Fluid transport in reaction induced fractures
Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders
2015-04-01
fractures. This provides new information on how much reaction induced fracturing might accelerate a volume expanding process. Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., ``Reaction induced fracturing during replacement processes,'' Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., ``Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage,'' Annu. Rev. Earth Planet. Sci. 2011. 39:545 - 76. Rudge, J. F., Kelemen, P. B., and Spiegelman, M., ``A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite,'' Earth Planet. Sc. Lett. 291, Issues 1-4, 2010, pp. 215 - 227. Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., ``Controls on rock weathering rates by reaction-induced hierarchial fracturing,'' Earth Planet. Sc. Lett. 275, 2008, pp. 364 - 369. Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. ``Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration'', Earth Planet. Sc. Lett. 389C, 2014, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. Ulven, O. I., Jamtveit, B., and Malthe-Sørenssen, A., ``Reaction-driven fracturing of porous rock'', J. Geophys. Res. Solid Earth 119, 2014, doi:10.1002/2014JB011102.
Modal method for crack identification applied to reactor recirculation pump
International Nuclear Information System (INIS)
Miller, W.H.; Brook, R.
1991-01-01
Nuclear reactors have been operating and producing useful electricity for many years. Within the last few years, several plants have found cracks in the reactor coolant pump shaft near the thermal barrier. The modal method and results described herein show the analytical results of using a Modal Analysis test method to determine the presence, size, and location of a shaft crack. The authors have previously demonstrated that the test method can analytically and experimentally identify shaft cracks as small as five percent (5%) of the shaft diameter. Due to small differences in material property distribution, the attempt to identify cracks smaller than 3% of the shaft diameter has been shown to be impractical. The rotor dynamics model includes a detailed motor rotor, external weights and inertias, and realistic total support stiffness. Results of the rotor dynamics model have been verified through a comparison with on-site vibration test data
... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...
3D multiscale crack propagation using the XFEM applied to a gas turbine blade
Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund
2014-01-01
This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.
Applied model of through-wall crack of coolant vessels of WWER-type reactors
International Nuclear Information System (INIS)
Petrosyan, V.; Hovakimyan, T.; Vardanyan, M.; Khachatryan, A.; Minasyan, K.
2010-01-01
We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeji; Hwang, Il-Soon [Seoul National University, Seoul 08826 (Korea, Republic of); Oh, Young-Jin, E-mail: yjoh2@kepco-enc.com [KEPCO Engineering and Construction Co. Inc., Gimcheon 39660 (Korea, Republic of)
2016-05-15
Highlights: • Effective applied moment at pipe cracked section considering the pipe restraint effect. • Verification of the proposed evaluation methods using finite element analyses. • Applicability for distributed external load of the proposed methods. - Abstract: In the leak-before-break (LBB) design of nuclear power plants, crack opening displacement (COD) is an essential element for determining the length of the leakage size crack. Recent researches regarding the evaluation of COD have indicated that the current practice of the LBB evaluation without consideration of the pressure induced bending (PIB) restraint overestimates COD, which in turn gives non-conservative results. Under a free-ended boundary condition, however, the applied moment at cracked section also can be overestimated, which has conservative effects on LBB evaluation. Therefore, it is necessary to evaluate pipe restraint effects on the applied moment as well as on COD to keep the constancy. In this paper, an evaluation method for the effect of the PIB restraint on COD and an effective applied moment (=crack driving force) at cracked section was developed. Both the linear elastic and elastic–plastic behaviors of the crack were considered. By comparing the behaviors with 3-D finite element analysis results from earlier studies, it was confirmed that the proposed methods make accurate estimations of the PIB restraint effect on COD. Next, the applicability of the proposed method to other types of external loading conditions was examined.
International Nuclear Information System (INIS)
Radu, V.
2016-01-01
The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)
Critical applied stresses for a crack initiation from a sharp V-notch
Directory of Open Access Journals (Sweden)
L. Náhlík
2014-10-01
Full Text Available The aim of the paper is to estimate a value of the critical applied stress for a crack initiation from a sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM was generalized, because the stress singularity exponent differs from 0.5 in the studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of the generalized stress intensity factor was obtained using stability criteria based on the opening stress component averaged over a critical distance d from the V-notch tip and generalized strain energy density factor. Calculated values of the critical applied stresses were compared with experimental data from the literature and applicability of the LEFM concept is discussed.
International Nuclear Information System (INIS)
Lieboldt, M.; Mechtcherine, V.
2013-01-01
The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement, the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well
Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests
International Nuclear Information System (INIS)
Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho
1997-01-01
For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT
International Nuclear Information System (INIS)
Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi; Tanaka, Akiei.
1988-01-01
Effects of applied stress on failure time in stress corrosion cracking of Zircaloy-4 alloy were investigated by Weibull distribution method. Test pieces in the evaculated silica tubes were annealed at 1,073 K for 7.2 x 10 3 s, and then quenched into ice-water. These species under constant applied stresses of 40∼90 % yield stress were immersed in CH 3 OH-1 w% I 2 solution at room temperature. The probability distribution of failure times under applied stress of 40 % of yield stress was described as single Weibull distribution, which had one shape parameter. The probability distributions of failure times under applied stress above 60 % of yield stress were described as composite and mixed Weibull distributions, which had the two shape parameters of Weibull distributions for the regions of the shorter time and longer one of failure. The values of these shape parameters in this study were larger than the value of 1 which corresponded to that of wear out failure. The observation of fracture surfaces and the stress dependence of the shape parameters indicated that the shape parameters both for the times of failure under 40 % of yield stress and for the longer ones above 60 % of yield stress corresponded to intergranular cracking, and that for shorter times of failure corresponded to transgranular cracking and dimple fracture. (author)
Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H
2014-01-01
The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (penamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.
Chemical reactions induced by fast neutron irradiation
International Nuclear Information System (INIS)
Katsumura, Y.
1989-01-01
Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)
International Nuclear Information System (INIS)
Aoki, Takayuki; Kobayashi, Hiroyuki; Higuchi, Shinichi; Shimizu, Sadato
2005-01-01
A Ni-base alloy weld, including cracks due to stress corrosion cracking found in the reactor internal of the oldest BWR in Japan, Tsuruga unit 1, in 1999, was examined by three (3) types of UT method. After this examination, a depth of each crack was confirmed by carrying out a little excavation with a grinder and PT examination by turns until each crack disappeared. Then, the depth measured by the former method was compared with the one measured by the latter method. In this fashion, performances of the UT methods were verified. As a result, a combination of the three types of UT method was found to meet the acceptance criteria given by ASME Sec.XI Appendix VIII, Performance Demonstration for Ultrasonic Examination Systems-Supplement 6. In this paper, the results of the UT examination described above and their evaluation are discussed. (author)
International Nuclear Information System (INIS)
Torabi, K.; Nafar Dastgerdi, J.
2012-01-01
This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: ► The free vibration analysis of cracked nanobeams is investigated. ► This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. ► The small scale effect parameter greatly affects the value of natural frequencies. ► Crack reduces the natural frequencies, causes a discontinuity in the cracked section.
