists of liner plates and thermal insulation to moderate the effects of sodium spills, and forms a gastight cell to maintain a nitrogen atmosphere. (author)

  4. The influence of reactor core parameters on effective breeding coefficient Keff

    Institute of Scientific and Technical Information of China (English)

    Liu Li-Po; Liu Yi-Bao; Wang Juan; Yang Bo; Zhang Tao

    2008-01-01

    The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method. The obtained values of Keff are compared and analysed, which can provide theoretical basis for reactor design.

  5. Development of cutting technique of reactor core internals by CO laser

    International Nuclear Information System (INIS)

    Takano, G.; Beppu, S.; Matsumoto, O.; Sakamoto, N.; Onozawa, T.; Sugihara, M.; Miya, K.

    1995-01-01

    The CO laser is superior in the absorption characteristic to materials to the CO 2 laser due to its shorter wavelength. In consideration of this characteristic Nuclear Power Engineering Corporation is studying this applicability sponsored by the Ministry of International Trade Industry of Japan to cutting of reactor core internals of commercial nuclear power plant. In decommissioning of reactor core internals it is necessary to cut stainless steel plates of 305 mm thick. The authors cut stainless steel plates of up to 310mm thick in air and those of up to 150 mm thick underwater with a 20kW class laser. Further, models simulating key structural elements of PWR core internals were cut and secondary products to clarify the applicability of the CO laser cutting to reactor core internals were evaluated. (author)

  6. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  7. RB reactor benchmark cores

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    A selected set of the RB reactor benchmark cores is presented in this paper. The first results of validation of the well-known Monte Carlo MCNP TM code and adjoining neutron cross section libraries are given. They confirm the idea for the proposal of the new U-D 2 O criticality benchmark system and support the intention to include this system in the next edition of the recent OECD/NEA Project: International Handbook of Evaluated Criticality Safety Experiment, in near future. (author)

  8. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  9. Ventilation air conditioner for a reactor container

    International Nuclear Information System (INIS)

    Ikegame, Noboru; Nakagawa, Takeshi.

    1980-01-01

    Purpose: To suppress the variations in the internal pressure of a reactor container and smoothly ventilate the reactor container. Constitution: The air conditioner provides an air-flow-rate-control damper, a purge-air supply fan, and a filter device in the air-supply pipe of a reactor container. Furthermore, it provides a pressure difference detector at a part of the container. The air-flow-rate-control damper is connected electrically through a position-modulator-comparison amplifier to the pressure difference detector. When the filtration becomes insufficient by clogging of the filter device and the internal pressure increased abruptly in the container, the pressure-difference detector can detect it, and the damper is operated by a pressure regulator and the comparator so as to control the air flow to the container. Thus, the internal pressure variation is controlled so as to easily ventilate the container. (J.P.N.)

  10. Sensors for use in nuclear reactor cores

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1978-01-01

    Sensors including radiation detectors and the like for use within the core of nuclear reactors and which are constructed in a manner to provide optimum reliability of the sensor during use are described

  11. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  12. Reactor container

    International Nuclear Information System (INIS)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-01-01

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.)

  13. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  14. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  15. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  16. Seismic response of a block-type nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Bennett, J.G.; Merson, J.L.

    1976-05-01

    An analytical model is developed to predict seismic response of large gas-cooled reactor cores. The model is used to investigate scaling laws involved in the design of physical models of such cores, and to make parameter studies

  17. Core conversion effects on the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1982-07-01

    The safety related parameters of the 5 MW Democritus research reactor that will be affected by the scheduled core conversion to use LEU instead of HEU are considered. The analysis of the safety related items involved in such a core conversion, mainly the consequences due to MCA, DBA, etc., is of a general nature and can, therefore, be applied to other similar pool type reactors as well. (T.A.)

  18. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Todosow, M.; Raitses, G.; Galperin, A.

    2009-01-01

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  19. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  20. Analysis of the seismic response of a fast reactor core

    International Nuclear Information System (INIS)

    Martelli, A.; Maresca, G.

    1984-01-01

    This report deals with the methods to apply for a correct evaluation of the reactor core seismic response. Reference is made to up-to-date design data concerning the PEC core, taking into account the presence of the core-restraint plate located close to the PEC core elements top and applying the optimized iterative procedure between the vessel linear calculation and the non-linear ones limited to the core, which had been described in a previous report. It is demonstrated that the convergence of this procedure is very fast, similar to what obtained in the calculations of the cited report, carried out with preliminary data, and it is shown that the cited methods allow a reliable evaluation of the excitation time histories for the experimental tests in support of the seismic verification of the shutdown system and the core of a fast reactor, as well as relevant data for the experimental, structural and functional, verification of the core elements in the case of seismic loads

  1. In-core fuel management programs for nuclear power reactors

    International Nuclear Information System (INIS)

    1984-10-01

    In response to the interest shown by Member States, the IAEA organized a co-ordinated research programme to develop and make available in the open domain a set of programs to perform in-core fuel management calculations. This report summarizes the work performed in the context of the CRP. As a result of this programme, complete in-core fuel management packages for three types of reactors, namely PWR's, BWR's and PHWR are now available from the NEA Data Bank. For some reactor types, these program packages are available with three levels of sophistication ranging from simple methods for educational purposes to more comprehensive methods that can be used for reactor design and operation. In addition some operating data have been compiled to allow code validation. (author)

  2. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  3. Actions to reduce radioactive emissions: prevention of containment failure by flooding Containment and Reactor Cavity; Acciones para la reduccion de emisiones radiactivas: prevencion del fallo de la Contencion mediante la inundacion de la Contencion y de la Cavidad del Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fornos Herrando, J.

    2013-07-01

    The reactor cavity of Asco and Vandellos II is dry type, thus a severe accident leading to vessel failure might potentially end up resulting in the loss of containment integrity, depending on the viability to cool the molten core. Therefore, significant radioactive emissions could be released to outside. In the framework of Fukushima Stress Tests, ANAV has analyzed the convenience of carrying out different actions to prevent failure of the containment integrity in order to reduce radioactive emissions. The aim of this paper is to present and describe the main phenomenological aspects associated with two of these actions: containment flooding and reactor cavity flooding.

  4. Safety characteristics of the US advanced liquid metal reactor core

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Gyorey, G.L.; Lipps, A.J.; Wu, T.

    1991-01-01

    The U.S. Advanced Liquid Metal Reactor (ALMR) design employs innovative, passive features to provide an unprecedented level of public safety and the ability to demonstrate this safety to the public. The key features employed in the core design to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters, and gas expansion modules. In addition, the reactor vessel and closure are designed to have the capability to withstand, with large margins, the maximum possible core disruptive accident without breach and radiological release. (author)

  5. Assessment of core protection and monitoring systems for an advanced reactor SMART

    International Nuclear Information System (INIS)

    In, Wang Kee; Hwang, Dae Hyun; Yoo, Yeon Jong; Zee, Sung Qunn

    2002-01-01

    Analogue and digital core protection/monitoring systems were assessed for the implementation in an advanced reactor. The core thermal margins to nuclear fuel design limits (departure from nucleate boiling and fuel centerline melting) were estimated using the design data for a commercial pressurized water reactor and an advanced reactor. The digital protection system resulted in a greater power margin to the fuel centerline melting by at least 30% of rated power for both commercial and advanced reactors. The DNB margin with the digital system is also higher than that for the analogue system by 8 and 12.1% of rated power for commercial and advanced reactors, respectively. The margin gain with the digital system is largely due to the on-line calculations of DNB ratio and peak local power density from the live sensor signals. The digital core protection and monitoring systems are, therefore, believed to be more appropriate for the advanced reactor

  6. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  7. An approach to model reactor core nodalization for deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M

  8. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  9. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  10. A procedure for searching the equilibrium core of a research reactor

    International Nuclear Information System (INIS)

    Bakri Arbie; Liem Peng Hong; Prayoto

    1996-01-01

    A procedure for searching the equilibrium core of a research reactor has been proposed. The searching procedure is based on the relaxation method and has been implemented in Batan-EQUIL-2D in-core fuel management code. The few-group neutron diffusion theory in 2-D, X-Y, and R-Z reactor geometries are adopted as the framework of the code. The successful applicability of the procedure for obtaining the new RSG-GAS (MPR-30) silicide equilibrium core was shown. (author)

  11. Seismic responses of N-Reactor core. Independent review of Phase II work

    International Nuclear Information System (INIS)

    Chen, J.C.; Lo, T.; Chinn, D.J.; Murray, R.C.; Johnson, J.J.; Maslenikov, O.R.

    1985-08-01

    Seismic response of the N-Reactor core was independently analyzed to validate the results of Impell's analysis. The analysis procedure consists of two major stages: linear soil-structure interaction (SSI) analysis of the overall N-Reactor structure complex and nonlinear dynamic analysis of the reactor core. In the SSI analysis, CLASSI computer codes were used to calculate the SSI response of the structures and to generate the input motions for the nonlinear reactor core analysis. In addition, the response was compared to the response from the SASSI analysis under review. The impact of foundation modeling techniques and the effect of soil stiffness variation on SSI response were also investigated. In the core analysis, a nonlinear dynamic analysis model was developed. The stiffness representation of the model was calculated through a finite element analysis of several local core geometries. Finite element analyses were also used to study the block to block interaction characteristics. Using this nonlinear dynamic model along with the basemat time histories generated from CLASSI and SASSI, several dynamic analyses of the core were performed. A series of sensitivity studies was performed to investigate the discretization of the core, the effect of vertical acceleration, the effect of basemat rocking, and modeling assumptions. In general, our independent analysis of core response validates the order of magnitude of the displacement calculated by Impell. 11 refs., 110 figs., 12 tabs

  12. PWR type reactor plant

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1993-01-01

    A water chamber of a horizontal U-shaped pipe type steam generator is partitioned to an upper high temperature water chamber portion and a lower low temperature water chamber portion. An exit nozzle of a reactor container containing a reactor core therein is connected to a suction port of a coolant pump by way of first high temperature pipelines. The exit port of the coolant pump is connected to the high temperature water chamber portion of the steam generator by way of second high temperature pipelines. The low temperature water chamber portion of the steam generator is connected to an inlet nozzle of the reactor container by way of the low temperature pipelines. The low temperature water chamber portion of the steam generator is positioned lower than the high temperature water chamber portion, but upper than the reactor core. Accordingly, all of the steam generator for a primary coolant system, coolant pumps as well as high temperature pipelines and low temperature pipelines connecting them are disposed above the reactor core. With such a constitution, there is no worry of interrupting core cooling even upon occurrence of an accident, to improve plant safety. (I.N.)

  13. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  14. Thawing of lithium in the SP-100 reactor core configuration

    International Nuclear Information System (INIS)

    Magee, P.M.; Malovrh, J.W.; REineking, W.H.

