WorldWideScience

Sample records for reaction-mass spectrometry ptr-ms

  1. Formaldehyde measurements by Proton transfer reactionMass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  2. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  3. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  4. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb

    NARCIS (Netherlands)

    Erasmus, Sara W.; Muller, Magdalena; Alewijn, Martin; Koot, Alex H.; Ruth, van Saskia M.; Hoffman, Louwrens C.

    2017-01-01

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile

  5. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  6. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis.

    Science.gov (United States)

    Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia

    2017-09-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  8. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  9. Effects of airflow on odorants' emissions in a model pig house — A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Saha, Chayan Kumer; Feilberg, Anders; Zhang, Guoqiang; Adamsen, Anders Peter S.

    2011-01-01

    Identification of different factors that affect emissions of gasses, including volatile organic compounds (VOCs) is necessary to develop emission abatement technology. The objectives of this research were to quantify and study temporal variation of gas emissions from a model pig house under varying ventilation rates. The used model was a 1:12.5 scale of a section of a commercial finishing pig house. The VOC concentrations at inlet, outlet, and slurry pit of the model space were measured using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). PTR-MS can measure the temporal variations of odor compounds' emission from the slurry pit in real time. The emissions of H 2 S and 14 VOCs were lower compared to real pig buildings except for ammonia, which indicated possible other sources of those compounds than the slurry in the slurry pit. The ventilation rate affected significantly on ammonia and trimethylamine emission (p 2 S) emission was independent of the ventilation rate. VFAs' emission dependency on ventilation rate increased with the increase of carbon chain. Phenols, indoles and ketones showed the positive correlation with ventilation rate to some extent. Generally, compounds with high solubility (low Henry's constant) showed stronger correlation with ventilation rates than the compounds with high Henry's constant.

  10. Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NARCIS (Netherlands)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-01-01

    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds

  11. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb.

    Science.gov (United States)

    Erasmus, Sara W; Muller, Magdalena; Alewijn, Martin; Koot, Alex H; van Ruth, Saskia M; Hoffman, Louwrens C

    2017-10-15

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of high sensitivity analytical methods (PTR-MS, MIMS, GC-O, SA) and application to food chemistry

    International Nuclear Information System (INIS)

    Boscaini, E.

    2002-10-01

    Application of PTR-MS to flavor analysis and the development of the membrane introduction proton-transfer-reaction-mass-spectrometry are the main topics of this thesis. The results of classical sensory analysis and of PTR-MS analysis are compared in defining flavor profiles of 7 different brands of mozzarella cheese. The PTR-MS mass spectra of the headspace of mozzarella held at 36 o C are compared to the judge panel flavor profile. Multivariate statistical data analysis shows that the two methods perform comparable sample discrimination. This shows that PTR-MS is a very promising method for the instrumental evaluation of the flavour sensory profile of food, opening new opportunities both in the control of quality and technological processes, as well as in the fundamental comprehension of the physiological processes of aroma perception. In the same chapter is also described a method for the identification of the masses of a mass spectra obtained with PTR-MS. Although the identification is always tentative, it might suggest which substances play an important role in the classification of different products. I.e. mass 45 and 47 associated to acetaldehyde and ethanol respectively reveal a higher fermentation activity in product B than G, as expected due to their manufacture processes. Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS) techniques were used to define odor active and volatile profile of three grana cheeses: Grana Padano (GP), Parmigiano Reggiano (PR) and Grana Trentino (GT). Samples for GC-O analysis were prepared by dynamic headspace extraction while a direct analysis of the headspace formed over cheese was performed by PTR-MS. Major contribution to the odor profile was given by ethyl butanoate, 2-heptanone and ethyl hexanoate with fruity notes. High concentration of mass 45 tentatively identified with acetaldehyde was found by PTR-MS analysis. Low odor threshold compounds e.g. methional and 1-octen-3-one

  13. Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects

    DEFF Research Database (Denmark)

    K H, Han; J S, Zhang; Wargocki, Pawel

    2010-01-01

    by human subjects. VOC emissions from each material were measured in a 50-l small-scale chamber. Chamber air was sampled by PTR-MS to determine emission signatures. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data...... VOC odor indices was used to represent the emission level measured by PTR-MS.......The objectives of this study were to determine volatile organic compound (VOC) emission signatures of nine typical building materials by using proton transfer reaction-mass spectrometry (PTR-MS) and to explore the correlation between the PTR-MS measurements and the measurements of acceptability...

  14. PTR-MS in environmental research: biogenic VOCs

    International Nuclear Information System (INIS)

    Beauchamp, J.; Grabmer, W.; Graus, M.; Wisthaler, A.; Hansel, A.

    2004-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a chemical ionization mass spectrometry technique that allows for on-line measurements of volatile organic compounds (VOCs) at pptV levels. This well established analytical tool has been used in a broad variety of research, including the investigation of VOCs in various foods (e.g. for quality control or food degradation studies), as well as being used as a tool for non-invasive medical diagnostics (e.g. human breath analysis). In addition to these fields of study, PTR-MS has been widely used in environmental research, from trace gas analysis in the troposphere to VOC emissions from plants. Participation in two field campaigns (BEWA and ECHO - both part of the German AFO 2000 program) by the Institute of Ion Physics involved a variety of investigations for monitoring biogenic emissions. These included the technique of disjunct eddy covariance for flux measurements above a forest canopy, C-13 carbon labelling experiments to follow carbon use in a plant, and stress-induced VOC emission investigations to gain understanding of how plants react to stress (e.g. ozone exposure). A selection of results from these investigations will be discussed in this presentation. (author)

  15. Quality control of meat using proton-transfer-reaction-mass-spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Mayr, D.; Hartungen, E.; Maerk, T.D.; Margesin, R.; Schinner, F.

    2002-01-01

    Full text: Numerous food scandals which happened during the last few years make food safety controls more and more important. The method currently used for determining the status of meat, with respect to spoilage, is analysis of the counts of total viable bacteria and/or specific spoilage bacteria. An obvious drawback of this bacteriological method is the long incubation period of 1-3 days that is required for colony formation. Therefore we develop a novel method for meat quality control using PTR-MS which does not have this drawback. We measured the emitted volatile organic compounds (VOCs) of meat (beef and pork) using PTR-MS as a function of storage time. At the same time a bacteriological examination of these meat samples was carried out. We found strong correlations (about 99 %) between some VOCs and bacteriological contamination. This is a first step to replace the time-consuming bacteriological method by fast headspace air measurements to facilitate the investigation of a huge number of pieces of meat in very short time and to determine the maximum storage time and storage temperature from the emissions. We will also use this method to investigate the growth of various bacteria, the changes in the microbial composition and the influence of various environmental conditions such as temperature, pH, chemical and microbial preservation techniques. (author)

  16. Proton transfer reaction time-of-flight mass spectrometry advancement in detection of hazardous substances

    International Nuclear Information System (INIS)

    Agarwal, B.

    2012-01-01

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)

  17. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics

    NARCIS (Netherlands)

    Kus, P.M.; Ruth, van S.M.

    2015-01-01

    A total of 62 honey samples of six floral origins (rapeseed, lime, heather, cornflower, buckwheat and black locust) were analysed by means of proton transfer reaction mass spectrometry (PTR-MS) and HPLC-DAD. The data were evaluated by principal component analysis and k-nearest neighbours

  18. PTR-MS as a technique for investigating stress induced emission of biogenic VOCS

    International Nuclear Information System (INIS)

    Beauchamp, J.; Hansel, A.; Wisthaler, A.; Kleist, E.; Miebach, M.; Weller, U.; Wildt, J.

    2004-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used in conjunction with two GC-MS systems to investigate stress induced emissions of volatile organic compounds (VOCs) from plants. Experiments were performed in the laboratory under well defined conditions and VOC emissions were induced by ozone exposure at variable concentrations and for different durations. Tobacco (Nicotiana tabaccum cv. Bel W3) plants were used as the investigated species. This investigation demonstrated the ability of PTR-MS to provide excellent high time-resolution on-line measurements of the relevant species. The combination of the PTR-MS instrument with the two GC-MS systems (which enabled accurate compound identification) allowed for detailed investigation of the dynamics of the plants' responses to ozone stress. VOCs measured included methanol, C6- alcohols and aldehydes, methyl salicylate and sesquiterpenes. Results indicate that the temporal stress response of plants depend on the amount of stress encountered by the plant. Measurement technique and experimental results will be presented. (author)

  19. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  20. Applications of PTR-MS in food flavour research: recent progress and prospects

    International Nuclear Information System (INIS)

    Yeretzian, C.; Pollien, P.; Jordan, A.; Graus, M.; Lindinger, W.

    2002-01-01

    Food products all along the food chain from raw material to final products continuously emit volatile organic compounds (VOs), which are related to important properties of the product itself such as flavor, age, or safety among others. Several analytical techniques for sampling and analysing the head space (HS) of food has been developed, however the proton-transfer-reaction mass spectrometry (PTR-MS) has the particularity to be able to work on real time-basis. By applying PTR-MS two qualitatively distinct types of information were obtained: HS profiles can be averaged over a given time window to yield concentration vs. mass spectra (static data). Such spectra can be used to asses authenticity, monitor deviation in production from a reference or classify product. Alternatively, temporal changes can be analysed via time-intensity plots (dynamic data). As example soluble coffee data is given. (nevyjel)

  1. Tropospheric VOC measurements by PTR-MS

    International Nuclear Information System (INIS)

    Hansel, A.; Wisthaler, A.; Graus, M.; Grabmer, W.

    2002-01-01

    Full text: O 3 is formed photochemically from the photolysis of NO 2 , and because O 3 reacts rapidly with NO these reactions result in a photoequilibrium between NO, NO 2 with no net formation or loss of O 3 , However, in the presence of volatile organic compounds (VOCs), the degradation reactions of VOCs lead to the formation of intermediate peroxy radicals which react with NO, converting NO to NO 2 , which then photolyze to form O 3 . Thus, in order to understand quantitatively tropospheric ozone chemistry, it is necessary to know the VOC distribution within the troposphere as well as VOC fluxes from individual sources. Examples will be presented how the use of Proton Transfer Reaction Mass Spectrometry (PTR-MS) has enhanced our understanding of anthropogenic VOC emissions, biosphere-atmosphere exchange processes, and photochemical processing of both anthropogenic and biogenic VOCs in the troposphere. (author)

  2. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification

    NARCIS (Netherlands)

    Ruiz-Samblas, C.; Tres, A.; Koot, A.H.; Ruth, van S.M.; Gonzalez-Casado, A.; Cuadros-Rodriguez, L.

    2012-01-01

    Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate qualification of the volatile organic compound (VOC) fingerprint. This paper describes the analysis of thirty samples of extra virgin olive oil, of five different varieties of olive

  3. Comparison between proton transfer reaction mass spectrometry and near infrared spectroscopy for the authentication of Brazilian coffee

    NARCIS (Netherlands)

    Monteiro, Pablo Inocêncio; Santos, Jânio Sousa; Alvarenga Brizola, Vitor Rafael; Pasini Deolindo, Carolina Turnes; Koot, Alex; Boerrigter-Eenling, Rita; Ruth, van Saskia; Georgouli, Konstantia; Koidis, Anastasios; Granato, Daniel

    2018-01-01

    In this study, proton-transfer reaction mass spectrometry (PTR-MS) and near-infrared spectroscopy (NIRS) were compared for the authentication of geographical and farming system origins of Brazilian coffees. For this purpose, n = 19 organic (ORG) and n = 26 conventional (CONV) coffees from

  4. PTR-MS analysis of reference and plant-emitted volatile organic compounds

    Science.gov (United States)

    Maleknia, Simin D.; Bell, Tina L.; Adams, Mark A.

    2007-05-01

    Proton transfer reaction-mass spectrometry (PTR-MS) was applied to the analysis of a series of volatile organic compounds (VOCs) that emit from various plants. These include a group of alcohols (methanol, ethanol and butanol), carbonyl-containing compounds (acetic acid, acetone and benzaldehyde), isoprene, acetonitrile, tetrahydrofuran (THF), pyrazine, toluene and xylene and a series of terpenes (p-cymene, camphene, 2-carene, limonene, [beta]-myrcene, [alpha]-pinene, [beta]-pinene, [gamma]-tepinene and terpinolene) and oxygen-containing terpenes (1,8-cineole and linalool). These mass spectral data were compared to an electron ionization (EI) database identifying that not all PTR-MS fragments were common to EI. PTR-MS studies of these reference compounds were utilized to identify VOCs emitted from Eucalyptus grandis leaf at a temperature range of 30-100 °C. In addition to protonated molecules (M + H)+, abundant proton-bound dimers or trimers were detected for alcohols, acetone, acetonitrile and THF. Abundant fragment ions attributed to the loss of water from these proton-bound clusters were also observed. The stability of butyl (C4H9+ m/z 57) and acetyl (CH3CO+ m/z 43) fragment ions directed the proton-transfer reactions of butanol and acetic acid. Abundant (M + H)+ ions were detected for pyrazine, THF, toluene and xylene, as well as for all terpenes except those containing oxygen. For linalool and 1,8-cineole, the loss of water generated an abundant fragment ion at m/z 137. PTR-MS fragmentation patterns for terpenes were proposed for m/z 81 (C6H9+), 93 (C7H9+), 95 (C7H11+), 107 (C8H11+), 109 (C8H13+), 119 (C9H11+), 121 (C9H13+) and 137 (loss of water for oxygen-containing terpenes; C10H17+). The relative abundances of (M + H)+ and fragments for all terpenes (except linalool) were dependent on the drift tube voltage and the optimum voltage for detection of molecular ions was different for various terpenes.

  5. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L. by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    Mette Marie Løkke

    2012-11-01

    Full Text Available Volatile organic compounds (VOCs in cut onions (Allium cepa L. were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.

  6. Geographical provenancing of purple grape juices from different farming systems by proton transfer reaction mass spectrometry using supervised statistical techniques

    NARCIS (Netherlands)

    Granato, Daniel; Koot, Alex; Ruth, van S.M.

    2015-01-01

    BACKGROUND: Organic, biodynamic and conventional purple grape juices (PGJ; n = 79) produced in Brazil and Europe were characterized by volatile organic compounds (m/z 20-160) measured by proton transfer reaction mass spectrometry (PTR-MS), and classification models were built using supervised

  7. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    Science.gov (United States)

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Airborne measurements of reactive organic trace gases in the atmosphere - with a focus on PTR-MS measurements onboard NASA's flying laboratories

    Science.gov (United States)

    Wisthaler, Armin; Mikoviny, Tomas; Müller, Markus; Schiller, Sven Arne; Feil, Stefan; Hanel, Gernot; Jordan, Alfons; Mutschlechner, Paul; Crawford, James H.; Singh, Hanwant B.; Millet, Dylan

    2017-04-01

    Reactive organic gases (ROGs) play an important role in atmospheric chemistry as they affect the rates of ozone production, particle formation and growth, and oxidant consumption. Measurements of ROGs are analytically challenging because of their large variety and low concentrations in the Earth's atmosphere, and because they are easily affected by measurement artefacts. On aircraft, ROGs are typically measured by canister sampling followed by off-line analysis in the laboratory, fast online gas chromatography or online chemical ionization mass spectrometry. In this work, we will briefly sum up the state-of-the-art in this field before focusing on proton-transfer-reaction mass spectrometry (PTR-MS) and its deployment onboard NASA's airborne science laboratories. We will show how airborne PTR-MS was successfully used in NASA missions for characterizing emissions of ROGs from point sources, for following the photochemical evolution of ROGs in a biomass burning plume, for determining biosphere-atmosphere fluxes of selected ROGs and for validating satellite data. We will also present the airborne PTR-MS instrument in its most recent evolution which includes a radiofrequency ion funnel and ion guide combined with a compact time-of-flight mass spectrometer and discuss its superior performance characteristics. The development of the airborne PTR-MS instrument was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) (grants #833451, #847967). This work was also partly supported by NASA under grant #NNX14AP89G.

  9. Effects of air exchange, temperature and slurry management on odorant emissions from pig production units and slurry tanks studied by proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.; Adamsen, A.P.S.; Liu, D.; Hansen, M.J.; Bildsoe, P. [Aarhus Univ., Tjele (Denmark). Dept. of Biosystems Engineering

    2010-07-01

    The factors affecting the variability of odorant emissions from intensive pig production facilities were examined using proton-transfer-reaction mass spectrometry (PTR-MS) to monitor emissions of odorants. Quantitative and time-resolved results for protonated ions representing hydrogen sulphide (H{sub 2}S), volatile organic sulphur compounds, organic amines, volatile carboxylic acids, carbonyls, phenols and indoles can be obtained. This study presented the results from PTRMS measurements of odorant emissions from finisher pig houses and finisher manure storage tanks. The measurements were performed at an experimental full-scale pig section with mechanical ventilation and at an experimental manure storage facility with controlled air exchange. Field measurements were taken during variable air exchange rates and temperatures, during finisher growth, and during emptying of the slurry pit. The results revealed a pronounced diurnal variation in emissions of odorants from the pig section with peaks in daytime coinciding with the highest ventilation rates and highest room temperatures. The highest emission rates were observed for H{sub 2}S and carboxylic acids. Based on odour threshold values, methanethiol and 4-methylphenol were estimated to contribute considerably to the odour nuisance. Discharging of the slurry pit led to reduced H{sub 2}S emissions, but peaks of H{sub 2}S were observed during manure handling.

  10. Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland

    Science.gov (United States)

    Kajos, M. K.; Rantala, P.; Hill, M.; Hellén, H.; Aalto, J.; Patokoski, J.; Taipale, R.; Hoerger, C. C.; Reimann, S.; Ruuskanen, T. M.; Rinne, J.; Petäjä, T.

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) are commonly used methods for automated in situ measurements of various volatile organic compounds (VOCs) in the atmosphere. In order to investigate the reliability of such measurements, we operated four automated analyzers using their normal field measurement protocol side by side at a boreal forest site. We measured methanol, acetaldehyde, acetone, benzene and toluene by two PTR-MS and two GC-MS instruments. The measurements were conducted in southern Finland between 13 April and 14 May 2012. This paper presents correlations and biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methanol, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference manifests as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50-100 % in the methanol emissions measured by commonly used methods.

  11. Compounds enhanced in a mass spectrometric profile of smokers' exhaled breath versus non-smokers as determined in a pilot study using PTR-MS.

    Science.gov (United States)

    Kushch, Ievgeniia; Schwarz, Konrad; Schwentner, Lukas; Baumann, Bettina; Dzien, Alexander; Schmid, Alex; Unterkofler, Karl; Gastl, Günter; Spaněl, Patrik; Smith, David; Amann, Anton

    2008-06-01

    A pilot study has been carried out to define typical characteristics of the trace gas compounds in exhaled breath of non-smokers and smokers to assist interpretation of breath analysis data from patients who smoke with respiratory diseases and lung cancer. Exhaled breath was analyzed using proton transfer reaction-mass spectrometry (PTR-MS) for 370 volunteers (81 smokers, 210 non-smokers, 79 ex-smokers). Volatile organic compounds corresponding to product ions at seven mass-to-charge ratios (m/z 28, 42, 69, 79, 93, 97, 123) in the PTR-MS spectra differentiated between smokers and non-smokers. The Youden index (= maximum of sensitivity + specificity - 1, YI) as a measure for differentiation between smokers and non-smokers was YI = 0.43 for ions at the m/z values 28 (tentatively identified as HCN), YI = 0.75 for m/z = 42 (tentatively identified as acetonitrile) and YI = 0.53 for m/z = 79 (tentatively identified as benzene). No statistically significant difference between smokers and non-smokers was observed for the product ions at m/z = 31 and 33 (compounds tentatively identified as formaldehyde and methanol). When interpreting the exhaled breath of lung cancer or COPD patients, who often smoke, compounds appearing at the above-mentioned seven mass-to-charge ratios should be considered with appropriate care to avoid misdiagnosis. Validation studies in larger numbers of patients with more precise delineation of their smoking behavior and using additional analytical techniques such as GC/MS and SIFT-MS should be carried out.

  12. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  13. Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons

    Science.gov (United States)

    Cui, Long; Zhang, Zhou; Huang, Yu; Lee, Shun Cheng; Blake, Donald Ray; Ho, Kin Fai; Wang, Bei; Gao, Yuan; Wang, Xin Ming; Kwok Keung Louie, Peter

    2016-12-01

    Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques - namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) - were applied during this study. For the first time, the proton transfer reaction-mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement

  14. Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-12-01

    Full Text Available A method for real-time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7% and xylene (-6%. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.

  15. Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research

    Science.gov (United States)

    Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.

    2014-05-01

    Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI-MS

  16. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  17. On-line detection of illicit substances in liquid phase with proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Juerschik, Simone; Agarwal, Bishu; Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Haidacher, Stefan; Jordan, Alfons; Schottkowsky, Ralf; Hartungen, Eugen; Hanel, Gernot; Seehauser, Hans; Maerk, Lukas [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria)

    2011-07-01

    The direct aqueous injection (DAI) technique was recently utilized for the detection of illicit substances in liquid phase. DAI turns out to be an ideal solution for direct analysis of liquid samples, since we can make good use of the outstanding advantages, such as real-time analysis, no sample preparation, low detection limits and short response time. Differences in TNT concentration in the water could be seen dependent on time and original size of the pieces and we could demonstrate a linear correlation between the concentration in liquid and the PTR-MS signal. Furthermore, we were also able to demonstrate that this method is capable of detecting minute traces of ''rape drugs'', i.e. {gamma}-butyrolactone and 1,4-butanediol, in liquids. This new method achieving sensitivities in the around 100 pptw range appears therefore well suited for the fight against drug crime and terrorism and for the evaluation of contamination of ammunition dumping sites.

  18. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  19. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    Science.gov (United States)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-04-01

    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce

  20. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  1. Geographical origin classification of olive oils by PTR-MS

    NARCIS (Netherlands)

    Araghipour, N.; Colineau, J.; Koot, A.H.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Märk, T.D.; Downey, G.; Guillou, C.; Mannina, L.; Ruth, van S.M.

    2008-01-01

    The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models

  2. A statistical analysis of volatile organic compounds observed during the TEXAQS2000 air quality study at LaPorte, Tx, using proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Kuster, B.; Williams, E.; Fehsenfeld, F.; Jobson, T.; Fall, R.; Lindinger, W.; Karl, T.

    2002-01-01

    Statistical analysis of online VOC measurements obtained by proton-transfer-reaction mass spectrometry (PTR-MS) during the TEXAQS2000 intensive period is presented. The experiment was based at the La Porte site, near the Houston ship channel (HSC), and deployed for continuous long-term monitoring. Multivariate techniques helped to identify various VOC sources in the vicinity of HSC and distinguish between different anthropogenic emissions. An assessment is given of the selectivity and interpretation of mass scans from this online technique in complex urban and industrial VOC matrix. (author)

  3. Analysis of expiration gas in intensive care patients with SIRS/sepsis using proton-transfer-reaction-mass-spectrometry

    International Nuclear Information System (INIS)

    Bodrogi, F.B.M.

    2003-11-01

    In 1971, Pauling and co-workers were the first to detect volatile organic compounds (VOC) in human breath. Since then, a number of technical applications for breath gas analyses have been designed and processed, among them gas chromatography and proton transfer reaction-mass spectrometry (PTR-MS). Due to this technical progress it is meanwhile possible to correlate different kinds and stages of diseases with measurable changes in the patient's VOC profile. The aim of the present study was to investigate the composition of VOC in exhaled air of patients with sepsis via PTR-MS. To isolate distinct volatile organic compounds that may serve as clinical markers for the onset, the progress, as well as the outcome of the disease, the results obtained from septic patients were compared with two different control groups: 25 healthy, non-smoking volunteers enrolled in the day-case-surgery and 25 post-operative in-patients residing in post-anaesthetic care units (PACU). PTR-MS is capable to analyze VOC according to their molecular weight with a range between 21-230 Da. A total of 210 different masses has been detected in the present study. 54 masses were significantly different in exhaled air of septic patients as compared to healthy controls as well as post-operative patients. Among them, mass 69 representing isoprene might be of special interest for the diagnosis of sepsis. Although no exact biochemical properties of isoprene have been described to date, it is known that isoprene synthesis is increased in plants following exposure to oxidative stress. Chronic, systemic infectious diseases like sepsis are accompanied by the production of reactive oxygen species, indicating that isoprene might be increased in the course of sepsis, too. In the present study, isoprene values were markedly higher in septic patients as compared to PACU residents (3.3-fold increase in mean value) and to healthy volunteers (2.2-fold increase in mean value). In addition (and in contrast to other VOC

  4. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

    Science.gov (United States)

    C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw

    2011-01-01

    Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...

  5. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS).

    Science.gov (United States)

    Vu, Dai Long; Ranglová, Karolína; Hájek, Jan; Hrouzek, Pavel

    2018-05-01

    Quantification of selenated amino-acids currently relies on methods employing inductively coupled plasma mass spectrometry (ICP-MS). Although very accurate, these methods do not allow the simultaneous determination of standard amino-acids, hampering the comparison of the content of selenated versus non-selenated species such as methionine (Met) and selenomethionine (SeMet). This paper reports two approaches for the simultaneous quantification of Met and SeMet. In the first approach, standard enzymatic hydrolysis employing Protease XIV was applied for the preparation of samples. The second approach utilized methanesulfonic acid (MA) for the hydrolysis of samples, either in a reflux system or in a microwave oven, followed by derivatization with diethyl ethoxymethylenemalonate. The prepared samples were then analyzed by multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS). Both approaches provided platforms for the accurate determination of selenium/sulfur substitution rate in Met. Moreover the second approach also provided accurate simultaneous quantification of Met and SeMet with a low limit of detection, low limit of quantification and wide linearity range, comparable to the commonly used gas chromatography mass spectrometry (GC-MS) method or ICP-MS. The novel method was validated using certified reference material in conjunction with the GC-MS reference method. Copyright © 2018. Published by Elsevier B.V.

  6. Disjunct eddy covariance measurements of volatile organic compound fluxes using proton transfer reaction mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Taipale, R.

    2011-07-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in

  7. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  8. Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.

    Directory of Open Access Journals (Sweden)

    Filomena Morisco

    Full Text Available UNLABELLED: The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years. Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs resulted significantly differently in cirrhotic patients (CP compared to healthy controls (CTRL: four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone, two terpenes (monoterpene, monoterpene related, four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound and two alcohols (heptadienol, methanol. Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C. ROC (Receiver Operating Characteristic analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance. CONCLUSIONS: Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.

  9. Sea-to-air flux of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient flux technique

    Science.gov (United States)

    Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken

    2017-07-01

    Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.

  10. Mass Spectrometry (LC-MS-MS) as a Tool in the Maillard Reaction Optimisation and Characterisation of New 6-methoxy-tetrahydro-β-carboline Derivatives

    International Nuclear Information System (INIS)

    Goh, T.B.; Mordi, M.N.; Mansor, S.M.