Energy Technology Data Exchange (ETDEWEB)
Torabi, K., E-mail: kvntrb@KashanU.ac.ir; Nafar Dastgerdi, J., E-mail: J.nafardastgerdi@me.iut.ac.ir
2012-08-31
This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: Black-Right-Pointing-Pointer The free vibration analysis of cracked nanobeams is investigated. Black-Right-Pointing-Pointer This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. Black-Right-Pointing-Pointer The small scale effect parameter greatly affects the value of natural frequencies. Black-Right-Pointing-Pointer Crack reduces the natural frequencies, causes a discontinuity in the cracked section.
Investigation of Helicopter Longeron Cracks
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
International Nuclear Information System (INIS)
Jiang, Yu; Li, Zhixiong; Zhang, Chao; Peng, Z; Hu, Chao
2016-01-01
This work aims to detect rolling bearing cracks using a variational approach. An original method that appropriately incorporates bi-dimensional variational mode decomposition (BVMD) into discriminant diffusion maps (DDM) is proposed to analyze the nonstationary vibration signals recorded from the cracked rolling bearings in coal cutters. The advantage of this variational decomposition based diffusion map (VDDM) method in comparison to the current DDM is that the intrinsic vibration mode of the crack can be filtered into a limited bandwidth in the frequency domain with an estimated central frequency, thus discarding the interference signal components in the vibration signals and significantly improving the crack detection performance. In addition, the VDDM is able to simultaneously process two-channel sensor signals to reduce information leakage. Experimental validation using rolling bearing crack vibration signals demonstrates that the VDDM separated the raw signals into four intrinsic modes, including one roller vibration mode, one roller cage vibration mode, one inner race vibration mode, and one outer race vibration mode. Hence, reliable fault features were extracted from the outer race vibration mode, and satisfactory crack identification performance was achieved. The comparison between the proposed VDDM and existing approaches indicated that the VDDM method was more efficient and reliable for crack detection in coal cutter rolling bearings. As an effective catalyst for rolling bearing crack detection, this newly proposed method is useful for practical applications. (paper)
Energy Technology Data Exchange (ETDEWEB)
Park, Jae-Won, E-mail: pjw@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Eung-Seon; Kim, Jae-Un [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Yootaek [Dept. of Materials Engineering, Kyonggi Universtiy, Suwon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)
2016-08-15
Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
International Nuclear Information System (INIS)
Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.
2016-01-01
Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.
2016-08-01
The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.
2017-12-01
Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with
International Nuclear Information System (INIS)
Narita, Michiko; Aida, Shigekazu
1998-01-01
A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)
Investigation of Cracks Found in Helicopter Longerons
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Nuclear reactions induced by high-energy alpha particles
Shen, B. S. P.
1974-01-01
Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.
International Nuclear Information System (INIS)
Goel, V.S.
1985-01-01
This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600
A crack growth evaluation method for interacting multiple cracks
International Nuclear Information System (INIS)
Kamaya, Masayuki
2003-01-01
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)
Analysis of short and long crack behavior and single overload effect by crack opening stress
International Nuclear Information System (INIS)
Song, Sam Hong; Lee, Kyeong Ro
1999-01-01
The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life
Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
2001-05-01
Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)
Directory of Open Access Journals (Sweden)
Karaba Adam
2016-01-01
Full Text Available Steam-cracking is energetically intensive large-scaled process which transforms a wide range of hydrocarbons feedstock to petrochemical products. The dependence of products yields on feedstock composition and reaction conditions has been successfully described by mathematical models which are very useful tools for the optimization of cracker operation. Remaining problem is to formulate objective function for such an optimization. Quantitative criterion based on the process economy is proposed in this paper. Previously developed and verified industrial steam-cracking semi-mechanistic model is utilized as supporting tool for economic evaluation of selected gasoline feedstock. Economic criterion is established as the difference between value of products obtained by cracking of studied feedstock under given conditions and the value of products obtained by cracking of reference feedstock under reference conditions. As an example of method utilization, optimal reaction conditions were searched for each of selected feedstock. Potential benefit of individual cracking and cracking of grouped feedstocks in the contrast to cracking under the middle of optimums is evaluated and also compared to cracking under usual conditions.
Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.
Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira
2009-11-01
To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.
Adverse drug reactions induced by cardiovascular drugs in outpatients
Directory of Open Access Journals (Sweden)
Gholami K
2008-03-01
Full Text Available Considering increased use of cardiovascular drugs and limitations in pre-marketing trials for drug safety evaluation, post marketing evaluation of adverse drug reactions (ADRs induced by this class of medicinal products seems necessary.Objectives: To determine the rate and seriousness of adverse reactions induced by cardiovascular drugs in outpatients. To compare sex and different age groups in developing ADRs with cardiovascular agents. To assess the relationship between frequencies of ADRs and the number of drugs used. Methods: This cross-sectional study was done in cardiovascular clinic at a teaching hospital. All patients during an eight months period were evaluated for cardiovascular drugs induced ADRs. Patient and reaction factors were analyzed in detected ADRs. Patients with or without ADRs were compared in sex and age by using chi-square test. Assessing the relationship between frequencies of ADRs and the number of drugs used was done by using Pearson analysis. Results: The total number of 518 patients was visited at the clinic. ADRs were detected in 105 (20.3% patients. The most frequent ADRs were occurred in the age group of 51-60. The highest rate of ADRs was recorded to be induced by Diltiazem (23.5% and the lowest rate with Atenolol (3%. Headache was the most frequent detected ADR (23%. Assessing the severity and preventability of ADRs revealed that 1.1% of ADRs were detected as severe and 1.9% as preventable reactions. Women significantly developed more ADRs in this study (chi square = 3.978, P<0.05. ADRs more frequently occurred with increasing age in this study (chi square = 15.871, P<0.05. With increasing the number of drugs used, the frequency of ADRs increased (Pearson=0.259, P<0.05. Conclusion: Monitoring ADRs in patients using cardiovascular drugs is a matter of importance since this class of medicines is usually used by elderly patients with critical conditions and underlying diseases.
Adverse drug reactions induced by cardiovascular drugs in outpatients.
Gholami, Kheirollah; Ziaie, Shadi; Shalviri, Gloria
2008-01-01
Considering increased use of cardiovascular drugs and limitations in pre-marketing trials for drug safety evaluation, post marketing evaluation of adverse drug reactions (ADRs) induced by this class of medicinal products seems necessary. To determine the rate and seriousness of adverse reactions induced by cardiovascular drugs in outpatients. To compare sex and different age groups in developing ADRs with cardiovascular agents. To assess the relationship between frequencies of ADRs and the number of drugs used. This cross-sectional study was done in cardiovascular clinic at a teaching hospital. All patients during an eight months period were evaluated for cardiovascular drugs induced ADRs. Patient and reaction factors were analyzed in detected ADRs. Patients with or without ADRs were compared in sex and age by using chi-square test. Assessing the relationship between frequencies of ADRs and the number of drugs used was done by using Pearson analysis. The total number of 518 patients was visited at the clinic. ADRs were detected in 105 (20.3%) patients. The most frequent ADRs were occurred in the age group of 51-60. The highest rate of ADRs was recorded to be induced by Diltiazem (23.5%) and the lowest rate with Atenolol (3%). Headache was the most frequent detected ADR (23%). Assessing the severity and preventability of ADRs revealed that 1.1% of ADRs were detected as severe and 1.9% as preventable reactions. Women significantly developed more ADRs in this study (chi square = 3.978, PPearson=0.259, P<0.05). Monitoring ADRs in patients using cardiovascular drugs is a matter of importance since this class of medicines is usually used by elderly patients with critical conditions and underlying diseases.