    1986-01-01

    The General Electric SP-100 Liquid Metal Reactor is designed to be launched with the lithium coolant in the reactor and primary loops frozen. Initial startup of the system in space, after a satisfactory orbit is achieved, will be accomplished by slowly increasing the power in the reactor core and using the heat generated to melt the lithium, first in the reactor, and then progressively down the primary loops. This technique significantly facilitates ground handling, reduces vibrational loads during vehicle launch and minimized the shuttle bay heat load. The challenge is to thaw the coolant and startup the system within an acceptable time without structural damage. The test results clearly demonstrate that thawing of the lithium in the SP-100 reactor core can be done rapidly without structural damage and, thus, support the selected concept of SP-100 launch with frozen lithium and thaw/startup in space

  15. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    International Nuclear Information System (INIS)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident that simulates a control-rod withdrawal at full power

  16. Design study of eventual core conversion for the research reactor RA

    International Nuclear Information System (INIS)

    Matausek, M. V.; Marinkovic, N.

    1998-01-01

    Main options are specified for the future status of the 6.5 MW heavy water research reactor RA. Arguments pro and contra restarting the reactor are presented. When considering the option to restart the RA reactor, possibilities to improve its neutronic parameters, such as neutron flux values and irradiation capabilities are discussed, as well as the compliance with the worldwide activities of Reduced Enrichment for Research and Test Reactors (RERTR) program. Possibility of core conversion is examined. Detailed reactor physics design calculations are performed for different fuel types and uranium loading. For different fuel management schemes results are presented for the effective, multiplication factor, power distribution, fuel burnup and consumption. It is shown that, as far as reactor core parameters are considered, conversion to lower enrichment fuel could be easily accomplished. However, conversion to the lower enrichment could only be justified if combined with improvement of some other reactor attributes. (author)

  17. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  18. Core neutronics of a swimming pool research reactor

    International Nuclear Information System (INIS)

    Mannan, M.A.; Mondal, M.A.W.; Pervini, M.E.

    1981-01-01

    The initial cores of the 5 MW swimming pool research reactor of the Nuclear Research Centre, Tehran have been analyzed using the computer codes METHUSELAH and EQUIPOISE. The effective multiplication factor, critical mass, moderator temperature and void coefficients of the core have been calculated and compared with vendor's values. Calculated values agree reasonably well with the vendor's results. (author)

  19. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  20. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  1. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  2. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  3. Development of a core follow calculational system for research reactors

    International Nuclear Information System (INIS)

    Muller, E.Z.; Ball, G.; Joubert, W.R.; Schutte, H.C.; Stoker, C.C.; Reitsma, F.

    1994-01-01

    Over the last few years a comprehensive Pressurized Water Reactor and Materials Testing Reactor core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments. 10 refs., 1 tab., 1 fig

  4. Provision of reliable core cooling in vessel-type boiling reactors

    International Nuclear Information System (INIS)

    Alferov, N.S.; Balunov, B.F.; Davydov, S.A.

    1987-01-01

    Methods for providing reliable core cooling in vessel-type boiling reactors with natural circulation for heat supply are analysed. The solution of this problem is reduced to satisfaction of two conditions such as: water confinement over the reactor core necessary in case of an accident and confinement of sufficient coolant flow rate through the bottom cross section of fuel assemblies for some time. The reliable fuel element cooling under conditions of a maximum credible accident (brittle failure of a reactor vessel) is shown to be provided practically in any accident, using the safety vessel in combination with the application of means of standard operation and minimal composition and capacity of ECCS

  5. CONCRETE REACTOR CONTAINMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Ralph F.; Hall, William F.; Fruchtbaum, Jacob

    1963-06-15

    The results of various leak-rate tests demonstrate the practicality of concrete as primary containment for the maximum credible accident for a research reactor employing plate-type fuel and having a power in excess of one megawatt. Leak-test time was shortened substantially by measuring the relaxation time for overpressure decay, which is a function of leak rate. (auth)

  6. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  7. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Jang, J. S.; Kim, D. W.

    2002-03-01

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  8. A system for obtaining an optimized pre design of nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1989-01-01

    This work proposes a method for obtaing a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one-energy-group, unidimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, refletor thickness, enrichement and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for futures works. (author) [pt

  9. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  10. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  11. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    Science.gov (United States)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  12. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  13. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  14. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  15. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  16. Evaluation of materials for retention of sodium and core debris in reactor systems. Annual progress report, September 1977-December 1978

    International Nuclear Information System (INIS)

    Swanson, D.G.; Zehms, E.H.; McClelland, J.D.; Meyer, R.A.; van Paassen, H.L.L.

    1978-12-01

    This report considers some of the consequences of a hypothetical core disruptive accident in a nuclear reactor. The interactions expected between molten core debris, liquid sodium, and materials that might be employed in an ex-vessel sacrificial-bed or in the reactor building are discussed. Experimental work performed for NRC by Sandia Laboratories and Hanford Engineering Development Laboratory on the interactions between liquid sodium and basalt concrete is reviewed. Studies of molten steel interactions with concrete at Sandia Laboratories and molten UO 2 interactions with concrete at The Aerospace Corporation are also discussed. The potential of MgO for use in core containment is discussed and refractory materials other than MgO are reviewed. Finally, results from earlier experiments with molten core debris and various materials performed at The Aerospace Corporation are presented

  17. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  18. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  19. The Core Conversion of the TRIGA Reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Bergmann, R.; Musilek, A.; Sterba, J.H.; Böck, H.; Messick, C.

    2016-01-01

    The TRIGA Reactor Vienna has operated for many years with a mixed core using Al-clad and stainless-steel (SST) clad low enriched uranium (LEU) fuel and a few SST high enriched uranium (HEU) fuel elements. In view of the US spent fuel return program, the average age of these fuel elements and the Austrian position not to store any spent nuclear fuel on its territory, negotiation started in April 2011 with the US Department of Energy (DOE) and the International Atomic Energy Agency (IAEA). The sensitive subject was to return the old TRIGA fuel and to find a solution for a possible continuation of reactor operation for the next decades. As the TRIGA Vienna is the closest nuclear facility to the IAEA headquarters, high interest existed at the IAEA to have an operating research reactor nearby, as historically close cooperation exists between the IAEA and the Atominstitut. Negotiation started before summer 2011 between the involved Austrian ministries, the IAEA and the US DOE leading to the following solution: Austria will return 91 spent fuel elements to the Idaho National Laboratory (INL) while INL offers 77 very low burnt SST clad LEU elements for further reactor operation of the TRIGA reactor Vienna. The titles of these 77 new fuel elements will be transferred to Euratom in accordance with Article 86 of the Euratom-US Treaty. The fuel exchange with the old core returned to the INL, and the new core transferred to Vienna was carried out in one shipment in late 2012 through the ports of Koper/Slovenia and Trieste/Italy. This paper describes the administrative, logistic and technical preparations of the fuel exchange being unique world-wide and first of its kind between Austria and the USA performed successfully in early November 2012. (author)

  20. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  1. Nuclear start-up, testing and core management of the Fast Test Reactor (FTR)

    International Nuclear Information System (INIS)

    Bennett, R.A.; Daughtry, J.W.; Harris, R.A.; Jones, D.H.; Nelson, J.V.; Rawlins, J.A.; Rothrock, R.B.; Sevenich, R.A.; Zimmerman, B.D.

    1980-01-01

    Plans for the nuclear start-up, low and high power physics testing, and core management of the Fast Test Reactor (FTR) are described. Owing to the arrangement of the fuel-handling system, which permits continuous instrument lead access to experiments during refuelling, it is most efficient to load the reactor in an asymmetric fashion, filling one-third core sectors at a time. The core neutron level will be monitored during this process using both in-core and ex-core detectors. A variety of physics tests are planned following the core loading. Because of the experimental purpose of the reactor, these tests will include a comprehensive characterization programme involving both active and passive neutron and gamma measurements. Following start-up tests, the FTR will be operated as a fast neutron irradiation facility, to test a wide variety of fast reactor core components and materials. Nuclear analyses will be made prior to each irradiation cycle to confirm that the planned arrangement of standard and experimental components satisfies all safety and operational constraints, and that all experiments are located so as to achieve their desired irradiation environment. (author)

  2. A study on reactor core failure thresholds to safety operation of LMFBR

    International Nuclear Information System (INIS)

    Kazuo, Haga; Hiroshi, Endo; Tomoko, Ishizu; Yoshihisa, Shindo

    2006-01-01

    Japan Nuclear Safety Organization (JNES) has been developing the methodology and computer codes for applying level-1 PSA to LMFBR. Many of our efforts have been directed to the judging conditions of reactor core damage and the time allowed to initiate the accident management. Several candidates of the reactor core failure threshold were examined to a typical proto-type LMFBR with MOX fuel based on the plant thermal-hydraulic analyses to the actual progressions leading to the core damage. The results of the present study showed that the judging condition of coolant-boundary integrity failure, 750 degree-C of the boundary temperature, is enough as the threshold of core damage to PLOHS (protected loss-of-heat sink). High-temperature fuel cladding creep failure will not take place before the coolant-boundary reaches the judging temperature and sodium boiling will not occur due to the system pressure rise. In cases of ATWS (anticipated transient without scrum) the accident progression is so fast and the reactor core damage will be inevitable even a realistic negative reactivity insertion due to the temperature rise is considered. Only in the case of ULOHS (unprotected loss-of-heat sink) a relatively long time of 11 min will be allowed till the shut-down of the reactor before the core damage. (authors)

  3. Reactor container

    International Nuclear Information System (INIS)

    Furukawa, Hideyasu; Oyamada, Osamu; Uozumi, Hiroto.

    1976-01-01

    Purpose: To provide a container for a reactor provided with a pressure suppressing chamber pool which can prevent bubble vibrating load, particularly negative pressure generated at the time of starting to release exhaust from a main steam escape-safety valve from being transmitted to a lower liner plate of the container. Constitution: This arrangement is characterized in that a safety valve exhaust pool for main steam escape, in which a pressure suppressing chamber pool is separated and intercepted from pool water in the pressure suppressing chamber pool, a safety valve exhaust pipe is open into said safety valve exhaust pool, and an isolator member, which isolates the bottom liner plate in the pressure suppressing chamber pool from the pool water, is disposed on the bottom of the safety valve exhaust pool. (Nakamura, S.)