    2015-01-01

    Four new 6-methoxy-tetrahydro-β-carboline derivatives (1-6- methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole,2-6-methoxy-1- (4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 3-6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole and 4-2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl) phenol) were prepared via the Maillard reaction using 5-methoxytryptamine and various aldehydes in water. The synthesis reaction conditions were optimised in catalyst loading, temperature and time using LC-MS for optimum yields. Surface response methodology and contour plot was selected as an approach for optimisation. The optimum yield could be achieved below 50 degree Celsius within 5 h at 7 mole % catalyst loading at yields > 70 %. The β-carboline compounds produced were characterised using electrospray ionization mass spectrometry (ESI-MS) and electrospray tandem mass (ESI-MS/MS). The mass fragmentation patterns of this group of heterocyclic tetrahydro-β-carboline compounds are described herein. (author)

  11. Development and deployment of a compact PTR-ToF-MS for Suborbital Research on the Earth's Atmospheric Composition

    Science.gov (United States)

    Müller, Markus; Mikoviny, Tomas; Haidacher, Stefan; Hanel, Gernot; Hartungen, Eugen; Jordan, Alfons; Märk, Lukas; Mutschlechner, Paul; Schottkowsky, Ralf; Sulzer, Philipp; Crawford, James H.; Wisthaler, Armin

    2014-05-01

    We report the development of a compact Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) in support of NASA's suborbital research program on the Earth's atmospheric composition. A lightweight, low mass resolution orthogonal acceleration ToF-MS was developed and combined with a conventional PTR ion source to measure volatile organic compounds (VOCs) in real time. The instrument was specially designed to resist aircraft vibrations and rough conditions during boundary layer flights, take-off and landing. The compact PTR-ToF-MS generates full mass spectral information at 1-second time resolution and below. With sensitivities of up to 150 cps/ppbv, typical 2σ detection limits in the range from 0.06 to 0.48 ppbv for a 1-second signal integration are achieved. A mass resolving power m/Δm of up to 1700 combined with an absolute mass accuracy and reproducibility of less than 3 mDa make it possible to distinguish isobaric ions at high time resolution, e.g. humidity- dependent isobaric background ions. The prototype instrument was successfully deployed for in-situ measurements of VOCs onboard the NASA P-3B Airborne Science Laboratory during two DISCOVER-AQ campaigns in the San Joaquin Valley, CA, and in Houston, TX, 2013. A 1-second time resolution results in a horizontal spatial resolution of typically 110 m and a vertical spatial resolution of typically 8 m which allowed for the quantitative detection of the entire suite of VOCs in strongly localized emission plumes from industrial, agricultural and biomass-burning sources. This work was funded by BMVIT / FFG-ALR in the frame of the Austrian Space Application Programme (ASAP 8, project 833451). Additional resources were provided through NASA's Earth Venture program (EV-1) and the NASA Postdoctoral Program (NPP).

  12. Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Directory of Open Access Journals (Sweden)

    B. T. Jobson

    2010-02-01

    Full Text Available A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003. Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS, long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS, and Gas Chromatography-Flame Ionization analysis (GC-FID of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6, and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance, and the point measurements collected at 37-m sampling height were best for benzene (r=0.61, and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5. There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and

  13. Comparison of Aromatic Hydrocarbon Measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    International Nuclear Information System (INIS)

    Jobson, Bertram T.; Volkamer, Rainer M.; Velasco, E.; Allwine, Gene; Westberg, Halvor H.; Lamb, Brian K.; Alexander, M.L.; Berkowitz, Carl M.; Molina, Luisa T.

    2010-01-01

    A comparison of aromatic hydrocarbon measurements is reported for the CENICA upersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C 2 -alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios easured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients - horizontal, vertical, or both - in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above

  14. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  15. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  16. Determination of 4-Methylimidazole in Ammonia Caramel Using Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS

    Directory of Open Access Journals (Sweden)

    Martyna N. Wieczorek

    2018-01-01

    Full Text Available One of Maillard reaction products formed in the production of ammonia caramel is 4(5-methylimidazole (4-MeI classified as carcinogen. A method of 4-MeI determination based on ion-pair extraction and derivatisation with isobutyl chloroformate with subsequent gas chromatography-tandem mass spectrometry analysis was proposed. Tandem mass spectrometry was applied to reduce the influence of matrix and increase the selectivity and sensitivity of the method. Triple quadrupole GC-MS system was used for this study. The collision energies were optimized for MRM mode. The detection (LOD and quantification limits (LOQ of the elaborated method were 17 and 37.8 μg kg−1, respectively, repeatability was <15% RSD for analyzed caramel samples, and the recovery for 4-MeI was 101%. Comparison of MS/MS with SIM detection on the same instrument proved almost 30 times lower LODs achieved by tandem mass spectrometry compared to SIM. Described method can be routinely used for monitoring 4-MeI as a quality and safety marker in the production of ammonia caramel.

  17. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2007-11-01

    Full Text Available Volatile Organic Compound (VOC emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS, Fourier Transform Infrared Spectroscopy (FTIR and gas chromatography (GC coupled to PTRMS (GC-PTR-MS. We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min and aged (>1 h–1 d smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer are presented.

  18. Measurements of Volatile Organic Compounds Using Proton Transfer ReactionMass Spectrometry during the MILAGRO 2006 Campaign

    Directory of Open Access Journals (Sweden)

    E. C. Fortner

    2009-01-01

    Full Text Available Volatile organic compounds (VOCs were measured by proton transfer reactionmass spectrometry (PTR-MS on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of the Megacity Initiative – Local and Global Research Observations (MILAGRO 2006 field campaign. Thirty eight individual masses were monitored during the campaign and many species were quantified including methanol, acetaldehyde, toluene, the sum of C2 benzenes, the sum of C3 benzenes, acetone, isoprene, benzene, and ethyl acetate. The VOC measurements were analyzed to gain a better understanding of the type of VOCs present in the MCMA, their diurnal patterns, and their origins. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations showed the influence of vehicular traffic during the morning rush hours and during the afternoon hours. Plumes including elevated toluene as high as 216 parts per billion (ppb and ethyl acetate as high as 183 ppb were frequently observed during the late night and early morning hours, indicating the possibility of significant industrial sources of the two compounds in the region. Wind fields during those peak episodes revealed no specific direction for the majority of the toluene plumes but the ethyl acetate plumes arrived at the site when winds were from the Southwest or West. The PTR-MS measurements combined with other VOC measuring techniques at the field site as well as VOC measurements conducted in other areas of the Mexico City Metropolitan Area (MCMA will help to develop a better understanding of the spatial pattern of VOCs and its variability in the MCMA.

  19. Field performance and identification capability of the Innsbruck PTR-TOF

    Science.gov (United States)

    Graus, M.; Müller, M.; Hansel, A.

    2009-04-01

    Over the last one and a half decades Proton Transfer Reaction Mass Spectrometry (PTR-MS) [1, 2] has gained recognition as fast on-line sensor for monitoring volatile organic compounds (VOC) in the atmosphere. Sample collection is very straight forward and the fact that no pre-concentration is needed is of particular advantage for compounds that are notoriously difficult to pre-concentrate and/or analyze by gas chromatographic (GC) methods. Its ionization method is very versatile, i.e. all compounds that perform exothermic proton transfer with hydronium ions - and most VOCs do so - are readily ionized, producing quasi-molecular ions VOC.H+. In the quasi-molecular ion the elemental composition of the analyte compound is conserved and allows, in combination with some background knowledge of the sample, conclusions about the identity of that compound. De Gouw and Warneke (2007) [3] summarized the applicability of PTR-MS in atmospheric chemistry but they also pointed out shortcomings in the identification capabilities. Goldstein and Galbally (2007) [4] addressed the multitude of VOCs potentially present in the atmosphere and they emphasized the gasphase-to-aerosol partitioning of organic compounds (volatile and semi-volatile) in dependence of carbon-chain length and oxygen containing functional groups. In collaboration with Ionicon and assisted by TOFWERK we developed a PTR time-of-flight (PTR-TOF) instrument that allows for the identification of the atomic composition of oxygenated hydrocarbons by exact-mass determination. A detection limit in the low pptv range was achieved at a time resolution of one minute, one-second detection limit is in the sub-ppbv range. In 2008 the Innsbruck PTR-TOF was field deployed in the icebreaker- and helicopter based Arctic Summer Cloud Ocean Study (ASCOS) to characterize the organic trace gas composition of the High Arctic atmosphere. During the six-week field campaign the PTR-TOF was run without problems even under harsh conditions in

  20. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Science.gov (United States)

    Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost

    2018-03-01

    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  1. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2018-03-01

    Full Text Available Volatile and intermediate-volatility non-methane organic gases (NMOGs released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF. We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR, broadband cavity-enhanced spectroscopy (ACES, and iodide ion chemical ionization mass spectrometry (I− CIMS where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of  >  0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN, nitrous acid (HONO, and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  2. EPA CRL MS014: Analysis of Aldicarb, Bromadiolone, Carbofuran, Oxamyl and Methomyl in Water by Multiple Reaction Monitoring Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)

    Science.gov (United States)

    Method MS014 describes procedures for solvent extraction of aldicarb, bromadiolone, carbofuran, oxamyl and methomyl from water samples, followed by analysis using liquid chromatography tandem mass spectrometry (LC-MS-MS).

  3. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Science.gov (United States)

    Gkatzelis, Georgios I.; Tillmann, Ralf; Hohaus, Thorsten; Müller, Markus; Eichler, Philipp; Xu, Kang-Ming; Schlag, Patrick; Schmitt, Sebastian H.; Wegener, Robert; Kaminski, Martin; Holzinger, Rupert; Wisthaler, Armin; Kiendler-Scharr, Astrid

    2018-03-01

    mass recovery and O : C between the three instruments resulted predominantly from differences in the field strength (E/N) in the drift tube reaction ionization chambers of the PTR-ToF-MS instruments and from dissimilarities in the collection/desorption of aerosols. Laboratory case studies showed that PTR-ToF-MS E/N conditions influenced fragmentation which resulted in water and further neutral fragment losses of the detected molecules. Since ACM and TD were operated in higher E/N than CHARON, this resulted in higher fragmentation, thus affecting primarily the detected oxygen and carbon content and therefore also the mass recovery. Overall, these techniques have been shown to provide valuable insight on the chemical characteristics of BSOA and can address unknown thermodynamic properties such as partitioning coefficient values and volatility patterns down to a compound-specific level.

  4. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  5. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  6. Inductively coupled plasma – Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements – A tutorial review

    Energy Technology Data Exchange (ETDEWEB)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, B-9000 Ghent (Belgium); Resano, Martín [University of Zaragoza, Department of Analytical Chemistry, Pedro Cerbuna 12, E-50009 Zaragoza (Spain); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, B-9000 Ghent (Belgium)

    2015-09-24

    This paper is intended as a tutorial review on the use of inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS) for the interference-free quantitative determination and isotope ratio analysis of metals and metalloids in different sample types. Attention is devoted both to the instrumentation and to some specific tools and procedures available for advanced method development. Next to the more typical reaction gases, e.g., H{sub 2}, O{sub 2} and NH{sub 3}, also the use of promising alternative gases, such as CH{sub 3}F, is covered, and the possible reaction pathways with those reactive gases are discussed. A variety of published applications relying on the use of ICP-MS/MS are described, to illustrate the added value of tandem mass spectrometry in (ultra)trace analysis. - Highlights: • First review on tandem ICP-mass spectrometry (ICP-MS/MS). • Clear description of operating principles of ICP-MS/MS. • Description on how to make use of product ion scans, precursor ion scans and neutral gain scans in method development. • Overview of applications published so far.

  7. Inductively coupled plasma – Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements – A tutorial review

    International Nuclear Information System (INIS)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo; Resano, Martín; Vanhaecke, Frank

    2015-01-01

    This paper is intended as a tutorial review on the use of inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS) for the interference-free quantitative determination and isotope ratio analysis of metals and metalloids in different sample types. Attention is devoted both to the instrumentation and to some specific tools and procedures available for advanced method development. Next to the more typical reaction gases, e.g., H_2, O_2 and NH_3, also the use of promising alternative gases, such as CH_3F, is covered, and the possible reaction pathways with those reactive gases are discussed. A variety of published applications relying on the use of ICP-MS/MS are described, to illustrate the added value of tandem mass spectrometry in (ultra)trace analysis. - Highlights: • First review on tandem ICP-mass spectrometry (ICP-MS/MS). • Clear description of operating principles of ICP-MS/MS. • Description on how to make use of product ion scans, precursor ion scans and neutral gain scans in method development. • Overview of applications published so far.

  8. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-07

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors

  9. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Directory of Open Access Journals (Sweden)

    G. I. Gkatzelis

    2018-03-01

    detection. The differences in total mass recovery and O : C between the three instruments resulted predominantly from differences in the field strength (E∕N in the drift tube reaction ionization chambers of the PTR-ToF-MS instruments and from dissimilarities in the collection/desorption of aerosols. Laboratory case studies showed that PTR-ToF-MS E∕N conditions influenced fragmentation which resulted in water and further neutral fragment losses of the detected molecules. Since ACM and TD were operated in higher E∕N than CHARON, this resulted in higher fragmentation, thus affecting primarily the detected oxygen and carbon content and therefore also the mass recovery. Overall, these techniques have been shown to provide valuable insight on the chemical characteristics of BSOA and can address unknown thermodynamic properties such as partitioning coefficient values and volatility patterns down to a compound-specific level.

  10. Explosives and chemical warfare agents - detection and analysis with PTR-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sulzer, Philipp; Juerschik, Simone; Jaksch, Stefan; Jordan, Alfons; Hanel, Gernot; Hartungen, Eugen; Seehauser, Hans; Maerk, Lukas; Haidacher, Stefan; Schottkowsky, Ralf [IONICON Analytik GmbH, Innsbruck (Austria); Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria); Maerk, Tilmann [IONICON Analytik GmbH, Innsbruck (Austria); Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria)

    2010-07-01

    We utilized a recently developed high sensitivity PTR-MS instrument equipped with a high resolution time-of-flight mass analyzer for detailed investigations on explosives and chemical warfare agents (CWAs). We show that with this so called PTR-TOF 8000 it is possible to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. As the mentioned solid explosives possess very low vapor pressures, the main challenge for detecting them in the gas phase is to provide an instrument with a sufficient sensitivity. CWAs on the other side have very high vapor pressures but are difficult to identify unambiguously as their nominal molecular masses are usually comparably small and therefore hard to distinguish from harmless everyday-compounds (e.g. mustard gas: 159 g/mol). In the present work we demonstrate that we can detect a broad range of dangerous substances, ranging from the CWA mustard gas to the explosive HMX.

  11. Use of Proton-Transfer-Reaction Mass Spectrometry to Characterize Volatile Organic Compound Sources at the La Porte Super Site During the Texas Air Quality Study 2000

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Thomas G.; Jobson, B Tom T.; Kuster, W. C.; Williams, Eric; Stutz, Jochen P.; Shetter, Rick; Hall, Samual R.; Goldan, P. D.; Fehsenfeld, Fred C.; Lindinger, Werner

    2003-08-19

    Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogencontaining compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ~40 nmol mol-1) and acetaldehyde (up to ~80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by ‘‘soft’’ chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

  12. High-throughput screening and confirmation of 22 banned veterinary drugs in feedstuffs using LC-MS/MS and high-resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Wang, Xufeng; Liu, Yanghong; Su, Yijuan; Yang, Jianwen; Bian, Kui; Wang, Zongnan; He, Li-Min

    2014-01-15

    A new analytical strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with accurate mass high-resolution Orbitrap mass spectrometry (HR-Orbitrap MS) was performed for high-throughput screening, confirmation, and quantification of 22 banned or unauthorized veterinary drugs in feedstuffs according to Bulletin 235 of the Ministry of Agriculture, China. Feed samples were extracted with acidified acetonitrile, followed by cleanup using solid-phase extraction cartridge. The extracts were first screened by LC-MS/MS in a single selected reaction monitoring mode. The suspected positive samples were subjected to a specific pretreatment for confirmation and quantification of analyte of interest with LC-MS/MS and HR-Orbitrap MS. Mean recoveries for all target analytes (except for carbofuran and chlordimeform, which were about 35 and 45%, respectively) ranged from 52.2 to 90.4%, and the relative standard deviations were screening of real samples obtained from local feed markets and confirmation of the suspected target analytes. It provides a high-throughput, sensitive, and reliable screening, identification, and quantification of banned veterinary drugs in routine monitoring programs of feedstuffs.

  13. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik

    2011-01-01

    Roč. 30, č. 7 (2011), s. 945-959 ISSN 0165-9936 Institutional research plan: CEZ:AV0Z40400503 Keywords : SIFT-MS * PTR-MS * Absolute quantification Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.273, year: 2011

  14. Quantitation of iothalamate in urine and plasma using liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS).

    Science.gov (United States)

    Molinaro, Ross J; Ritchie, James C

    2010-01-01

    The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.

  15. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  16. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    Science.gov (United States)

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  17. Investigation on the spoiling of meat using PTR-MS

    International Nuclear Information System (INIS)

    Mayr, D.; Maerk, T.D.; Margesin, R.; Schinner, F.

    2002-01-01

    The spoiling of meat was investigated. Beef (pork) were wrapped into different kinds of packages (air and vacuum) and stored at 4 o C for 10 (13) days. The emitted volatile organic compounds (VOCs) in the course of time were measured and a large increase in these emissions after a few days of storage was found. Also a large difference in the spoiling behavior between vacuum- and air- packed meat was observed. The measurements were performed using a proton-transfer-reaction-mass spectrometer(PTR-MS) system, it allows on-line monitoring of volatile organic compounds (VOCs) concentrations. Ethylacetate, methylpropionate, and propylformate were detected as typical spoiling compounds in pork samples. After 3.5 days the concentrations started to exponentially increase, but after 6 days remained more or less unchanged. This VOCs behaviour corresponds to a typical bacterial growth curve. Therefore, it was concluded that bacteria produce these components. In a second measurements set, the VOCs emitted by beef under aerobic (normal packed) and anaerobic (vacuum packed) conditions were compared. In the case of normal air-packed beef, the above mentioned spoiling compounds strongly increased with the time, while with the vacuum-packed beef a strong increase of ethanol was detected. This method as a replacement of the bacteriological examinations of meat spoilage is proposed. (nevyjel)

  18. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry.

    Science.gov (United States)

    Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2017-07-04

    One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.

  19. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-11-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. © 2017 The Authors. Rapid Communications in Mass

  20. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    Directory of Open Access Journals (Sweden)

    M. Müller

    2014-11-01

    Full Text Available Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS for airborne measurements of volatile organic compounds (VOCs. The new instrument resolves isobaric ions with a mass resolving power (m/Δm of ~1000, provides accurate m/z measurements (Δm < 3 mDa, records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes, aromatic VOCs (benzene, toluene, xylenes and ketones (acetone, methyl ethyl ketone range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km, which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  1. Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights

    Science.gov (United States)

    Permar, W.; Hu, L.; Fischer, E. V.

    2017-12-01

    Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.

  2. Measurements of acetone yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Wisthaler, A.; Lindinger, W.; Jensen, N.R.; Winterhalter, R.; Hjorth, J.

    2002-01-01

    Biogenic VOCs (Volatile Organic Compounds) are known to be emitted in large quantities from vegetation exceeding largely global emissions of anthropogenic VOCs. Monoterpenes (C 10 H 16 ) are important constituents of biogenic VOC emissions. The atmospheric oxidation of Monoterpenes appears to be a potentially relevant source of acetone in the atmosphere. Acetone is present as a significant trace gas in the whole troposphere and influences in particular the atmospheric chemistry in the upper troposphere by substantially contributing to the formation of HO x radicals and peroxyacetyl nitrate (PAN). Acetone is formed promptly, following attack by the OH-radical on the terpene, via a series of highly unstable radical intermediates, but it is also formed slowly via the degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. In order to investigate the relative importance of these processes, the OH-initiated oxidation of α-pinene and β-pinene was investigated in a chamber study, where the concentrations of monoterpenes, acetone, pinonaldehyde and nopinone were monitored by proton-transfer-reaction mass spectrometry (PTR-MS). It was found that significant amounts of acetone are formed directly, whenα-pinene and β-pinene are oxidized by the OH radical, but also secondary chemistry (degradation of primary reaction products) gives a significant contribution to the formation of acetone from monoterpenes. It can be concluded that atmospheric oxidation of monoterpenes contributes a significant fraction to the global acetone source strength. (nevyjel)

  3. Chemical characterization of neonicotinoids in surface waters by high performance liquid chromatography with Tandem Mass Spectrometry (HPLC MS/MS)

    International Nuclear Information System (INIS)

    Amaral, Priscila Oliveira

    2017-01-01

    The present study aimed to develop a method for the determination and validation of a method for the identification and quantification of Neonicotinoids in surface waters collected in the Bauru region, in the state of São Paulo. The analytical techniques studied for the development of this method were the high performance liquid chromatography with tandem mass spectrometry (HPLC - MS / MS), gas chromatography with mass spectrometry (GC / MS) and gas chromatography with electron capture detector (GC / ECD). The class of pesticides Neonicotinoids was chosen for this work because it is related to a sudden disappearance of bees in colonies around the world. This phenomenon is known as Colony Collapse Disorder (CCD) and it is characterized by a rapid loss in the population of adult bees. The Neonicotinoids used in this study were the compounds Clothianidin, Imidacloprid and Thiamethoxam which were banned in their use as pesticides in Europe by Implementing Regulation No. 540/2011. The samples were concentrated using solid phase extraction (SPE) and liquid liquid extraction (LLE) techniques and injected into HPLC-MS / MS, GC / MS and GC / ECD. The GC / ECD and GC / MS techniques were not satisfactory for determination in the water matrix because the detection limit (10 mg L -1 ) is above the maximum allowed by the US Environmental Protection Agency (0.6 μg L -1 ). The HPLC - MS / MS technique using the multiple reaction monitoring (MRM) proved to be adequate for this study because it obtained quantification limits between 5.89 and 8.06 μg L -1 and a linearity between 0.9963 and 0.9999 for the three compounds. (author)

  4. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Shimamura, Tadashi

    1997-01-01

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  5. Insight into the time-resolved extraction of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-MS.

    Science.gov (United States)

    Sánchez-López, José A; Zimmermann, Ralf; Yeretzian, Chahan

    2014-12-02

    Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.

  6. Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001

    Directory of Open Access Journals (Sweden)

    G. Salisbury

    2003-01-01

    Full Text Available This study presents measurements of acetonitrile, benzene, toluene, methanol and acetone made using the proton-transfer-reaction mass spectrometry (PTR-MS technique at the Finokalia ground station in Crete during the Mediterranean INtensive Oxidant Study (MINOS in July-August 2001. Three periods during the campaign with broadly consistent back trajectories are examined in detail. In the first, air was advected from Eastern Europe without significant biomass burning influence (mean acetonitrile mixing ratio 154 pmol/mol. In the second period, the sampled air masses originated in Western Europe, and were advected approximately east-south-east, before turning south-west over the Black Sea and north-western Turkey. The third well-defined period included air masses advected from Eastern Europe passing east and south of/over the Sea of Azov, and showed significant influence by biomass burning (mean acetonitrile mixing ratio 436 pmol/mol, confirmed by satellite pictures. The mean toluene:benzene ratios observed in the three campaign periods described were 0.35, 0.37 and 0.22, respectively; the use of this quantity to determine air mass age is discussed. Methanol and acetone were generally well-correlated both with each other and with carbon monoxide throughout the campaign. Comparison of the acetone and methanol measurements with the MATCH-MPIC model showed that the model underestimated both species by a factor of 4, on average. The correlations between acetone, methanol and CO implied that the relatively high levels of methanol observed during MINOS were largely due to direct biogenic emissions, and also that biogenic sources of acetone were highly significant during MINOS (~35%. This in turn suggests that the model deficit in both species may be due, at least in part, to missing biogenic emissions.

  7. Time resolved investigations on biogenic trace gases exchanges using proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Karl, T.

    2000-02-01

    Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols and hexenyl esters) but also compounds like acetaldehyde, are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. The goal of this thesis was to assess, quantify and complement our understanding on the origin of tropospheric VOCs. This thesis demonstrates that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements revealed the rapid emission of the parent compound, (Z)-3-hexenal, within 1-2 seconds of wounding of leaves from various woody and nonwoody plants, and its metabolites including (E)-2-hexenal, hexenols and hexenyl acetates. Emission of (Z)-3-hexenal from detached, drying leaves averaged 500 μg (gram dry weight)-1. PTR-MS showed to be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, harvesting and senescing leaves. The release of reactive VOCs during lawn mowing was observed in on-line ambient air measurements in July and August 1998 in the outskirts of Innsbruck. Also obtained were data on emission rates of reactive aldehydes (hexenyl compounds) and other abundant VOCs such as methanol, acetaldehyde and acetone from drying grass in various chamber experiments. Fluxes were measured after cutting of grass using eddy covariance measurements and the micrometeorological gradient method (Obhukov-Similarity-Method). Comparison of data obtained by these different methods showed satisfactory agreement. The highest fluxes for methanol during drying were 5 mg/m2h, for (Z)-3-hexenal 1.5 mg/m2h. Experiments conducted on the Sonnblick Observatory in Fall and Winter

  8. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    Science.gov (United States)

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  10. Measurements of VOC fluxes by Eddy-covariance with a PTR-Qi-TOF-MS over a mature wheat crop near Paris: Evaluation of data quality and uncertainties.

    Science.gov (United States)

    Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora

    2017-04-01

    The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration

  11. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  12. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin

    Directory of Open Access Journals (Sweden)

    Vittorio Capozzi

    2016-04-01

    Full Text Available In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS, a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs. Two ethanol-related peaks (m/z 65.059 and 75.080 described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  13. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Bednar, A.J.; Kirgan, R.A.; Jones, W.T.