Crack retardation by load reduction during fatigue crack propagation
International Nuclear Information System (INIS)
Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon
2003-01-01
Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction
Ductile crack growth simulation from near crack tip dissipated energy
International Nuclear Information System (INIS)
Marie, S.; Chapuliot, S.
2000-01-01
A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
International Nuclear Information System (INIS)
Tobailem, Jacques.
1981-11-01
Cross sections are reviewed for nuclear reactions induced by protons, deuterons, and alpha particles on phosphorus targets. When necessary, published experimental data are corrected, and, when possible, excitation functions are proposed [fr
Crack modeling of rotating blades with cracked hexahedral finite element method
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
The Reflective Cracking in Flexible Pavements
Directory of Open Access Journals (Sweden)
Pais Jorge
2013-07-01
Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.
Tensile cracks in creeping solids
International Nuclear Information System (INIS)
Riedel, H.; Rice, J.R.
1979-02-01
The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen
Energy Technology Data Exchange (ETDEWEB)
Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)
2014-06-15
Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.
Χριστοφάκης, Μιχαήλ Κ.
2014-01-01
Information security is the next big thing in computers society because of the rapidly growing security incidents and the outcomes of those. Hacking and cracking existed even from the start of the eighties decade when there was the first step of the interconnection through the internet between humans. From then and ever after there was a big explosion of such incidents mostly because of the worldwide web which was introduced in the early nineties. Following the huge steps forward of computers...
DEFF Research Database (Denmark)
Martakos, G.; Andreasen, J. H.; Berggreen, Christian
2017-01-01
A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...
Energy Technology Data Exchange (ETDEWEB)
Forwood, G F; Lane, M; Taplay, J G
1921-10-07
In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.
Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers
International Nuclear Information System (INIS)
Dai, H.L.
1981-04-01
Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 μm laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 μm excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 μm excitation than for 10 μm excitation, reflecting bottlenecking in the discrete region of 10 μm excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF 6 caused by vibrational self-quenching. Between 1000-3000 cm -1 of energy is removed from SF 6 excited to approx. > 60 kcal/mole by collision with a cold SF 6 molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF 4 as absorbing gas for the CO 2 laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail
Evaluation of flaws or service induced cracks in pressure vessels
International Nuclear Information System (INIS)
Riccardella, P.C.; Copeland, J.F.; Gilman, J.
1987-01-01
An overview of the ASME flaw evaluation procedures for nuclear pressure vessels is presented, with emphasis on fatigue crack growth evaluations. Environmental and load-rate effects are further considered with respect to new crack growth data and a time-dependent crack growth model. This new crack growth model is applied to evaluate feedwater nozzle cracking in boiling water reactors and is compared to current and past ASME crack growth curves. The time-dependent model bounds the observed cracking and indicates that more detailed consideration of material susceptibility, in terms of sulfur content and product form, is needed
On the application of cohesive crack modeling in cementitious materials
DEFF Research Database (Denmark)
Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe
2007-01-01
typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...
Peridynamic model for fatigue cracking.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew; Abe Askari (Boeing)
2014-10-01
The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.
Finite element simulation for creep crack growth
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.
1992-01-01
A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)
Application of acoustic emission to hydride cracking
International Nuclear Information System (INIS)
Sagat, S.; Ambler, J.F.R.; Coleman, C.E.
1986-07-01
Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking
Shaft Crack Identification Based on Vibration and AE Signals
Directory of Open Access Journals (Sweden)
Wenxiu Lu
2011-01-01
Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.
Hydride effect on crack instability of Zircaloy cladding
Energy Technology Data Exchange (ETDEWEB)
Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)
2014-04-01
Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.
Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads
International Nuclear Information System (INIS)
Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho
2015-01-01
To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%
Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads
Energy Technology Data Exchange (ETDEWEB)
Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)
2015-07-15
To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.
Semi-empirical crack tip analysis
Chudnovsky, A.; Ben Ouezdon, M.
1988-01-01
Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.
An analysis for crack layer stability
Sehanobish, K.; Botsis, J.; Moet, A.; Chudnovsky, A.
1986-01-01
The problem of uncontrolled crack propagation and crack arrest is considered with respect to crack layer (CL) translational stability. CL propagation is determined by the difference between the energy release rate and the amount of energy required for material transformation, and necessary and sufficient conditions for CL instability are derived. CL propagation in polystyrene is studied for two cases. For the case of remotely applied fixed load fatigue, the sufficient condition of instability is shown to be met before the necessary condition, and the necessary condition controls the stability. For the fixed displacement case, neither of the instability conditions are met, and CL propagation remains stable, resulting in crack arrest.
Online Bridge Crack Monitoring with Smart Film
Directory of Open Access Journals (Sweden)
Benniu Zhang
2013-01-01
Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.
Noncontact fatigue crack evaluation using thermoelastic
Energy Technology Data Exchange (ETDEWEB)
Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)
2012-12-15
This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.
Surface chemical reactions induced by molecules electronically-excited in the gas
DEFF Research Database (Denmark)
Petrunin, Victor V.
2011-01-01
and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....
Nonelastic nuclear reactions induced by light ions with the BRIEFF code
Duarte, H
2010-01-01
The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.
Modified Dugdale cracks and Fictitious cracks
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1998-01-01
A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...
Dynamic experiments on cracked pipes
International Nuclear Information System (INIS)
Petit, M.; Brunet, G.; Buland, P.
1991-01-01
In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system
Propagation of stress corrosion cracks in alpha-brasses
Energy Technology Data Exchange (ETDEWEB)
Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)
1981-01-01
Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.
DEFF Research Database (Denmark)
Martakos, G.; Andreasen, J.H.; Berggreen, Christian
2017-01-01
A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and a...
Probability of crack-initiation and application to NDE
Energy Technology Data Exchange (ETDEWEB)
Prantl, G [Nuclear Safety Inspectorate HSK, (Switzerland)
1988-12-31
Fracture toughness is a property with a certain variability. When a statistical distribution is assumed, the probability of crack initiation may be calculated for a given problem defined by its geometry and the applied stress. Experiments have shown, that cracks which experience a certain small amount of ductile growth can reliably be detected by acoustic emission measurements. The probability of crack detection by AE-techniques may be estimated using this experimental finding and the calculated probability of crack initiation. (author).
Crack initiation under generalized plane strain conditions
International Nuclear Information System (INIS)
Shum, D.K.M.; Merkle, J.G.
1991-01-01
A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab
... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.
Method of spectra parametrization of (n, x) and (n, nx) reactions induced by DT-neutrons
International Nuclear Information System (INIS)
Aleksandrov, D.V.; Kovrigin, B.S.
1980-01-01
A method for parmetrization of experimental spectra has been developed for more convenient carrying out a process of separating competing mechanisms contributions in spectra of the (n, x) and (n, nx) reactions induced with DT neutrons. Differential cross sections of competing partial processes are used. as expanding coefficients. Model spectra may be represented in the form of tabulated-given functions calculated separately from formulae of any complexity degree. Fit of model expressions is performed by the least square method (lsm). Step-by-step algorithm of nonlinear optimization is used for search for lsm- evaluations of theoretical models parameters [ru
Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth
International Nuclear Information System (INIS)
Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.