  4. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)

  5. Core access system for nuclear reactor

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved nuclear reactor arrangement to facilitate both through-the-head instrumentation and insertion and removal of assemblies from the nuclear core. The arrangement is of the type including a reactor vessel head comprising a large rotatable cover having a plurality of circular openings therethrough, a plurality of upwardly extending nozzles mounted on the upper surface of a large cover, and a plurality of upwardly extending skirts mounted on a large cover about the periphery or boundary of the circular openings; a plurality of small plugs for each of the openings in the large cover, the plugs also having nozzles mounted on the upper surface thereof, and drive mechanisms mounted on top of some of the nozzles and having means extending therethrough into the reactor vessel, the drive mechanisms and nozzles extending above the elevation of the upwardly extending skirts

  6. Thermal hydraulics model for Sandia's annular core research reactor

    International Nuclear Information System (INIS)

    Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)

  7. Code of practice for in-core instrumentation for neutron fluence rate (flux) measurements in power reactors

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This standard applies to in-core (on-line) neutron detectors and instrumentation which is designed for safety, information or control purposes. It also applies to components in so far as these components are contained within the primary envelope of the reactor. The detector types usually used are dc ionization chambers and self-powered neutron detectors

  8. Method of judging leak sources in a reactor container

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1984-01-01

    Purpose: To enable exact judgement for leak sources upon leak accident in a reactor container of BWR type power plants as to whether the sources are present in the steam system or coolant system. Method: If leak is resulted from the main steam system, the hydrogen density in the reactor container is about 170 times as high as the same amount of leak from the reactor water. Accordingly, it can be judged whether the leak source is present in the steam system or reactor water system based on the change in the indication of hydrogen densitometer within the reactor container, and the indication from the drain amount from the sump in the container or the indication of a drain flow meter in the container dehumidifier. Further, I-131, Na-24 and the like as the radioactive nucleides in sump water of the container are measured to determine the density ratio R = (I-131)/(Na-24), and it is judged that the leak is resulted in nuclear water if the density ratio R is equal to that of reactor water and that the leak is resulted from the main steam or like other steam system if the density ratio R is higher than by about 100 times than that of reactor water. (Horiuchi, T.)

  9. Correlation and flux tilt measurements of coupled-core reactor assemblies

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-01-01

    The systematics of coupling reactivity and time delay between cores have been investigated with a series of coupled-core assemblies on the AAEC Split-table Critical Facility. The assemblies were similar to the Universities' Training Reactor (UTR), but had graphite coupling region thickness of 450 mm, 600 mm and 800 mm. The coupling reactivity measured by both the cross-correlation of reactor noise and the flux tilt methods was stronger than for the UTRs, but showed a similar trend with core spacing. The cross-correlograms were analysed using the two-node model to derive the time delays between the cores. The time delays were compared with thermal neutron wave propagation, and found to be consistent when the time delays were added to the individual node response-function delays. (author)

  10. Research reactor core conversion programmes, Department of Research and Isotopes, International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1985-01-01

    In order to put the problem of core conversion into perspective, statistical information on research reactors on a global scale is presented (from IAEA Research reactor Data Base). This paper describes the research reactor core conversion program of the Department of Research and Isotopes. Technical committee Meetings were held on the subject of research reactor core conversion since 1978, and results of these meetings are published in TECDOC-233, TECDOC-324, TECDOC-304. Additional publications are being prepared, several missions of experts have visited countries to discuss and help to plan core conversion programs; training courses and seminars were organised; IAEA has supported attendance of participants from developing countries to RERTR Meetings

  11. Monitoring device for the stability of a reactor core

    International Nuclear Information System (INIS)

    Sakurai, Mikio; Yamauchi, Koki.

    1983-01-01

    Purpose: To avoid unnecessary limitation on the operation conditions for maintaining the reactor stability. Constitution: The reactor stability is judged by taking notice of the axial power distribution of the reactor and monitoring the same online. Specifically, signals are received from a plurality of local power distribution detectors arranged axially in the reactor core to calculate the axial power distribution in computer. Further, a certain distance L is set from the lower end of the reactor core and the total value S1 for the power distribution in the region below the set value L and the total value S2 for the region above the set value L are determined based on the thus calculated power distribution, to thereby determine the ratio: R = S1/S2 between them. Separately, a certain value r is previously determined based on analysis or experiment such as the result of operation. Then, R and r are compared in a comparator and an alarm is generated, if R >r, with respect to the stability. Since monitoring is made based on the actual index, the applicable range of the operation region can be extended. (Ikeda, J.)

  12. Vanadium Beta Emission Detectors for Reactor In-Core Neutron Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Soederlund, B

    1969-06-15

    In-core flux measurements are becoming increasingly important in both power reactors and test reactors. In particular power distribution measurements in large power reactors have to be performed with a great number of neutron detectors capable of withstanding high integrated flux values. This report presents a summary of the development and application of a new type of nuclear radiation sensor, a beta emission detector, for measurements at high neutron flux levels. The work has been carried out at the Section for Instrumentation and has been the basis for a type of neutron detector employed in the Marviken in-core system as well as for other types. The report describes the design and principle of operation, experiments and tests. Also included are the results and comments from a long-term irradiation of some detectors in the Halden reactor.

  13. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  14. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  15. Enhancement of actinide incineration and transmutation rates in Ads EAP-80 reactor core with MOX PuO2 and UO2 fuel

    International Nuclear Information System (INIS)

    Kaltcheva-Kouzminava, S.; Kuzminov, V.; Vecchi, M.

    2001-01-01

    Neutronics calculations of the accelerator driven reactor core EAP-80 with UO 2 and PuO 2 MOX fuel elements and Pb-Bi coolant are presented in this paper. Monte Carlo optimisation computations of several schemes of the EAP-80 core with different types of fuel assemblies containing burnable absorber B4 C or H 2 Zr zirconium hydride moderator were performed with the purpose to enhance the plutonium and actinide incineration rate. In the first scheme the reactor core contains burnable absorber B4 C arranged in the cladding of fuel elements with high enrichment of plutonium (up to 45%). In the second scheme H2 Zr zirconium hydride moderated zones were located in fuel elements with low enrichment (∼20%). In both schemes the incineration rate of plutonium is about two times higher than in the reference EAP-80 core and at the same time the power density distribution remains significantly unchanged compared to the reference core. A hybrid core containing two fuel zones one of which is the inner fuel region with UO 2 and PuO 2 high enrichment plutonium fuel and the second one is the outer region with fuel elements containing zirconium hydride layer was also considered. Evolution of neutronics parameters and actinide transmutation rates during the fuel burn-up is presented. Calculations were performed using the MCNP-4B code and the SCALE 4.3 computational system. (author)

  16. Axial heterogeneous core concept applied for super phoenix reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-11-01

    Always maintaining the current design rules, this paper presents a parametric study on the type of axial heterogeneous core concept (CHA), utilizing a core of fast reactor Super Phenix type, reaching a maximum thermal burnup rate of 150000 M W d/t and being managed in single batch. (author)

  17. Impact on breeding rate of different Molten Salt reactor core structures

    International Nuclear Information System (INIS)

    Wang Haiwei; Mei Longwei; Cai Xiangzhou; Chen Jingen; Guo Wei; Jiang Dazhen

    2013-01-01

    Background: Molten Salt Reactor (MSR) has several advantages over the other Generation IV reactor. Referred to the French CNRS research and compared to the fast reactor, super epithermal neutron spectrum reactor type is slightly lower and beading rate reaches 1.002. Purpose: The aim is to explore the best conversion zone layout scheme in the super epithermal neutron spectrum reactor. This study can make nuclear fuel as one way to solve the energy problems of mankind in future. Methods: Firstly, SCALE program is used for molten salt reactor graphite channel, molten salt core structure, control rods, graphite reflector and layer cladding structure. And the SMART modules are used to record the important actinides isotopes and their related reaction values of each reaction channel. Secondly, the thorium-uranium conversion rate is calculated. Finally, the better molten salt reactor core optimum layout scheme is studied comparing with various beading rates. Results: Breading zone layout scheme has an important influence on the breading rate of MSR. Central graphite channels in the core can get higher neutron flux irradiation. And more 233 Th can convert to 233 Pa, which then undergoes beta decay to become 233 U. The graphite in the breading zone gets much lower neutron flux irradiation, so the life span of this graphite can be much longer than that of others. Because neutron flux irradiation in the uranium molten salt graphite has nearly 10 times higher than the graphite in the breading zone, it has great impact on the thorium-uranium conversion rates. For the super epithermal neutron spectrum molten salt reactors, double salt design cannot get higher thorium-uranium conversion rates. The single molten salt can get the same thorium-uranium conversion rate, meanwhile it can greatly extend the life of graphite in the core. Conclusions: From the analysis of calculation results, Blanket breeding area in different locations in the core can change the breeding rates of thorium

  18. The neutron beam intensity increase by in-core fuel management enhancement in multipurpose research reactors

    International Nuclear Information System (INIS)

    Martinc, R.; Vukadin, Z.; Konstantinovic, J.

    1986-01-01

    The exploitation characteristics of an existing multipurpose research reactor can be increased not only by great reconstruction, but also, to the considerable extent, by the in-core fuel management sophistication. The optimisation of the in-core fuel management procedure in such reactors is governed (among others) by the identified reactor utilisation goals, i.e. by weighting factors dedicated to different utilisation goals, which are often (regarding the in-core fuel management procedure) highly controversial. In this work the best solution for in-core fuel management is sought, with the highest weighting factor dedicated to the neutron beam usage, rather than sample irradiation in the reactor core. The term in-core fuel management includes: the core configuration, the locations of the fresh fuel inflow zone and spent fuel excite zone, and the fuel transfers between these two zones (author)

  19. Investigation of Equilibrium Core by recycling MA and LLFP in fast reactor cycle (I)

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Shono, Akira; Ishikawa, Makoto

    1999-05-01

    Feasibility study on a self-consistent fuel cycle system is performed in the nuclear fuel recycle system with fast reactors. In this system, the self-generated MAs (Minor Actinides) and LLFPs (Long Lived Fission Products) are confined and incinerated in the fast reactor. Analyses of the nuclear properties for an 'Equilibrium Core', in which the self-generated MAs and LLFPs are confined, are investigated. A conventional sodium cooled oxide fuel fast reactor is selected as the core specifications for the 'Equilibrium Core'. This 600 MWe fast reactor does not have a radial blanket. In this study, the nuclear characteristics of the 'Equilibrium Core' are compared with those of a 'Standard Core' and '5 w/oMA Core'. The 'Standard Core' does not confine MAs and LLFPs in the core, and a 5 w/o-MA Rom LWR is loaded in the '5 w/oMA Core'. Through this comparison between 'Equilibrium Core' and the others, the specific characters of the 'Equilibrium Core' are investigated. In order to realize the 'Equilibrium Core' in the viewpoint of nuclear properties, whether the conventional design concept of fast reactors must be changed or not is also evaluated. The analyses for the nitride and metallic fuel cores are also performed because of their different nuclear characteristics compared with the oxide fuel core. Assuming the separation of REs (Rare Earth elements) from MAs and the isotope separation of LLFPs, most of the nuclear properties for the 'Equilibrium Core' are not beyond those for the '5 w/oMA Core'. It is, therefore, possible to bring the 'Equilibrium Core' into existence without any drastic modification for the design concept of the typical oxide fuel fast reactors. Although the 15.1[w/o] LLFPs are loading in the core of the oxide fuel 'Equilibrium Core', a breeding ratio is more than 1.0 and the difference in a amount of plutonium between a charging and discharging is only 0.04 [ton/year]. Without any drastic change for the design concept of the conventional oxide fuel

  20. Static analysis of material testing reactor cores:critical core calculations

    International Nuclear Information System (INIS)

    Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.