    2009-01-01

    Elemental speciation is becoming a common analytical procedure for geochemical investigations. The various redox species of environmentally relevant metals can have vastly different biogeochemical properties, including sorption, solubility, bioavailability, and toxicity. The use of high performance liquid chromatography (HPLC) coupled to elemental specific detectors, such as inductively coupled plasma mass spectrometry (ICP-MS), has become one of the most important speciation methods employed. This is due to the separation versatility of HPLC and the sensitive and selective detection capabilities of ICP-MS. The current study compares standard mode ICP-MS to recently developed reaction cell (RC) ICP-MS, which has the ability to remove or reduce many common polyatomic interferences that can limit the ability of ICP-MS to quantitate certain analytes in complex matrices. Determination of chromium and selenium redox species is achieved using ion-exchange chromatography with elemental detection by standard and RC-ICP-MS, using various chromium and selenium isotopes. In this study, method performance and detection limits for the various permutations of the method (isotope monitored or ICP-MS detection mode) were found to be comparable and generally less than 1 μg L -1 . The method was tested on synthetic laboratory samples, surface water, groundwater, and municipal tap water matrices

  14. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Meer, S. H.; Amr, M. A. [Central Laboratories Unit, Qatar University, Doha (Qatar); Helal, A.I. [Atomic Energy Authority, Cairo (Egypt); Al-Kinani, A.T. [Minstery of Environment, Doha (Qatar)

    2013-07-01

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. The solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)

  15. Open Access UHPSFC/MS - an additional analytical resource for an academic mass spectrometry facility.

    Science.gov (United States)

    Herniman, Julie M; Langley, G John

    2016-08-15

    Many compounds submitted for analysis in Chemistry at the University of Southampton do not retain, elute or ionize using open access reversed-phase ultra-high-performance liquid chromatography/mass spectrometry (RP-UHPLC/MS) and require analysis via infusion. An ultra-high-performance supercritical fluid chromatography mass spectrometry approach was implemented to afford high-throughput analysis of these compounds with chromatographic separation. A UPC(2) -TQD MS system has been incorporated into the open access MS provision within Chemistry at the University of Southampton, using an ESCi source (electrospray and atmospheric pressure chemical ionization) and an atmospheric pressure photoionization (APPI) source. Access to instrumentation is enabled via a web-based interface (RemoteAnalyzer™). Compounds such as fluorosugars, fullerenes, phosphoramidites, porphyrins, and rotaxanes exhibiting properties incompatible with RP-UHPLC/MS have been analyzed using automated chromatography and mass spectrometry methods. The speedy return of data enables research in these areas to progress unhindered by sample type. The provision of an electronic web format enables easy incorporation of chromatograms and mass spectra into electronic files and reports. The implementation of UHPSFC/MS increases access to a wide range of chemistries incompatible with reversed-phase chromatography and polar solvents, enabling more than 90% of submitted samples to be analyzed using an open access approach. Further, chromatographic separation is provided where previously flow injection or infusion analyses were the only options. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS)

    Science.gov (United States)

    Kershis, Matthew D.; Wilson, Daniel P.; White, Michael G.; John, Jaya John; Nomerotski, Andrei; Brouard, Mark; Lee, Jason W. L.; Vallance, Claire; Turchetta, Renato

    2013-08-01

    A new technique for studying surface photochemistry has been developed using an ion imaging time-of-flight mass spectrometer in conjunction with a fast camera capable of multimass imaging. This technique, called pixel imaging mass spectrometry (PImMS), has been applied to the study of butanone photooxidation on TiO2(110). In agreement with previous studies of this system, it was observed that the main photooxidation pathway for butanone involves ejection of an ethyl radical into vacuum which, as confirmed by our imaging experiment, undergoes fragmentation after ionization in the mass spectrometer. This proof-of-principle experiment illustrates the usefulness and applicability of PImMS technology to problems of interest within the surface science community.

  17. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  18. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. phpMs: A PHP-Based Mass Spectrometry Utilities Library.

    Science.gov (United States)

    Collins, Andrew; Jones, Andrew R

    2018-03-02

    The recent establishment of cloud computing, high-throughput networking, and more versatile web standards and browsers has led to a renewed interest in web-based applications. While traditionally big data has been the domain of optimized desktop and server applications, it is now possible to store vast amounts of data and perform the necessary calculations offsite in cloud storage and computing providers, with the results visualized in a high-quality cross-platform interface via a web browser. There are number of emerging platforms for cloud-based mass spectrometry data analysis; however, there is limited pre-existing code accessible to web developers, especially for those that are constrained to a shared hosting environment where Java and C applications are often forbidden from use by the hosting provider. To remedy this, we provide an open-source mass spectrometry library for one of the most commonly used web development languages, PHP. Our new library, phpMs, provides objects for storing and manipulating spectra and identification data as well as utilities for file reading, file writing, calculations, peptide fragmentation, and protein digestion as well as a software interface for controlling search engines. We provide a working demonstration of some of the capabilities at http://pgb.liv.ac.uk/phpMs .

  20. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    International Nuclear Information System (INIS)

    Yu, Xiangying; Yao, Zhong-Ping

    2017-01-01

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  1. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangying [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin (China); State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region (China)

    2017-05-22

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  2. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    Science.gov (United States)

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  3. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mass spectrometry at the Pittsburgh conference

    International Nuclear Information System (INIS)

    Borman, S.

    1987-01-01

    Each year analytical chemists flock to the Pittsburgh Conference to learn about the latest trends in analytical instrumentation. In this Focus, a number of prominent mass spectroscopists who attended this year's meeting in Atlantic City, NJ, discuss their perceptions of current developments in the field of mass spectrometry (MS). In the June 1 issue of Analytical Chemistry, the authors coverage of the Pittsburgh Conferences continues with a follow-up article on specific developments in hyphenated mass spectrometry - primarily liquid chromatography - MS (LC/MS) and gas chromatography - infrared spectrometry MS (GC/IR/MS)

  5. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhonghui [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yanli [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Qiong [Department of Respiratory Diseases, Guangzhou No. 12 People' s Hospital, Guangzhou 510620 (China); Zhang, Zhou [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Xinming, E-mail: wangxm@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2016-12-15

    Respiratory absorption factors (AFs) are essential parameters in the evaluation of human health risks from toxic volatile organic compounds (VOCs) in ambient air. A method for the real time monitoring of VOCs in inhaled and exhaled air by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) has been developed to permit the calculation of respiratory AFs of VOCs. Isoprene was found to be a better breath tracer than O{sub 2}, CO{sub 2}, humidity, or acetone for distinguishing between the expiratory and inspiratory phases, and a homemade online breath sampling device with a buffer tube was used to optimize signal peak shapes. Preliminary tests with seven subjects exposed to aromatic hydrocarbons in an indoor environment revealed mean respiratory AFs of 55.0%, 55.9%, and 66.9% for benzene, toluene, and C8-aromatics (ethylbenzene and xylenes), respectively. These AFs were lower than the values of 90% or 100% used in previous studies when assessing the health risks of inhalation exposure to hazardous VOCs. The mean respiratory AFs of benzene, toluene and C8-aromatics were 66.5%, 70.2% and 82.3% for the three female subjects; they were noticeably much higher than that of 46.4%, 45.2% and 55.3%, respectively, for the four male subjects.

  6. Accurate quantification of 5 German cockroach (GCr) allergens in complex extracts using multiple reaction monitoring mass spectrometry (MRM MS).

    Science.gov (United States)

    Mindaye, S T; Spiric, J; David, N A; Rabin, R L; Slater, J E

    2017-12-01

    German cockroach (GCr) allergen extracts are complex and heterogeneous products, and methods to better assess their potency and composition are needed for adequate studies of their safety and efficacy. The objective of this study was to develop an assay based on liquid chromatography and multiple reaction monitoring mass spectrometry (LC-MRM MS) for rapid, accurate, and reproducible quantification of 5 allergens (Bla g 1, Bla g 2, Bla g 3, Bla g 4, and Bla g 5) in crude GCr allergen extracts. We first established a comprehensive peptide library of allergens from various commercial extracts as well as recombinant allergens. Peptide mapping was performed using high-resolution MS, and the peptide library was then used to identify prototypic and quantotypic peptides to proceed with MRM method development. Assay development included a systematic optimization of digestion conditions (buffer, digestion time, and trypsin concentration), chromatographic separation, and MS parameters. Robustness and suitability were assessed following ICH (Q2 [R1]) guidelines. The method is precise (RSD  0.99, 0.01-1384 fmol/μL), and sensitive (LLOD and LLOQ MS, we quantified allergens from various commercial GCr extracts and showed considerable variability that may impact clinical efficacy. Our data demonstrate that the LC-MRM MS method is valuable for absolute quantification of allergens in GCr extracts and likely has broader applicability to other complex allergen extracts. Definitive quantification provides a new standard for labelling of allergen extracts, which will inform patient care, enable personalized therapy, and enhance the efficacy of immunotherapy for environmental and food allergies. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  7. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  8. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.

    Science.gov (United States)

    Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D

    2013-11-01

    The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.

  9. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry.

    Science.gov (United States)

    Paulech, Jana; Solis, Nestor; Cordwell, Stuart J

    2013-01-01

    Alkylation converts Cys thiols to thioethers and prevents unwanted side reactions, thus facilitating mass spectrometric identification of Cys-containing peptides. Alkylation occurs preferentially at Cys due to its high nucleophilicity, however reactions at other such sites are possible. N-ethylmaleimide (NEM) shows rapid reaction kinetics with Cys and careful definition of reaction conditions results in little reactivity at other sites. Analysis of a protein standard alkylated under differing reaction conditions (pH, NEM concentrations and reaction times) was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and selected reaction monitoring (SRM) of NEM-modified and unmodified peptide pairs. Mis-alkylation sites at primary and secondary amines were identified and limited to one equivalent of NEM. No evidence for hydroxyl or thioether alkylation was observed. Improved specificity was achieved by restricting the pH below neutral, NEM concentration below 10mM and/or reaction time to below 5min. Maximal removal of Cys activity was observed in tissue homogenates at 40mM NEM within 1min, dependent upon efficient protein denaturation. SRM assays identified peptide-specific levels of mis-alkylation, indicating that NEM-modified to unmodified ratios did not exceed 10%, with the exception of Cys alkylation that proceeded to 100%, and some Lys residues that resulted in tryptic missed cleavages. High reactivity was observed for His residues considering their relatively low abundance. These data indicate that rapid and specific Cys alkylation is possible with NEM under relatively mild conditions, with more abrasive conditions leading to increased non-specific alkylation without appreciable benefit for MS-based proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Mårten Sundberg

    Full Text Available Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS is an attractive alternative due to high specificity and versatility, allowing for species-independent analysis. Targeted MS-based quantification methods are valuable complements to large scale shotgun analysis. A method referred to as parallel reaction monitoring (PRM, implemented on Orbitrap MS, has lately been presented as an excellent alternative to more traditional selected reaction monitoring/multiple reaction monitoring (SRM/MRM methods. The insulin-like growth factor (IGF-system is not well described in the cat but there are indications of important differences between cats and humans. In feline medicine IGF-I is mainly analyzed for diagnosis of growth hormone disorders but also for research, while the other proteins in the IGF-system are not routinely analyzed within clinical practice. Here, a PRM method for quantification of IGF-I, IGF-II, IGF binding protein (BP -3 and IGFBP-5 in feline serum is presented. Selective quantification was supported by the use of a newly launched internal standard named QPrEST™. Homology searches demonstrated the possibility to use this standard of human origin for quantification of the targeted feline proteins. Excellent quantitative sensitivity at the attomol/μL (pM level and selectivity were obtained. As the presented approach is very generic we show that high resolution mass spectrometry in combination with PRM and QPrEST™ internal standards is a versatile tool for protein quantitation across multispecies.

  12. METHOD 544. DETERMINATION OF MICROCYSTINS AND NODULARIN IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    Science.gov (United States)

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensi...

  13. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  14. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    Science.gov (United States)

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  15. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS).

    Science.gov (United States)

    Coy, Stephen L; Krylov, Evgeny V; Schneider, Bradley B; Covey, Thomas R; Brenner, David J; Tyburski, John B; Patterson, Andrew D; Krausz, Kris W; Fornace, Albert J; Nazarov, Erkinjon G

    2010-04-15

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry - mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation.

  16. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study the in v......A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study...

  17. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Science.gov (United States)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  18. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    Science.gov (United States)

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  19. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  20. JS-MS: a cross-platform, modular javascript viewer for mass spectrometry signals.

    Science.gov (United States)

    Rosen, Jebediah; Handy, Kyle; Gillan, André; Smith, Rob

    2017-11-06

    Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS storage systems or data processing algorithms. We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and better navigation interfaces. The client includes a modular Java backend with a novel streaming.mzML parser to demonstrate the API-based serving of MS data to the viewer. JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at github.com/optimusmoose/jsms.

  1. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

    Science.gov (United States)

    Beach, Daniel G; Kerrin, Elliott S; Quilliam, Michael A

    2015-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS.

  2. Plutonium bioassay by inductively coupled plasma mass spectrometry ICP/MS

    International Nuclear Information System (INIS)

    Wyse, E.J.; Fisher, D.R.

    1993-04-01

    The determination of plutonium in urine poses several analytical challenges, e.g., detectability, matrix, etc. We have investigated the feasibility of analyzing plutonium in processed urine by inductively coupled plasma mass spectrometry (ICP/MS). The urine samples are first spiked with 244 Pu as a tracer and internal standard, then processed by co-precipitation and column chromatography using TRU-Spec trademark, an extraction resin. By enhancing ICP/MS detection capabilities via improved sample introduction and data acquisition efficiencies, an instrumental detection limit of 5 to 50 fg (0.3 to 3 fCi for 239 pu) is typically obtained, depending on the desired degree of quantitation. A brief summary of the analytical method as well as the basis for measuring radionuclides by ICP/MS are submitted; the separation procedure, methods of sample introduction, and data acquisition techniques are then highlighted

  3. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    Energy Technology Data Exchange (ETDEWEB)

    Post, Ekkehard [NETZSCH Geraetebau GmbH, Wittelsbacherstrasse 42, 95100 Selb (Germany); Henderson, Jack B. [NETZSCH Instruments North America, LLC, 129 Middlesex Turnpike, Burlington, MA 01803 (United States)

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  4. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-02

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair.

  5. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  6. Self-assembly of triangular metallomacrocycles using unsymmetrical bisterpyridine ligands: isomer differentiation via TWIM mass spectrometry.

    Science.gov (United States)

    Liang, Yen-Peng; He, Yun-Jui; Lee, Yin-Hsuan; Chan, Yi-Tsu

    2015-03-21

    Three unsymmetrical, 60°-bended bisterpyridine ligands with varying phenylene spacer lengths have been synthesized via the Suzuki-Miyaura coupling reactions. Their self-assembly processes were found to be strongly dependent on the ligand geometry. Upon complexation with Zn(II) ions, only 2,4''-di(4'-terpyridinyl)-1,1':4',1''-terphenyl underwent self-selection to give a trinuclear metallomacrocycle with perfect heteroleptic connectivity and the other two afforded a mixture of constitutional isomers. The metallosupramolecular assemblies were characterized by NMR spectroscopy, electrospray mass spectrometry (ESI MS), and single-crystal X-ray diffraction. In particular, the identification of isomeric architecture was accomplished using tandem mass spectrometry (MS(2)) coupled with traveling wave ion mobility mass spectrometry (TWIM MS).

  7. Organic environments on Saturn's moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry.

    Science.gov (United States)

    Somogyi, Arpad; Oh, Chu-Ha; Smith, Mark A; Lunine, Jonathan I

    2005-06-01

    Laboratory simulations have been carried out to model chemical reactions that possibly take place in the stratosphere of Saturn's moon, Titan. The aerosol products of these reactions (tholin samples) have been systematically analyzed by mass spectrometry using electrospray ionization (ESI) and laser desorption (LD). A wide variety of ions with a general formula C(x)H(y)N(z) detected by ultrahigh resolution and accurate mass measurements in a Fourier transform/ion cyclotron resonance (FT-ICR) cell reflect the complexity of these polymeric products, both in chemical compositions and isomeric distributions. As a common feature, however, tandem mass spectral (MS/MS) data and H/D exchange products in the solution phase support the presence of amino and nitrile functionalities in these (highly unsaturated) "tholin" compounds. The present work demonstrates that ESI-MS coupled with FT-ICR is a suitable and "intact" method to analyze tholin components formed under anaerobic conditions; only species with C(x)H(y)N(z) are detected for freshly prepared and harvested samples. However, when intentionally exposed to water, oxygen-containing compounds are unambiguously detected.

  8. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  9. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  10. Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P.

    2005-01-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline...

  11. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  12. Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): towards a real-time process control for a consistent roast profile.

    Science.gov (United States)

    Wieland, Flurin; Gloess, Alexia N; Keller, Marco; Wetzel, Andreas; Schenker, Stefan; Yeretzian, Chahan

    2012-03-01

    A real-time automated process control tool for coffee roasting is presented to consistently and accurately achieve a targeted roast degree. It is based on the online monitoring of volatile organic compounds (VOC) in the off-gas of a drum roaster by proton transfer reaction time-of-flight mass spectrometry at a high time (1 Hz) and mass resolution (5,500 m/Δm at full width at half-maximum) and high sensitivity (better than parts per billion by volume). Forty-two roasting experiments were performed with the drum roaster being operated either on a low, medium or high hot-air inlet temperature (= energy input) and the coffee (Arabica from Antigua, Guatemala) being roasted to low, medium or dark roast degrees. A principal component analysis (PCA) discriminated, for each one of the three hot-air inlet temperatures, the roast degree with a resolution of better than ±1 Colorette. The 3D space of the three first principal components was defined based on 23 mass spectral profiles of VOCs and their roast degree at the end point of roasting. This provided a very detailed picture of the evolution of the roasting process and allowed establishment of a predictive model that projects the online-monitored VOC profile of the roaster off-gas in real time onto the PCA space defined by the calibration process and, ultimately, to control the coffee roasting process so as to achieve a target roast degree and a consistent roasting.

  13. Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry.

    Science.gov (United States)

    Wandy, Joe; Zhu, Yunfeng; van der Hooft, Justin J J; Daly, Rónán; Barrett, Michael P; Rogers, Simon

    2017-09-14

    We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service. The website can be found at http://ms2lda.org , while the source code is available at https://github.com/sdrogers/ms2ldaviz under the MIT license. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2002-01-01

    Full Text Available A `virtual' disjunct eddy covariance (vDEC device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the USA. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO, methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.

  15. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters

    International Nuclear Information System (INIS)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jeremie; Zhang, Jianshun Jensen; Fisk, William J.

    2009-01-01

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  16. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  17. Tandem mass spectrometry: analysis of complex mixtures

    International Nuclear Information System (INIS)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated

  18. Gas chromatography-mass spectrometry (GC-MS) analysis of extractives of naturally durable wood

    Science.gov (United States)

    G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen

    2011-01-01

    A preliminary study to evaluate naturally durable wood species in an above ground field trial using Gas Chromatography-Mass Spectrometry (GC-MS) detected differences in fatty acid extractives between species and within the same species over time. Fatty acids were extracted with chloroform: methanol mixture then methylated with sodium methoxide and fractionated using...

  19. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2011-01-01

    Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ – water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.

    The smallest reliable fluxes we determined were less than 0.1 nmol m−2 s−1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m−2 s−1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  20. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  1. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    Science.gov (United States)

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  2. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  3. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS n ) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  4. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS

    Directory of Open Access Journals (Sweden)

    A. Koss

    2017-08-01

    Full Text Available VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N and pyrroline (C4H7N, H2S, and a diamondoid (adamantane or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  5. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)

    Science.gov (United States)

    Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost

    2017-08-01

    VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  6. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  7. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Directory of Open Access Journals (Sweden)

    W. J. F. Acton

    2016-06-01

    Full Text Available This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS together with the methods of virtual disjunct eddy covariance (using PTR-MS and eddy covariance (using PTR-ToF-MS. Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m−2 h−1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m−2 h−1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN isoprene emission algorithms (Guenther et al., 2006. A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC–MS to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  8. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    Science.gov (United States)

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability 0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-07-31

    Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.

  11. Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides

    Directory of Open Access Journals (Sweden)

    Ana S.P. Moreira

    2017-08-01

    Full Text Available The data presented here are related to the research paper entitled “Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction” (Moreira et al., 2017 [1]. Methanolysis was applied in coffee fractions to quantify glycosidically-linked phenolics in melanoidins. Moreover, model mixtures mimicking coffee beans composition were roasted and analyzed using mass spectrometry-based approaches to disclose the regulatory role of proteins in transglycosylation reactions extension. This article reports the detailed chemical composition of coffee beans and derived fractions. In addition, it provides gas chromatography–mass spectrometry (GC–MS chromatograms and respective GC–MS spectra of silylated methanolysis products obtained from phenolic compounds standards, as well as the detailed identification of all compounds observed by electrospray mass spectrometry (ESI-MS analysis of roasted model mixtures, paving the way for the identification of the same type of compounds in other samples.

  12. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  13. Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure

    International Nuclear Information System (INIS)

    Lemos Batista, Bruno; Lisboa Rodrigues, Jairo; Andrade Nunes, Juliana; Oliveira Souza, Vanessa Cristina de; Barbosa, Fernando

    2009-01-01

    Inductively coupled plasma mass spectrometry with quadrupole (q-ICP-MS) and dynamic reaction cell (DRC-ICP-MS) were evaluated for sequential determination of As, Cd, Co, Cr, Cu, Mn, Pb, Se, Tl, V and Zn in blood. The method requires as little as 100 μL of blood. Prior to analysis, samples (100 μL) were diluted 1:50 in a solution containing 0.01% (v/v) Triton X-100 and 0.5% (v/v) nitric acid. The use of the DRC was only mandatory for Cr, Cu, V and Zn. For the other elements the equipment may be operated in a standard mode (q-ICP-MS). Ammonia was used as reaction gas. Selection of best flow rate of ammonium gas and optimization of the quadrupole dynamic band-pass tuning parameter (RPq) were carried out, using a ovine base blood for Cr and V and a synthetic matrix solution (SMS) for Zn and Cu diluted 1:50 and spiked to contain 1 μg L -1 of each element. Method detection limits (3 s) for 75 As, 114 Cd, 59 Co, 51 Cr, 63 Cu 55 Mn, 208 Pb, 82 Se, 205 Tl, 51 V, and 64 Zn were 14.0, 3.0, 11.0, 7.0, 280, 9.0, 3.0, 264, 0.7, 6.0 and 800 ng L -1 , respectively. Method validation was accomplished by the analysis of blood Reference Materials produced by the L'Institut National de Sante Publique du Quebec (Canada).

  14. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    Science.gov (United States)

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  15. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  16. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  17. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  18. Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria

    OpenAIRE

    Esterhuizen-Londt, M; Downing, S; Downing, TG

    2011-01-01

    β-N-methylamino-L-alanine (BMAA) is a difficult molecule to detect, primarily due to its presence in low concentrations in complex matrices. This has resulted in contradictory reports on the presence of BMAA in cyanobacteria. We report improved sensitivity of detection using propyl chloroformate derivatisation, liquid chromatographic (LC) separation, and single quadrupole mass spectrometry (MS) detection. Triple quadrupole mass spectrometry (MS/MS) was used to confirm the identity of BMAA in ...

  19. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)- hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry...... the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution...

  20. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples.

    Science.gov (United States)

    Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon

    2016-07-01

    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  2. Methods in endogenous steroid profiling - A comparison of gas chromatography mass spectrometry (GC-MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS).

    Science.gov (United States)

    Teubel, Juliane; Wüst, Bernhard; Schipke, Carola G; Peters, Oliver; Parr, Maria Kristina

    2018-06-15

    In various fields of endocrinology, the determination of steroid hormones synthesised by the human body plays an important role. Research on central neurosteroids has been intensified within the last years, as they are discussed as biomarkers for various cognitive disorders. Their concentrations in cerebrospinal fluid (CSF) are considered to be regulated independently from peripheral fluids. For that reason, the challenging matrix CSF becomes a very interesting specimen for analysis. Concentrations are expected to be very low and available amount of CSF is limited. Thus, a comprehensive method for very sensitive quantification of a set of analytes as large as possible in one analytical aliquot is desired. However, high structural similarities of the selected panel of 51 steroids and steroid sulfates, including numerous isomers, challenges achievement of chromatographic selectivity. Since decades the analysis of endogenous steroids in various body fluids is mainly performed by gas chromatography (GC) coupled to (tandem) mass spectrometry (MS(/MS)). Due to the structure of the steroids of interest, derivatisation is performed to meet the analytical requirements for GC-MS(/MS). Most of the laboratories use a two-step derivatisation in multi-analyte assays that was already published in the 1980s. However, for some steroids this elaborate procedure yields multiple isomeric derivatives. Thus, some laboratories utilize (ultra) high performance liquid chromatography ((U)HPLC)-MS/MS as alternative but, even UHPLC is not able to separate some of the isomeric pairs. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to GC and (U)HPLC may help to overcome these issues. Within this project the two most promising methods for endogenous steroid profiling were investigated and compared: the "gold standard" GC-MS and the orthogonal separation technique SFC-MS/MS. Different derivatisation procedures for gas chromatographic detection were explored and the

  3. On-surface Fenton and Fenton-like reactions appraised by paper spray ionization mass spectrometry.

    Science.gov (United States)

    Resende, S F; Oliveira, B S; Augusti, R

    2018-06-21

    On-surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe 2+ / H 2 O 2 ) and Fenton-like (M n+ / H 2 O 2 ; M n+ = Fe 3+ , Co 2+ , Cu 2+ , Mn 2+ ) systems was investigated by using paper spray ionization mass spectrometry (PS-MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS-MS analyzes). The results indicated the following order in the rates of such reactions: Fe 2+ /H 2 O 2 > H 2 O 2 > Cu 2+ /H 2 O 2 > M n+ / H 2 O 2 (M n+ = Fe 3+ , Co 2+ , Mn 2+ ) ~ M n+ (M n+ = Fe 2+ , Fe 3+ , Co 2+ , Cu 2+ , Mn 2 . The superior capability of Fe 2+ /H 2 O 2 in causing the degradation of sildenafil indicates that Fe 2+ efficiently decomposes H 2 O 2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H 2 O 2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, i. e. Fe 3+ , Co 2+ , Cu 2+ and Mn 2+ . A unique oxidation by-product was detected in the reaction between Fe 2+ /H 2 O 2 with sildenafil and a possible structure for it was proposed based on the MS/MS data. The on-surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS-MS shown to be a convenient platform to promptly monitor on-surface oxidation reactions. This article is protected by copyright. All rights reserved.

  4. Evaluation of laser diode thermal desorption-tandem mass spectrometry (LDTD-MS-MS) in forensic toxicology.

    Science.gov (United States)

    Bynum, Nichole D; Moore, Katherine N; Grabenauer, Megan

    2014-10-01

    Many forensic laboratories experience backlogs due to increased drug-related cases. Laser diode thermal desorption (LDTD) has demonstrated its applicability in other scientific areas by providing data comparable with instrumentation, such as liquid chromatography-tandem mass spectrometry, in less time. LDTD-MS-MS was used to validate 48 compounds in drug-free human urine and blood for screening or quantitative analysis. Carryover, interference, limit of detection, limit of quantitation, matrix effect, linearity, precision and accuracy and stability were evaluated. Quantitative analysis indicated that LDTD-MS-MS produced precise and accurate results with the average overall within-run precision in urine and blood represented by a %CV forensic toxicology but before it can be successfully implemented that there are some challenges that must be addressed. Although the advantages of the LDTD system include minimal maintenance and rapid analysis (∼10 s per sample) which makes it ideal for high-throughput forensic laboratories, a major disadvantage is its inability or difficulty analyzing isomers and isobars due to the lack of chromatography without the use of high-resolution MS; therefore, it would be best implemented as a screening technique. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Volatile organic compound (VOC) emissions characterization during the flow-back phase of a hydraulically refractured well in the Uintah Basin, Utah using mobile PTR-MS measurements

    Science.gov (United States)

    Geiger, F.; Warneke, C.; Brown, S. S.; De Gouw, J. A.; Dube, W. P.; Edwards, P.; Gilman, J.; Graus, M.; Helleis, F.; Kofler, J.; Lerner, B. M.; Orphal, J.; Petron, G.; Roberts, J. M.; Zahn, A.