1977-01-01
The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds
Setup for fission and evaporation cross-section measurements in reactions induced by secondary beams
International Nuclear Information System (INIS)
Hassan, A.A.; Luk'yanov, S.M.; Kalpakchieva, R.; Skobelev, N.K.; Penionzhkevich, Yu.Eh.; Dlouhy, Z.; Radnev, S.; Poroshin, N.V.
2002-01-01
A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of α-particle and fission fragment energy spectra. By measuring the α-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30% of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion-fission reactions and of reactions leading to evaporation residue production
Natural Vibration of a Beam with a Breathing Oblique Crack
Directory of Open Access Journals (Sweden)
Yijiang Ma
2017-01-01
Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.
Study of reactions induced by the halo nucleus 11Li with the active target MAYA
International Nuclear Information System (INIS)
Roger, Th.
2009-09-01
Active targets are perfect tools for the study of nuclear reactions induced by very low intensity radioactive ion beams. They also enable the simultaneous study of direct and compound nuclear reactions. The active target MAYA, built at GANIL, has been used to study the reactions induced by a 4.3*A MeV 11 Li beam at the ISAC2 accelerator TRIUMF (Canada). The angular distributions for the elastic scattering and the one and two neutron transfer reaction have been reconstructed. The elastic scattering angular distribution indicates a strong enhancement of the flux absorption with respect to the neighbouring nuclei. From a coupled channel analysis of the two neutron transfer reaction for different three body models, the information on the structure of the halo of the Borromean nucleus 11 Li have been extracted. Meanwhile, the energy dependence of the elastic scattering reaction has been studied, using the active target MAYA as a thick target. The resulting spectrum shows a resonance around 3 MeV centre of mass. This resonance could be an isobaric analog state of 12 Li, observed in 12 Be. R matrix calculations have been performed in order to extract the parameters (spin and parity) of this state. (author)
Effect of residual stress induced by cold expansion on fatigue crack ...
African Journals Online (AJOL)
Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...
Effect of temperature on crack initiation in gas formed structures
Energy Technology Data Exchange (ETDEWEB)
Gohari, S.; Vrcelj, Z.; Sharifi, S.; Sharifishourabi, G.; Abadi, R. [Universiti Teknlogi Malaysia, Skudai (Malaysia)
2013-12-15
In the gas forming process, the work piece is formed by applying gas pressure. However, the gas pressure and the accompanying gas temperature can result in crack initiation and unstable crack growth. Thus, it is vital to determine the critical values of applied gas pressure and temperature to avoid crack and fracture failure. We studied the mechanism of fracture using an experimental approach and finite element simulations of a perfect aluminum sheet containing no inclusions and voids. The definition of crack was based on ductile damage mechanics. For inspection of initiation of crack and rupture in gas-metal forming, the ABAQUS/EXPLICIT simulation was used. In gas forming, the applied load is the pressure applied rather than the punching force. The results obtained from both the experimental approach and finite element simulations were compared. The effects of various parameters, such as temperature and gas pressure value on crack initiation, were taken into account.
Reactor vessel nozzle cracks: a photoelastic study
International Nuclear Information System (INIS)
Smith, C.W.
1979-01-01
A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs
Curvilinear crack layer propagation
Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie
1987-01-01
An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.
Reaction mechanism and spectroscopy of transfer reactions induced by heavy ions
International Nuclear Information System (INIS)
Lemaire, M.-C.
1977-01-01
The specific features displayed by data on heavy ion elastic and inelastic angular distributions are discussed, and their physical origin is pointed out from semi-classical calculations in counterpart ambiguities in the phenomenological description of the optical potential appear. Two nucleon transfer reactions induced by heavy ions successfully point out important contributions of a two-step process where the transfer is proceeding via target and residual nucleus inelastic excitation. At incident energies not too high above the Coulomb barrier, such process produces clear shape changes between different final state angular distributions. At higher incident energy, the angular distributions are forward peaked and display oscillations for both mechanisms. As for four-nucleon transfer reactions, the existing data suggest that the nucleons are well transferred into a Os relative
Improved Simulation of the Pre-equilibrium Triton Emission in Nuclear Reactions Induced by Nucleons
Konobeyev, A. Yu.; Fischer, U.; Pereslavtsev, P. E.; Blann, M.
2014-04-01
A new approach is proposed for the calculation of non-equilibrium triton energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines models describing the nucleon pick-up, the coalescence and the triton knock-out processes. Emission and absorption rates for excited particles are represented by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from exciton configurations starting from (2p,1h) states. The contribution of the direct nucleon pick-up is described phenomenologically. Multiple pre-equilibrium emission of tritons is accounted for. The calculated triton energy distributions are compared with available experimental data.
International Nuclear Information System (INIS)
Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro
1982-12-01
Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)
Characterization of mixed mode crack opening in concrete
DEFF Research Database (Denmark)
Jacobsen, Jonas Sejersbøl; Poulsen, Peter Noe; Olesen, John Forbes
2012-01-01
components of the mixed mode displacement are measured using a custom made orthogonal gauge, and the measurements are used directly as the closed loop control signals. A double notch, concrete specimen is used for the crack investigation. The tests are divided into two steps, a pure Mode I opening step......In real concrete structures cracks often open in mixed mode after their initiation. To capture the direct material behavior of a mixed mode crack opening a stiff biaxial testing machine, capable of imposing both normal and shear loads on a given crack area, has been applied. The opening and sliding......, where a macro crack is initiated in the specimen followed by the mixed mode opening step. The high stiffness of the set-up together with the closed control loop ensures a stable crack initiation followed by a controllable mixed mode opening. The deep notches result in a plane crack, only influenced...
FEM Modeling of Crack Propagation in a Model Multiphase Alloy
Institute of Scientific and Technical Information of China (English)
Lihe QIAN; Seishi NISHIDO; Hiroyuki TODA; Tosliro KOBAYASHI
2006-01-01
In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jintegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized dendritic two-phase Al-7%Si alloy was modeled using an elastic-plastic finite element method. The variation of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.
A theoretical model of semi-elliptic surface crack growth
Directory of Open Access Journals (Sweden)
Shi Kaikai
2014-06-01
Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.
International Nuclear Information System (INIS)
Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo
2001-01-01
Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)
Energy Technology Data Exchange (ETDEWEB)
Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2001-09-01
Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)
Cyclic crack resistance of anticorrosion cladding-15Kh2MFA steel joint
International Nuclear Information System (INIS)
Zvezdin, Yu.I.; Nikiforchin, G.N.; Timofeev, B.T.; Zima, Yu.V.; Andrusiv, B.N.