    1999-01-01

    A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions

  1. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  2. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  3. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    1999-01-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  4. Estimation of a Reactor Core Power Peaking Factor Using Support Vector Regression and Uncertainty Analysis

    International Nuclear Information System (INIS)

    Bae, In Ho; Naa, Man Gyun; Lee, Yoon Joon; Park, Goon Cherl

    2009-01-01

    The monitoring of detailed 3-dimensional (3D) reactor core power distribution is a prerequisite in the operation of nuclear power reactors to ensure that various safety limits imposed on the LPD and DNBR, are not violated during nuclear power reactor operation. The LPD and DNBR should be calculated in order to perform the two major functions of the core protection calculator system (CPCS) and the core operation limit supervisory system (COLSS). The LPD at the hottest part of a hot fuel rod, which is related to the power peaking factor (PPF, F q ), is more important than the LPD at any other position in a reactor core. The LPD needs to be estimated accurately to prevent nuclear fuel rods from melting. In this study, support vector regression (SVR) and uncertainty analysis have been applied to estimation of reactor core power peaking factor

  5. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  6. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  7. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  8. Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Zhotabayev, Zh.R.

    2006-01-01

    Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the

  9. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  10. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  11. A study of passive safety conditions for fast reactor core

    International Nuclear Information System (INIS)

    Shimizu, Akinao

    1991-01-01

    A study has been made for passive safety conditions of fast reactor cores. Objective of the study is to develop a concept of a core with passive safety as well as a simple safety philosophy. A simple safety philosophy, which is wore easy to explain to the public, is needed to enhance the public acceptance for nuclear reactors. The present paper describes a conceptual plan of the study including the definition of the problem a method of approach and identification of tasks to be solved

  12. Simplified compact containment BWR plant

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  13. Development of an automated core model for nuclear reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input

  14. Use of in-core self-powered detectors in the nuclear reactor control system

    International Nuclear Information System (INIS)

    Mitel'man, M.G.; Andreev, L.G.; Batenin, I.V.

    1975-01-01

    The paper describes the results of experiments conducted at the Obninsk atomic power station on the establishment of an integrated system for the control and automatic regulation of the distribution of energy liberation. The pick-ups used for this system are direct-charge detectors with rhodium emitters. The system, which consists of 12 integral DPZ-7 detectors distributed evenly on 2 mutually perpendicular diamaters and 2 assemblies, each containing 4 1n direct-charge detectors, monitors the distribution of neutron flow density according to core height. Increased signals from the detectors were fed into the summation block, in which the outgoing signal was also adjusted. The half-life of the rhodium was calculated and the non-inertia of the entire system ascertained. The total operating time of the system for the automatic control of reactor power is approximately 1 h. The influence of interference was not determined. During the experiment, the power of the reactor remained constant, i.e. its regulation by the direct-charge detectors inside the core was effective. (author)

  15. Containment concepts assessment for the SEAFP reactor

    International Nuclear Information System (INIS)

    Di Pace, L.; Natalizio, A.

    2000-01-01

    A simple methodology has been developed for making relative comparisons of potential containment designs for future fusion reactors. The assessment methodology requires only conceptual design information. The application of this methodology, at the early stages of a fusion reactor design, provides designers useful information regarding the suitability of various containment designs and design features. Because the radiation hazard from the operation of future fusion power reactors is expected to be low, the containment design, in addition to public safety, needs to take into account worker safety considerations, as well as factors important to the reliable and economical operation of the power plant. Several containment concepts have been assessed with a methodology that takes into account public safety, worker safety, operability and maintainability as well as cost. This paper describes this methodology and presents the results of the assessment. The paper concludes that, to obtain a containment design that is optimised with respect to safety, operational and cost factors, designers should focus on a containment that is conceptually simple-that is, one utilising a single, large containment building without relying on special features such as expansion volumes, pressure suppression pools or spray systems

  16. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  17. The system of the measurement of reactor power and the monitoring of core power distribution

    International Nuclear Information System (INIS)

    Li Xianfeng

    1999-01-01

    The author mainly describes the measurement of the reactor power and the monitoring of the core power distribution in DAYA BAY nuclear power plant, introduces the calibration for the measurement system. Ex-core nuclear instrumentation system (RPN) and LOCA surveillance system (LSS) are the most important system for the object. they perform the measurement of the reactor power and the monitoring of the core power distribution on-line and timely. They also play the important roles in the reactor control and the reactor protection. For the same purpose there are test instrumentation system (KME) and in-core instrumentation system (RIC). All of them work together ensuring the exact measurement and effective monitoring, ensuring the safety of the reactor power plant

  18. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  19. Containment Loads Analysis for CANDU6 Reactor using CONTAIN 2.0

    International Nuclear Information System (INIS)

    Kim, Tae H.; Yang, Chae Y.

    2013-01-01

    The containment plays an important role to limit the release of radioactive materials to the environment during design basis accidents (DBAs). Therefore, the containment has to maintain its integrity under DBA conditions. Generally, a containment functional DBA evaluation includes calculations of the key containment loads, i. e., pressure and temperature effects associated with a postulated large rupture of the primary or secondary coolant system piping. In this paper, the behavior of containment pressure and temperature was evaluated for loss of coolant accidents (LOCAs) of the Wolsong unit 1 in order to assess the applicability of CONTAIN 2.0 code for the containment loads analysis of the CANDU6 reactor. The containment pressure and temperature of the Wolsong unit 1 were evaluated using the CONTAIN 2.0 code and the results were compared with the CONTEMPT4 code. The peak pressure and temperature calculated by CONTAIN 2.0 agreed well with those of CONTEMPT4 calculation. The overall result of this analysis shows that the CONTAIN 2.0 code can apply to the containment loads analysis for the CANDU6 reactor

  20. Boiling water reactor containment modeling and analysis at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Holcomb, E.E. III; Wilson, G.E.

    1984-01-01

    Under the auspices of the United States Nuclear Regulatory Commission, severe accidents are being studied at the Idaho National Engineering Laboratory. The boiling water reactor (BWR) studies have focused on postulated anticipated transients without scram (ATWS) accidents which might contribute to severe core damage or containment failure. A summary of the containment studies is presented in the context of the analytical tools (codes) used, typical transient simulation results and the need for prototypical containment data. All of these are related to current and future analytical capabilities. It is shown that torus temperatures during the ATWS depart from limiting conditions for BWR T-quencher operation, outside of which stable steam condensation has not been proven

  1. Emergency core cooling system for LMFBR type reactors

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Fukutomi, Shigeki.

    1980-01-01

    Purpose: To enable elimination of decay heat in an LMFBR type reactor by securing natural cycling force in any state and securing reactor core cooling capacity even when both an external power supply and an emergency power supply are failed in emergency case. Method: Heat insulating material portion for surrounding a descent tube of a steam drum provided at high position for obtaining necessary flow rate for flowing resistance is removed from heat transmitting surface of a recycling type steam generator to provide a heat sink. That is, when both an external power supply and an emergency power supply are failed in emergency, the heat insulator at part of a steam generator recycling loop is removed to produce natural cycling force between it and the heat transmitting portion of the steam generator as a heat source for the heat sink so as to secure the flow rate of the recycling loop. When the power supply is failed in emergency, the heat removing capacity of the steam generator is secured so as to remove the decay heat produced in the reactor core. (Yoshihara, H.)

  2. Utilization of local area network technology and decentralized structure for nuclear reactor core temperature monitoring

    International Nuclear Information System (INIS)

    Casella, M.; Peirano, F.

    1986-01-01

    The present system concerns Superphenix type reactors. It is a new version of system for monitoring the reactor core temperatures. It has been designed to minimize the cost and the wiring complexity because of the large number of channels (800). For this, equipments are arranged on the roof slab of the reactor with a single link to the control room; from which the name Integrated Treatment of Core Temperatures: TITC 1500 and the natural choice of a distributed system. This system monitors permanently the thermal state of the core a Superphenix type reactor. This monitoring system aims at detecting anomalies of core temperature rise, releasing automatic shutdown (safety), and providing to the monitoring systems not concerned safety the information concerning the core [fr

  3. Optimization programs for reactor core fuel loading exhibiting reduced neutron leakage

    International Nuclear Information System (INIS)

    Darilek, P.

    1991-01-01

    The program MAXIM was developed for the optimization of the fuel loading of WWER-440 reactors. It enables the reactor core reactivity to be maximized by modifying the arrangement of the fuel assemblies. The procedure is divided into three steps. The first step includes the passage from the three-dimensional model of the reactor core to the two-dimensional model. In the second step, the solution to the problem is sought assuming that the multiplying properties, or the reactivity in the zones of the core, vary continuously. In the third step, parameters of actual fuel assemblies are inserted in the ''continuous'' solution obtained. Combined with the program PROPAL for a detailed refinement of the loading, the program MAXIM forms a basis for the development of programs for the optimization of fuel loading with burnable poisons. (Z.M.). 16 refs

  4. Excess-pressure suppression device in a reactor container

    International Nuclear Information System (INIS)

    Nishio, Masahide

    1985-01-01

    Purpose: To reliably decrease the radioactivity of radioactive gases when they are released externally. Constitution: The exit of a gas exhaust pipe for discharging gases in a reactor container, on generation of an excess pressure in the reactor container upon loss of coolant accident, is adapted to be always fluided in the cooling tank. Then, the exhaust gases discharged in the cooling tank is realeased to the atmosphere. In this way, the excess pressure in the reactor container can be prevented previously and the radioactivity of the gases released externally is significantly reduced by the scrubbing effect. (Kamimura, M.)

  5. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  6. Monte Carlo applications to core-following of the National Research Universal reactor (NRU)

    International Nuclear Information System (INIS)

    Nguyen, T.S.; Wang, X.; Leung, T.