    2014-12-01

    Ongoing improvements in advanced technologies for crude oil and natural gas extraction from unconventional reserves, such as directional drilling and hydraulic fracturing, have greatly increased the production of fossil fuels within recent years. The latest forecasts even estimate an enhancement of 56% in total natural gas production due to increased development of shale gas, tight gas and offshore natural gas resources from 2012 to 2040 with the largest contribution from shale formations [US EIA: Annual Energy Outlook 2014]. During the field intensive 'Energy and Environment - Uintah Basin Winter Ozone Study (UBWOS)', measurements of volatile organic compounds (VOCs) were made using proton-transfer-reactions mass spectrometry (PTR-MS) at the ground site Horse Pool and using a mobile laboratory in the Uintah Basin, Utah, which is a region well known for intense fossil fuel production. A reworked gas well in the Red Wash fields was sampled regularly within two weeks performing mobile laboratory measurements downwind of the well site. The well had been recently hydraulically refractured at that time and waste water was collected into an open flow-back pond. Very high mixing ratios of aromatic hydrocarbons (C6-C13) up to the ppm range were observed coming from condensate and flow-back reservoirs. The measurements are used to determine sources of specific VOC emissions originating from the different parts of the well site and mass spectra are used to classify the air composition in contrast to samples taken at the Horse Pool field site and crude oil samples from South Louisiana. Enhancement ratios and time series of measured peak values for aromatics showed no clear trend, which indicates changes in emissions with operations at the site.

  6. Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2016-08-01

    Full Text Available Monoacylglycerols (MAGs are structural and bioactive metabolites critical for biological function. Development of facile tools for measuring MAG are essential to understand its role in different diseases and various pathways. A data-independent acquisition method, MS/MSALL, using electrospray ionization (ESI coupled quadrupole time of flight mass spectrometry (MS, was utilized for the structural identification and quantitative analysis of individual MAG molecular species. Compared with other acylglycerols, diacylglycerols (DAG and triacylglycerols (TAG, MAG characteristically presented as a dominant protonated ion, [M + H]+, and under low collision energy as fatty acid-like fragments due to the neutral loss of the glycerol head group. At low concentrations (<10 pmol/µL, where lipid-lipid interactions are rare, there was a strong linear correlation between ion abundance and MAG concentration. Moreover, using the MS/MSALL method the major MAG species from human plasma and mouse brown and white adipose tissues were quantified in less than 6 min. Collectively, these results demonstrate that MS/MSALL analysis of MAG is an enabling strategy for the direct identification and quantitative analysis of low level MAG species from biological samples with high throughput and sensitivity.

  7. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Agnieszka Golon

    2014-08-01

    Full Text Available Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  8. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  9. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  10. Liquid chromatography-mass spectrometry in forensic toxicology.

    Science.gov (United States)

    Van Bocxlaer, J F; Clauwaert, K M; Lambert, W E; Deforce, D L; Van den Eeckhout, E G; De Leenheer, A P

    2000-01-01

    Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some

  11. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    Science.gov (United States)

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  12. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Practical approaches to the ESI-MS analysis of catalytic reactions.

    Science.gov (United States)

    Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.

  14. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  15. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  16. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  17. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    Science.gov (United States)

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-04-04

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, 35 Cl/ 37 Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  19. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  20. BioSunMS: a plug-in-based software for the management of patients information and the analysis of peptide profiles from mass spectrometry

    Directory of Open Access Journals (Sweden)

    Zhang Xuemin

    2009-02-01

    Full Text Available Abstract Background With wide applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, statistical comparison of serum peptide profiles and management of patients information play an important role in clinical studies, such as early diagnosis, personalized medicine and biomarker discovery. However, current available software tools mainly focused on data analysis rather than providing a flexible platform for both the management of patients information and mass spectrometry (MS data analysis. Results Here we presented a plug-in-based software, BioSunMS, for both the management of patients information and serum peptide profiles-based statistical analysis. By integrating all functions into a user-friendly desktop application, BioSunMS provided a comprehensive solution for clinical researchers without any knowledge in programming, as well as a plug-in architecture platform with the possibility for developers to add or modify functions without need to recompile the entire application. Conclusion BioSunMS provides a plug-in-based solution for managing, analyzing, and sharing high volumes of MALDI-TOF or SELDI-TOF MS data. The software is freely distributed under GNU General Public License (GPL and can be downloaded from http://sourceforge.net/projects/biosunms/.

  1. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel

    2017-01-01

    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  2. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  3. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    Science.gov (United States)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  4. Integration of On-Column Chemical Reactions in Protein Characterization by Liquid Chromatography/Mass Spectrometry: Cross-Path Reactive Chromatography.

    Science.gov (United States)

    Pawlowski, Jake W; Carrick, Ian; Kaltashov, Igor A

    2018-01-16

    Profiling of complex proteins by means of mass spectrometry (MS) frequently requires that certain chemical modifications of their covalent structure (e.g., reduction of disulfide bonds), be carried out prior to the MS or MS/MS analysis. Traditionally, these chemical reactions take place in the off-line mode to allow the excess reagents (the majority of which interfere with the MS measurements and degrade the analytical signal) to be removed from the protein solution prior to MS measurements. In addition to a significant increase in the analysis time, chemical reactions may result in a partial or full loss of the protein if the modifications adversely affect its stability, e.g,, making it prone to aggregation. In this work we present a new approach to solving this problem by carrying out the chemical reactions online using the reactive chromatography scheme on a size exclusion chromatography (SEC) platform with MS detection. This is achieved by using a cross-path reaction scheme, i.e., by delaying the protein injection onto the SEC column (with respect to the injection of the reagent plug containing a disulfide-reducing agent), which allows the chemical reactions to be carried out inside the column for a limited (and precisely controlled) period of time, while the two plugs overlap inside the column. The reduced protein elutes separately from the unconsumed reagents, allowing the signal suppression in ESI to be avoided and enabling sensitive MS detection. The new method is used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein level following online reduction of disulfide-linked tetrameric species to monomeric units. The feasibility of top-down fragmentation of disulfide-containing proteins is also demonstrated using β 2 -microglobulin and a monoclonal antibody (mAb). The new online technique is both robust and versatile, as the cross-path scheme can be readily expanded to include multiple reactions in a single experiment (as

  5. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  6. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression

    DEFF Research Database (Denmark)

    Malmström, E; Davidova, A; Mörgelin, M

    2014-01-01

    systemic stimulation an immediate increase of neutrophil-borne proteins can be observed into the circulation of sepsis patients. We applied a combination of mass spectrometry (MS) based approaches, LC-MS/MS and selected reaction monitoring (SRM), to characterise and quantify the neutrophil proteome......Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following...

  7. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Practical aspects and trends in analytical organic mass spectrometry

    International Nuclear Information System (INIS)

    Schlunegger, U.P.

    1981-01-01

    Proceeding from the fundamentals of mass spectrometry (MS), some more recent developments of analytical organic MS are shown in comparison with conventional MS. Sections are headed: the vacuum, production of ions in the mass spectrometer, ions in the analyzer of a mass spectrometer, general considerations, practice of modern MS: selected examples

  9. Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments

    Science.gov (United States)

    Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.

    2012-01-01

    A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state solid #000; color: #000;">OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples solid #000; color: #000;">OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (solid #000; color: #000;">OSC = -0.5-0).

  10. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    Science.gov (United States)

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  11. Integration of Electrochemistry with Ultra Performance Liquid Chromatography/Mass Spectrometry (UPLC/MS)

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715

  12. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  13. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  14. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    Science.gov (United States)

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  15. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey.

    Science.gov (United States)

    Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Lin; Zhao, Wen; Zhang, Wenwen; Zhai, Lifei; Zhang, Yaping; Zhang, Yongxin; Zhou, Jinhui

    2016-01-15

    This study reports a rapid, automated screening and quantification method for the determination of multi-xenobiotic residues in honey using ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) with a user-built accurate-mass database plus parallel reaction monitoring (PRM). The database contains multi-xenobiotic information including formulas, adduct types, theoretical exact mass and retention time, characteristic fragment ions, ion ratios, and mass accuracies. A simple sample preparation method was developed to reduce xenobiotic loss in the honey samples. The screening method was validated based on retention time deviation, mass accuracy via full scan-data-dependent MS/MS (full scan-ddMS2), multi-isotope ratio, characteristic ion ratio, sensitivity, and positive/negative switching performance between the spiked sample and corresponding standard solution. The quantification method based on the PRM mode is a promising new quantitative tool which we validated in terms of selectivity, linearity, recovery (accuracy), repeatability (precision), decision limit (CCα), detection capability (CCβ), matrix effects, and carry-over. The optimized methods proposed in this study enable the automated screening and quantification of 157 compounds in less than 15 min in honey. The results of this study, as they represent a convenient protocol for large-scale screening and quantification, also provide a research approach for analysis of various contaminants in other matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  17. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  18. Quantification of Hydroxychloroquine in Blood Using Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS).

    Science.gov (United States)

    Chambliss, Allison B; Füzéry, Anna K; Clarke, William A

    2016-01-01

    Hydroxychloroquine (HQ) is used routinely in the treatment of autoimmune disorders such as rheumatoid arthritis and lupus erythematosus. Issues such as marked pharmacokinetic variability and patient non-compliance make therapeutic drug monitoring of HQ a useful tool for management of patients taking this drug. Quantitative measurements of HQ may aid in identifying poor efficacy as well as provide reliable information to distinguish patient non-compliance from refractory disease. We describe a rapid 7-min assay for the accurate and precise measurement of HQ concentrations in 100 μL samples of human blood using turbulent flow liquid chromatography coupled to tandem mass spectrometry. HQ is isolated from EDTA whole blood after a simple extraction with its deuterated analog, hydroxychloroquine-d4, in 0.33 M perchloric acid. Samples are then centrifuged and injected onto the TFLC-MS/MS system. Quantification is performed using a nine-point calibration curve that is linear over a wide range (15.7-4000 ng/mL) with precisions of <5 %.

  19. Characterization of the limonene oxidation products with liquid chromatography coupled to the tandem mass spectrometry

    Science.gov (United States)

    Witkowski, Bartłomiej; Gierczak, Tomasz

    2017-04-01

    Composition of the secondary organic aerosol (SOA) generated during ozonolysis of limonene was investigated with liquid chromatography coupled to the negative electrospray ionization (ESI), quadrupole tandem mass spectrometry (MS/MS) as well as high resolution Time-of-Flight mass spectrometry. Aerosol was generated in the flow-tube reactor. HR-MS/MS analysis allowed for proposing structures for the several up-to-date unknown limonene oxidation products. In addition to the low MW limonene oxidation products, significant quantities of oligomers characterized by elemental compositions: C19H30O5, C18H28O6, C19H28O7, C19H30O7 and C20H34O9 were detected in the SOA samples. It was concluded that these compounds are most likely esters, aldol reaction products and/or hemiacetals. In addition to detailed study of the limonene oxidation products, the reaction time as well as initial ozone concentration impact on the limonene SOA composition was investigated. The relative intensities of the two esters of the limonic acid and 7-hydroxy limononic acid increased as a result of lowering the initial ozone concentration and shortening the reaction time, indicating that esterification may be an important oligomerization pathway during limonene SOA formation.

  20. An appraisal on the degradation of paracetamol by TiO2/UV system in aqueous medium: product identification by gas chromatography-mass spectrometry (GC-MS)

    OpenAIRE

    Dalmázio,Ilza; Alves,Tânia M. A.; Augusti,Rodinei

    2008-01-01

    The advanced oxidation of paracetamol (1) promoted by TiO2/UV system in aqueous medium was investigated. Continuous monitoring by several techniques, such as UV-Vis spectroscopy, HPLC (high performance liquid chromatography), TOC (total organic carbon), and ESI-MS (electrospray ionization mass spectrometry), revealed that whereas the removal of paracetamol was highly efficient under these conditions, its mineralization was not likewise accomplished. GC-MS (gas chromatography-mass spectrometry...

  1. Mass spectrometry: a revolution in clinical microbiology?

    Science.gov (United States)

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  2. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  3. Separation of different ion structures in atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS).

    Science.gov (United States)

    Laakia, Jaakko; Adamov, Alexey; Jussila, Matti; Pedersen, Christian S; Sysoev, Alexey A; Kotiaho, Tapio

    2010-09-01

    This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O(2)](+*), which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M](+*). Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M](+*) typically had a higher intensity than the protonated molecule [M + H](+). Interestingly, the latter drifts slower than the radical cation [M](+*), which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  4. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  5. Comparison of VOC measurements made by PTR-MS, adsorbent tubes-GC-FID-MS and DNPH derivatization-HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements

    Science.gov (United States)

    Dunne, Erin; Galbally, Ian E.; Cheng, Min; Selleck, Paul; Molloy, Suzie B.; Lawson, Sarah J.

    2018-01-01

    Understanding uncertainty is essential for utilizing atmospheric volatile organic compound (VOC) measurements in robust ways to develop atmospheric science. This study describes an inter-comparison of the VOC data, and the derived uncertainty estimates, measured with three independent techniques (PTR-MS, proton-transfer-reaction mass spectrometry; GC-FID-MS, gas chromatography with flame-ionization and mass spectrometric detection; and DNPH-HPLC, 2,4-dinitrophenylhydrazine derivatization followed by analysis by high-performance liquid chromatography) during routine monitoring as part of the Sydney Particle Study (SPS) campaign in 2012. Benzene, toluene, C8 aromatics, isoprene, formaldehyde and acetaldehyde were selected for the comparison, based on objective selection criteria from the available data. Bottom-up uncertainty analyses were undertaken for each compound and each measurement system. Top-down uncertainties were quantified via the inter-comparisons. In all seven comparisons, the correlations between independent measurement techniques were high with R2 values with a median of 0.92 (range 0.75-0.98) and small root mean square of the deviations (RMSD) of the observations from the regression line with a median of 0.11 (range 0.04-0.23 ppbv). These results give a high degree of confidence that for each comparison the response of the two independent techniques is dominated by the same constituents. The slope and intercept as determined by reduced major axis (RMA) regression gives a different story. The slopes varied considerably with a median of 1.25 and a range of 1.16-2.01. The intercepts varied with a median of 0.04 and a range of -0.03 to 0.31 ppbv. An ideal comparison would give a slope of 1.00 and an intercept of 0. Some sources of uncertainty that are poorly quantified by the bottom-up uncertainty analysis method were identified, including: contributions of non-target compounds to the measurement of the target compound for benzene, toluene and isoprene by

  6. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS

    Directory of Open Access Journals (Sweden)

    Jia Yan

    2012-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system (CNS. It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS. The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. Results Using high performance liquid chromatography-coupled mass spectrometry (HPLC; we have established a highly specific and sensitive selected reaction monitoring (SRM assay. Our multiplexed SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 26 proteins present in cerebrospinal fluid (CSF. Protein levels in CSF were generally ~200-fold lower than that in human sera. A limit of detection (LOD was determined to be as low as one femtomol. We processed and analysed CSF samples from a total of 22 patients with SPMS, 7 patients with SPMS treated with lamotrigine, 12 patients with non-inflammatory neurological disorders (NIND and 10 healthy controls (HC for the levels of these 26 selected potential protein biomarkers. Our SRM data found one protein showing significant difference between SPMS and HC, three proteins differing between SPMS and NIND, two proteins between NIND and HC, and 11 protein biomarkers showing significant difference between a lamotrigine-treated and untreated SPMS group. Principal component analysis (PCA revealed that these 26 proteins were correlated, and could be represented by four principal components. Overall, we established an

  7. Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants?

    Czech Academy of Sciences Publication Activity Database

    Pallozzi, E.; Guidolotti, G.; Ciccioli, P.; Brilli, F.; Feil, S.; Calfapietra, Carlo

    2016-01-01

    Roč. 216, JAN (2016), s. 232-240 ISSN 0168-1923 R&D Projects: GA MŠk(CZ) LD13031; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : VOC * Gas chromatography * Time of flight * PTR-TOF-MS * Quercus * eucalyptus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.887, year: 2016

  8. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    Science.gov (United States)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  9. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved......Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...

  10. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  11. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    Science.gov (United States)

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

  12. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    NARCIS (Netherlands)

    Horvatovich, Peter; Hoekman, Berend; Govorukhina, Natalia; Bischoff, Rainer

    Multidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an

  13. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  14. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  15. Two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to study the excretion and metabolic interaction of edaravone and taurine in rats.

    Science.gov (United States)

    Tang, Dao-quan; Zheng, Xiao-xiao; Li, Yin-jie; Bian, Ting-ting; Yu, Yan-yan; Du, Qian; Yang, Dong-zhi; Jiang, Shui-shi

    2014-11-01

    In this study, two independent and complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were respectively developed and validated for the determination of edaravone or taurine in rat urine, feces and bile after intravenous administration, using 3-methyl-l-p-tolyl-5-pyrazolone and sulfanilic acid as the internal standards (IS). Edaravone was separated on an Agilent Eclipse Plus C18 column (100×2.1 mm, 3.5 μm) using methanol and water (containing 5 mM ammonium formate and 0.02% formic acid) as mobile phase, while taurine was performed on a Waters Atlantis HILIC Silica column (150×2.1 mm, 3 μm) using acetonitrile and water (containing 5mM ammonium formate and 0.2% formic acid) as mobile phase. The mass analysis was performed in a Triple Quadrupole mass spectrometer via multiple reaction monitoring (MRM) with negative ionization mode. The optimized mass transition ion pairs (m/z) for quantification were 173.1→92.2 and 187.2→106.0 for edaravone and its IS, 124.1→80.0 and 172.0→80.0 for taurine and its IS, respectively. The validated methods have been successfully applied to the excretion and metabolism interaction study of edaravone and taurine in rats after independent intravenous administration and co-administration with a single dose. The results demonstrated that there were no significant alternations on the metabolism and cumulative excretion rate of edaravone and taurine, implying that the proposed combination therapy was pharmacologically viable. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    Science.gov (United States)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  17. Comparison of VOC measurements made by PTR-MS, adsorbent tubes–GC-FID-MS and DNPH derivatization–HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    E. Dunne

    2018-01-01

    Full Text Available Understanding uncertainty is essential for utilizing atmospheric volatile organic compound (VOC measurements in robust ways to develop atmospheric science. This study describes an inter-comparison of the VOC data, and the derived uncertainty estimates, measured with three independent techniques (PTR-MS, proton-transfer-reaction mass spectrometry; GC-FID-MS, gas chromatography with flame-ionization and mass spectrometric detection; and DNPH–HPLC, 2,4-dinitrophenylhydrazine derivatization followed by analysis by high-performance liquid chromatography during routine monitoring as part of the Sydney Particle Study (SPS campaign in 2012. Benzene, toluene, C8 aromatics, isoprene, formaldehyde and acetaldehyde were selected for the comparison, based on objective selection criteria from the available data. Bottom-up uncertainty analyses were undertaken for each compound and each measurement system. Top-down uncertainties were quantified via the inter-comparisons. In all seven comparisons, the correlations between independent measurement techniques were high with R2 values with a median of 0.92 (range 0.75–0.98 and small root mean square of the deviations (RMSD of the observations from the regression line with a median of 0.11 (range 0.04–0.23 ppbv. These results give a high degree of confidence that for each comparison the response of the two independent techniques is dominated by the same constituents. The slope and intercept as determined by reduced major axis (RMA regression gives a different story. The slopes varied considerably with a median of 1.25 and a range of 1.16–2.01. The intercepts varied with a median of 0.04 and a range of −0.03 to 0.31 ppbv. An ideal comparison would give a slope of 1.00 and an intercept of 0. Some sources of uncertainty that are poorly quantified by the bottom-up uncertainty analysis method were identified, including: contributions of non-target compounds to the measurement of the target compound for

  18. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS)

    DEFF Research Database (Denmark)

    Esmail Nazari, Zeinab; van de Weert, Marco; Bou-Assaf, George

    2016-01-01

    Hydrogen Deuterium Exchange coupled to Mass Spectrometry (HDX-MS) has become an established method for analysis of protein higher-order structure. Here, we use HDX-MS methodology based on manual Solid-Phase Extraction (SPE) to allow fast and simplified conformational analysis of proteins under...... pharmaceutically relevant formulation conditions. Of significant practical utility, the methodology allows global HDX-MS analyses to be performed without refrigeration or external cooling of the setup. In Mode 1, we used DMSO-containing solvents for SPE, allowing the HDX-MS analysis to be performed at acceptable...... in formulation, using an internal HDX reference peptide (P7I) to control for any sample-to-sample variations in back exchange. Advantages of the methodology include low sample use, optimized excipient removal using multiple solvents, and fast data acquisition. Our results indicate that the SPE-HDX-MS system can...

  19. Characterization of thermal reaction of aluminum/copper (II) oxide/poly(tetrafluoroethene) nanocomposite by thermogravimetric analysis, differential scanning calorimetry, mass spectrometry and X-ray diffraction

    International Nuclear Information System (INIS)

    Li, Xiangyu; Yang, Hongtao; Li, Yan-chun

    2015-01-01

    Highlights: • The thermal reaction properties of the Al/CuO/PTFE nanocomposite were investigated. • The Al/PTFE and CuO/PTFE nanocomposites were prepared and tested for comparison. • TG/DSC–MS and XRD analysis were performed. • PTFE is oxidizing Al and reducing CuO during the thermal decomposition. - Abstract: The application of fluoropolymers as reactive agent in energetic materials have attracted significant interest recently. In this study, the thermal reaction properties of the aluminum nanoparticles/copper (II) oxide nanoparticles/poly(tetrafluoroethene) (Al-NPs/CuO-NPs/PTFE) nanocomposite (mass ratio of Al-NPs/CuO-NPs/PTFE = 20/60/20) were investigated by means of thermogravimetry/differential scanning calorimetry–mass spectrometry (TG/DSC–MS) and X-ray diffraction (XRD) analyses. The Al-NPs/PTFE (mass ratio of Al-NPs/PTFE = 50/50) and CuO-NPs/PTFE (mass ratio of CuO-NPs/PTFE = 75/25) nanocomposites were also prepared and tested for comparison. It is observed that PTFE is acting as both oxidizer and reducer during the thermal decomposition process of Al-NPs/CuO-NPs/PTFE nanocomposites. Before 615 °C, PTFE is oxidized by CuO-NPs and oxidizing Al-NPs, resulting mass reduction. After 615 °C, the excessive aluminum and copper (I)/copper (II) oxide will proceed the exothermic condensed phase reaction.

  20. DATA TRANSFER FROM A DEC PDP-11 BASED MASS-SPECTROMETRY DATA STATION TO AN MS-DOS PERSONAL-COMPUTER

    NARCIS (Netherlands)

    RAFFAELLI, A; BRUINS, AP

    This paper describes a simple procedure for obtaining better quality graphic output for mass spectrometry data from data systems equipped with poor quality printing devices. The procedure uses KERMIT, a low cost public domain software, to transfer ASCII tables to a MS-DOS personal computer where

  1. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine

    2002-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  2. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  3. Chemical characterization of neonicotinoids in surface waters by high performance liquid chromatography with Tandem Mass Spectrometry (HPLC MS/MS); Caracterização química dos neonicotinóides em águas superficiais via cromatografia liquída de alta eficiência acoplada a Espectrometria de Massas em Tandem (HPLC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Priscila Oliveira

    2017-07-01

    The present study aimed to develop a method for the determination and validation of a method for the identification and quantification of Neonicotinoids in surface waters collected in the Bauru region, in the state of São Paulo. The analytical techniques studied for the development of this method were the high performance liquid chromatography with tandem mass spectrometry (HPLC - MS / MS), gas chromatography with mass spectrometry (GC / MS) and gas chromatography with electron capture detector (GC / ECD). The class of pesticides Neonicotinoids was chosen for this work because it is related to a sudden disappearance of bees in colonies around the world. This phenomenon is known as Colony Collapse Disorder (CCD) and it is characterized by a rapid loss in the population of adult bees. The Neonicotinoids used in this study were the compounds Clothianidin, Imidacloprid and Thiamethoxam which were banned in their use as pesticides in Europe by Implementing Regulation No. 540/2011. The samples were concentrated using solid phase extraction (SPE) and liquid liquid extraction (LLE) techniques and injected into HPLC-MS / MS, GC / MS and GC / ECD. The GC / ECD and GC / MS techniques were not satisfactory for determination in the water matrix because the detection limit (10 mg L{sup -1}) is above the maximum allowed by the US Environmental Protection Agency (0.6 μg L{sup -1}). The HPLC - MS / MS technique using the multiple reaction monitoring (MRM) proved to be adequate for this study because it obtained quantification limits between 5.89 and 8.06 μg L{sup -1} and a linearity between 0.9963 and 0.9999 for the three compounds. (author)

  4. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    Science.gov (United States)

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  5. Determination of boron and lithium in diverse biological matrices using neutron activation-mass spectrometry (NA-MS)

    International Nuclear Information System (INIS)

    Iyengar, G.V.; Downing, R.G.; Clarke, W.B.

    1990-01-01

    Essential features of the neutron activation-mass Spectrometry (NA-MS) technique are described. Applicability of this technique for the simultaneous determination of boron and lithium is demonstrated for a diverse group of biomaterials. NA-MS is a nondestructive analytical technique, and dynamic in nature since its coverage extends to a broad range of concentration levels. Contamination after the irradiation step, extraneous by natural lithium or boron is inconsequential, since only the activation products are the analyted assayed. Coupling the nuclear activation phenomenon which generates 4 He and 3 He (from 10 B and 6 Li, respectively), with the high precision potential of mass spectrometry forms the bases of this technique. Under ideal conditions the detection limit is extendable to pg g -1 concentration ranges and therefore, it is extremely well suited to investigate the natural concentration levels of boron and lithium in biomaterials. The potential of this method for the determination of lithium in biomedical trace element research is of special significance since determination of sub-ppb levels of lithium by other analytical techniques faces serious analytical difficulties mainly due to contamination control and in some cases to insufficiently low detection limits. (orig.)

  6. Study of cyclization of chelating compounds using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Shi Ying; Campbell, J.A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studied: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization. (author)

  7. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease

    DEFF Research Database (Denmark)

    Brinkmalm, Gunnar; Sjödin, Simon; Simonsen, Anja Hviid

    2018-01-01

    SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association with neurode......SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association...... with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS: Coefficients of variation were generally below 15%. Clinical...

  8. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  9. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    Science.gov (United States)

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  10. Determination of (90)Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS).

    Science.gov (United States)

    Feuerstein, J; Boulyga, S F; Galler, P; Stingeder, G; Prohaska, T

    2008-11-01

    A rapid method is reported for the determination of (90)Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of (90)Zr, which is present in soils at concentrations higher by more than six orders of magnitude than (90)Sr. Zirconium was separated from strontium in two steps to reduce the interference by (90)Zr(+) ions by a factor of more than 10(7): (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from (88)Sr on mass 90 u was found to be about 3 x 10(-9). Detection limits of 4 fg g(-1) (0.02 Bq g(-1)) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 microg g(-1) Sr and 50 ng g(-1) Zr a detection limit of 0.2 pg g(-1) soil (1 Bq g(-1) soil) was determined. (90)Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66+/-0.27, 13.48+/-0.68 and 12.9+/-1.5 pg g(-1) corresponding to specific activities of 23.7+/-1.3, 68.6+/-3.5 and 65.6+/-7.8 Bq g(-1), respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level (90)Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g(-1).