1985-01-01
Cyclie crack resistance of transition zone in austenitic cladding steel 15Kh2MFA joint is studied, taking into account the geometry of fatigue cracks, fracture micromechanism and crack closure effect. Kinetics of crack development from the cladding to the basic metal and vice versa is considered. Microstructure of transition zone is investigated. The results obtained are considered as applied to WWER. It is emphasized, that the braking of fatigue cracks is observed at low asymmetry of loading cycle. Increased loading asymmetry accelerates sharply the alloy fracture due to the growth of subcladding crack, at that, the direction of crack propagation and the structure of transition zone are not of great importance
International Nuclear Information System (INIS)
Zheng, X.J.; Metzger, D.R.; Sauve, R.G.
1995-01-01
A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))
Photoelastic Analysis of Cracked Thick Walled Cylinders
Pastramă, Ştefan Dan
2017-12-01
In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.
Chudnovsky, A.
1987-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Atomistics of crack propagation
International Nuclear Information System (INIS)
Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.
1988-01-01
The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund
Bursting pressure of autofrettaged cylinders with inclined external cracks
International Nuclear Information System (INIS)
Seifi, Rahman; Babalhavaeji, Majid
2012-01-01
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.
Bursting pressure of autofrettaged cylinders with inclined external cracks
Energy Technology Data Exchange (ETDEWEB)
Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2012-01-15
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.
On short cracks that depart from elastoplastic notch tips
Directory of Open Access Journals (Sweden)
Verônica Miquelin Machado
2017-07-01
Full Text Available The behavior of short cracks that depart from elastoplastic notch tips is modeled to estimate the stresses required to initiate and to propagate cracks in notched structural components, and to evaluate the size of tolerable crack-like defects under general loading conditions. This analysis can model both fatigue and environmentally assisted cracking problems; can evaluate notch sensitivity in both cases; and can as well be used to establish design or acceptance criteria for tolerable non-propagating crack-like defects in such cases. The growth of short cracks is assumed driven by the applied stresses and by the stress gradient ahead the notch tip, and supported by the material resistances to crack initiation and to long crack propagation by fatigue or EAC. In the elastoplastic case, the stress gradient ahead of the notch tip is quantified by a J-field to consider the short crack behavior. The tolerable short crack predictions made by this model are evaluated by suitable fatigue and EAC tests of notched specimens specially designed to start nonpropagating cracks from the notch tips, both under elastic and elastoplastic conditions.
Mechanism of electric fatigue crack growth in lead zirconate titanate
International Nuclear Information System (INIS)
Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.
2007-01-01
A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism
International Nuclear Information System (INIS)
Blann, M.
1985-08-01
The Boltzmann master equation model has been applied to the question of precompound nucleon de-excitation of reactions induced by 10 to 100 MeV/nucleon (c.m.) heavy ions. Test systems of 16 O + 60 Ni and 27 Al + 86 Kr were selected. Experimental neutron spectra in coincidence with evaporation residue and fission fragments from the 20 Ne + 165 Ho system (due to Holub, et al.) were reproduced quite well by the master equation with exciton numbers between 20 and 23. Results show major fractions of the excitation and up to 35 nucleons removed during the coalescence-equilibration period. The linear momentum transfer predicted by the master equation is shown to be in good agreement with a broad range of data. Extension of the master equation to predict sub-threshold PI 0 production cross sections is shown to give satisfactory agreement with a large number of experimental results. 48 refs., 8 figs., 7 tabs
Production of steam cracking feedstocks by mild cracking of plastic wastes
Energy Technology Data Exchange (ETDEWEB)
Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor
2010-11-15
In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)
International Nuclear Information System (INIS)
Howerton, R.J.
1981-01-01
The 1977 Wapstra and Bos nuclear mass data tables were used to derive tables for thresholds and Q values of nuclear reactions induced by neutrons, protons, deuterons, tritons, 3 He ions, alpha particles, and photons. The tables are displayed on microfiche included with the report
International Nuclear Information System (INIS)
Horvath, A.; Szoeke, J.; Wojnarovits, L.
1991-01-01
Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Abthoff, J; Schuster, H D; Gabler, R
1976-11-17
A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.
Tissue reactions induced by nylon cable tie used to clamp ovarian pedicles
Directory of Open Access Journals (Sweden)
Luiz Fernando Moraes Moreira
2018-03-01
Full Text Available The aim of this study was to evaluate the tissue reactions induced by nylon cable tie by using macroscopic and histological evaluations. Forty-five clinically healthy crossbreed female dogs, 31.11 ± 14.26 months old and with a body weight of 11.26 ± 4.7 kg, underwent ovariohysterectomy using a minimally invasive procedure. The dogs were randomly divided into three groups of 15 animals each and were evaluated preoperatively, and at 30 (G1, 60 (G2 and 90 days (G3 after surgery. The histological examination of the pedicles containing the nylon cable ties, collected from five animals in each group, showed a chronic inflammatory reaction with the presence of macrophages, giant cells and fibroplasia on the 30th postoperative day. Well-organized connective tissue and presence of lymphocytes and polymorphonuclear leukocytes were seen on the 60th postoperative day, and mature connective tissue and presence of macrophages and lymphocytes were seen at 90 days. Nylon cable ties induce an inflammatory reaction, which should be considered due to the risk of interference with surrounding structures.
Direct reactions induced by 16O on 208Pb at high incident energy
International Nuclear Information System (INIS)
Mermaz, M.C.
1978-01-01
Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)
Polyoxyethylene/styrene - a model system for studying reaction-induced phase separation (RIPS)
International Nuclear Information System (INIS)
Sutton, D.; Stanford, J.L.; Ryan, A.J.
2003-01-01
Full text: Reaction-induced, phase-separation has been studied in polymer blends. A model crystalline-amorphous system consisted of semi-crystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was employed as a reactive solvent to ease processing. When the styrene was polymerised to polystyrene (PS) in the mould, phase-separation and phase-inversion are induced, and a polymer blend was formed. POE was selected with a molar mass, Mn = 8578 g mol -1 and a polydispersity of 1.19 as determined using GPC. The polymerisation of styrene was initiated using 1 wt-% benzoin methyl ether (BME) and 0.2 wt-% 2,2'-azobisisobutyronitrile (AIBN) under ultra-violet (UV) light. The polymerisation kinetics were determined by monitoring the reduction in the intensity of the C=C stretching vibration band at 1631 cm -1 in the Raman spectrum of styrene. The onset times for the liquid-solid (L-S) phase-separation and crystallisation of POE from styrene/PS were observed using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Onset times for L-S phase-separation determined from the SAXS data were combined with the styrene polymerisation kinetics to plot the L-S phase-separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45 and 50 deg C
Numerical simulations of material mismatch and ductile crack growth
Energy Technology Data Exchange (ETDEWEB)
Oestby, Erling
2002-07-01
Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is
Fatigue crack behaviour in mine excavator
Energy Technology Data Exchange (ETDEWEB)
Yin, Y.; Grondin, G.Y.; Elwi, A.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering
2006-05-15
Fatigue cracking in excavation equipment represents a significant operating cost for oil sands operators. It is caused by high impact loads, the high frequency of load cycles, and large component sizes found in oil sands processing facilities. Monitoring and repair strategies for fatigue cracks are typically based on vendor specifications and the experience of maintenance personnel. This paper provided details of an optimized crack management program applied to a BE 395B shovel boom. The proposed crack management tool uses a chart to predict the remaining life of a corner crack in the shovel boom. Predictions are based on limited field measurements of operating loads as well as on data obtained from fatigue testing of boom material, and a finite element analysis of the shovel boom. Field and laboratory data are used along with fracture mechanics and finite element modelling to predict crack life. It was concluded that the tool will allow inspectors and planners to schedule repairs based on safe service life. The tool is applicable for any components subjected to fatigue loading. 3 refs., 21 tabs., 64 figs.