    2014-01-01

    Reactor code TRIAD, relying on a two-group neutron diffusion model, is currently used for core-following of NRU - to track reactor assembly locations and burnups. The Monte Carlo (MCNP or SERPENT) full-reactor models of NRU can be used to provide the core power distribution for calculating fuel burnups, with WIMS-AECL providing fuel depletion calculations. The MCNP/WIMS core-following results were in good agreement with the measured data, within the expected biases. The Monte Carlo methods, still very time-consuming, need to be able to run faster before they can replace TRIAD for timely support of NRU operations. (author)

  7. Method and apparatus for monitoring the axial power distribution within the core of a nuclear reactor, exterior of the reactor

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1978-01-01

    A method and apparatus for establishing the axial flux distribution of a reactor core from monitored responses obtained exterior of the reactor is described. The monitored responses are obtained from at least three axially spaced flux responsive detectors that are positioned within proximity of the periphery of the reactor core. The detectors provide corresponding electrical outputs representative of the flux monitored. The axial height of the core is figuratively divided at a plurality of space coordinates sufficient to provide reconstruction in point representation of the relative flux shape along the core axis. The relative value of flux at each of the spaced coordinates is then established from a sum of the electrical outputs of the detectors, respectively, algebraically modified by a corresponding preestablished constant

  8. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  9. Feasibility study to restart the research reactor RA with a converted core

    International Nuclear Information System (INIS)

    Matausek, M.V.; Plecas, I.; Marinkovic, N.

    1999-01-01

    Main options are specified for the future status of the 6.5 MW heavy water research reactor RA. Arguments pro and contra restarting the reactor are presented. When considering the option to restart the RA reactor, possibilities to improve its neutronic parameters, such as neutron flux values and irradiation capabilities, are discussed, as well as the compliance with the worldwide activities of Reduced Enrichment for Research and Test Reactors (RERTR) program. Possibility of core conversion is examined. Detailed reactor physics design calculations are performed for different fuel types and uranium loading. For different fuel management schemes results are presented for the effective multiplication factor, power distribution, fuel burnup and consumption. It is shown that, as far as reactor core parameters are considered, conversion to lower enrichment fuel could be easily accomplished. However, conversion to the lower enrichment could only be justified if combined with improvement of some other reactor attributes. (author)

  10. A system to obtain an optimized first design of a nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1988-01-01

    This work proposes a method for obtaining a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one energy-group, one-dimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, reflector thickness, enrichment and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for future works. (autor)

  11. Study on confinement function of reactor containment during late phase severe accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    During a severe accident reactor containment integrity is maintained by accident management. However, gas leakage from containment is inevitable after the severe accident. A large amount of hydrogen and rare gases are produced due to core damage or melting. These non-condensable gases cause the containment pressure much higher than atmospheric pressure even after residual heat removal system recovery especially for BWR with smaller containment volume. Besides, iodine confined in water pool is re-evaporated under radiation field. The present study consists of realistic evaluation of fission products source term inside containment, quantitative evaluation of iodine re-evaporation effect and the experimental study of hydrogen treatment in BWR using ammonia production method by catalyst. Activities in fiscal year 2012 are that modification of MELCOR fission product chemical model was done and verified by experimental data, and that effects of CsI on ammonia production rate for Ru catalyst were conducted. (author)

  12. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  13. Vent control device for nuclear reactor container

    International Nuclear Information System (INIS)

    Kubota, Ryuji.

    1989-01-01

    The present invention concerns automatic prevention of abnormal over-pressure and hydrogen gas flashing in a BWR type reactor container. That is, (1) if the pressure in the container is abnormally increased, the gas in the pressure suppression chamber is released to reduce the pressure thereby preventing over-pressure damage to the container. (2) Then, if exhaust gases are burnt to cause flashing explosion danger for the gases in the reactor container, the gas release is interrupted. The foregoing two functioins are automatically conducted in this device. Specifically, when the pressure in the reactor container reaches a predetermined allowable limit, a remote control operation valve is opened by automatic control means to release the gas in the vessel. Since the gas flow rate at the start of the release exceeds flame propagation velocity, there is no worry for flashing explosion. Further, if the pipeway flow velocity near the atmospheric release is reduced to less than the flame propagation velocity of the hydrogen gas, the opened valve is automatically closed. Accordingly, propagation of hydrogen gas flame into the container thus causing explosion can surely be prevented. (K.M.)

  14. Transient analyses for a molten salt fast reactor with optimized core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, R., E-mail: rui.li@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, S.; Rineiski, A.; Zhang, D. [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Merle-Lucotte, E. [Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS/Grenoble INP/UJF, 53, rue des Martyrs, 38026 Grenoble (France)

    2015-10-15

    Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential.

  15. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  16. Venting device for nuclear reactor container

    International Nuclear Information System (INIS)

    Yamashita, Masahiro; Ogata, Ken-ichi.

    1994-01-01

    An airtight vessel of a venting device of a nuclear reactor container is connected with a reactor container by way of a communication pipeline. A feed water tank is disposed at a position higher than the liquid surface of scrubbing water in the airtight vessel for supplying scrubbing water to the airtight vessel. In addition, a scrubbing water storage tank is disposed at a position hither than the feed water tank for supplying scrubbing water to the feed water tank. Storage water in the feed water tank is introduced into the airtight vessel by the predetermined opening operation of a valve by the pressure exerted on the liquid surface and the own weight of the storage water. Further, the storage water in the scrubbing water storage tank is led into the feed water tank by the water head pressure. The scrubbing water for keeping the performance of the venting device of the reactor container can be supplied by a highly reliable method without using AC power source or the like as a driving source. (I.N.)

  17. Reactor core T-H characteristics determination in case of parallel operation of different fuel assembly types

    International Nuclear Information System (INIS)

    Hermansky, J.; Petenyi, V.; Zavodsky, M.

    2009-01-01

    The WWER-440 nuclear fuel vendor permanently improve the assortment of produced nuclear fuel assemblies for achieving better fuel cycle economy and reactor operation safety. Therefore it is necessary to have the skilled methodology and computing code for analyzing factors which affecting the accuracy of flow redistributed determination through reactor on flows through separate parts of reactor core in case of parallel operation different assembly types. Whereas the geometric parameters of new manufactured assemblies were changed recently, the calculated flows through the fuel parts of different type of assemblies are depended also on their real position in reactor core. Therefore the computing code CORFLO was developed in VUJE Trnava for carrying out stationary analyses of T-H characteristics of reactor core within 60 deg symmetry. The CORFLO code deals the area of the active core which consists of 312 fuel assemblies and 37 control assemblies. Regarding the rotational 60 deg symmetry of reactor core only 1/6 of reactor core with 59 fuel assemblies is calculated. Computing code is verified and validated at this time. Paper presents the short description of computing code CORFLO with some calculated results. (Authors)

  18. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  19. In-core fuel management for the course on operational physics of power reactors

    International Nuclear Information System (INIS)

    Levine, S.H.

    1982-01-01

    The heart of a nuclear power station is the reactor core producing power from the fissioning of uranium or plutonium fuel. Expertise in many different technical fields is required to provide fuel for continuous economical operation of a nuclear power plant. In general, these various technical disciplines can be dichotomized into ''Out-of-core'' and ''In-core'' fuel management. In-core fuel management is concerned, as the name implies, with the reactor core itself. It entails calculating the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. In addition, the selection of reloading schemes is made to minimize energy costs

  20. The reactor core configuration and important systems related to physics tests of Daya Bay NPP

    International Nuclear Information System (INIS)

    Tao Shaoping

    1995-06-01

    A brief introduction to reactor core configuration and important systems related to physics tests of Daya Bay NPP is given. These systems involve the reactor core system (COR), the full length rod control system (RGL), the in-core instrumentation system (RIC), the out-of-core nuclear instrumentation system (RPN), and the LOCA surveillance system (LSS), the centralized data processing system (KIT) and the test data acquisition system (KDO). In addition, that the adjustment and evaluation of boron concentration related to other systems, for example the reactor coolant system (RCP), the chemical and volume control system (RCV), the reactor boron and water makeup system (REA), the nuclear sampling system (REN) and the reactor control system (RRC), etc. is also described. Analysis of these systems helps not only to familiarize their functions and acquires a deepen understanding for the principle procedure, points for attention and technical key of the core physics tests, but also to further analyze the test results. (3 refs., 11 figs., 1 tab.)

  1. Lateral restraint assembly in a nuclear reactor

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, W.

    1977-01-01

    A lateral restraint assembly is described for a reactor of, for example, the high temperature gas-cooled type which commonly includes a reactor core of relatively complex construction supported within a shell or vessel providing a shielded cavity for containing the reactor core. (U.K.)

  2. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  3. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    Durazzo, M.

    1985-01-01

    The fuel plate samples containing U 3 O 8 -Al cermet cores with concentrations from 10 to 90% of U 3 O 8 weight were fabricated. Samples with 58% of U 3 O 8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U 3 O 8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U 3 O 8 -Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 90 0 C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U 3 O 8 -Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author) [pt

  4. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  5. Supporting system for the core restraint of nuclear reactors

    International Nuclear Information System (INIS)

    Kaser, A.

    1973-01-01

    The core restraint of water cooled nuclear reactors which is needed to direct the flow of the coolant through the core can be manufactured only in a moderate wall thickness. Thus, the majority of the loads have to be transmitted to the core barrel which is more rigid. The patent refers to a system of circumferential and vertical support members most of which are free to move relatively to each other, thus reducing thermal stresses during operation. (P.K.)

  6. Core clamping device for a nuclear reactor

    International Nuclear Information System (INIS)

    Guenther, R.W.

    1974-01-01

    The core clamping device for a fast neutron reactor includes clamps to support the fuel zone against the pressure vessel. The clamps are arranged around the circumference of the core. They consist of torsion bars arranged parallel at some distance around the core with lever arms attached to the ends whose force is directed in the opposite direction, pressing against the wall of the pressure vessel. The lever arms and pressure plates also actuated by the ends of the torsion bars transfer the stress, the pressure plates acting upon the fuel elements or fuel assemblies. Coupling between the ends of the torsion bars and the pressure plates is achieved by end carrier plates directly attached to the torsion bars and radially movable. This clamping device follows the thermal expansions of the core, allows specific elements to be disengaged in sections and saves space between the core and the neutron reflectors. (DG) [de

  7. Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

    International Nuclear Information System (INIS)

    Hsu Wensheng; Chen Hungpei; Hung Zhenyu; Lin Huichen

    2014-01-01

    Following severe accidents in nuclear power plants, large quantities of hydrogen may be generated after core degradation. If the hydrogen is transported from the reactor vessel into the containment building, an explosion might occur, which might threaten the integrity of the building; this can ultimately cause the release of radioactive materials. During the Fukushima Daiichi nuclear accident in 2011, the primary containment structures remained intact but contaminated fragments broke off the secondary containment structures, which disrupted mitigation activities and triggered subsequent explosions. Therefore, the ability to predict the behavior of hydrogen after severe accidents may facilitate the development of effective nuclear reactor accident management procedures. The present study investigated the behavior of hydrogen in a large-dry pressurized water reactor (PWR). The amount of hydrogen produced was calculated using the Modular Accident Analysis Program. The hydrogen transport behavior and the effect of the explosion on the PWR containment building were simulated using the Flame Acceleration Simulator. The simulation results showed that the average hydrogen volume fraction is approximately 7% in the containment building and that the average temperature is 330 K. The maximum predicted pressure load after ignition is 2.55 bar, which does not endanger the structural integrity of the containment building. The results of this investigation indicate that the hydrogen mitigation system should be arranged on both the upper and lower parts of the containment building to reduce the impact of an explosion. (author)

  8. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  9. INCA: method of analyzing in-core detector data in power reactors

    International Nuclear Information System (INIS)

    Ober, T.G.; Terney, W.B.; Marks, G.H.