  11. Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS)

    International Nuclear Information System (INIS)

    Feuerstein, J.; Boulyga, S.F.; Galler, P.; Stingeder, G.; Prohaska, T.

    2008-01-01

    A rapid method is reported for the determination of 90 Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of 90 Zr, which is present in soils at concentrations higher by more than six orders of magnitude than 90 Sr. Zirconium was separated from strontium in two steps to reduce the interference by 90 Zr + ions by a factor of more than 10 7 : (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from 88 Sr on mass 90 u was found to be about 3 x 10 -9 . Detection limits of 4 fg g -1 (0.02 Bq g -1 ) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 μg g -1 Sr and 50 ng g -1 Zr a detection limit of 0.2 pg g -1 soil (1 Bq g -1 soil) was determined. 90 Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66 ± 0.27, 13.48 ± 0.68 and 12.9 ± 1.5 pg g -1 corresponding to specific activities of 23.7 ± 1.3, 68.6 ± 3.5 and 65.6 ± 7.8 Bq g -1 , respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level 90 Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g -1

  12. Evaluation of an on-line methodology for measuring volatile organic compounds (VOC) fluxes by eddy-covariance with a PTR-TOF-Qi-MS

    Science.gov (United States)

    Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier

    2017-04-01

    Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).

  13. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    Science.gov (United States)

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  14. Determination of Trace Iron in Red Wine by Isotope Dilution Mass Spectrometry Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Zhou Tao; Wang Jun; Lu Hai; Zhou Yuanjing; Li Haifeng

    2009-01-01

    This paper introduces determination of trace iron in red wine certified reference material by isotope dilution mass spectrometry (IDMS) method using a multiplecollector inductively coupled plasma mass spectrometry, equipped with a hexapole collision cell. The measurement procedure of iron isotopic abundance ratios was deeply researched. Reduced polyatomic ion interferences to iron isotopes ion by collision reaction using Ar and H 2 gas, high precise isotopic abundance ratios were achieved. Two relative measurement methods (ICP-MS and ICP-OES) were used to analyze trace iron in red wine. The results are compared with IDMS results, which indicate that they are accordant. The uncertainty analyses include each uncertainty factor in whole experiment and the uncertainty of used certified reference material and it shows that the procedure blank is not neglectable to detect limit and precision of the method. The establishment of IDMS method for analysis of trace iron in red wine supports the certification of certified reference materials. (authors)

  15. Nonreductive chemical release of intact N-glycans for subsequent labeling and analysis by mass spectrometry.

    Science.gov (United States)

    Yuan, Jiangbei; Wang, Chengjian; Sun, Yujiao; Huang, Linjuan; Wang, Zhongfu

    2014-10-01

    A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate-peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  17. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    Science.gov (United States)

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. APPLICATION OF LIQUID-CHROMATOGRAPHY COMBINED WITH MASS-SPECTROMETRY (LC-MS) TO ESTABLISH IDENTITY AND PURITY OF PET-RADIOPHARMACEUTICALS

    NARCIS (Netherlands)

    FRANSSEN, EJF; LUURTSEMA, G; MEDEMA, J; VISSER, GM; JERONISMUSSHALINGH, CM; BRUINS, AP; VAALBURG, W

    This article describes the application of liquid chromatography combined with mass-spectrometry (LC-MS) as a new quality control tool for PET-radiopharmaceuticals. The final step in the production of 2-[F-18]fluoro-2-deoxy-D-glucose (F-18-FDG) is a purification by HPLC. This procedure was validated

  19. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Mo, Shunyan; Dong, Linlin; Hurst, W. Jeffrey; van Breemen, Richard B.

    2014-01-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. PMID:23884629

  20. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  1. Evaluation of high-resolution mass spectrometry for urine toxicology screening in a pain management setting.

    Science.gov (United States)

    Crews, Bridgit O; Pesce, Amadeo J; West, Robert; Nguyen, Hugh; Fitzgerald, Robert L

    2012-01-01

    To evaluate liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) for urine toxicology screening, 29 analytes were quantitated in 152 urine specimens from patients with chronic pain using two unique mass spectrometry platforms. De-identified specimens were quantitated in April of 2011 by liquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS) and by full-scan LC-HR-MS at Millennium Laboratories. Considering LC-MS-MS as the reference method, false positive results were identified in 19 specimens measured by LC-HR-MS. Application of relative retention times using deuterium labeled internal standards improved the rate of false positive detection to only five specimens, with four occurring for the same analyte. Ultra-high-resolution mass spectrometry (R = 100,000 at m/z 200) showed no improvement over high-resolution mass spectrometry (R = 10,000 at m/z 200) in the number of false positives detected. Quantitative results measured by LC-MS-MS and LC-HR-MS showed good agreement over four orders of dynamic range. This study demonstrates that LC-HR-MS is a suitable platform for toxicology screening for a pain management population and that quantitative accuracy and sensitivity are comparable to that achieved with LC-MS-MS. The specificity of LC-HR-MS is improved by the addition of deuterium labeled internal standards and the implementation of relative retention time matching.

  2. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  3. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  4. Radionuclide content of simulated and fully radioactive SRLLL waste glasses: comparison of results from ICP-MS, gamma spectrometry and alpha spectrometry

    International Nuclear Information System (INIS)

    Wolf, S.F.; Bates, J.K.

    1995-01-01

    We have measured the transuranic content of two transuranic=doped, simulated waste glasses, using inductively coupled plasma-mass spectrometry (ICP-MS), γ-spectrometry, and α-spectrometry. Average concentrations measured by each technique were within ± 10% of the as-doped concentrations. We also report the transuranic content of three fully radioactive SRL waste glasses that were determined using γ- and α-spectrometry measurements to deconvolute isobaric interferences present in the ICP-MS analyses

  5. Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry.

    Science.gov (United States)

    Chen, Shu-Ting; Her, Guor-Rong

    2014-09-16

    A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip|info:eu-repo/dai/nl/371559693; Snijder, Joost|info:eu-repo/dai/nl/338018328; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even

  7. Analytical and clinical performance of the new Fujirebio 25-OH vitamin D assay, a comparison with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and three other automated assays

    OpenAIRE

    Saleh, Lanja; Mueller, Daniel; von Eckardstein, Arnold

    2015-01-01

    BACKGROUND: We evaluated the analytical and clinical performance of the new Lumipulse® G 25-OH vitamin D assay from Fujirebio, and compared it to a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and three other commercial automated assays. METHODS: Total 25 hydroxy vitamin D (25(OH)D) levels were measured in 100 selected serum samples from our routine analysis with Fujirebio 25(OH)D assay. The results were compared with those obtained with LC-MS/MS and three other automat...

  8. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  9. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    Science.gov (United States)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  10. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  12. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    Science.gov (United States)

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  13. Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach

    Directory of Open Access Journals (Sweden)

    Roberta Noberini

    2016-06-01

    Full Text Available Aberrant histone post-translational modifications (hPTMs have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (FFPE tissues, from which histones were extracted through the recently developed PAT-H-MS method. First, we analyzed FFPE samples from mouse spleen and liver or human breast cancer up to six years old, together with their corresponding fresh frozen tissue. We then combined the PAT-H-MS approach with a histone-focused version of the super-SILAC strategy-using a mix of histones from four breast cancer cell lines as a spike-in standard- to accurately quantify hPTMs from breast cancer specimens belonging to different subtypes. The data, which are associated with a recent publication (Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples (Noberini, 2015 [1], are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002669.

  14. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  15. Quantitative Analysis of Tetramethylenedisulfotetramine ('Tetramine') Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    International Nuclear Information System (INIS)

    Owens, J.; Hok, S.; Alcaraz, A.; Koester, C.

    2008-01-01

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD 50 = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 (micro)g/mL by LC/MS/MS versus 0.15 (micro)g/mL for GC/MS. Fortifications of the beverages at 2.5 (micro)g/mL and 0.25 (micro)g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  16. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  17. Fingerprinting Deepwater Horizon Oil in the northern Gulf of Mexico using biomarkers and Gas Chromatography-Triple Quadrupole Mass Spectrometry (GC/MS/MS)

    Science.gov (United States)

    Adhikari, P. L.; Overton, E. B.; Maiti, K.; Wong, R. L.

    2016-02-01

    Petroleum biomarkers such as hopanes, steranes, and triaromatic steroids are more persistent than alkanes and aromatic compounds. Thus, they are often used to track spilled oil in the environments and as a proxy for weathering processes. The present study utilizes water samples, suspended and sinking particles, and seafloor sediments collected during 2011-2013 from various locations of the northern Gulf of Mexico with wide range of contaminated oil for Deepwater Horizon (DWH) oil fingerprinting. The MC252 source oil along with the samples collected in this study were analyzed using a gas chromatography coupled with a triple quadrupole mass spectrometry (GC/MS/MS) in Multiple Reaction Monitoring (MRM) mode and the results were compared with results from commonly used GC/MS selective ion monitoring (SIM) method. The results indicate that the MRM method separates interfering ions from interfering compounds and can be a powerful analytical strategy for a reliable identification and determination of trace levels of biomarkers in complex matrices. Source indicators such as the MRM fragment ion chromatograms of the biomarkers and their diagnostic ratios in samples were compared with the MC252 source oil. The preliminary results show that the biomarkers were below detection limits in dissolved samples. However, in few particulate and seafloor sediment samples, primarily from the immediate vicinity of the Macondo wellhead, contained their patterns. The results also illustrate that these biomarker compounds have been weathered within 1-3 years following the oil spill, and their DWH oil signature in some of these samples reflects this weathering.

  18. Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Bao; Yang, Hongshun; Chen, Feng; Hua, Yanglin; Jiang, Yueming

    2013-11-21

    Ziziphus jujuba Mill. var. spinosa (Z. jujuba) seeds have attracted much attention within the field of medicine due to their significant effects against disturbances of the central nervous system. Secondary metabolites composition is key to the influence of the pharmaceutical and commercial qualities of this plant. In this work, the phytochemical profile of Z. jujuba seeds was analysed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS). The UPLC-MS/MS information identified the main secondary metabolites in Z. jujuba seeds, including flavonoid C-glycosides, triterpene acids and unsaturated fatty acids. The leading chemical identified by UPLC-MS/MS was betulinic acid, and oleic acid was the leading volatile from the GC-MS results. All the samples tested showed similar phytochemical profiles, but levels of the chemical compounds varied. Principal component analysis revealed the principal secondary metabolites that could define the differences in quality. It was confirmed that the combination of UPLC-MS/MS and GC-MS was an effective technique to demonstrate the pharmaceutical quality of Z. jujuba seeds.

  19. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    Science.gov (United States)

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  20. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  1. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques.

    Science.gov (United States)

    Oliveira, Gislene B; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M

    2015-08-25

    Consumers' interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester-FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry-ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry-PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power.

  2. Demise of Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry as an Infectious Diseases Diagnostic Tool.

    Science.gov (United States)

    Özenci, Volkan; Patel, Robin; Ullberg, Måns; Strålin, Kristoffer

    2018-01-18

    Although there are several US Food and Drug Administration (FDA)-approved/cleared molecular microbiology diagnostics for direct analysis of patient samples, all are single target or panel-based tests. There is no FDA-approved/cleared diagnostic for broad microbial detection. Polymerase chain reaction (PCR)/electrospray ionization-mass spectrometry (PCR/ESI-MS), commercialized as the IRIDICA system (Abbott) and formerly PLEX-ID, had been under development for over a decade and had become CE-marked and commercially available in Europe in 2014. Capable of detecting a large number of microorganisms, it was under review at the FDA when, in April 2017, Abbott discontinued it. This turn of events represents not only the loss of a potential diagnostic tool for infectious diseases but may be a harbinger of similar situations with other emerging and expensive microbial diagnostics, especially genomic tests. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  4. Current medical research with the application of coupled techniques with mass spectrometry

    OpenAIRE

    Ka?u?na-Czapli?ska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectro...

  5. Fe- and Cu-complex formation with artificial ligands investigated by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS: Implications for natural metal-organic complex studies

    Directory of Open Access Journals (Sweden)

    Hannelore Waska

    2016-07-01

    Full Text Available In recent years, electrospray-ionization mass spectrometry (ESI-MS has been increasingly used to complement the bulk determination of metal-ligand equilibria, for example via competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV. However, ESI-MS speciation analyses may be impacted by instrumental artefacts such as reduction reactions, fragmentation, and adduct formation at the ESI source, changes in the ionization efficiencies of the detected species in relation to sample matrix, and peak overlaps in response to increasing sample complexity. In our study, equilibria of the known artificial ligands citrate, ethylenediaminetetraacetic acid (EDTA, 1-nitroso-2-naphthol (NN, and salicylaldoxime (SA with iron (Fe and copper (Cu were investigated by ultra-high resolution ESI-MS, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, under a variety of sample matrix and ionization settings. The acquired mass spectra were compared with metal-ligand equilibrium data from the literature as well as an adapted speciation model. Overall, the mass spectra produced representative species mentioned in previous reports and predicted by the speciation calculations, such as Fe(Cit, Cu(Cit2, Fe(EDTA, Cu(EDTA, Fe(NN3, and Cu(SA2. The analyses furthermore revealed new species which had been hypothesized but not measured directly using other methods, for example ternary complexes of citrate with Fe and Cu, Cu(SA monomers, and the dimer Fe(SA2. Finally, parallel measurements of a Cu+SA calibration series and a Cu+SA+EDTA competition series indicated that FT-ICR-MS can produce linear responses and low detection limits analogous to those of ACSV. We propose that ultra-high resolution FT-ICR-MS can be used as a representative tool to study interactions of trace metals with artificial as well as natural, unknown ligands at the molecular level.

  6. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  7. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  8. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS

    NARCIS (Netherlands)

    Steinborn, Angelika; Alder, Lutz; Michalski, Britta; Zomer, Paul; Bendig, Paul; Martinez, Sandra Aleson; Mol, Hans G.J.; Class, Thomas J.; Costa Pinheiro, Nathalie

    2016-01-01

    This study describes the validation and application of two independent analytical methods for the determination of glyphosate in breast milk. They are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. For

  9. Eddy covariance flux measurements of ammonia by high temperature chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2011-03-01

    Full Text Available A system for fast ammonia (NH3 measurements with chemical ionisation mass spectrometry (CIMS based on a commercial Proton Transfer Reaction-Mass Spectrometer (PTR-MS is presented. It uses electron transfer reaction as ionisation pathway and features a drift tube of polyetheretherketone (PEEK and silica-coated steel. Heating the instrumental inlet and the drift tube to 180 °C enabled an effective time resolution of ~1 s and made it possible to apply the instrument for eddy covariance (EC measurements. EC fluxes of NH3 were measured over two agricultural fields in Oensingen, Switzerland, following fertilisations with cattle slurry. Air was aspirated close to a sonic anemometer at a flow of 100 STP L min−1 and was directed through a 23 m long 1/2" PFA tube heated to 150 °C to an air-conditioned trailer where the gas was sub-sampled from the large bypass stream. This setup minimised damping of fast NH3 concentration changes between the sampling point and the actual measurement. High-frequency attenuation loss of the NH3 fluxes of 20 to 40% was quantified and corrected for using an empirical ogive method. The instrumental NH3 background signal showed a minor interference with H2O which was characterised in the laboratory. The resulting correction of the NH3 flux after slurry spreading was less than 1‰. The flux detection limit of the EC system was about 5 ng m−2 s−1 while the accuracy of individual flux measurements was estimated 16% for the high-flux regime during these experiments. The NH3 emissions after broad spreading of the slurry showed an initial maximum of 150 μg m−2 s−1 with a fast decline in the following hours.

  10. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  11. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  12. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria.

    Science.gov (United States)

    Branda, John A; Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda F; Westblade, Lars F; Ferraro, Mary Jane

    2014-02-01

    The VITEK MS v2.0 MALDI-TOF mass spectrometry system's performance in identifying fastidious gram-negative bacteria was evaluated in a multicenter study. Compared with the reference method (DNA sequencing), the VITEK MS system provided an accurate, species-level identification for 96% of 226 isolates; an additional 1% were accurately identified to the genus level. © 2013.

  13. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    Science.gov (United States)

    Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.

  14. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  15. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  16. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  17. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  18. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    Science.gov (United States)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  20. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  1. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  2. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    International Nuclear Information System (INIS)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah; Lee, Jung-min; Oh, Han Bin

    2016-01-01

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  3. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  4. Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2005-01-01

    Full Text Available Within the framework of the AFO 2000 project ECHO, two PTR-MS instruments were operated in combination with sonic anemometers to determine biogenic VOC fluxes from a mixed deciduous forest site in North-Western Germany. The measurement site was characterised by a forest of inhomogeneous composition, complex canopy structure, limited extension in certain wind directions and frequent calm wind conditions during night time. The eddy covariance (EC technique was applied since it represents the most direct flux measurement approach on the canopy scale and is, therefore, least susceptible to these non-ideal conditions. A specific flux calculation method was used to account for the sequential multi-component PTR-MS measurements and allowing an individual delay time adjustment as well as a rigorous quality control based on cospectral analysis. The validated flux results are consistent with light and temperature dependent emissions of isoprene and monoterpenes from this forest, with average daytime emissions of 0.94 and 0.3µg m-2s-1, respectively. Emissions of methanol reached on average 0.087µg m-2s-1 during daytime, but fluxes were too small to be detected during night time. Upward fluxes of the isoprene oxidation products methyl vinyl ketone (MVK and methacrolein (MACR were also found, being two orders of magnitude lower than those of isoprene. Calculations with an analytical footprint model indicate that the observed isoprene fluxes correlate with the fraction of oaks within the footprints of the flux measurement.

  5. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS

    DEFF Research Database (Denmark)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2015-01-01

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable...... alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics...... offering a significant time saving as compared to conventional LC-MS where laborious protein precipitation or other sample pretreatments are required before analysis. This makes the developed EME-MS setup a highly promising sample preparation method for various kinds of applications where fast and real-time...

  6. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  7. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  8. The Simultaneous measurement of serum testosterone and 5α-dihydrotestosterone by gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Kannenberg, Frank; Fobker, Manfred; Schulte, Erhard; Pierściński, Grzegorz; Kelsch, Reinhard; Zitzmann, Michael; Nofer, Jerzy-Roch; Schüring, Andreas N

    2018-01-01

    Simultaneous measurement of testosterone (T) and 5α-dihydrotestosterone (DHT) is important for diagnosing androgen deficiency states and hyperandrogenism in males and females, respectively. However, immunoassays used for T and DHT determination suffer from inadequate specificity and sensitivity, while tandem mass spectrometry is expensive and demanding in use. We developed a selective gas chromatography-mass spectrometry (GC-MS) method for parallel T and DHT measurement. The assay showed a linear response up to 46.5nmol/L, intra- and interassay imprecision and inaccuracy 90% for both analytes. The limit of quantitation was 0.117nmol/L for T and 0.168nmol/L for DHT. Comparison with immunoassays revealed good agreement for T in males, but a bias in favour of immunoassays at low concentrations for T in females and DHT in both sexes. We established reference ranges for T and DHT and suggest interval partitioning for T according to age in men and menstrual cycle in women. Assay validation in a clinical setting suggests that measuring DHT or T/DHT ratio may help identify patients with polycystic ovary syndrome. We developed a selective, simple and inexpensive GC-MS method for parallel measurement of T and DHT with potential use in the clinical laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A gas chromatography-mass spectrometry (GC-MS) method for the detection and quantitation of monofluoroacetate in plants toxic to livestock

    Science.gov (United States)

    Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography–mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatiza...

  10. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  11. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  12. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  13. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. Graphical Abstract ᅟ.

  14. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  16. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  17. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    Science.gov (United States)

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  18. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Turner, C.; Španěl, Patrik; Smith, D.

    2006-01-01

    Roč. 27, č. 7 (2006), s. 637-648 ISSN 0967-3334 Institutional research plan: CEZ:AV0Z40400503 Keywords : SIFT-MS * mass spectrometry * methanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2006

  19. Determination of {sup 90}Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, J.; Boulyga, S.F.; Galler, P.; Stingeder, G. [Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna (Austria); Prohaska, T. [Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna (Austria)], E-mail: thomas.prohaska@boku.ac.at

    2008-11-15

    A rapid method is reported for the determination of {sup 90}Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of {sup 90}Zr, which is present in soils at concentrations higher by more than six orders of magnitude than {sup 90}Sr. Zirconium was separated from strontium in two steps to reduce the interference by {sup 90}Zr{sup +} ions by a factor of more than 10{sup 7}: (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from {sup 88}Sr on mass 90 u was found to be about 3 x 10{sup -9}. Detection limits of 4 fg g{sup -1} (0.02 Bq g{sup -1}) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 {mu}g g{sup -1} Sr and 50 ng g{sup -1} Zr a detection limit of 0.2 pg g{sup -1} soil (1 Bq g{sup -1} soil) was determined. {sup 90}Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66 {+-} 0.27, 13.48 {+-} 0.68 and 12.9 {+-} 1.5 pg g{sup -1} corresponding to specific activities of 23.7 {+-} 1.3, 68.6 {+-} 3.5 and 65.6 {+-} 7.8 Bq g{sup -1}, respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level {sup 90}Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g{sup -1}.

  20. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria.

    Science.gov (United States)

    Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria.

  1. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  2. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  3. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS.

    Science.gov (United States)

    Lin, Shishi; Dikler, Sergei; Blincoe, William D; Ferguson, Ronald D; Sheridan, Robert P; Peng, Zhengwei; Conway, Donald V; Zawatzky, Kerstin; Wang, Heather; Cernak, Tim; Davies, Ian W; DiRocco, Daniel A; Sheng, Huaming; Welch, Christopher J; Dreher, Spencer D

    2018-05-24

    Understanding the practical limitations of chemical reactions is critically important for efficiently planning the synthesis of compounds in pharmaceutical, agrochemical and specialty chemical research and development. However, literature reports of the scope of new reactions are often cursory and biased toward successful results, severely limiting the ability to predict reaction outcomes for untested substrates. We herein illustrate strategies for carrying out large scale surveys of chemical reactivity using a material-sparing nanomole-scale automated synthesis platform with greatly expanded synthetic scope combined with ultra-high throughput (uHT) matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Copyright © 2018, American Association for the Advancement of Science.

  4. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine.

    Science.gov (United States)

    Madsen, Henrik T; Søgaard, Erik G

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.

  5. Modulated molecular beam mass spectrometry: A generalized expression for the ''reaction product vector'' for linear systems

    International Nuclear Information System (INIS)

    Chang, H.; Weinberg, W.H.

    1977-01-01

    A generalized expression is developed that relates the ''reaction product vector'', epsilon exp(-iphi), to the kinetic parameters of a linear system. The formalism is appropriate for the analysis of modulated molecular beam mass spectrometry data and facilitates the correlation of experimental results to (proposed) linear models. A study of stability criteria appropriate for modulated molecular beam mass spectrometry experiments is also presented. This investigation has led to interesting inherent limitations which have not heretofore been emphasized, as well as a delineation of the conditions under which stable chemical oscillations may occur in the reacting system

  6. Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: A review

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.Sabine, E-mail: s.becker@fz-juelich.de [Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, Jülich D-52425 (Germany); Matusch, Andreas, E-mail: a.matusch@fz-juelich.de [Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich D-52425 (Germany); Wu, Bei, E-mail: b.wu@fz-juelich.de [Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, Jülich D-52425 (Germany)

    2014-07-04

    Highlights: • Bioimaging LA-ICP-MS is established for trace metals within biomedical specimens. • Trace metal imaging allows to study brain function and neurodegenerative diseases. • Laser microdissection ICP-MS was applied to mouse brain hippocampus and wheat root. - Abstract: Bioimaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers the capability to quantify trace elements and isotopes within tissue sections with a spatial resolution ranging about 10–100 μm. Distribution analysis adds to clarifying basic questions of biomedical research and enables bioaccumulation and bioavailability studies for ecological and toxicological risk assessment in humans, animals and plants. Major application fields of mass spectrometry imaging (MSI) and metallomics have been in brain and cancer research, animal model validation, drug development and plant science. Here we give an overview of latest achievements in methods and applications. Recent improvements in ablation systems, operation and cell design enabled progressively better spatial resolutions down to 1 μm. Meanwhile, a body of research has accumulated covering basic principles of the element architecture in animals and plants that could consistently be reproduced by several laboratories such as the distribution of Fe, Cu, Zn in rodent brain. Several studies investigated the distribution and delivery of metallo-drugs in animals. Hyper-accumulating plants and pollution indicator organisms have been the key topics in environmental science. Increasingly, larger series of samples are analyzed, may it be in the frame of comparisons between intervention and control groups, of time kinetics or of three-dimensional atlas approaches.

  7. Detection of Stimulants and Narcotics by Liquid Chromatography-Tandem Mass Spectrometry and Gas Chromatography-Mass Spectrometry for Sports Doping Control.

    Science.gov (United States)

    Ahrens, Brian D; Kucherova, Yulia; Butch, Anthony W

    2016-01-01

    Sports drug testing laboratories are required to detect several classes of compounds that are prohibited at all times, which include anabolic agents, peptide hormones, growth factors, beta-2 agonists, hormones and metabolic modulators, and diuretics/masking agents. Other classes of compounds such as stimulants, narcotics, cannabinoids, and glucocorticoids are also prohibited, but only when an athlete is in competition. A single class of compounds can contain a large number of prohibited substances and all of the compounds should be detected by the testing procedure. Since there are almost 70 stimulants on the prohibited list it can be a challenge to develop a single screening method that will optimally detect all the compounds. We describe a combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) testing method for detection of all the stimulants and narcotics on the World Anti-Doping Agency prohibited list. Urine for LC-MS/MS testing does not require sample pretreatment and is a direct dilute and shoot method. Urine samples for the GC-MS method require a liquid-liquid extraction followed by derivatization with trifluoroacetic anhydride.

  8. Simultaneous determination of vitamins A and D3 in dairy products by liquid chromatography-tandem mass spectrometry (LC-MS/MS)

    Science.gov (United States)

    Barakat, I. S. A.; Hammouri, M. K.; Habib, I.

    2015-10-01

    A potential method for simultaneous determination of vitamin A and vitamin D3 (25- hydroxyvitamin D3) in fresh milk samples is addressed. The method is based on combination of high performance liquid chromatography and mass spectrometry during the course of analysis. The method applied for determination of vitamins A and D3 on eighteen (18) different fresh milk samples using liquid chromatography along with tandem -mass spectrometry. The work describes the suitability of the proposed method for the simultaneous determination of both vitamins using LC-MS/MS as a specific and quantitative technique. The vitamins of milk were separated by C18 Thermo gold column(100mm × 4.6mm × 5 μm) with a flow rate of 1ml/min (using an isocratic mobile phase). The method was validated using duplicate analyses, relative recovery experiment, and comparative analysis with control samples. Liquid- liquid extraction was employed as a pre-concentration step with n-hexane - dichloromethane mixture (90%:10%) as an extraction solvent. The molecular ions (m/z) appeared near 286 and 385nm and for the base peaks were appeared near 255 and 355nm for vitamins A and D3. Good correlation coefficients were obtained, 0.9999 for vitamin D3 and 0.9994 for vitamin A. The limit of detection and the limit of quantification were found to be 0.09ng/ml and 0.54ng/ml for vitamin D3 and 0.32ng/ml and 1.8ng/ml and for vitamin A. The proposed method showed excellent recoveries, about 98% for both vitamins A and D3.