Crack propagation on spherical pressure vessels
International Nuclear Information System (INIS)
Lebey, J.; Roche, R.
1975-01-01
The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here
International Nuclear Information System (INIS)
Aaltonen, P.; Bojinov, M.; Helin, M.
2002-01-01
The aim of this literature study has been to evaluate the level of understanding of the role of anionic impurities in environmentally assisted cracking (EAC) of iron- and nickel-based alloys in the coolant conditions of a boiling water reactor (BWR) - type nuclear power plant, mainly under normal water chemistry (NWC). The study has been motivated by a need to find the most relevant experimental approaches that can be applied when looking for correlations between crack growth rate and measurable electrochemical and chemical parameters. Special crack tip chemistry conditions are established, when trace amounts are present in the BWR coolant and become enriched within a crack. Anions may influence both the conductivity and the pH of the coolant within the crack. In addition, they may influence the composition, structure and properties of the oxide films formed on crack walls either directly via adsorption or incorporation or indirectly via the effect of changes in pH within the crack. Based on the proposed mechanisms for EAC, oxide films formed on crack wall surfaces are likely to play a key role in determing the crack growth rate of structural materials. The prediction of the influence of anionic impurities is thus likely to be facilitated by means of understanding their effect on the films on crack walls. One of the most promising approaches to experimentally clarify this influence is based on investigating the electrochemical behaviour of oxide films Fe- and Ni-based materials in high-temperature conditions simulating the special chemistry within a stress corrosion crack. Results from such studies should be compared and combined with ex situ analytical results obtained using modern electron microscopic techniques. In addition to crack growth, currently available electro-chemical techniques should also be applied to find out whether crack initiation can be explained and modelled on the basis of the electrochemical behaviour of oxide films. (orig.)
Inspecting cracks in foam insulation
Cambell, L. W.; Jung, G. K.
1979-01-01
Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
2016-01-01
extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....
Transient subcritical crack-growth behavior in transformation-toughened ceramics
International Nuclear Information System (INIS)
Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.
1990-01-01
Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material
CAT scanning of hydrogen-induced cracks in steel
International Nuclear Information System (INIS)
Sawicka, B.D.; Tapping, R.L.
1987-01-01
Computer assisted tomography (CAT) was applied to detect small cracks caused by hydrogen ingress into carbon steel samples. The incipient cracks in the samples resulted from a quality control procedure used to test the susceptibility of carbon steel to hydrogen blistering/cracking. The method used until now to assess the extent of the cracking resulting from this test has been mechanical sectioning, polishing and microscopic examination of the sections. The CAT results are compared with the reference method and the feasibility of using CAT in the proposed application is demonstrated. (orig.)
Fatigue crack growth behavior under cyclic thermal transient stress
International Nuclear Information System (INIS)
Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.
1986-01-01
Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)
Fatigue crack growth behavior under cyclic transient thermal stress
International Nuclear Information System (INIS)
Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.
1987-01-01
Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)
Fatigue crack growth in an aluminum alloy-fractographic study
Salam, I.; Muhammad, W.; Ejaz, N.
2016-08-01
A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.
SSRI Facilitated Crack Dancing
Directory of Open Access Journals (Sweden)
Ravi Doobay
2017-01-01
Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”
Natural zeolite bitumen cracking
Energy Technology Data Exchange (ETDEWEB)
Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering
2006-07-01
A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.
Flexural Cracks Development in Reinforced Concrete Beams Under ...
African Journals Online (AJOL)
This work attempts to describe the stress-strain state of beams which is gradually changing with the number of load cycles applied and, especially, to analyses formation and development of cracks which greatly affect the whole behaviour of the beams. The method of assessment of maximum cracks' width giving good ...
Studies of Hot Crack Properties of Laser Welded Stainless Steel
DEFF Research Database (Denmark)
Juhl, Thomas Winther
During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... to the crack behaviour, but do not show an expected correlation between the crack resistance and the solidification rate. The employment of pulsed seams is therefore assessed not to be usable in the present selection methods. From evaluation of several crack tests, the Weeter spot weld test has been chosen...
Catalytic cracking models developed for predictive control purposes
Directory of Open Access Journals (Sweden)
Dag Ljungqvist
1993-04-01
Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.
Ultrasonic sizing of fatigue cracks
International Nuclear Information System (INIS)
Burns, D.J.
1983-12-01
Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed
Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth
International Nuclear Information System (INIS)
Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.
1978-01-01
The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne
A crack arrest test using a toughness gradient steel plate
International Nuclear Information System (INIS)
Okamura, H.; Yagawa, G.; Urabe, Y.; Satoh, M.; Sano, J.
1995-01-01
Pressurized thermal shock (PTS) is a phenomenon that can occur in the reactor pressure vessels (RPVs) with internal pressure and is one of the most severe stress conditions that can be applied to the vessel. Preliminary research has shown that no PTS concern is likely to exist on Japanese RPVs during their design service lives. However, public acceptance of vessel integrity requires analyses and experiment in order to establish an analytical method and a database for life extension of Japanese RPVs. The Japanese PTS integrity study was carried out from FY 1983 to FY 1991 as a national project by Japan Power Engineering and Inspection Corporation (JAPEIC) under contract with Ministry of International Trade and Industry (MITI) in cooperation with LWR utilities and vendors. Here, a crack arrest test was carried out using a toughness gradient steel plate with three layers to study the concept of crack arrest toughness. Four-point bending load with thermal shock was applied to the large flat plate specimen with a surface crack. Five crack initiations and arrests were observed during the test and the propagated crack bifurcated. Finally, cracks were arrested at the boundary of the first and the second layer, except for a small segment of the crack. The first crack initiation took place slightly higher than the lower bound of K Ic data obtained by ITCT specimens. That is, the K IC concept for brittle crack initiation was verified for heavy section steel plates. The first crack arrest took place within the scatter band of K Ia and K Id data for the first layer. That is, the K Ia concept appears applicable for crack arrest of a short crack jump
A consistent partly cracked XFEM element for cohesive crack growth
DEFF Research Database (Denmark)
Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto
2007-01-01
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...
International Nuclear Information System (INIS)
Gao Zhiwen; Zhou Youhe; Lee, Kang Yong
2010-01-01
The interaction of two collinear cracks is obtained for a type-II superconducting under electromagnetic force. Fracture analysis is performed by means of finite element method and the magnetic behavior of superconductor is described by the critical-state Bean model. The stress intensity factors at the crack tips can be obtained and discussed for decreasing field after zero-field cooling. It is revealed that the stress intensity factor decreases as applied field increases. The crack-tip stress intensity factors decrease when the distance between the two collinear cracks increases and the superconductors with smaller crack has more remarkable shielding effect than those with larger cracks.
Assessment of integrity of structures containing cracks
International Nuclear Information System (INIS)
Townley, C.H.A.