    1975-04-01

    A method (INCA) is described by which signals from fixed in-core detectors are related to estimates of the three dimensional power distribution in an operating reactor core and to the maximum linear heat rate in the core. A description of the large library of data accompanying the method is provided. A detailed examination of the analytical verifications performed using the method is presented, and a summary of the uncertainty associated with the method is given. The uncertainty assigned to the maximum linear heat rate inferred by the method from operating reactor data is found to be 5.8 percent at a 95/95 confidence level. (U.S.)

  10. Intercomparison of liquid metal fast reactor seismic analysis codes. V. 3: Comparison of observed effects with computer simulated effects on reactor cores from seismic disturbances. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1996-05-01

    This publication contains the final papers summarizing the validation of the codes on the basis of comparison of observed effects with computer simulated effects on reactor cores from seismic disturbances. Refs, figs tabs

  11. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  12. The Steam Generating Heavy Water Reactor

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1975-01-01

    An account is given of the SGHWR, the prototype of which was built by the United Kingdom Atomic Energy Authority at Winfrith, under the following headings: Introduction; origin of the SGHWR concept; conceptual design (choice of reactor type, steam cycle, reactor coolant system, nuclear behaviour, fuel design, core design, and protective, auxiliary and containment systems); operation and control (integrity of core cooling, reactivity control, power trimming, long term reactivity control, xenon override, load following, power shaping, spatial stability control, void coefficient); protective systems (breached coolant circuit trip, intact coolant circuits trip, power set-back trip); dynamic characteristics; reactor control; station control (decoupled control system, coupled control system, rate of response); Winfrith prototype (design and safety philosophy, conceptual features and parameters, reactor coolant system, protective systems, emergency core cooling, core structure, fuel design, vented containment). (U.K.)

  13. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  14. Nuclear reactor with a fixed system of neutron poison, which can be burnt up, introduced into the reactor core

    International Nuclear Information System (INIS)

    Mueller, E.; Roegler, H.J.; Wickert, M.

    1985-01-01

    The fixed system consists of neutron poison which can be burnt up, in an uneven distribution, and with adjustable absorber rods for output control, which are driven into the reactor core from the side along the fuel elements. There is an excess of neutron poison which can be burnt up, overall, on the side of the reactor core away from the absorber rods. The reactor core is free of neutron poison which can be burnt up on the side where the absorber rods are driven in, so that the ratio of maximum to mean power density with reference to a possible absorber rod positions is less than for homogeneous distribution of the neutron poison which can be burnt up. (orig./HP) [de

  15. Reactor shutdown device

    International Nuclear Information System (INIS)

    Matsumiya, Hirohito; Endo, Hiroshi; Tsuboi, Yasushi.

    1993-01-01

    The present invention concerns a reactor shutdown device capable of suppressing change of a core insertion amount relative to temperature change during normal operation and having a great extension amount due to thermal expansion and high mechanical strength. A control rod main body is contained vertically movably in a guide tube disposed in a reactor core. An extension member extends upward from the upper end of a control rod main body and suspends the control rod main body. A shrinkable member intervenes at a midway of the extension member and is made shrinkable. A temperature sensitive member contains coolants at the inside and surrounds the shrinkable member. Thus, if the temperature of external coolants rises abruptly, the shrinkable member is extended by thermal expansion of the coolants in the temperature sensitive member. Upon usual reactor startup, the coolants in the temperature sensitive member cause no substantial thermal expansion by temperature elevation from a cold shutdown temperature to a rated power operation temperature, and the shrinkable member maintains its original state, so that the control rod main body is not inserted into the reactor core. However, upon abrupt temperature elevation, the control rod main body is inserted into the reactor core. (I.S.)

  16. Reactor containment depressurization and filtration equipment for use in the case of a serious accident

    International Nuclear Information System (INIS)

    L'Homme, A.

    1987-06-01

    A study was carried out under the aegis of the OECD into filtered vented containment systems which permit depressurization of the containment and filtration of the effluents released to the environment, in the event of a major accident with a pressurized water reactor (PWR) (or BWR or CANDU type reactors) involving core meltdown, with a view to minimizing the consequences. This paper describes the various systems examined which could possibly be used for this purpose. These comprised the French robust sand filtration system, the Swedish FILTRA system, the vacuum containment and discharge and emergency filtration system used by the CANDU plants of the Ontario-Hydro electricity company in Canada and the BWR pressure-suppression pounds. The positions of the various national authorities regarding incorporation of such systems into nuclear power plants, the design and technical principles underlying the systems, the procedures and criteria for their use and their advantages and disadvantages are examined [fr

  17. Underground reactor containments: An option for the future?

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Kress, T.

    1997-01-01

    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action

  18. Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de

    1997-01-01

    The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)

  19. Uncertainties assessment for safety margins evaluation in MTR reactors core thermal-hydraulic design

    International Nuclear Information System (INIS)

    Gimenez, M.; Schlamp, M.; Vertullo, A.

    2002-01-01

    This report contains a bibliographic review and a critical analysis of different methodologies used for uncertainty evaluation in research reactors core safety related parameters. Different parameters where uncertainties are considered are also presented and discussed, as well as their intrinsic nature regarding the way their uncertainty combination must be done. Finally a combined statistical method with direct propagation of uncertainties and a set of basic parameters as wall and DNB temperatures, CHF, PRD and their respective ratios where uncertainties should be considered is proposed. (author)

  20. Effect of core configuration on the burnup calculations of MTR research reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Amin, E.H.; Sakr, A.M.

    2014-01-01

    Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations

  1. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    Bonacina, G.; Castoldi, A.; Zola, M.; Cecchini, F.; Martelli, A.; Vincenzi, D.

    1982-01-01

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  2. The inner containment of an EPR trademark pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Krumb, Christian; Wienand, Burkhard [AREVA GmbH, Offenbach (Germany)

    2014-08-15

    On February 12, 2014 the containment pressure and subsequent leak tightness tests on the containment of the Finnish Olkiluoto 3 EPR trademark reactor building were completed successfully. The containment of an EPR trademark pressurized water reactor consists of an outer containment to protect the reactor building against external hazards (such as airplane crash) and of an inner containment that is subjected to internal overpressure and high temperature in case of internal accidents. The current paper gives an overview of the containment structure, the design criteria, the validation by analyses and experiments and the containment pressure test.

  3. Reactor core conversion studies of Ghana: Research Reactor-1 and proposal for addition of safety rod

    International Nuclear Information System (INIS)

    Odoi, H.C.

    2014-06-01

    The inclusion of an additional safety rod in conjunction with a core conversion study of Ghana Research Reactor-1 (GHARR-1) was carried out using neutronics, thermal hydraulics and burnup codes. The study is based on a recommendation by Integrated Safety Assessment for Research Reactors (INSARP) mission to incorporate a safety rod to the reactor safety system as well as the need to replace the reactor fuel with LEU. Conversion from one fuel type to another requires a complete re-evaluation of the safety analysis. Changes to the reactivity worth, shutdown margin, power density and material properties must be taken into account, and appropriate modifications made. Neutronics analysis including burnup was studied followed by thermal hydraulics analyses which comprise steady state and transients. Four computer codes were used for the analysis; MCNP, REBUS, PLTEP and PARET. The neutronics analysis revealed that the LEU core must be operated at 34 Kw in order to attain the flux of 1.0E12 n/cm 2 .s as the nominal flux of the HEU core. The auxiliary safety rod placed at a modified irradiation site gives a better worth than the cadmium capsules. For core excess reactivity of 4 mk, 348 fuel pins would be appropriate for the GHARR-1 LEU core. Results indicate that flux level of 1.0E12 n/cm 2 .s in the inner irradiation channel will not be compromised, if the power of the LEU core is increased to 34 kW. The GHARR-1 core using LEU-U0 2 -12.5% fuel can be operated for 23 shim cycles, with cycles length 2.5 years, for over 57 years at the 17 kW power level. All 23 LEU cycles meet the ∼ 4.0 mk excess reactivity required at the beginning of cycle . For comparison, the MNSR HEU reference core can also be operated for 23 shim cycles, but with a cycle length of 2.0 years for just over 46 years at 15.0kW power level. It is observed that the GHARR-1 core with LEU UO 2 fuel enriched to 12.5% and a power level of 34 kW can be operated ∼25% longer than the current HEU core operated at

  4. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  5. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  6. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  7. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  9. A New In-core Production Method of Co-60 in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jinqi; Kim, Woosong; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Park, Younwon [BEES Inc, Daejeon (Korea, Republic of)

    2016-05-15

    This study introduces an innovative method for Co-60 production in the CANDU6 core. In this new scheme, the central fuel element is replaced by a Co-59 target and Co-60 is obtained after the fuel bundle is discharged. It has been shown that the new method can produce significantly higher amount of Co-60 than the conventional Co production method in CANDU6 reactors without compromising the fuel burnup by removing some (<50%) of the adjuster rods in the whole core. The coolant void reactivity is noticeably reduced when a Co-59 target is loaded into the central pin of the fuel bundle. Meanwhile, the peak power in a fuel bundle is just a little higher due to the central Co-59 target than in conventional CANDU6 fuel design. The basic technology for Co-60 producing was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) in 1946 and the same technology was adapted and applied in CANDU6 power reactors. The standard CANDU6 reactor has 21 adjuster rods which are fully inserted into the core during normal operation. The stainless steel adjuster rods are replaced with neutronically-equivalent Co-59 adjusters to produce Co-60. Nowadays, the roles of the adjuster rods are rather vague since nuclear reactors cannot be quickly restarted after a sudden reactor trip due to more stringent regulations. In some Canadian CANDU6 reactors, some or all the adjuster rods are removed from the core to maximize the uranium utilization.

  10. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  11. Determination of the NPP Krsko reactor core safety limits using the COBRA-III-C code

    International Nuclear Information System (INIS)

    Lajtman, S.; Feretic, D.; Debrecin, N.