  9. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  10. Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh.

    Science.gov (United States)

    Lewis, Richard J; Yang, Aijun; Jones, Alun

    2009-07-01

    Ciguatera is a significant food borne disease caused by potent polyether toxins known as ciguatoxins, which accumulate in the flesh of ciguateric fish at risk levels above 0.1 ppb. The management of ciguatera has been hindered by the lack of analytical methods to detect and quantify clinically relevant levels of ciguatoxin in easily prepared crude extracts of fish. Here we report a ciguatoxin rapid extraction method (CREM) that allows the rapid preparation of fish flesh extracts for the detection and quantification of ciguatoxin by gradient reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS). CREM-LC/MS/MS delivers a linear response to P-CTX-1 spiked into fish prior to extraction. A similar response was obtained for P-CTX-1 spiked after extraction, indicating >95% extraction efficiency was achieved overall and 85% at the limit of quantification (0.1 ppb). Using this approach, levels >or=0.1 ppb P-CTX-1 could be detected and quantified from an extract of 2g fish flesh, making it suitable as a confirmatory assay for suspect ciguateric carnivorous fish in the Pacific Ocean. The approach is designed to simplify the extraction and analysis of multiple samples per day.

  11. Determination of rivaroxaban in patient's plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS).

    Science.gov (United States)

    Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos

    2017-01-01

    Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.

  12. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate....... The results showed large differences in the chemical composition of the cabin air between the low and high ozone conditions. These differences were more pronounced at the low air exchange condition....

  13. Computer-aided method for identification of major flavone/flavonol glycosides by high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS).

    Science.gov (United States)

    Wang, Zhengfang; Lin, Longze; Harnly, James M; Harrington, Peter de B; Chen, Pei

    2014-11-01

    A new computational tool is proposed here for tentatively identifying major (UV quantifiable) flavone/flavonol glycoside peaks of high performance liquid chromatogram (HPLC)-diode array detection (DAD)-tandem mass spectrometry (MS/MS) profiles based on a MATLAB-based script implementing an in-house algorithm. The HPLC-DAD-MS/MS profiles of red onion, Chinese lettuce, carrot leaf, and celery seed extracts were analyzed by the proposed computer-aided screening method for identifying possible flavone/flavonol glycoside peaks from the HPLC-UV and MS total ion current (TIC) chromatograms. The number of identified flavone/flavonol glycoside peaks of the HPLC-UV chromatograms is four, four, six, and nine for red onion, Chinese lettuce, carrot leaf, and celery seed, respectively. These results have been validated by human(s) experts. For the batch processing of nine HPLC-DAD-MS/MS profiles of celery seed extract, the entire script execution time was within 15 s while manual calculation of only one HPLC-DAD-MS/MS profile by a flavonoid expert could take hours. Therefore, this MATLAB-based screening method is able to facilitate the HPLC-DAD-MS/MS analysis of flavone/flavonol glycosides in plants to a large extent.

  14. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  15. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  16. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  17. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    Directory of Open Access Journals (Sweden)

    Laëtitia Théron

    2016-10-01

    Full Text Available Mass spectrometry imaging (MSI is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  18. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  19. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods.

    Science.gov (United States)

    Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2018-04-01

    Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of nitrated sugar alcohols by atmospheric-pressure chemical-ionization mass spectrometry.

    Science.gov (United States)

    Ostrinskaya, Alla; Kelley, Jude A; Kunz, Roderick R

    2017-02-28

    The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN by mass spectrometry (MS) have not been fully investigated. Atmospheric-pressure chemical-ionization mass spectrometry (APCI-MS) was used to detect ions characteristic of nitrated sugar alcohols. APCI time-of-flight mass spectrometry (APCI-TOF MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) were used for confirmation of each ion assignment. In addition, the use of the chemical ionization reagent dichloromethane was investigated to improve sensitivity and selectivity for detection of MHN, SHN and XPN. All the nitrated sugar alcohols studied followed similar fragmentation pathways in the APCI source. MHN, SHN and XPN were detectable as fragment ions formed by the loss of NO 2 , HNO 2 , NO 3 , and CH 2 NO 2 groups, and in the presence of dichloromethane chlorinated adduct ions were observed. It was determined that in MS/MS mode, chlorinated adducts of MHN and SHN had the lowest limits of detection (LODs), while for XPN the lowest LOD was for the [XPN-NO 2 ] - fragment ion. Partially nitrated analogs of each of the three compounds were also present in the starting materials, and ions attributable to these compounds versus those formed from in-source fragmentation of MHN, SHN, and XPN were distinguished and assigned using liquid chromatography APCI-MS and ESI-MS. The APCI-MS technique provides a selective and sensitive method for the detection of nitrated sugar alcohols. The methods disclosed here will benefit the area of explosives trace detection for counterterrorism and forensics. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  2. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  3. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  4. Tandem mass spectrometry approach for the investigation of the steroidal metabolism: structure-fragmentation relationship (SFR) in anabolic steroids and their metabolites by ESI-MS/MS analysis.

    Science.gov (United States)

    Musharraf, Syed Ghulam; Ali, Arslan; Khan, Naik Tameem; Yousuf, Maria; Choudhary, Muhammad Iqbal; Atta-ur-Rahman

    2013-02-01

    Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC-ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Validation of a confirmatory method for the determination of melamine in egg by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xia Xi; Ding Shuangyang; Li Xiaowei; Gong Xiao; Zhang Suxia; Jiang Haiyang; Li Jiancheng; Shen Jianzhong

    2009-01-01

    A sensitive and reliable method was developed and validated for detection and confirmation of melamine in egg based on gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Trichloroacetic acid solution was used for sample extraction and precipitation of proteins. The aqueous extracts were subjected to solid-phase extraction by mixed-mode reversed-phase/strong cation-exchange cartridges. Using ultra-performance liquid chromatography and electrospray ionization in the positive ion mode, melamine was determined by LC-MS/MS, which was completed in 5 min for each injection. For the GC-MS analysis, extracted melamine was derivatized with N,O-bis(trimethylsilyl)trifluoracetamide prior to selected ion monitoring detection in electron impact mode. The average recovery of melamine from fortified samples ranged from 85.2% to 103.2%, with coefficients of variation lower than 12%. The limit of detection obtained by GC-MS and UPLC-MS/MS was 10 and 5 μg kg -1 , respectively. This validated method was successfully applied to the determination of melamine in real samples from market.

  6. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  7. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    Science.gov (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  8. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  9. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    Science.gov (United States)

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  10. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    Science.gov (United States)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  11. Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry.

    Science.gov (United States)

    Matysik, Silke; Liebisch, Gerhard

    2017-12-01

    A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A proteomics method using immunoaffinity fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) to identify a set of interacting proteins.

    Science.gov (United States)

    Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro

    2018-02-01

    Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  14. Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)

    Science.gov (United States)

    Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...

  15. Multi-element analysis of urine using dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS — A practical application

    Directory of Open Access Journals (Sweden)

    Renata Brodzka

    2013-04-01

    Full Text Available Objectives: The method for the determination of As, Al, Cd, Ni, Pb (toxic elements and Cr, Co, Cu, Fe, Mn, Zn (essential elements in human urine by the use of Inductively Coupled Plasma Mass Spectrometry (quadrupole ICP-MS DRCe Elan, Perkin Elmer with the dynamic reaction cell (DRC was developed. Materials and Methods: The method has been applied for multi-element analysis of the urine of 16 non-exposed healthy volunteers and 27 workers employed in a copper smelter. The analysis was conducted after initial 10-fold dilution of the urine samples with 0,1% nitric acid. Rhodium was used as an internal standard. The method validation parameters such as detection limit, sensitivity, precision were described for all elements. Accuracy of the method was checked by the regular use of certified reference materials ClinCheck®-Control Urine (Recipe as well as by participation of the laboratory in the German External Quality Assessment Scheme (G-EQUAS. Results: The detection limits (DL 3s of the applied method were 0.025, 0.007, 0.002, 0.004, 0.004, 0.086, 0.037, 0.009, 0.016, 0.008, 0.064 (μg/l for Al, As, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, Zn in urine, respectively. For each element linearity with correlation coefficient of at least 0.999 was determined. Spectral interferences from some of the ions were removed using DRC-e with addition of alternative gas: methane for cobalt, copper, cadmium, chromium, iron, manganese, nickel and rhodium, and oxygen for arsenic. Conclusions: The developed method allows to determine simultaneously eleven elements in the urine with low detection limits, high sensitivity and good accuracy. Moreover, the method is appropriate for the assessment of both environmental and occupational exposure.

  16. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives

    DEFF Research Database (Denmark)

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente

    2006-01-01

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, t...... analysis of bromine-containing preservatives in commercially available cosmetic products.......Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material...... at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection...

  17. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    Science.gov (United States)

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  18. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Science.gov (United States)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) - the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m / Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb) > methanol (7.4 ppb) > acetone + propanal (4.2 ppb) > benzene (2.7 ppb) > toluene (1.5 ppb) > isoprene (1.1 ppb) > acetonitrile (1.1 ppb) > C8-aromatics ( ˜ 1 ppb) > furan ( ˜ 0.5 ppb) > C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m / z = 69.070) and furan (m / z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ˜ 9 ppb), acetonitrile ( ˜ 1 ppb) and isoprene ( ˜ 1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m / z = 46.029) and acetamide (m / z

  19. On the use of time-resolved laser-induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) for speciation studies

    International Nuclear Information System (INIS)

    Moulin, C.

    2003-01-01

    Time-resolved laser induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) are used for speciation studies. While the former has been used for long time, the latter is rather new in the field of speciation. These two techniques have different advantages such as sensitivity (especially for TRLIF), selectivity and multielement capabilities (in case of ES-MS). Examples obtained from studies carried out within the CEA are presented. Concerning TRLIF, emphasis is put on uranyl ion speciation in nitric acid to phosphoric acid going through hydroxo complexes. Concerning ES-MS, humic substances identification as well as speciation of cesium, zirconium, thorium and uranyl ions in various complexing media are presented. Comparisons of TRLIF and ES-MS results are made in the case of uranyl hydroxo complexes and favourably compared with OECD data. Trends for these two techniques are also discussed. (orig.)

  20. Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences

    Directory of Open Access Journals (Sweden)

    R. Talbot

    2009-07-01

    Full Text Available A long-term, high time-resolution volatile organic compound (VOC data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS, a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene, oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK plus methacrolein (MACR, methanol, acetone, methyl ethyl ketone (MEK, acetaldehyde, and acetic acid, and aromatic compounds (benzene, toluene, C8 and C9 aromatics. Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of ~0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways.

  1. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia

    OpenAIRE

    P. K. Misztal; E. Nemitz; B. Langford; C. F. Di Marco; G. J. Phillips; C. N. Hewitt; A. R. MacKenzie; S. M. Owen; D. Fowler; M. R. Heal; J. N. Cape

    2011-01-01

    This paper reports the first direct eddy covariance fluxes of reactive biogenic volatile organic compounds (BVOCs) from oil palms to the atmosphere using proton-transfer-reaction mass spectrometry (PTR-MS), measured at a plantation in Malaysian Borneo. At midday, net isoprene flux constituted the largest fraction (84 %) of all emitted BVOCs measured, at up to 30 mg m−2 h−1 over 12 days. By contrast, the sum of its oxidation products methyl vinyl k...

  2. Detailed molecular characterization of castor oil ethoxylates by liquid chromatography multistage mass spectrometry.

    Science.gov (United States)

    Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2011-10-07

    The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Identification of organic nitrates in the NO3 radical initiated oxidation of alpha-pinene by atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Greaves, John; Finlayson-Pitts, Barbara J

    2010-08-01

    The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx.

  4. Flux measurement of methanol, acetaldehyde and other oxygenated VOCs from crop harvesting using proton-transfer-reaction mass spectrometry and surface layer gradient method

    International Nuclear Information System (INIS)

    Lindinger, C.; Jordan, A.; Karl, T.; Guenther, A.; Tschiersch, J.; Ruckerbauer, F.; Paretzke, H.

    2002-01-01

    PTR-MS technique was used to measure fluxes of various VOC's including oxygenates using surface layer gradient method. The VOC concentrations and temperature were measured at heights of about 0.5 m and 3.9 m above ground at field site in St. Johann in Tirol during and after grass cutting (24th and 25th of May 2000) in order to calculate fluxes. The sensible heat flux was obtained by a sonic anemometer with turbulence data analyzer. The major crop in this part of Austria are perennial grasses used for livestock farming. We observed VOC emission fluxes including methanol and acetaldehyde as the major volatile, C 5 and C 6 leaf wound compounds with lesser amounts and traces of acetone and butanone. This composition of VOC's is very similar to that released from slashed pasture grass. At the same time, VOC fluxes were measured with PTR-MS and eddy covariance method. Comparing the flux data of methanol and acetaldehyde of both days have shown very similar results. (author)

  5. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  6. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  7. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  8. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC-MS/MS analysis.

    Science.gov (United States)

    Li, Linqiu; Huang, Mingyuan; Shao, Junli; Lin, Bokun; Shen, Qing

    2017-02-20

    The ultrasonic-assisted extraction (UAE) and ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) have been successfully applied in extracting of six alkaloids from M. cordata. 1-hexyl-3-methylimidazolium tetrafluoroborate ([C 6 MIM][BF 4 ]) aqueous solution was used as extraction solvent. The target analytes in raw material were deposited into a single drop of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C 6 MIM][PF 6 ]), which was in situ formed by mixing [C 6 MIM][BF 4 ] and potassium hexafluorophosphate ([K][PF 6 ]. Afterwards, the extract was analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in multiple-reaction monitoring (MRM) mode. The proposed method was fully validated in terms of linearity (0.9983-0.9992), LOD (0.080ngmL -1 ), LOQ (0.25ngmL -1 ), intra-day precision (MS/MS is powerful and practical for analyzing alkaloids in M. cordata., and it also has great potential for comprehensive quality control of other herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gas-Phase Reactions of Dimethyl Disulfide with Aliphatic Carbanions - A Mass Spectrometry and Computational Study

    Science.gov (United States)

    Franczuk, Barbara; Danikiewicz, Witold

    2018-03-01

    Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. [Figure not available: see fulltext.

  10. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically...... of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify...... some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions....

  11. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  12. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach. © 2013 Wiley Periodicals, Inc.

  13. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  14. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  15. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The use of gas chromatography mass spectrometry (GC MS) as a sensitive and specific technique ... cold flow properties and stability of the fuel to oxidation, peroxidation and polymerization .... determinants of both the physical and chemical ...

  16. A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364

    Energy Technology Data Exchange (ETDEWEB)

    Littrell, BobbiJo R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm. Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that Tyrosine 364

  17. Application of ion mobility-mass spectrometry to microRNA analysis.

    Science.gov (United States)

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  18. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  19. Identification of reaction products from reactions of free chlorine with the lipid-regulator gemfibrozil.

    Science.gov (United States)

    Krkošek, Wendy H; Koziar, Stephen A; White, Robert L; Gagnon, Graham A

    2011-01-01

    High global consumption rates have led to the occurrence of pharmaceutically active compounds (PhACs) in wastewater. The use of chlorine to disinfect wastewater prior to release into the environment may convert PhACs into uncharacterized chlorinated by-products. In this investigation, chlorination of a common pharmaceutical, the antihyperlipidemic agent gemfibrozil, was documented. Gemfibrozil (2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoic acid) was reacted with sodium hypochlorite and product formation was monitored by gas chromatography-mass spectrometry (GC-MS). The incorporation of one, two or three chlorine atoms into the aromatic region of gemfibrozil was demonstrated using negative-ion electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Further analysis using (1)H nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as 4'-ClGem (5-(4-chloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid) 4',6'-diClGem (5-(4,6-dichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), and 3',4',6'-triClGem (5-(3,4,6-trichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), products consistent with electrophilic aromatic substitution reactions. The rapid reaction of gemfibrozil with free chlorine at pH conditions relevant to water treatment indicates that a mixture of chlorinated gemfibrozils is likely to be found in wastewater disinfected with chlorine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ejnik, John W. [Northern Michigan University, Chemistry Department, Marquette, MI (United States); Todorov, Todor I.; Mullick, Florabel G.; Centeno, Jose A. [Armed Forces Institute of Pathology (AFIP), Division of Biophysical Toxicology, Washington, DC (United States); Squibb, Katherine; McDiarmid, Melissa A. [University of Maryland, School of Medicine, Baltimore, MD (United States)

    2005-05-01

    Urine uranium concentrations are the best biological indicator for identifying exposure to depleted uranium (DU). Internal exposure to DU causes an increased amount of urine uranium and a decreased ratio of {sup 235}U/{sup 238}U in urine samples, resulting in measurements that vary between 0.00725 and 0.002 (i.e., natural and depleted uranium's {sup 235}U/{sup 238}U ratios, respectively). A method based on inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) was utilized to identify DU in urine by measuring the quantity of total U and the {sup 235}U/{sup 238}U ratio. The quantitative analysis was achieved using {sup 233}U as an internal standard. The analysis was performed both with and without the reaction gas oxygen. The reaction gas converted ionized {sup 235}U{sup +} and {sup 238}U{sup +} into {sup 235}UO{sub 2}{sup +} (m/z=267) and {sup 238}UO{sub 2}{sup +} (m/z=270). This conversion was determined to be over 90% efficient. A polyatomic interference at m/z 234.8 was successfully removed from the {sup 235}U signal under either DRC operating conditions (with or without oxygen as a reaction gas). The method was validated with 15 urine samples of known uranium compositions. The method detection limit for quantification was determined to be 0.1 pg U mL{sup -1} urine and an average coefficient of variation (CV) of 1-2% within the sample measurements. The method detection limit for determining {sup 235}U/{sup 238}U ratio was 3.0 pg U mL{sup -1} urine. An additional 21 patient samples were analyzed with no information about medical history. The measured {sup 235}U/{sup 238}U ratio within the urine samples correctly identified the presence or absence of internal DU exposure in all 21 patients. (orig.)

  1. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    L. Kaser

    2013-03-01

    Full Text Available Volatile organic compound (VOC mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS, a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS, a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA, a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS and a Fiber Laser-Induced Fluorescence Instrument (FILIF. The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC using PTR-(TOF-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study

  2. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  3. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    International Nuclear Information System (INIS)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun; Fang, Hua; Zheng, Zhen-Yu; Gao, Xiang; Zhao, Yu-Fen; Wu, Zhen

    2015-01-01

    Highlights: • ESI-MS n , HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS n were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS 2 spectra of [M + Na] + ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C 3 H 7 PO 3 (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C 16 H 20 O 2 (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins

  4. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Fang, Hua [The Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005 (China); Zheng, Zhen-Yu [College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Gao, Xiang [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Zhao, Yu-Fen [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Wu, Zhen, E-mail: wuzhen@xmu.edu.cn [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China)

    2015-01-01

    Highlights: • ESI-MS{sup n}, HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS{sup n} were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS{sup 2} spectra of [M + Na]{sup +} ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C{sub 3}H{sub 7}PO{sub 3} (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C{sub 16}H{sub 20}O{sub 2} (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins.

  5. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    Science.gov (United States)

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  6. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products.

    Science.gov (United States)

    Wenzl, Thomas; Karasek, Lubomir; Rosen, Johan; Hellenaes, Karl-Erik; Crews, Colin; Castle, Laurence; Anklam, Elke

    2006-11-03

    A European inter-laboratory study was conducted to validate two analytical procedures for the determination of acrylamide in bakery ware (crispbreads, biscuits) and potato products (chips), within a concentration range from about 20 microg/kg to about 9000 microgg/kg. The methods are based on gas chromatography-mass spectrometry (GC-MS) of the derivatised analyte and on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) of native acrylamide. Isotope dilution with isotopically labelled acrylamide was an integral part of both methods. The study was evaluated according to internationally accepted guidelines. The performance of the HPLC-MS/MS method was found to be superior to that of the GC-MS method and to be fit-for-the-purpose.

  7. Determination of Grayanotoxins from Rhododendron brachycarpum in Dietary Supplements and Homemade Wine by Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Hwang, Taeik; Noh, Eunyoung; Jeong, Ji Hye; Park, Sung-Kwan; Shin, Dongwoo; Kang, Hoil

    2018-02-28

    A sensitive and specific high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of grayanotoxins I and III in dietary supplements and homemade wine. Grayanotoxins I and III were successfully extracted using solid-phase extraction cartridges, characterized by LC-QTOF-MS, and quantitated by LC-MS/MS. The LC-MS/MS calibration curves were linear over concentrations of 10-100 ng/mL (grayanotoxin I) and 20-400 ng/mL (grayanotoxin III). Grayanotoxins I and III were found in 51 foodstuffs, with quantitative determinations revealing total toxin concentrations of 18.4-101 000 ng/mL (grayanotoxin I) and 15.3-56 000 ng/mL (grayanotoxin III). The potential of the validated method was demonstrated by successful quantitative analysis of grayanotoxins I and III in dietary supplements and homemade wine; the method appears suitable for the routine detection of grayanotoxins I and III from Rhododendron brachycarpum.

  8. Quantitative Determination of Perfluorochemicals and Fluorotelomer Alcohols in Plants from Biosolid-Amended Fields using LC/MS/MS and GC/MS

    Science.gov (United States)

    Analytical methods for determining perfluorochemicals (PFCs) and fluorotelomer alcohols (FTOHs) in plants using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) were developed, and applied to quantify a suite of analytes i...

  9. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  10. A Century of Progress in Molecular Mass Spectrometry

    Science.gov (United States)

    McLafferty, Fred W.

    2011-07-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  11. Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration.

    Science.gov (United States)

    Decroo, Corentin; Colson, Emmanuel; Demeyer, Marie; Lemaur, Vincent; Caulier, Guillaume; Eeckhaut, Igor; Cornil, Jérôme; Flammang, Patrick; Gerbaux, Pascal

    2017-05-01

    Saponin analysis by mass spectrometry methods is nowadays progressively supplementing other analytical methods such as nuclear magnetic resonance (NMR). Indeed, saponin extracts from plant or marine animals are often constituted by a complex mixture of (slightly) different saponin molecules that requires extensive purification and separation steps to meet the requirement for NMR spectroscopy measurements. Based on its intrinsic features, mass spectrometry represents an inescapable tool to access the structures of saponins within extracts by using LC-MS, MALDI-MS, and tandem mass spectrometry experiments. The combination of different MS methods nowadays allows for a nice description of saponin structures, without extensive purification. However, the structural characterization process is based on low kinetic energy CID which cannot afford a total structure elucidation as far as stereochemistry is concerned. Moreover, the structural difference between saponins in a same extract is often so small that coelution upon LC-MS analysis is unavoidable, rendering the isomeric distinction and characterization by CID challenging or impossible. In the present paper, we introduce ion mobility in combination with liquid chromatography to better tackle the structural complexity of saponin congeners. When analyzing saponin extracts with MS-based methods, handling the data remains problematic for the comprehensive report of the results, but also for their efficient comparison. We here introduce an original schematic representation using sector diagrams that are constructed from mass spectrometry data. We strongly believe that the proposed data integration could be useful for data interpretation since it allows for a direct and fast comparison, both in terms of composition and relative proportion of the saponin contents in different extracts. Graphical Abstract A combination of state-of-the-art mass spectrometry methods, including ion mobility spectroscopy, is developed to afford a

  12. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    Science.gov (United States)

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the

  13. The Spatial Distribution of Alkaloids in Psychotria prunifolia (Kunth) Steyerm and Palicourea coriacea (Cham.) K. Schum Leaves Analysed by Desorption Electrospray Ionisation Mass Spectrometry Imaging

    DEFF Research Database (Denmark)

    Kato, Lucilia; Moraes, Aline Pereira; de Oliveira, Cecília Maria Alves

    2018-01-01

    INTRODUCTION: Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) has become...... analyses. METHODOLOGY: Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI-MSI via tissue imprints on a porous Teflon surface....... Relative quantitation of the four alkaloids was obtained by HPLC-MS/MS analysis performed using multiple-reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. RESULTS: Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10...

  14. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid o......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  15. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS).

    Science.gov (United States)

    Collins, Thomas S; Zweigenbaum, Jerry; Ebeler, Susan E

    2014-11-15

    Commercial samples of 63 American whiskeys, including bourbon whiskeys, Tennessee whiskeys, rye whiskeys and other blended whiskeys were analysed using ultra high pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS). The non-volatile composition of the whiskeys was used to model differences among the samples using discriminant analysis. The blended American whiskeys were readily distinguished from the remaining types. Additionally, most Tennessee whiskeys could be differentiated from bourbon and rye whiskeys. Similarly, younger (8 years old) whiskeys could be separated. The compounds important for differentiating among these whiskeys included wood derived phenolic compounds, lignan derived compounds and several C8 and larger lipids. A number of additional compounds differentiated the whiskeys but could not be identified using MS and MS/MS data alone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Simultaneous Determination of Ten Constituents in Chaiqin Qingning Capsule by High-performance Liquid Chromatography Coupled with Triple-quadrupole Mass Spectrometry.