1976-01-01
The object of the investigations is to provide a method of assessing the safety and integrity of structures containing cracklike defects. Estimated load at which the cracked structure will fail is compared with the highest load likely to be applied in service
Transport Through Cracked Concrete: Literature Review
International Nuclear Information System (INIS)
Langton, C.
2012-01-01
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.
TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW
Energy Technology Data Exchange (ETDEWEB)
Langton, C.
2012-05-11
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.
International Nuclear Information System (INIS)
Dienes, J.K.
1993-01-01
Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives
Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han
2017-09-07
Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.
CERN. Geneva. Audiovisual Unit; Singh, Simon
2002-01-01
In the back of 'The Code Book', a history of cryptography, Simon Singh included a series of 10 encoded messages, each from a different period of history. The first person to crack all 10 messages would win a prize of Â£10,000. Now that the prize has been won, Simon can reveal the story behind the Cipher Challenge. Along the way he will show how mathematics can be used to crack codes, the role it played in World War Two and how it helps to guarantee security in the Information Age.
Fabrication and Performance Evaluation of a Thevetia Nut Cracking ...
African Journals Online (AJOL)
Akorede
can be added to the soil as manure and the hard seed coat. (endocarp) derived ... Some of the important theories governing cracking operations are stated and ..... Industrial Industry Development: A Case Study of Nigeria. Journal of Applied ...
Investigation on aerosol transport in containment cracks
International Nuclear Information System (INIS)
Parozzi, F.; Chatzidakis, S.; Housiadas, C.; Gelain, T.; Nahas, G.; Plumecocq, W.; Vendel, J.; Herranz, L.E.; Hinis, E.; Journeau, C.; Piluso, P.; Malgarida, E.
2005-01-01
Under severe accident conditions, the containment leak-tightness could be threatened by energetic phenomena that could yield a release to the environment of nuclear aerosols through penetrating concrete cracks. As few data are presently available to quantify this aerosol leakage, a specific action was launched in the framework of the Santar Project of the European 6 th Framework Programme. In this context, both theoretical and experimental investigations have been managed to develop a model that can readily be applied within a code like Aster (Accident Source Term Evaluation Code). Particle diffusion, settling, turbulent deposition, diffusiophoresis and thermophoresis have been considered as deposition mechanisms inside the crack path. They have been encapsulated in numerical models set up to reproduce experiments with small tubes and capillaries and simulate the plug formation. Then, an original lagrangian approach has been used to evaluate the crack retention under typical PWR accident conditions, comparing its predictions with those given by the eulerian approach implemented in the ECART code. On the experimental side, the paper illustrates an aerosol production and measurement system developed to validate aerosol deposition models into cracks and the results that can be obtained: a series of tests were performed with monodispersed fluorescein aerosols injected into a cracked concrete sample. A key result that should be further explored refers to the high enhancement of aerosol retention that could be due to steam condensation. Recommendations concerning future experimentation are also given in the paper. (author)
Dynamic response of cracked hexagonal subassembly ducts
International Nuclear Information System (INIS)
Glazik, J.L.; Petroski, H.J.
1979-01-01
The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals
Fatigue crack propagation behavior of stainless steel welds
Kusko, Chad S.
The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.
Microstructural modelling of creep crack growth from a blunted crack
Onck, P.R.; Giessen, E. van der
1998-01-01
The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the
Linear Cracking in Bridge Decks
2018-03-01
Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...
Detection of cracks on concrete surfaces by hyperspectral image processing
Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo
2017-06-01
All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly
International Nuclear Information System (INIS)
1986-01-01
The participants of the conference heard 36 papers of which 13 were incorporated in INIS. The incorporated papers deal with the quality control of the equipment of nuclear power plants, with technical specifications and possibilities of diverse crack detection devices, as well as with personnel training for nondestructive materials testing. (E.S.)
Mitsuda's reactions: induced by BCG in the normal Rhesus ("Macacca mulatta"
Directory of Open Access Journals (Sweden)
M. J. Pereira Filho
1955-12-01
Full Text Available The reversals of Mitsuda's reactions induced by BCG have been objected to based on the possiblem interference of other determination causes of the phenomenon: tuberculous primo-infections, communicants of unsuspected leprosy, revearsals due to other causes, such as anti-diphteric and anti-tetanic vaccination, etc. In order to study the problem, we have used Rhesus monkeys (Macaca mulatta, which were reared in isolation, in an attempt to avoid the referred to interferences. Prior to the experiments, all animals were tested and found negative to radiograph, tuberculin and lepromin tests and were then submitted to the application of BCG vaccine (from 1 to 3 days old, in different doses and by different via. At different times, after the application of BCG, they were again submitted to the radiographic, tuberculin and lepromin tests. In the tables I to IV the experiences were summarised. From the experiments, the following conclusions were reached: 1 - From 12 Rhesus that received BCG 11 showed reversals of the Mitsuda reaction (91.7%. 2 - These reverseals took place both in tests effected shortly after BCG (from 6 days to 2 months, and tests effected much later (from 7 to 12 months after BCG. 3 - Some differences were found in the results, according to the dosis and the application via of the BCG. a - The testicular and peritonela via (0,02g were the only that determined strong positive Mitsuda's reactions (+++. b - By oral via, animals that received high dosis (0.6g and 1.2 g, there resulted uniform and regular reversals, even though of low intensity (+; but from those who got small doses (0.2 g. one showed no reversals in all tests, and the other presented reversals in the 2nd and 3rd tests only, also with low positivity (+. 4 In the 2nd and 3rd Mitsuda's reactions in the same animals, positivity was always precocious (generally within 48 hours, one getting the impression that there occurs a sensibilization of the animal body by the antigen with
Comparative study of direct and inverse problems of cracked beams
Directory of Open Access Journals (Sweden)
Mahieddine Chettah
2018-01-01
Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply
Crack closure, a literature study
Holmgren, M.
1993-08-01
In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.
Modeling of multibranched crosslike crack growth
International Nuclear Information System (INIS)
Canessa, E.; Tanatar, B.
1991-06-01
Multibranched crosslike crack patterns formed in concentrically loaded square plates are studied in terms of fractal geometry, where the associated fractal dimension d f is calculated for their characterization. We apply simplest deterministic and stochastic approaches at a phenomenological level in an attempt to find generic features as guidelines for future experimental and theoretical work. The deterministic model for fracture propagation we apply, which is a variant of the discretized Laplace approach for randomly ramified fractal cracks proposed by Takayasu, reproduces the basic ingredients of observed complex fracture patters. The stochastic model, although is not strictly a model for crack propagation, is based on diffusion-limited aggregation (DLA) for fractal growth and produces slightly more realistic assessment of the crosslike growth of the cracks in asymmetric multibranches. Nevertheless, this simple ad-hoc DLA-version for modeling the present phenomena as well as the deterministic approach for fracture propagation give fractal dimensionality for the fracture pattern in accord with our estimations made from recent experimental data. It is found that there is a crossover of two fractal dimensions, corresponding to the core (higher d f ) and multibranched crosslike (lower D f ) regions, that contains loops, that are interpreted as representing different symmetry regions within the square plates of finite size. (author). 26 refs, 5 figs
Ultrasonic testing of fatigue cracks under various conditions
International Nuclear Information System (INIS)
Jessop, T.J.; Cameron, A.G.B.