    1989-01-01

    This paper presents the NPP Krsko reactor core safety limits determined by the COBRA-III-C code, along with the methodology used. The reactor core safety limits determination is a part of reactor protection limits procedure. The results obtained were compared to safety limits presented in NPP Krsko FSAR. The COBRA-III-C NPP Krsko design core steady state thermal hydraulics calculation, used as the basis for the safety limits calculation, is presented as well. (author)

  12. Contributions to the determination of the thermal core reliability of pressurized water reactors

    International Nuclear Information System (INIS)

    Ackermann, G.; Horche, W.; Melchior, H.; Prasser, H.M.

    1982-09-01

    The investigations in the field of thermohydraulics of PW reactors are aimed at a possible increase of economy and reliability of WWER-type-reactors. In detail the flow distribution at the core entrance, the modification of the power distribution as a result of an irregular temperature distribution at the core entrance, and based on the theory of hot spots the thermic core reliability are studied. In this connection qualitatively new methods are applied characterized by low expenditure. (author)

  13. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  14. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  15. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  16. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  17. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  18. Comparison of advanced mid-sized reactors regarding passive features, core damage frequencies and core melt retention features

    International Nuclear Information System (INIS)

    Wider, H.

    2005-01-01

    New Light Water Reactors, whose regular safety systems are complemented by passive safety systems, are ready for the market. The special aspect of passive safety features is their actuation and functioning independent of the operator. They add significantly to reduce the core damage frequency (CDF) since the operator continues to play its independent role in actuating the regular safety devices based on modern instrumentation and control (I and C). The latter also has passive features regarding the prevention of accidents. Two reactors with significant passive features that are presently offered on the market are the AP1000 PWR and the SWR 1000 BWR. Their passive features are compared and also their core damage frequencies (CDF). The latter are also compared with those of a VVER-1000. A further discussion about the two passive plants concerns their mitigating features for severe accidents. Regarding core-melt retention both rely on in-vessel cooling of the melt. The new VVER-1000 reactor, on the other hand features a validated ex-vessel concept. (author)

  19. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  20. Fuel elements in the core of the reactor Pegase. Description, successive improvements, actual possibilities

    International Nuclear Information System (INIS)

    Desandre-Navarre, Ch.; Lerouge, B.; Schwartz, J.P.

    1967-01-01

    The core of the research reactor Pegase, in operation at the Cadarache Nuclear Research Centre since 1983, contains fuel elements made from rolled plates of an aluminium-enriched uranium alloy whose characteristics have been changed several times. This report describes the modifications which have been made to these fuel elements with a view both to improving the technical qualities of the reactor and to decreasing its operational costs. Special attention is paid to the neutron aspects of the topic and in particular to the problem of the long-term modification of the reactivity. The 1966 results (30 per cent burn-up associated with only slight movement of the control rods) are particularly satisfying and can probably still be improved in the future. (authors) [fr

  1. Startup testing of Romania dual-core test reactor

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1980-01-01

    Late in 1979 both the Annular Core Pulsed Reactor (ACPR) and the 14-MW steady-state reactor (SSR) were loaded to critical. The fuel loading in both was then carried to completion and low-power testing was conducted. Early in 1980 both reactors successfully underwent high-power testing. The ACPR was operated for several hours at 500 kW and underwent pulse tests culminating in pulses with reactivity insertions of $4.60, peak power levels of about 20,000 MW, energy releases of 100 MW-sec, and peak measured fuel temperatures of 830 deg. C. The SSR was operated in several modes, both with natural convection and forced cooling with one or more pumps. The reactor successfully completed a 120-hr full-power test. Subsequent fuel element inspections confirmed that the fuel has performed without fuel damage or distortion. (author)

  2. Unavailability Analysis of the Reactor Core Protection System using Reliability Block Diagram

    International Nuclear Information System (INIS)

    Shin, Hyun Kook; Kim, Sung Ho; Choi, Woong Suk; Kim, Jae Hack

    2006-01-01

    The reactor core of nuclear power plants needs to be monitored for the early detection of core abnormal conditions to protect plants from a severe accident. The core protection calculator system (CPCS) has been provided to calculate the departure from nucleate boiling ratio (DNBR) and the local power density (LPD) based on measured parameters of reactor and coolant system. The original CPCS for OPR 1000 has been designed and implemented based on the concurrent 3205 computer system whose components are obsolete. The CPCS based on Westinghouse Common-Q system has recently been implemented for the Shin-Kori Nuclear Power Plant, Units 1 and 2(SKN 1 and 2). An R and D project has been launched to develop new core protection system called as RCOPS (Reactor Core Protection System) with the partnership of KOPEC and Doosan Heavy Industries and Construction Co. RCOPS is implemented on the HFC-6000 safety class programmable logic controller (PLC). In this paper, the reliability of RCOPS is analyzed using the reliability block diagram (RBD) method. The calculated results are compared with that of the CPCS for SKN 1 and 2

  3. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  4. Status of the compact core design for the Munich research reactor

    International Nuclear Information System (INIS)

    Boening, K.; Glaeser, W.; Meier, J.; Rau, G.; Roehrmoser, A.; Zhang, L.

    1985-01-01

    A novel 'compact core' has been proposed for our project of substantially modernizing the research reactor FRM at Munich. This core has about 20 cm diameter and 70 cm height, is cooled by H 2 O and surrounded by a large D 2 O moderator tank. It makes essential use of the new U 3 Si/Al dispersion fuel with very high Uranium density now available. We present the results of new, two-dimensional neutronic calculations and give an estimate of the probable burnup and reactivity behaviour of the compact core. We expect that this core can be effectively operated with an unperturbed multiplication factor of about 1.22, and that a maximum thermal neutron flux of 7 to 8·10 14 cm- ,2 s -1 can be achieved in the D 2 O tank at 20 MW reactor power. (author)

  5. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  6. An Idea of 20% test of the Initial Core Reactor Physics

    International Nuclear Information System (INIS)

    Roh, Kyung Ho; Yang, Sung Tae; Jung, Ji Eun

    2012-01-01

    Many tests have been performed on the OPR1000 and APR1400 before commercial operation. Some of these tests were performed at reactor power levels of 20% and 50%. The CPC (Core Protection Calculator) power distribution test is one of these tests. It is performed to assure the reliability of the Core Protection Calculator System (CPCS). Through this test, SAM1 is calculated using the snapshots2. The test takes about nine hours at a reactor power level of 20% and about thirty hours at a reactor power level of 50%. SAM used at each reactor power level is as follows: 1. Reactor power of 0% ∼ 20%: Designed SAM (DSAM) 2. Reactor power of 20% ∼ 50%: SAM calculated (C-SAM) at a reactor power of 20% 3. Reactor power 50% ∼ End of Cycle : SAM calculated at a reactor power of 50% As mentioned earlier, SAM is calculated and punched into CPC to assure the reliability of CPCS. Therefore, CPC is operated having penalties with D-SAM until3 reaching a reactor power of 20%. That is, the penalty of CPC will be removed when SAM is calculated and punched into the CPC at a reactor power of 20%. But these penalties are considered to be removed after a reactor power of 50% test in order to maintain the conservatism of the CPC. This is done because the final values calculated using C-SAM, in contrast to those calculated using SAM, a reactor power of 50%, are not correct. This paper began from an idea, 'If so, what would happen if we removed the CPC power distribution test at a reactor power of 20%?'

  7. Subchannel analysis of a small ultra-long cycle fast reactor core

    International Nuclear Information System (INIS)

    Seo, Han; Kim, Ji Hyun; Bang, In Cheol

    2014-01-01

    Highlights: • The UCFR-100 is small-sized one of 60 years long-life nuclear reactors without refueling. • The design safety limits of the UCFR-100 are evaluated using MATRA-LMR. • The subchannel results are below the safety limits of general SFR design criteria. - Abstract: Thermal-hydraulic evaluation of a small ultra-long cycle fast reactor (UCFR) core is performed based on existing safety regulations. The UCFR is an innovative reactor newly designed with long-life core based on the breed-and-burn strategy and has a target electric power of 100 MWe (UCFR-100). Low enriched uranium (LEU) located at the bottom region of the core play the role of igniter to operate the UCFR for 60 years without refueling. A metallic form is selected as a burning fuel region material after the LEU location. HT-9 and sodium are used as cladding and coolant materials, respectively. In the present study, MATRA-LMR, subchannel analysis code, is used for evaluating the safety design limit of the UCFR-100 in terms of fuel, cladding, and coolant temperature distributions in the core as design criteria of a general fast reactor. The start-up period (0 year of operation), the middle of operating period (30 years of operation), and the end of operating cycle (60 years of operation) are analyzed and evaluated. The maximum cladding surface temperature (MCST) at the BOC (beginning of core life) is 498 °C on average and 551 °C when considering peaking factor, while the MCST at the MOC (middle of core life) is 498 °C on average and 548 °C in the hot channel, respectively, and the MCST at the EOC (end of core life) is 499 °C on average and 538 °C in the hot channel, respectively. The maximum cladding surface temperature over the long cycle is found at the BOC due to its high peaking factor. It is found that all results including fuel rods, cladding, and coolant exit temperature are below the safety limit of general SFR design criteria

  8. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  9. Evaluation method for core thermohydraulics during natural circulation in fast reactors numerical predictions of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Kimura, N.; Miyakoshi, H.; Nagasawa, K.

    2001-01-01

    Decay heat removal using natural circulation is one of the important functions for the safety of fast reactors. As a decay heat removal system, direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this design, dumped heat exchanger provides cold sodium and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such natural circulation phenomena in a reactor core has been developed, which models each subassembly as a rectangular duct with gap region between the subassemblies and also the upper plenum in a reactor vessel. This numerical simulation method was verified based on experimental data of a sodium test using 7- subassembly core model and also a water test which simulates IWF using the 1/12 sector model of a reactor core. We applied the estimation method to the natural circulation in a 600 MW class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer. It is desired for prediction methods on the natural circulation to simulate these phenomena. (author)

  10. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  11. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  12. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  13. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  14. A new reactor core monitoring system. First experience gained at the Dukovany NPP

    International Nuclear Information System (INIS)

    Pecka, M.; Svarny, J.; Kment, J.