    Science.gov (United States)

    Li, Ting Yu; Huo, Xiao Kui; Zheng, Lu; Wang, Chao; Cong, Hai Jian; Xiang, Ting; Zhang, Lin; Zhang, Bao Jing; Huang, Shan Shan; Wu, Bin; Li, Xin Yu

    2017-01-01

    Chaiqin Qingning Capsule (CQQNC) was a prescription of Traditional Chinese Medicine with the effects of clearing away heat and removing toxin, harmonizing the exterior and interior, it was widely used in Asian, for example, China and Japan, different batches of the raws materials and different processing time may be the vital factor which raised a challenge to control the quality of the CQQNC. In this experiment, a high-performance liquid chromatography-mass spectrometry/MS (HPLC-MS/MS) method was developed to simultaneously determine ten bioactive components for the quality control of CQQNC. Chromatographic separation was achieved using an XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 μm) with a mobile phase composed of 10 mm aqueous ammonium acetate and acetonitrile using a gradient elution in 20 min. This study was conducted by multiple reaction monitoring mode through electrospray ionization resource with a negative ionization mode. The established method was validated with good performance of precision, accuracy, stability, and reproducibility and was utilized to simultaneously quantify ten constituents of CQQNC obtained from seven different batches. It is the first time to report the rapid and simultaneous analysis of the ten compounds in CQQNC by HPLC-MS/MS and apply to determine 10 constituents in 7 batches of CQQNC bought from drug store in china. This method could be considered as good quality criteria to control the quality of CQQNC. In this paper, a simple, specific, and rapid high-performance liquid chromatogram coupled with triple-quadrupole mass spectrometry method for simultaneous quantification of ten constituents in Chaiqin Qingning Capsule has been developed for the first time. This method could be considered as good quality criteria to control the quality of CQQNC. Abbreviations used: CHM: Chinese herbal medicine; TCM: Traditional Chinese Medicine; CQQNC: Triple-quadrupole mass spectrometry Chaiqin Qingning Capsules; HPLC-MS/MS: High liquid

  17. Simultaneous Determination of Ten Constituents in Chaiqin Qingning Capsule by High-performance Liquid Chromatography Coupled with Triple-quadrupole Mass Spectrometry

    Science.gov (United States)

    Li, Ting Yu; Huo, Xiao Kui; Zheng, Lu; Wang, Chao; Cong, Hai Jian; Xiang, Ting; Zhang, Lin; Zhang, Bao Jing; Huang, Shan Shan; Wu, Bin; Li, Xin Yu

    2017-01-01

    Background: Chaiqin Qingning Capsule (CQQNC) was a prescription of Traditional Chinese Medicine with the effects of clearing away heat and removing toxin, harmonizing the exterior and interior, it was widely used in Asian, for example, China and Japan, different batches of the raws materials and different processing time may be the vital factor which raised a challenge to control the quality of the CQQNC. Experimental Methods: In this experiment, a high-performance liquid chromatography-mass spectrometry/MS (HPLC-MS/MS) method was developed to simultaneously determine ten bioactive components for the quality control of CQQNC. Chromatographic separation was achieved using an XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 μm) with a mobile phase composed of 10 mm aqueous ammonium acetate and acetonitrile using a gradient elution in 20 min. This study was conducted by multiple reaction monitoring mode through electrospray ionization resource with a negative ionization mode. Results: The established method was validated with good performance of precision, accuracy, stability, and reproducibility and was utilized to simultaneously quantify ten constituents of CQQNC obtained from seven different batches. Conclusion: It is the first time to report the rapid and simultaneous analysis of the ten compounds in CQQNC by HPLC-MS/MS and apply to determine 10 constituents in 7 batches of CQQNC bought from drug store in china. This method could be considered as good quality criteria to control the quality of CQQNC. SUMMARY In this paper, a simple, specific, and rapid high-performance liquid chromatogram coupled with triple-quadrupole mass spectrometry method for simultaneous quantification of ten constituents in Chaiqin Qingning Capsule has been developed for the first time. This method could be considered as good quality criteria to control the quality of CQQNC. Abbreviations used: CHM: Chinese herbal medicine; TCM: Traditional Chinese Medicine; CQQNC: Triple-quadrupole mass

  18. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  19. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul

    2018-05-01

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.

  20. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine.

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul

    2018-05-07

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.

  1. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  2. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification.

    Science.gov (United States)

    Shibayama, Sachie; Fujii, Shin-Ichiro; Inagaki, Kazumi; Yamazaki, Taichi; Takatsu, Akiko

    2016-10-14

    Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) with formic acid hydrolysis was established for the accurate quantification of λDNA. The over-decomposition of nucleobases in formic acid hydrolysis was restricted by optimizing the reaction temperature and the reaction time, and accurately corrected by using deoxynucleotides (dNMPs) and isotope-labeled dNMPs as the calibrator and the internal standard, respectively. The present method could quantify λDNA with an expanded uncertainty of 4.6% using 10fmol of λDNA. The analytical results obtained with the present method were validated by comparing with the results of phosphate-base quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed good agreement with each other. We conclude that the formic acid hydrolysis/LC-IDMS method can quantify λDNA accurately and is promising as the primary method for the certification of DNA as reference material. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  4. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    Science.gov (United States)

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    Science.gov (United States)

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. Crown Copyright © 2013 Published by

  6. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Madec, Edwige; Stensballe, Allan; Kjellström, Sven

    2003-01-01

    We have shown recently that PrkC, which is involved in developmental processes in Bacillus subtilis, is a Ser/Thr kinase with features of the receptor kinase family of eukaryotic Hanks kinases. In this study, we expressed and purified from Escherichia coli the cytoplasmic domain of PrkC containing...... the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high...... mass accuracy electrospray tandem mass spectrometry (LC-MS/MS) and nanoelectrospray tandem mass spectrometry, we identified seven phosphorylated threonine and one serine residue in PrkCc. All the corresponding residues were replaced by systematic site-directed mutagenesis and the purified mutant...

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  8. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  9. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath

    Czech Academy of Sciences Publication Activity Database

    Spesyvyi, Anatolii; Smith, D.; Španěl, Patrik

    2015-01-01

    Roč. 87, č. 24 (2015), s. 12151-12160 ISSN 0003-2700 R&D Projects: GA ČR GA13-28882S Institutional support: RVO:61388955 Keywords : TRACE GAS-ANALYSIS * SIFT-MS * PTR-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.886, year: 2015

  10. Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS system with timed and highly selective reaction monitoring.

    Science.gov (United States)

    Zhao, Zhiyong; Liu, Na; Yang, Lingchen; Deng, Yifeng; Wang, Jianhua; Song, Suquan; Lin, Shanhai; Wu, Aibo; Zhou, Zhenlei; Hou, Jiafa

    2015-09-01

    Mycotoxins have the potential to enter the human food chain through carry-over of contaminants from feed into animal-derived products. The objective of the study was to develop a reliable and sensitive method for the analysis of 30 mycotoxins in animal feed and animal-derived food (meat, edible animal tissues, and milk) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the study, three extraction procedures, as well as various cleanup procedures, were evaluated to select the most suitable sample preparation procedure for different sample matrices. In addition, timed and highly selective reaction monitoring on LC-MS/MS was used to filter out isobaric matrix interferences. The performance characteristics (linearity, sensitivity, recovery, precision, and specificity) of the method were determined according to Commission Decision 2002/657/EC and 401/2006/EC. The established method was successfully applied to screening of mycotoxins in animal feed and animal-derived food. The results indicated that mycotoxin contamination in feed directly influenced the presence of mycotoxin in animal-derived food. Graphical abstract Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS.

  11. Simultaneous determination of amoxicillin and clavulanic acid in the human plasma by high performance liquid chromatography: Mass spectrometry (UPLC/MS

    Directory of Open Access Journals (Sweden)

    Ćirić Biljana

    2010-01-01

    Full Text Available Background/Aim. Quantitative analysis of amoxicillin and clavulanic acid in biological matrices requires sensitive and specific methods which allow determination of therapeutic concentration in μg/mL range. Analytical methods for determination of their concentrations in body fluids described in literature include high performance liquid chromatography coupled to UV detector (HPLC-UV and liquid chromatography-mass spectrometry (LC-MS. The aim of this study was to develop sensitive and specific ultra performance liquid chromatography/ mass spectrometry (UPLC/MS method which could be used for the spectral identification and quantification of the low concentrations of amoxicillin and clavulanic acid in the human plasma. Method. A sensitive and specific UPLC/MS method for amoxicillin and clavulanic acid determination was developed in this study. The samples were taken from the adult healthy volunteers receiving per os one tablet of amoxicillin (875 mg in combination with clavulanic acid (125 mg. Results. Plasma samples were pretreated by direct deproteinization with perchloric acid. Quantification limit of 0.01 μg/ml for both amoxicillin and clavulanic acid was achieved. The method was reproducible day by day (RSD < 7 %. Analytical recoveries for amoxicillin ranged from 98.82% to 100.9% (for concentrations of 1, 5 and 20 μg/mL, and recoveries for clavulanic acid were 99,89% to 100.1% (for concentrations of 1, 2 and 5 μg/mL. This assay was successfully applied to a pilot pharmacokinetic study in healthy volunteers after a single-oral administration of amoxicillin/ clavulanic combination. The determined plasma concentrations of both amoxicillin and clavulanic acid were in the range of the expected values upon the literature data for HPLC-UV and LC-MS methods. Conclusion. The described method provided a few advantages comparing with LC/MS-MS method. The method is faster using running time of 5 minute, has lower limit of quantification (LOQ and it

  12. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Henn, Alessandra S.; Rondan, Filipe S.; Mesko, Marcia F.; Mello, Paola A.; Perez, Magali; Armstrong, Joseph; Bullock, Liam A.; Parnell, John; Feldmann, Joerg; Flores, Erico M. M.

    2018-05-01

    A method is proposed for the determination of selenium at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry (CRC-ICP-MS). Samples were decomposed by high pressure microwave-assisted wet digestion (MAWD) using 250 mg of coal, a mixture of 5 mL of 14.4 mol L-1 HNO3 and 1 mL of 40% HF and 70 min of heating program (200 °C and 40 bar). Hydrogen gas used in the collision/reaction cell was investigated to minimize the argon-based interferences at m/z 77, 78 and 80. The rejection parameter (RPq) and the H2 gas flow rate were set to 0.45 and 4.8 mL min-1, respectively. The use of H2 in the cell resulted in other polyatomic interferences, such as 76Ge1H+, 79Br1H+ and 81Br1H+, which impaired Se determination using 77Se, 80Se and 82Se isotopes, thus Se determination was carried out by monitoring only 78Se isotope. Selenium was determined in certified reference materials of coal (NIST 1635 and SARM 20) and an agreement better than 95% was observed between the results obtained by CRC-ICP-MS and the certified values. Under optimized conditions, the instrumental limit of detection was 0.01 μg L-1 and the method limit of detection was 0.01 μg g-1, which was suitable for Se determination at very low concentration in coal.

  13. LC-MS (/MS) in clinical toxicology screening methods.

    Science.gov (United States)

    Viette, Véronique; Hochstrasser, Denis; Fathi, Marc

    2012-01-01

    Toxicological screening is the analysis of biological samples to detect and identify unknown compounds. The high selectivity and sensitivity of liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) technology provide an attractive alternative to the current methods (LC-UV, GC/MS, etc.). For these reasons, an increasing number of applications are being published. This paper is a brief overview of LC-MS(/MS) screening methods developed for clinical toxicology in recent years. Various sample treatments, chromatographic separations and detection by mass spectrometry can be combined to obtain screening methods adapted to the constraints and needs of clinical toxicology laboratories. Currently the techniques are in the hands of specialists, mainly in academic institutions. However, the evolution in technology should allow application of these techniques as a tool in toxicology laboratories, thus allowing a more widespread exploitation of their potential.

  14. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: laurence.charles@univ-provence.fr [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France)

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  15. [Rapid screening the alkaloids of poppy shell in hot pot condiment, beef noodle soup and seasoning by direct analysis in real time-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Baile; Gao, Lihong; Xie, Yingshuang; Zhou, Wei; Chen, Xiaofeng; Lei, Chunni; Zhang, Huan

    2017-07-08

    A direct analysis in real time tandem mass spectrometry (DART-MS/MS) method was established for quickly screening five illegally added alkaloids of poppy shell from the hot pot condiment, beef noodle soup and seasoning. The samples were extracted and purified by acetonitrile, and then injected under the conditions of ionization temperature of 300℃, grid electrode voltage of 150 V and sampling rate of 0.8 mm/s using DART in the positive ion mode. The determination was conducted by tandem mass spectrometry in positive ESI mode under multiple reaction monitoring (MRM) mode. The method is simple and rapid, and can meet the requirement of rapid screening and analysis of large quantities of samples.

  16. Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry (IC-ESI-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    El Aribi, Houssain [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)]. E-mail: houssain.aribi@sciex.com; Le Blanc, Yves J.C. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada); Antonsen, Stephen [Dionex Canada Ltd., 1540 Cornwall Road, Oakville, Ont., L6J 7W5 (Canada); Sakuma, Takeo [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)

    2006-05-10

    A new IC-ESI-MS/MS method, with simple sample preparation procedure, has been developed for quantification and confirmation of perchlorate (ClO{sub 4} {sup -}) anions in water, fresh and canned food, wine and beer samples at low part-per-trillion (ng l{sup -1}) levels. To the best of our knowledge, this is the first time an analytical method is used for determination of perchlorate in wine and beer samples. The IC-ESI-MS/MS instrumentation consisted of an ICS-2500 ion chromatography (IC) system coupled to either an API 2000{sup TM} or an API 3200{sup TM} mass spectrometer. The IC-ESI-MS/MS system was optimized to monitor two pairs of precursor and fragment ion transitions, i.e., multiple reaction monitoring (MRM). All samples had oxygen-18 isotope labeled perchlorate internal standard (ISTD) added prior to extraction. Chlorine isotope ratio ({sup 35}Cl/{sup 37}Cl) was used as a confirmation tool. The transition of {sup 35}Cl{sup 16}O{sub 4} {sup -} (m/z 98.9) into {sup 35}Cl{sup 16}O{sub 3} {sup -} (m/z 82.9) was monitored for quantifying the main analyte; the transition of {sup 37}Cl{sup 16}O{sub 4} {sup -} (m/z 100.9) into {sup 37}Cl{sup 16}O{sub 3} {sup -} (m/z 84.9) was monitored for examining a proper isotopic abundance ratio of {sup 35}Cl/{sup 37}Cl; and the transition of {sup 35}Cl{sup 18}O{sub 4} {sup -} (m/z 107.0) into {sup 35}Cl{sup 18}O{sub 3} {sup -} (m/z 89.0) was monitored for quantifying the internal standard. The minimum detection limit (MDL) for this method in de-ionized water is 5 ng l{sup -1} (ppt) using the API 2000{sup TM} mass spectrometer and 0.5 ng l{sup -1} using the API 3200{sup TM} mass spectrometer. Over 350 food and beverage samples were analyzed mostly in triplicate. Except for four, all samples were found to contain measurable amounts of perchlorate. The levels found ranged from 5 ng l{sup -1} to 463.5 {+-} 6.36 {mu}g kg{sup -1} using MRM 98.9 {sup {yields}} 82.9 and 100 {mu}l injection.

  17. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    Science.gov (United States)

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs. © 2015 Wiley Periodicals, Inc.

  18. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  19. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology.

    Science.gov (United States)

    Peters, Frank T

    2011-01-01

    Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) has become increasingly important in clinical and forensic toxicology as well as doping control and is now a robust and reliable technique for routine analysis in these fields. In recent years, methods for LC-MS(/MS)-based systematic toxicological analysis using triple quadrupole or ion trap instruments have been considerably improved and a new screening approach based on high-resolution MS analysis using benchtop time-of-flight MS instruments has been developed. Moreover, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in various biomatrices have been published. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2006. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  1. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  2. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    International Nuclear Information System (INIS)

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M.

    2013-01-01

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O 3 -MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O 3 -MS allowed double bond localization in lipid mixtures. ► LC/O 3 -MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O 3 -MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O 3 -MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O 3 -MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O 3 -MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures

  3. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  4. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.

  5. Mass Spectrometry Applications for Toxicology

    OpenAIRE

    Mbughuni, Michael M.; Jannetto, Paul J.; Langman, Loralie J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used i...

  6. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS data. Application and comparative study of selected tools

    Directory of Open Access Journals (Sweden)

    O'Callaghan Sean

    2012-05-01

    Full Text Available Abstract Background Gas chromatography–mass spectrometry (GC-MS is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX, noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI, allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS. Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs

  7. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  8. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  9. Quantification of isoflavones in coffee by using solid phase extraction (SPE) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    Science.gov (United States)

    Caprioli, Giovanni; Navarini, Luciano; Cortese, Manuela; Ricciutelli, Massimo; Torregiani, Elisabetta; Vittori, Sauro; Sagratini, Gianni

    2016-09-01

    A new method for extracting isoflavones from espresso coffee (EC) was coupled with high-performance liquid chromatography-tandem mass spectrometry (MS/MS) for the first time to analyse five isoflavones, which included both a glycosilated form, genistin and the aglycons daidzein, genistein, formononetin and biochanin A. Isoflavones were extracted from coffee samples using methanol, stored in a freezer overnight to precipitate proteic or lipidic residues and purified on SPE C18 cartridges before high-performance liquid chromatography-MS/MS analysis. The recovery percentages obtained by spiking the matrix at concentrations of 10 and 100 µg l(-1) with a standard mixture of isoflavones were in the range of 70 to 104%. The limits of detection and limits of quantification were in the range of 0.015-0.3 µg l(-1) and 0.05-1 µg l(-1) , respectively. Once validated, the method was used to analyze the concentrations of isoflavones in six ECs and ten ground coffee samples. Only formononetin and biochanin A were found, and their respective concentrations ranged from 0.36 to 0.41 µg l(-1) and from 0.58 to 3.26 µg l(-1) in ECs and from 0.36 to 4.27 µg kg(-1) and from 0.71 to 3.95 µg kg(-1) in ground coffees. This method confirms the high specificity and selectivity of MS/MS systems for detecting bioactives in complex matrices such as coffee.Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    OpenAIRE

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of post...

  11. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  12. A Unique (3+2) Annulation Reaction between Meldrum's Acid and Nitrones: Mechanistic Insight by ESI-IMS-MS and DFT Studies.

    Science.gov (United States)

    Lespes, Nicolas; Pair, Etienne; Maganga, Clisy; Bretier, Marie; Tognetti, Vincent; Joubert, Laurent; Levacher, Vincent; Hubert-Roux, Marie; Afonso, Carlos; Loutelier-Bourhis, Corinne; Brière, Jean-François

    2018-03-15

    The fragile intermediates of the domino process leading to an isoxazolidin-5-one, triggered by unique reactivity between Meldrum's acid and an N-benzyl nitrone in the presence of a Brønsted base, were determined thanks to the softness and accuracy of electrospray ionization mass spectrometry coupled to ion mobility spectrometry (ESI-IMS-MS). The combined DFT study shed light on the overall organocatalytic sequence that starts with a stepwise (3+2) annulation reaction that is followed by a decarboxylative protonation sequence encompassing a stereoselective pathway issue. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  14. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  15. Analytical and clinical performance of the new Fujirebio 25-OH vitamin D assay, a comparison with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and three other automated assays.

    Science.gov (United States)

    Saleh, Lanja; Mueller, Daniel; von Eckardstein, Arnold

    2016-04-01

    We evaluated the analytical and clinical performance of the new Lumipulse® G 25-OH vitamin D assay from Fujirebio, and compared it to a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and three other commercial automated assays. Total 25 hydroxy vitamin D (25(OH)D) levels were measured in 100 selected serum samples from our routine analysis with Fujirebio 25(OH)D assay. The results were compared with those obtained with LC-MS/MS and three other automated 25(OH)D assays (Abbott, Beckman, and Roche). The accuracy of each assay tested was evaluated against a Labquality reference serum panel for 25(OH)D (Ref!25OHD; University of Ghent). Intra- and inter-day imprecision of the Fujirebio 25(OH)D assay was Lumipulse G 25-OH vitamin D assay from Fujirebio demonstrated a good correlation with LC-MS/MS and some immunoassays. The performance of the assay is well-suited for routine 25(OH)D measurement in clinical serum samples. A correction for the observed negative bias vs. LC-MS/MS could be considered.

  16. Measurement of tissue azithromycin levels in self-collected vaginal swabs post treatment using liquid chromatography and tandem mass spectrometry (LC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Lenka A Vodstrcil

    Full Text Available Azithromycin is recommended for the treatment of uncomplicated urogenital chlamydia infection although the standard 1gram dose sometimes fails to eradicate the infection (treatment failure. One hypothesis proposed for treatment failure has been insufficient levels of the antibiotic at the site of infection. We developed an assay using liquid chromatography and tandem mass spectrometry (LC-MS/MS to measure azithromycin concentration in high-vaginal swabs and monitor how concentration changes over time following routine azithromycin treatment.Azithromycin concentrations were measured in two groups of women either within the first 24h of taking a 1g dose (N = 11 or over 9 days (N = 10. Azithromycin concentrations were normalised to an internal standard (leucine enkephalin, and the bulk lipid species phosphatidylcholine [PC(34:1], using an Agilent 6490 triple quadrupole instrument in positive ionisation mode. The abundances of azithromycin, PC(34:1, and leu-enkephalin were determined by multiple reaction monitoring and absolute levels of azithromycin estimated using standard curves prepared on vaginal specimens.Vaginal azithromycin concentrations of women were rapidly obtained after 5h post-treatment (mean concentration = 1031mcg/mg of lipid, range = 173-2693mcg/mg. In women followed for 9 days, peak concentrations were highest after day 2 (mean concentration = 2206mcg/mg, range = 721-5791mcg/mg, and remained high for at least 9 days with a mean concentration of 384mcg/mg (range = 139-1024mcg/mg on day 9.Our study confirmed that a single 1g dose of azithromycin is rapidly absorbed and remains in the vagina at relatively high levels for at least a week, suggesting that poor antibiotic absorption is unlikely to be an explanation for treatment failure.

  17. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS.

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten

    2016-02-01

    Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  19. Fluxes of biogenic volatile organic compounds above temperate Norway spruce forest of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Juráň, Stanislav; Pallozi, E.; Guidolotti, G.; Fares, S.; Šigut, Ladislav; Calfapietra, Carlo; Alivernini, A.; Savi, F.; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Urban, Otmar

    2017-01-01

    Roč. 232, JAN (2017), s. 500-513 ISSN 0168-1923 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13031; GA MŠk(CZ) LM2015061; GA ČR(CZ) GA13-28093S Institutional support: RVO:67179843 ; RVO:68081715 Keywords : Monoterpenes * Isoprene * Proton-transfer-reaction-time-of-flight mass spectrometry (PTR-TOF-MS) * Fluxes * Lagrangian model * MEGAN Subject RIV: EH - Ecology, Behaviour; CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Environmental sciences (social aspects to be 5.7); Analytical chemistry (UIACH-O) Impact factor: 3.887, year: 2016

  20. In vitro and in vivo volatile flavour analysis of red kidney beans by proton transfer reaction-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Dings, L.; Buhr, K.; Posthumus, M.A.

    2004-01-01

    The volatile flavour released from red kidney beans was evaluated in vitro (in a model mouth system) and in vivo (in-nose). The dynamic release of the volatile flavour compounds was analysed by proton transfer reaction¿mass spectrometry. The flavour compounds were identified by gas

  1. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    Science.gov (United States)

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  2. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.

    Science.gov (United States)

    Bouchal, Pavel; Roumeliotis, Theodoros; Hrstka, Roman; Nenutil, Rudolf; Vojtesek, Borivoj; Garbis, Spiros D

    2009-01-01

    The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p biomarker discovery program.

  3. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  4. Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism

    DEFF Research Database (Denmark)

    Dugstad, Helene Bonkerud; Petersen, Nickolaj J.; Jensen, Henrik

    2014-01-01

    A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction...... (soft extraction). Soft extraction was mandatory in order not to affect the reaction kinetics by sample composition changes induced by the EME-probe. The EME-probe/MS-system was used to establish kinetic profiles for the in vitro metabolism of promethazine, amitriptyline and imipramine as model...

  5. Receptor-based high-throughput screening and identification of estrogens in dietary supplements using bioaffinity liquid-chromatography ion mobility mass spectrometry.

    Science.gov (United States)

    Aqai, Payam; Blesa, Natalia Gómez; Major, Hilary; Pedotti, Mattia; Varani, Luca; Ferrero, Valentina E V; Haasnoot, Willem; Nielen, Michel W F

    2013-11-01

    A high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of recombinant human estrogen receptor α (ERα) ligands in dietary supplements. For screening, a semi-automated mass spectrometric ligand binding assay was developed applying (13)C2, (15) N-tamoxifen as non-radioactive label and fast ultra-high-performance-liquid chromatography-electrospray ionisation-triple-quadrupole-MS (UPLC-QqQ-MS), operated in the single reaction monitoring mode, as a readout system. Binding of the label to ERα-coated paramagnetic microbeads was inhibited by competing estrogens in the sample extract yielding decreased levels of the label in UPLC-QqQ-MS. The label showed high ionisation efficiency in positive electrospray ionisation (ESI) mode, so the developed BioMS approach is able to screen for estrogens in dietary supplements despite their poor ionisation efficiency in both positive and negative ESI modes. The assay was performed in a 96-well plate, and all these wells could be measured within 3 h. Estrogens in suspect extracts were identified by full-scan accurate mass and collision-cross section (CCS) values from a UPLC-ion mobility-Q-time-of-flight-MS (UPLC-IM-Q-ToF-MS) equipped with a novel atmospheric pressure ionisation source. Thanks to the novel ion source, this instrument provided picogram sensitivity for estrogens in the negative ion mode and an additional identification point (experimental CCS values) next to retention time, accurate mass and tandem mass spectrometry data. The developed combination of bioaffinity screening with UPLC-QqQ-MS and identification with UPLC-IM-Q-ToF-MS provides an extremely powerful analytical tool for early warning of ERα bioactive compounds in dietary supplements as demonstrated by analysis of selected dietary supplements in which different estrogens were identified.

  6. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL -1 (< 100 pg m -3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg µL -1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration < 100 pg µL -1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg µL -1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  7. BatMass: a Java Software Platform for LC-MS Data Visualization in Proteomics and Metabolomics.

    Science.gov (United States)

    Avtonomov, Dmitry M; Raskind, Alexander; Nesvizhskii, Alexey I

    2016-08-05

    Mass spectrometry (MS) coupled to liquid chromatography (LC) is a commonly used technique in metabolomic and proteomic research. As the size and complexity of LC-MS-based experiments grow, it becomes increasingly more difficult to perform quality control of both raw data and processing results. In a practical setting, quality control steps for raw LC-MS data are often overlooked, and assessment of an experiment's success is based on some derived metrics such as "the number of identified compounds". The human brain interprets visual data much better than plain text, hence the saying "a picture is worth a thousand words". Here, we present the BatMass software package, which allows for performing quick quality control of raw LC-MS data through its fast visualization capabilities. It also serves as a testbed for developers of LC-MS data processing algorithms by providing a data access library for open mass spectrometry file formats and a means of visually mapping processing results back to the original data. We illustrate the utility of BatMass with several use cases of quality control and data exploration.

  8. Pulsed flow modulation two-dimensional comprehensive gas chromatography-tandem mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Poliak, Marina; Fialkov, Alexander B; Amirav, Aviv

    2008-11-07

    Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.

  9. Determination and pharmacokinetic studies of arecoline in dog plasma by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Li, Bing; Zhou, Xu-Zheng; Li, Jian-Yong; Yang, Ya-Jun; Niu, Jian-Rong; Wei, Xiao-Juan; Liu, Xi-Wang; Li, Jin-Shan; Zhang, Ji-Yu

    2014-10-15

    A rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of arecoline concentration in dog plasma. Plasma sample was prepared by protein precipitation using n-hexane (containing 1% isoamyl alcohol) with β-pinene as an internal standard. Chromatographic separation was achieved on an Agilent C18 column (4.6×75mm, 3.5μm) using methanol: 5mM ammonium acetate as the mobile phase with isocratic elution. Mass detection was carried out using positive electrospray ionization in multiple reaction monitoring mode. The calibration curve for arecoline was linear over a concentration range of 2-500ng/mL. The intra-day and inter-day accuracy and precision were within the acceptable limits of ±10% at all concentrations. In summary, the LC-MS/MS method described herein was fully validated and successfully applied to the pharmacokinetic study of arecoline hydrobromide tablets in dogs after oral administration. Copyright © 2014. Published by Elsevier B.V.

  10. Integrative Mass Spectrometry Approaches to Monitor Protein Structures, Modifications, and Interactions

    NARCIS (Netherlands)

    Lössl, P.