    2001-01-01

    The article deals with methods of interpretation of in-core measurements that are based on the determination of the three-dimensional (3D) power distribution within the reactor core, discusses on-line mode calculations, and describes the results obtained during the trial operation of the new SCORPIO-VVER reactor core monitoring system. The principles of the method of determination of the fuel assembly subchannel parameters are outlined. Alternative methods of self-powered detector signal conversion to local power are given, and some results of their testing are presented. Emphasis is put on self-powered detectors supplied by the US firm IST, which were first deployed at the Dukovany NPP in 1998. The predictive function of the SCORPIO-VVER system, whose implementation was inspired by favourable experience gained on some PWR reactors (such as the products of the Halden reactor project at Ringhals and Sizewell B) were adapted to the specific needs of WWER-440 reactors. The main results of validation of the functions are described and presented in detail. (author)

  15. Systems and methods for enhancing isolation of high-temperature reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2017-09-26

    A high-temperature containment-isolation system for transferring heat from a nuclear reactor containment to a high-pressure heat exchanger is presented. The system uses a high-temperature, low-volatility liquid coolant such as a molten salt or a liquid metal, where the coolant flow path provides liquid free surfaces a short distance from the containment penetrations for the reactor hot-leg and the cold-leg, where these liquid free surfaces have a cover gas maintained at a nearly constant pressure and thus prevent high-pressures from being transmitted into the reactor containment, and where the reactor vessel is suspended within a reactor cavity with a plurality of refractory insulator blocks disposed between an actively cooled inner cavity liner and the reactor vessel.

  16. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  17. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  18. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  19. Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater.

    Science.gov (United States)

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang

    2017-10-28

    Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

  20. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  1. The effects of core zoning on optimization of design analysis of molten salt reactor

    International Nuclear Information System (INIS)

    Guo, Zhangpeng; Wang, Chenglong; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2013-01-01

    Highlights: • 1/8 of core is simulated by MCNP and thermal-hydraulic code simultaneously. • Effects of core zoning are studied by dividing the core into two regions. • Both the neutronics and thermal-hydraulic behavior are investigated. • The flat flux distribution is achieved in the optimization analysis. • The flat flux can lead to worse thermal-hydraulic behavior occasionally. - Abstract: The molten salt reactor (MSR) is one of six advanced reactor types in the frame of the Generation 4 International Forum. In this study, a multiple-channel analysis code (MAC) is developed to analyze thermal-hydraulics behavior and MCNP4c is used to study the neutronics behavior of Molten Salt Reactor Experiment (MSRE). The MAC calculates thermal-hydraulic parameters, namely temperature distribution, flow distribution and pressure drop. The MCNP4c performs the analysis of effective multiplication factor, neutron flux, power distribution and conversion ratio. In this work, the modification of core configuration is achieved by different core zoning and various fuel channel diameters, contributing to flat flux distribution. Specifically, the core is divided into two regions and the effects of different core zoning on the both neutronics and thermal-hydraulic behavior of moderated molten salt reactor are investigated. We conclude that the flat flux distribution cannot always guarantee better performance in thermal-hydraulic perspective and can decreases the graphite lifetime significantly

  2. Predictions of the Bypass Flows in the HTR-PM Reactor Core

    International Nuclear Information System (INIS)

    Sun Jun; Chen Zhipeng; Zheng Yanhua; Shi Lei; Li Fu

    2014-01-01

    In the HTR-PM reactor core, the basic structure materials are large amount of graphite reflectors and carbon bricks. Small gaps among those graphite and carbon bricks are widespread in the reactor core so that the cold helium flow may be bypassed and not completely heated. The bypass flows in relative lower temperature would change the flow and temperature distributions in the reactor core, therefore, the accurate prediction of bypass flows need to be carried out carefully to evaluate the influence to the reactor safety. Based on the characteristics of the bypass flow problem, hybrid method of the flow network and the CFD tools was employed to represent the connections and calculate flow distributions of all the main flow and bypass flow paths. In this paper, the hybrid method was described and applied to specific bypass flow problem in the HTR-PM. Various bypass flow paths in the HTR-PM were reviewed, figured out, and modeled by the flow network and the CFD methods, including the axial vertical gaps in the side reflectors, control rod channels, absorber sphere channels and radial gap flow through keys around the hot helium plenum. The bypass flow distributions and its flow rate ratio to the total flow rate in the primary loop were also calculated, discussed and evaluated. (author)

  3. Reactivity variations associated with the core expansion of the MARIA research reactor after modernisation

    International Nuclear Information System (INIS)

    Krzysztoszek, G.

    1997-01-01

    Polish high flux research reactor MARIA is a pool type reactor moderated with beryllium and water and cooled with water. The fuel is 80% enriched uranium, in the shape of multitube fuel elements, each tube made up of UAl x alloy in aluminium cladding. MARIA reactor has been operated in the years of 1977-85 and then it was modernised and again put into operation in December 1992. The modernisation as regarded the reactor core comprises a beryllium matrix expansion from 20-48 blocks. Within the frame of the power start-up and trial operation the reactor has been extended from 12 to 18 fuel channels. On that stage of reactor operation the power of mostly loaded fuel channels was constrained to 1,6 MW. Reactor has been operated within the 100-hrs campaign for an irradiation of target materials and for performing measurements at the horizontal channel outlets. In the previous time it has been noticed substantial differences in reactivity changes of the core in similar campaigns of reactor operation. It concerns the reactivity losses during poisoning period of the reactor within the first 30-40 hrs of operation as well as in the fuel burning up process. An analysis of the reactivity variations during the core extension will made possible the fuel management optimisation in further reactor operation system. (author)

  4. Reactivity changes in hybrid thermal-fast reactor systems during fast core flooding

    International Nuclear Information System (INIS)

    Pesic, M.

    1994-09-01

    A new space-dependent kinetic model in adiabatic approximation with local feedback reactivity parameters for reactivity determination in the coupled systems is proposed in this thesis. It is applied in the accident calculation of the 'HERBE' fast-thermal reactor system and compared to usual point kinetics model with core-averaged parameters. Advantages of the new model - more realistic picture of the reactor kinetics and dynamics during local large reactivity perturbation, under the same heat transfer conditions, are underlined. Calculated reactivity parameters of the new model are verified in the experiments performed at the 'HERBE' coupled core. The model has shown that the 'HERBE' safety system can shutdown reactor safely and fast even in the case of highly set power trip and even under conditions of big partial failure of the reactor safety system (author)

  5. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  6. Modelling of reactor control and protection systems in the core simulator program GARLIC

    International Nuclear Information System (INIS)

    Beraha, D.; Lupas, O.; Ploegert, K.

    1984-01-01

    For analysis of the interaction between control and limitation systems and the power distribution in the reactor core, a valuable tool is provided by the joint simulation of the core and the interacting systems. To this purpose, the core simulator GARLIC has been enhanced by models of the systems for controlling and limiting the reactor power and the power distribution in the core as well as by modules for calculating safety related core parameters. The computer-based core protection system, first installed in the Grafenrheinfeld NPP, has been included in the simulation. In order to evaluate the accuracy of GARLIC-simulations, the code has been compared with a design code in the train of a verification phase. The report describes the program extensions and the results of the verification. (orig.) [de

  7. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  8. Effective height of the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam); Martin, D P; Yip, F G [High Institute of Nuclear Sciences and Technology (Cuba)

    1994-10-01

    Measurements of thermal neutron relative distributions in axial direction at different positions in the reactor core and for various control rod configurations have been carried out, and axial buckling and effective height of the core deduced. (author). 4 refs., 3 figs., 1 tab.

  9. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  10. Analysis of gamma heating at TRIGA mark reactor core Bandung using plate type fuel

    International Nuclear Information System (INIS)

    Setiyanto; Tukiran Surbakti

    2016-01-01

    In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0.87 W/g), but very low value for Lazy Susan position (lest then 0.11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. (author)

  11. CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.

    2006-01-01

    The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches

  12. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  13. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  14. Monte Carlo simulation of core physics parameters of the Syrian MNSR reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Sulieman, I.

    2011-01-01

    A 3-D neutronic model for the Syrian Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis using the MCNP-4C code. The continuous energy neutron cross sections were evaluated from the ENDF/B-VI library. This model is used in this paper to calculate the following reactor core physics parameters: the clean cold core excess reactivity, calibration of the control rod and calculation its shut down margin, calibration of the top beryllium shim plate reflector, the axial neutron flux distributions in the inner and outer irradiation positions and calculations of the prompt neutron life time (ι p ) and the effective delayed neutron fraction ( β e ff). Good agreements are noticed between the calculated and the measured results. These agreements indicate that the established model is an accurate representation of Syrian MNSR core and will be used for other calculations in the future. (author)

  15. Study on Reactor Physics Characteristic of the PWR Core Using UO2

    International Nuclear Information System (INIS)

    Tukiran Surbakti

    2009-01-01

    Study on reactor physics characteristic of the PWR core using UO 2 fuel it is necessary to be done to know the characteristic of geometry, condition and configuration of pin cell in the fuel assembly Because the geometry, configuration and condition of the pin cell in fuel core determine the loading strategy of in-core fuel management Calculation of k e ff is a part of the neutronic core parameter calculation to know the reactor physics characteristic. Generally, core calculation is done using computer code starts from modelling one unit fuel lattice cell, fuel assembly, reflector, irradiation facility and until core reactor. In this research, the modelling of pin cell and fuel assembly of the PWR 17 ×17 is done homogeneously. Calculation of the k-eff is done with variation of the fuel volume fraction, fuel pin diameter, fuel enrichment. The calculation is using by NITAWL and CENTRM, and then the results will be compared to KENOVI code. The result showed that the value of k e ff for pin cell and fuel assembly PWR 17 ×17 is not different significantly with homogenous and heterogenous models. The results for fuel volume fraction of 0.5; rod pitch 1.26 cm and fuel pin diameter of 9.6 mm is critical with burn up of 35,0 GWd/t. The modeling and calculation method accurately is needed to calculation the core physic parameter, but sometimes, it is needed along time to calculate one model. (author)

  16. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  17. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  18. Reference equilibrium core with central flux irradiation facility for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Israr, M.; Shami, Qamar-ud-din; Pervez, S.

    1997-11-01

    In order to assess various core parameters a reference equilibrium core with Low Enriched Uranium (LEU) fuel for Pakistan Research Reactor (PARR-1) was assembled. Due to increased volume of reference core, the average neutron flux reduced as compared to the first higher power operation. To get a higher neutron flux an irradiation facility was created in centre of the reference equilibrium core where the advantage of the neutron flux peaking was taken. Various low power experiments were performed in order to evaluate control rods worth and neutron flux mapping inside the core. The neutron flux inside the central irradiation facility almost doubled. With this arrangement reactor operation time was cut down from 72 hours to 48 hours for the production of the required specific radioactivity. (author)

  19. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  20. Neutron spectrometric methods for core inventory verification in research reactors

    International Nuclear Information System (INIS)

    Ellinger, A.; Filges, U.; Hansen, W.; Knorr, J.; Schneider, R.

    2002-01-01

    In consequence of the Non-Proliferation Treaty safeguards, inspections are periodically made in nuclear facilities by the IAEA and the EURATOM Safeguards Directorate. The inspection methods are permanently improved. Therefore, the Core Inventory Verification method is being developed as an indirect method for the verification of the core inventory and to check the declared operation of research reactors