    2017-01-01

    This thesis illustrates the current standing of mass spectrometry (MS) in molecular and structural biology. The primary aim of the herein described research is to facilitate protein characterization by combining mass spectrometric methods among each other and with complementary analytical

  11. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  12. Aroma analysis and quality control of food using highly sensitive analytical methods

    International Nuclear Information System (INIS)

    Mayr, D.

    2003-02-01

    This thesis deals with the development of quality control methods for food based on headspace measurements by Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) and with aroma analysis of food using PTR-MS and Gas Chromatography-Olfactometry (GC-O). An objective method was developed for the determination of a herb extract's quality; this quality was checked by a sensory analysis until now. The concentrations of the volatile organic compounds (VOCs) in the headspace of 81 different batches were measured by PTR-MS. Based on the sensory judgment of the customer, characteristic differences in the emissions of 'good' and 'bad' quality samples were identified and a method for the quality control of this herb extract was developed. This novel method enables the producing company to check and ensure that they are only selling high-quality products and therefore avoid complaints of the customer. Furthermore this method can be used for controlling, optimizing and automating the production process. VOCs emitted by meat were investigated using PTR-MS to develop a rapid, non-destructive and quantitative technique for determination of the microbial contamination of meat. Meat samples (beef, pork and poultry) that were wrapped into different kinds of packages (air and vacuum) were stored in at 4 o C for up to 13 days. The emitted VOCs were measured as a function of storage time and identified partly. The concentration of many of the measured VOCs, e.g. sulfur compounds like methanethiol, dimethylsulfide and dimethyldisulfide, largely increased over the storage time. There were big differences in the emissions of normal air- and vacuum-packed meat. VOCs typically emitted by air-packaged meat were methanethiol, dimethylsulfide and dimethyldisulfide, while ethanol and methanol were found in vacuum-packaged meat. A comparison of the PTR-MS results with those obtained by a bacteriological examination performed at the same time showed strong correlations (up to 99 %) between the

  13. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    Science.gov (United States)

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  14. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer of cu...... of interest from parts of their matrix while preserving the spatial information in the two dimensions. The imprint can then easily be imaged by DESI-MS. The method delivers simple and robust mass spectrometry imaging of plant material with very high success ratios....... of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes...

  15. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yohei Miyamoto

    2013-09-01

    Full Text Available The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS. We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery.

  16. Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC-electrospray linear trap/Orbitrap tandem mass spectrometry.

    Science.gov (United States)

    Ouerdane, Laurent; Aureli, Federica; Flis, Paulina; Bierla, Katarzyna; Preud'homme, Hugues; Cubadda, Francesco; Szpunar, Joanna

    2013-09-01

    An analytical methodology based on high-resolution high mass accuracy electrospray ionization (ESI) tandem MS assisted by Se-specific detection using inductively coupled plasma mass spectrometry (ICP MS) was developed for speciation of selenium (Se) in seeds of black mustard (Brassica nigra) grown on Se-rich soil. Size-exclusion LC-ICP MS allowed the determination of the Se distribution according to the molecular mass and the control of the species stability during extraction. The optimization of hydrophilic interaction of LC and cation-exchange HPLC resulted in analytical conditions making it possible to detect and characterize over 30 Se species using ESI MS, including a number of minor (<0.5%) metabolites. Selenoglucosinolates were found to be the most important class of species accounting for at least 15% of the total Se present and over 50% of all the metabolites. They were found particularly unstable during aqueous extraction leading to the loss of Se by volatilization as methylselenonitriles and methylselenoisothiocyanates identified using gas chromatography (GC) with the parallel ICP MS and atmospheric pressure chemical ionization (APCI) MS/MS detection. However, selenoglucosinolates could be efficiently recovered by extraction with 70% methanol. Other classes of identified species included selenoamino acids, selenosugars, selenosinapine and selenourea derivatives. The three types of reactions leading to the formation of selenometabolites were: the Se-S substitution in the metabolic pathway, oxidative reactions of -SeH groups with endogenous biomolecules, and chemical reactions, e.g., esterification, of Se-containing molecules and other biomolecules through functional groups not involving Se.

  17. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  18. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    Science.gov (United States)

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  19. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  20. Cell-patterned glass spray for direct drug assay using mass spectrometry

    International Nuclear Information System (INIS)

    Wu, Jing; Wang, Shiqi; Chen, Qiushui; Jiang, Hao; Liang, Shuping; Lin, Jin-Ming

    2015-01-01

    In this work, the establishment of a glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was described. Cell co-culture, drug-induced cell apoptosis, proliferation analysis and intracellular drug absorption measurement were performed simultaneously on this specifically designed platform. Two groups of co-cultured cells (NIH-3T3/HepG2 and HepG2/MCF-7) were cultivated and they showed high viability within 3 days. The biocompatibility of the platform facilitated the subsequent bioassays, in which, cyclophosphamide (CPA) and genistein were used as the model drugs. The distinctions of cell apoptosis and proliferation between the mono-cultured and co-cultured cells were clearly observed and well explained by in situ GS-MS measurements. A satisfactory linearity of the calibration curve between the relative MS intensity and CPA concentrations was obtained using stable isotope labeling method (y = 0.16545 + 0.0985x, R"2 = 0.9937). The variations in the quantity of absorbed drug were detected and the results were consistent with the concentration-dependence of cell apoptosis. All the results demonstrated that direct cell-based drug assay could be performed on the stable isotope labeling assisted GS-MS platform in a facile and quantitative manner. - Highlights: • A versatile glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was developed in this paper. • It has characteristics of the atmospheric pressure ionization method. • It is multifunctional for cell co-culture, bioassays, qualitative and quantitative intracellular drug absorption measurement. • GS-MS has the potential to increase the use of mass spectrometry in biological analysis.

  1. Method Development for Binding Media Analysis in Painting Cross-Sections by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS).

    Science.gov (United States)

    Watts, Kristen; Lagalante, Anthony

    2018-06-06

    Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.

  2. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chenxing; Zhao, Yuan-Yuan [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada); Curtis, Jonathan M., E-mail: jcurtis1@ualberta.ca [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada)

    2013-01-31

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O{sub 3}-MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O{sub 3}-MS allowed double bond localization in lipid mixtures. ► LC/O{sub 3}-MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O{sub 3}-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O{sub 3}-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O{sub 3}-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O{sub 3}-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  3. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    Science.gov (United States)

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Wang, J.; Heijden, R. van der; Spijksma, G.; Reijmers, T.; Wang, M.; Xu, G.; Hankemeier, T.; Greef, J. van der

    2009-01-01

    A matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method was developed for the high throughput and robust qualitative profiling of alkaloids in Fuzi-the processed lateral roots of the Chinese herbal medicine Aconitum carmichaeli Debx (A. carmichaeli). After optimization,

  5. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  6. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  7. SOLID PHASE MICRO EXTRACTION (SPME) FLAVOR ANALYSIS OF APPLE JUICE AND COFFEE MIXTURES USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

    OpenAIRE

    Mi Ja Kim; Jeehyun Lee; Jaeyoung Byun; Sunmi Choi; Wonsik Choi

    2016-01-01

    This research was conducted to evaluate the flavor of apple juice and coffee mixtures and the sensory quality of SPME extracts using gas chromatography-mass spectrometry (GC-MS). Three samples with different compositions were examined. Sample A1 contained85% apple juiceand 15% coffee, sample A2 had87.5% apple and 12.5% coffee, and sample A3 had90% apple juiceand 10% coffee. The sensory analysis involved 100 panelists and a sequential monadic test. Sample presentation orders were balanced in ...

  8. Development of a Multi-class Steroid Hormone Screening Method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

    Science.gov (United States)

    Boggs, Ashley S. P.; Bowden, John A.; Galligan, Thomas M.; Guillette, Louis J.; Kucklick, John R.

    2016-01-01

    Monitoring complex endocrine pathways is often limited by indirect measurement or measurement of a single hormone class per analysis. There is a burgeoning need to develop specific direct-detection methods capable of providing simultaneous measurement of biologically relevant concentrations of multiple classes of hormones (estrogens, androgens, progestogens, and corticosteroids). The objectives of this study were to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for multi-class steroid hormone detection using biologically relevant concentrations, then test limits of detection (LOD) in a high-background matrix by spiking charcoal-stripped fetal bovine serum (FBS) extract. Accuracy was tested with National Institute of Standards and Technology Standard Reference Materials (SRMs) with certified concentrations of cortisol, testosterone, and progesterone. 11-Deoxycorticosterone, 11-deoxycortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, adrenosterone, androstenedione, cortisol, corticosterone, dehydroepiandrosterone, dihydrotestosterone, estradiol, estriol, estrone, equilin, pregnenolone, progesterone, and testosterone were also measured using isotopic dilution. Dansyl chloride (DC) derivatization was investigated maintaining the same method to improve and expedite estrogen analysis. Biologically relevant LODs were determined for 15 hormones. DC derivatization improved estrogen response two- to eight-fold, and improved chromatographic separation. All measurements had an accuracy ≤ 14 % difference from certified values (not accounting for uncertainty) and relative standard deviation ≤ 14 %. This method chromatographically separated and quantified biologically relevant concentrations of four hormone classes using highly specific fragmentation patterns and measured certified values of hormones that were previously split into three separate chromatographic methods. PMID:27039201

  9. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  10. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Science.gov (United States)

    Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2015-01-01

    In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  11. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Hannes L Röst

    Full Text Available In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size.Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11, making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data.Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  12. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  13. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  14. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    Science.gov (United States)

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  15. Role of mass spectrometry in nuclear forensic science

    International Nuclear Information System (INIS)

    Joseph, M.; Sivaraman, N.

    2016-01-01

    The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well

  16. Urinary metabonomics study in a rat model in response to protein-energy malnutrition by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wu, Zeming; Li, Min; Zhao, Chunxia; Zhou, Jia; Chang, Yuwei; Li, Xiang; Gao, Peng; Lu, Xin; Li, Yousheng; Xu, Guowang

    2010-11-01

    Systematic studies were performed on the biological perturbations in metabolic phenotype responding to protein-energy malnutrition through global metabolic profiling analysis, in combination with pattern recognition. The malnutrition rat model was established through five weeks of strict diet restriction, and the metabonome data obtained from gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were integrated to approximate the comprehensive metabolic signature. Principal component analysis and orthogonal projection to latent structure analysis were used for the classification of metabolic phenotypes and discovery of differentiating metabolites. The perturbations in the urine profiles of malnourished rats were marked by higher levels of creatine, threitol, pyroglutamic acid, gluconic acid and kynurenic acid, as well as decreased levels of succinic acid, cis-aconitic acid, citric acid, isocitric acid, threonic acid, trimethylglycine, N-methylnicotinic acid and uric acid. The alterations in these metabolites were associated with perturbations in energy metabolism, carbohydrate, amino acid, and fatty acid metabolism, purine metabolism, cofactor and vitamin metabolism, in response to protein and energy malnutrition. Our findings show the integration of GC-MS and LC-MS techniques for untargeted metabolic profiling analysis was promising for nutriology.

  17. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  18. MacMS: A Mass Spectrometer Simulator: Abstract of Issue 9906M

    Science.gov (United States)

    Bigger, Stephen W.; Craig, Robert A.

    1999-10-01

    , fixed-value range and gain settings, which can be used to enhance the resolution and sensitivity of the instrument respectively. Figure 1. The "Path" module of MacMS showing the control panel (upper section) and graphics display region (lower section). The graphics display region incorporates a "data collector", which includes a "Grab" button to collect data and an area where data are displayed. Figure 2. The "Spectrometer" module of MacMS showing the control panel (upper section) and a graphics display region (lower section). A mass spectrum is produced in the graphics display region upon scanning. A "data collector" similar to that of the "Path" module forms part of the graphics display region. Hardware and Software Requirements Literature Cited Kiser, R. N. Introduction to Mass Spectrometry and its Applications; Prentice-Hall: Englewood Cliffs, N. J., 1965; pp 1-3; pp 32-65. Johnstone, R. A. W.; Rose, M. E. Mass Spectrometry for Chemists and Biochemists, 2nd ed.; Cambridge University Press: Cambridge, 1996. Hill, H. C.; Loudon, A. G. Introduction to Mass Spectrometry; 2nd ed.; Heyden: London, 1972; p 5. Farmer, J. B. In Mass Spectrometry, McDowell, C. A., Ed.; McGraw-Hill: New York, 1963; pp 10-11. Message, G. M. Practical Aspects of Gas Chromatography-Mass Spectrometry, Wiley: New York, 1984; Chapter 3. CRC Handbook of Chemistry and Physics, 55th ed.; CRC: Cleveland, 1974.

  19. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  20. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  1. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    International Nuclear Information System (INIS)

    Mager, Frauke; Lintzel, Julia; Nussberger, Stephan; Sokolova, Lucie; Brutschy, Bernhard

    2010-01-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  2. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  3. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Quantitative Determination of Bioactive Constituents in Noni Juice by High-performance Liquid Chromatography with Electrospray Ionization Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping

    2018-01-01

    Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT

  5. Liquid Chromatography with Tandem Mass Spectrometry: A Sensitive Method for the Determination of Dehydrodiisoeugenol in Rat Cerebral Nuclei

    Directory of Open Access Journals (Sweden)

    You-Bo Zhang

    2016-03-01

    Full Text Available A new liquid chromatography–tandem mass spectrometry (LC-MS/MS method is developed for the quantification of dehydrodiisoeugenol (DDIE in rat cerebral nuclei after single intravenous administration. DDIE and daidzein (internal standard were separated on a Diamonsil™ ODS C18 column with methanol–water containing 0.1% formic acid (81:19, v/v as a mobile phase. Detection of DDIE was performed on a positive electrospray ionization source using a triple quadrupole mass spectrometer. DDIE and daidzein were monitored at m/z 327.2→188.0 and m/z 255.0→199.2, respectively, in multiple reaction monitoring mode. This method enabled quantification of DDIE in various brain areas, including, cortex, hippocampus, striatum, hypothalamus, cerebellum and brainstem, with high specificity, precision, accuracy, and recovery. The data herein demonstrate that our new LC-MS/MS method is highly sensitive and suitable for monitoring cerebral nuclei distribution of DDIE.

  6. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  7. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  8. Method-MS. Final report

    International Nuclear Information System (INIS)

    Skipperud, L.; Popic, J.M.; Roos, P.; Salminen, S.; Nygren, U.; Sigmarsson, O.; Palsson, S.E.

    2011-05-01

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using 'isotope dilution' methods such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which cannot be obtained by alpha spectrometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are rapidly growing techniques for the ultra-trace analytical determination of stable and long-lived isotopes and have a wide potential within environmental science, including ecosystem tracers and radio ecological studies. Such instrumentation, of course needs good radiochemical separation, to give best performance. The objectives of the project is to identify current needs and problems within low-level determination of long-lived radioisotopes by ICP-MS, to perform intercalibration and development and improvement of ICP-MS methods for the measurement of radionuclides and isotope ratios and to develop new methods based on modified separation chemistry applied to new auxiliary

  9. Method-MS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L.; Popic, J.M. (Norwegian Univ. of Life Science (UMB), Isotope Lab. (Norway)); Roos, P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Salminen, S. (Univ. of Helsinki (UH) (Finland)); Nygren, U. (Swedish Defence Research Agency (FOI) (Sweden)); Sigmarsson, O.; Palsson, S.E. (Univ. of Iceland/Icelandic Radiation Protection Institute (Iceland))

    2011-05-15

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using 'isotope dilution' methods such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which cannot be obtained by alpha spectrometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are rapidly growing techniques for the ultra-trace analytical determination of stable and long-lived isotopes and have a wide potential within environmental science, including ecosystem tracers and radio ecological studies. Such instrumentation, of course needs good radiochemical separation, to give best performance. The objectives of the project is to identify current needs and problems within low-level determination of long-lived radioisotopes by ICP-MS, to perform intercalibration and development and improvement of ICP-MS methods for the measurement of radionuclides and isotope ratios and to develop new methods based on modified separation chemistry applied to new

  10. Identification of protein biomarkers in Dupuytren's contracture using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    Science.gov (United States)

    O'Gorman, David; Howard, Jeffrey C; Varallo, Vincenzo M; Cadieux, Peter; Bowley, Erin; McLean, Kris; Pak, Brian J; Gan, Bing Siang

    2006-06-01

    To study the protein expression profiles associated with Dupuytren's contracture (DC) to identify potential disease protein biomarkers (PBM) using a proteomic technology--Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Normal and disease palmar fascia from DC patients were analyzed using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) ProteinChip reader. Analysis of the resulting SELDI-TOF spectra was carried out using the peak cluster analysis program (BioMarker Wizard, Ciphergen). Common peak clusters were then filtered using a bootstrap algorithm called SAM (Significant Analysis of Microarrays) for increased fidelity in our analysis. Several differentially expressed low molecular weight (mass standard deviation for both methods of biomarker-rich low molecular weight region of the human proteome. Application of such novel technology may help clinicians to focus on specific molecular abnormalities in diseases with no known molecular pathogenesis, and uncover therapeutic and/or diagnostic targets.

  11. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  12. Method-MS, final report 2010

    DEFF Research Database (Denmark)

    Skipperud, Lindis; Popic, Jelena M.; Roos, Per

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry...

  13. Catch and measure-mass spectrometry-based immunoassays in biomarker research.

    Science.gov (United States)

    Weiß, Frederik; van den Berg, Bart H J; Planatscher, Hannes; Pynn, Christopher J; Joos, Thomas O; Poetz, Oliver

    2014-05-01

    Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  14. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

    International Nuclear Information System (INIS)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan, Richard; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both GC-MS and Fourier Transform-Ion Cyclotron Resonance mass spectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCA cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80 percent of the lactate was converted to acetate and the reactions involved are the primary route of energy production (NAD(P)H and ATP production). Independent of the TCA cycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports (the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase). These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris, and also demonstrate FT-ICR MS as a powerful tool for isotopomer analysis, overcoming problems in both GC-MS and NMR spectroscopy

  15. Automated mass correction and data interpretation for protein open-access liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wagner, Craig D; Hall, John T; White, Wendy L; Miller, Luke A D; Williams, Jon D

    2007-02-01

    Characterization of recombinant protein purification fractions and final products by liquid chromatography-mass spectrometry (LC/MS) are requested more frequently each year. A protein open-access (OA) LC/MS system was developed in our laboratory to meet this demand. This paper compares the system that we originally implemented in our facilities in 2003 to the one now in use, and discusses, in more detail, recent enhancements that have improved its robustness, reliability, and data reporting capabilities. The system utilizes instruments equipped with reversed-phase chromatography and an orthogonal accelerated time-of-flight mass spectrometer fitted with an electrospray source. Sample analysis requests are accomplished using a simple form on a web-enabled laboratory information management system (LIMS). This distributed form is accessible from any intranet-connected company desktop computer. Automated data acquisition and processing are performed using a combination of in-house (OA-Self Service, OA-Monitor, and OA-Analysis Engine) and vendor-supplied programs (AutoLynx, and OpenLynx) located on acquisition computers and off-line processing workstations. Analysis results are then reported via the same web-based LIMS. Also presented are solutions to problems not addressed on commercially available, small-molecule OA-LC/MS systems. These include automated transforming of mass-to-charge (m/z) spectra to mass spectra and automated data interpretation that considers minor variants to the protein sequence-such as common post-translational modifications (PTMs). Currently, our protein OA-LC/MS platform runs on five LC/MS instruments located in three separate GlaxoSmithKline R&D sites in the US and UK. To date, more than 8000 protein OA-LC/MS samples have been analyzed. With these user friendly and highly automated OA systems in place, mass spectrometry plays a key role in assessing the quality of recombinant proteins, either produced at our facilities or bought from external

  16. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS).

    Science.gov (United States)

    Oliveira, Bruno G; Costa, Helber B; Ventura, José A; Kondratyuk, Tamara P; Barroso, Maria E S; Correia, Radigya M; Pimentel, Elisângela F; Pinto, Fernanda E; Endringer, Denise C; Romão, Wanderson

    2016-08-01

    Mangifera indica L., mango fruit, is consumed as a dietary supplement with purported health benefits; it is widely used in the food industry. Herein, the chemical profile of the Ubá mango at four distinct maturation stages was evaluated during the process of growth and maturity using negative-ion mode electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS) and physicochemical characterisation analysis (total titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, and total polyphenolic content). Primary (organic acids and sugars) and secondary metabolites (polyphenolic compounds) were mostly identified in the third maturation stage, thus indicating the best stage for harvesting and consuming the fruit. In addition, the potential cancer chemoprevention of the secondary metabolites (phenolic extracts obtained from mango samples) was evaluated using the induction of quinone reductase activity, concluding that fruit polyphenols have the potential for cancer chemoprevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tracking juniper berry content in oils and distillates by spectral deconvolution of gas chromatography/mass spectrometry data.

    Science.gov (United States)

    Robbat, Albert; Kowalsick, Amanda; Howell, Jessalin

    2011-08-12

    The complex nature of botanicals and essential oils makes it difficult to identify all of the constituents by gas chromatography/mass spectrometry (GC/MS) alone. In this paper, automated sequential, multidimensional gas chromatography/mass spectrometry (GC-GC/MS) was used to obtain a matrix-specific, retention time/mass spectrometry library of 190 juniper berry oil compounds. GC/MS analysis on stationary phases with different polarities confirmed the identities of each compound when spectral deconvolution software was used to analyze the oil. Also analyzed were distillates of juniper berry and its oil as well as gin from four different manufacturers. Findings showed the chemical content of juniper berry can be traced from starting material to final product and can be used to authenticate and differentiate brands. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    Science.gov (United States)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  19. Identifying the related compounds using electrospray ionization tandem mass spectrometry: bromotyrosine alkaloids from marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; DeSouza, L.

    electrospray ionization tandem mass spectrometry (ESI-MS/MS). This sponge has tremendous chemical diversity of bromotyrosine alkaloids. Here we have used the proteomics approach in identifying related bromotyrosine alkaloids based on the predicated mass...

  20. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  1. Simultaneous analysis by Quadrupole-Orbitrap mass spectrometry and UHPLC-MS/MS for the determination of sedative-hypnotics and sleep inducers in adulterated products.

    Science.gov (United States)

    Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young

    2017-12-01

    Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of 5-fluorouracil in plasma with HPLC-tandem mass spectrometry

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; van Lenthe, H.; Maring, J. G.; van Gennip, A. H.

    2006-01-01

    In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3-15N2-5FU) was

  3. Direct coupling of electromembrane extraction to mass spectrometry – Advancing the probe functionality toward measurements of zwitterionic drug metabolites

    DEFF Research Database (Denmark)

    Kige Rye, Torstein; Fuchs, David; Pedersen-Bjergaard, Stig

    2017-01-01

    A triple-flow electromembrane extraction (EME) probe was developed and coupled directly to electrospray-ionization mass spectrometry (ESI-MS). Metabolic reaction mixtures (pH 7.4) containing drug substances and related metabolites were continuously drawn (20 μL/min) into the EME probe in one flow......-nitrophenyl octyl ether (and for some experiments containing 30% triphenyl phosphate (TPP)), and into 20 μL min-1 of formic acid as acceptor phase, which was introduced through a third flow channel. The acceptor phase was pumped directly to the MS system, and the ion intensity of extracted analytes......, the system can potentially be used for direct analysis of various kinds of chemical reactions that have to be run at pH conditions unfavorable for direct analyte extractions....

  4. Detection of nicotine as an indicator of tobacco smoke by direct analysis in real time (DART) tandem mass spectrometry

    Science.gov (United States)

    Kuki, Ákos; Nagy, Lajos; Nagy, Tibor; Zsuga, Miklós; Kéki, Sándor

    2015-01-01

    The residual tobacco smoke contamination (thirdhand smoke, THS) on the clothes of a smoker was examined by direct analysis in real time (DART) mass spectrometry. DART-MS enabled sensitive and selective analysis of nicotine as the indicator of tobacco smoke pollution. Tandem mass spectrometric (MS/MS) experiments were also performed to confirm the identification of nicotine. Transferred thirdhand smoke originated from the fingers of a smoker onto other objects was also detected by DART mass spectrometry. DART-MS/MS was utilized for monitoring the secondhand tobacco smoke (SHS) in the air of the laboratory using nicotine as an indicator. To the best of our knowledge, this is the first report on the application of DART-MS and DART-MS/MS to the detection of thirdhand smoke and to the monitoring of secondhand smoke.

  5. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry

    DEFF Research Database (Denmark)

    Zubel, Tabea; Martello, Rita; Bürkle, Alexander

    2017-01-01

    PARP inhibitors, which represent a novel class of promising chemotherapeutics. Previously, we have developed a bioanalytical platform based on isotope dilution mass spectrometry (LC-MS/MS) to quantify cellular PAR with unequivocal chemical specificity in absolute terms with femtomol sensitivity...... research, as well as in drug development (Martello et al. ACS Chem Biol 8(7):1567-1575, 2013; Mangerich et al. Toxicol Lett 244:56-71, 2016). Here, we present an improved and adjusted version of the original protocol by Martello/Mangerich et al., which uses UPLC-MS/MS instrumentation....

  6. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  7. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  8. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.

    Science.gov (United States)

    Fu, Qin; Kowalski, Michael P; Mastali, Mitra; Parker, Sarah J; Sobhani, Kimia; van den Broek, Irene; Hunter, Christie L; Van Eyk, Jennifer E

    2018-01-05

    Sample preparation for protein quantification by mass spectrometry requires multiple processing steps including denaturation, reduction, alkylation, protease digestion, and peptide cleanup. Scaling these procedures for the analysis of numerous complex biological samples can be tedious and time-consuming, as there are many liquid transfer steps and timed reactions where technical variations can be introduced and propagated. We established an automated sample preparation workflow with a total processing time for 96 samples of 5 h, including a 2 h incubation with trypsin. Peptide cleanup is accomplished by online diversion during the LC/MS/MS analysis. In a selected reaction monitoring (SRM) assay targeting 6 plasma biomarkers and spiked β-galactosidase, mean intraday and interday cyclic voltammograms (CVs) for 5 serum and 5 plasma samples over 5 days were samples repeated on 3 separate days had total CVs below 20%. Similar results were obtained when the workflow was transferred to a second site: 93% of peptides had CVs below 20%. An automated trypsin digestion workflow yields uniformly processed samples in less than 5 h. Reproducible quantification of peptides was observed across replicates, days, instruments, and laboratory sites, demonstrating the broad applicability of this approach.

  9. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  10. Тhe mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids

    OpenAIRE

    A. V. Lysytsya; A. V. Rebriev

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the m...

  11. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  12. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  13. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  14. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2016-01-01

    Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  16. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  17. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  18. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  19. A general method for targeted quantitative cross-linking mass spectrometry

    Science.gov (United States)

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  20. Determination of chlormequat in pears by liquid chromatography/mass spectrometry

    NARCIS (Netherlands)

    Mol, H.G.J.; Dam, R.C.J. van; Vreeken, R.J.; Steijger, O.M.

    2000-01-01

    A straightforward and reliable method was developed for the determination of chlormequat in pears by liquid chromatography/mass spectrometry (LC/MS). Water and methanol were compared as extraction solvents. Because no significant differences in extraction efficiency or repeatability were found,