1983-01-01
Reliable detection of the fatigue cracks was possible under all conditions studied. Applied load affected the ultrasonic response in a variety of ways but never more than by 20dB and generally considerably less. Material variations affected the response under applied load by up to 20dB. Oxide in the crack and crack morphology affected the response by up to 9dB (12dB under load). Crack size variations and presence of water had little effect. Sizing accuracy was generally within 2mm although there was a tendency to undersize. The time of flight sizing technique gave the best accuracy if a tensile load was applied
International Nuclear Information System (INIS)
Srivastava, A.; Prabhakaran, K.M.; Ghosh, A.K.
2011-01-01
Highlights: → Behavior of cracked elbows with part-through crack at intrados under bending moment is studied. → Some part of crack always opens and some part gets closed irrespective of mode of applied moment. → Fraction of the crack that opens basically decides the weakening effect of the cracked elbow. → Results will be useful for fracture studies and limit load estimation especially for LBB. - Abstract: This paper presents the behavior of part-through circumferential crack at intrados in elbows under in-plane bending moment. This is based on detailed non-linear (both material and geometric) finite element analysis performed on various sizes of elbows (generally used in piping industry), having different crack sizes. It is observed that some part of the crack always opens and some part gets closed irrespective of the mode of applied bending moment (opening/closing). The fraction of the crack that opens basically decides the weakening effect of the cracked elbow. It is observed that there is a threshold value of crack length and crack depth, before which no crack opening is observed under opening mode. Also as elbow becomes thinner, the threshold value of above two parameters increases. Quite interestingly, the part of crack which closes in opening mode opens under closing mode. The above mentioned study on the behavior of crack will be useful for fracture studies and limit load estimation especially when leak before break concept is to be employed.
International Nuclear Information System (INIS)
Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun
2015-01-01
A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.
Correlation of fracture parameters during onset of crack in middle tension specimen
Directory of Open Access Journals (Sweden)
M.S. Starvin
2017-07-01
Full Text Available The present study addresses the implementation of finite element analysis and the prediction of fracture parameters in a middle tension (MT specimen that was fabricated using AISI 4140 steel. The correlation of fracture parameters with external loads and crack sizes was investigated. A Finite Element code was developed to simulate the fracture model. The contour integral method was applied in the calculation of stress intensity factor and J-integral in the cracked specimen. The ASTM standard empirical formula was used to calculate the stress intensity factor (SIF and the numerical predictions were validated. A standard laboratory experiment was also carried out using the MT specimen to calculate the crack growth rate in this specific material. The SIF values were almost linear with external load but it was decreasing as the crack size increases. The crack requires minimum load for crack propagation as the crack size increases. Similarly the J-integral was accelerated with increase in crack size.
Crack identification for rotating machines based on a nonlinear approach
Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.
2016-10-01
In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
3D ductile crack propagation within a polycrystalline microstructure using XFEM
Beese, Steffen; Loehnert, Stefan; Wriggers, Peter
2018-02-01
In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.
A study on fatigue crack growth behavior subjected to a single tensile overload
International Nuclear Information System (INIS)
Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.
2011-01-01
Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.
Mechanism of crack healing at room temperature revealed by atomistic simulations
International Nuclear Information System (INIS)
Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H.
2015-01-01
Three dimensional molecular dynamics (MD) simulations are systematically carried out to reveal the mechanism of the crack healing at room temperature, in terms of the dislocation shielding and the atomic diffusion to control the crack closure, in a copper (Cu) plate suffering from a shear loading. The results show that the process of the crack healing is actualized through the dislocation emission at a crack tip accompanied with intrinsic stacking faults ribbon forming in the crack tip wake, the dislocation slipping in the matrix and the dislocation annihilation in the free surface. Dislocation included stress compressing the crack tip is examined from the MD simulations and the analytical models, and then the crack closes rapidly due to the assistance of the atomic diffusion induced by the thermal activation when the crack opening displacement is less than a threshold value. This phenomenon is very different from the previous results for the crack propagation under the external load applied because of the crack healing (advancing) largely dependent on the crystallographic orientations of crack and the directions of external loading. Furthermore, based on the energy characteristic and considering the crack size effect, a theoretical model is established to predict the relationships between the crack size and the shear stress which qualitatively agree well with that obtained in the MD simulations
International Nuclear Information System (INIS)
Rivet, M.F.; Bimbot, R.; Ngo, C.
1979-01-01
The experimental angular distributions and cross sections for a series of deeply inelastic transfer reactions induced by various projectiles in rare earth targets have been interpreted using a model which includes a dynamical coupling between relative motion and mass asymmetry and treats statistical fluctuations. As the transfer reactions considered correspond to an increase of the potential energy of the composite system their observation is mainly due to fluctuations. The calculation reproduces correctly the angular distributions, but the cross sections are underestimated. Several effects are discussed which may increase these cross sections and are neglected in the calculation
International Nuclear Information System (INIS)
Eremin, A.V.; Chepigin, V.I.; Itkis, M.G.
1998-01-01
The production cross sections of the isotopes 253-255 No were measured for the heavy ion complete fusion reaction 48 Ca + 208 Pb using the electrostatic recoil separator VASSILISSA. The obtained excitation functions for the reaction products formed after the evaporation of 1-3 neutrons from the compound nucleus are discussed and compared with the data obtained earlier and with the results of the statistical model calculations. The background conditions at the extraction of the correlated events of the reaction product decay are also considered from the point of view of future experiments on the superheavy element synthesis in the complete fusion reactions induced by 48 Ca projectiles
Energy Technology Data Exchange (ETDEWEB)
Ranganathan, Narayanaswami; Leroy, Rene; Tougui, Abdellah [Laboratoire de Mecanique et Rheologie, Universite Francois Rabelais de Tours, Polytech Tours, Departement Mecanique et Conception de Systemes, Tours (France)
2009-09-15
Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.
2015-04-15
Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.
International Nuclear Information System (INIS)
Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.
1995-01-01
The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip
International Nuclear Information System (INIS)
Feburie, V.; Giot, M.; Granger, S.; Seynhaeve, J.M.
1992-06-01
The leaks through steam-generator cracks are the subject of a research carried out in cooperation between EDF and UCL. A software called ECREVISSE to predict the mass flow rate has been developed and has been successfully validated. The purpose of the paper is to present the mathematical model used in ECREVISSE as well as some comparison between the results and the presently available data. The model takes into account the persistence of some metastable liquid in the crack and the special flow pattern which appears in such particular geometry. Although the model involves the use of several correlations (friction, heat transfer), no adjustment of parameters against the data has been needed, neither in the single-phase part of the flow, or in the two-phase part. (authors). 8 figs., 1 tab., 20 refs
Delayed hydride cracking: alternative pre-cracking method
International Nuclear Information System (INIS)
Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys
2009-01-01
The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)
1984-01-01
alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber
Crumpacker, John R.
2009-01-01
Approved for public release, distribution unlimited Password cracking requires significant processing power, which in today's world is located at a workstation or home in the form of a desktop computer. Berkeley Open Infrastructure for Network Computing (BOINC) is the conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that incorporates client-server relationships to generically process data. The BOINC structu...
2003-01-01
MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.
Cracking hydrocarbons. [British patent
Energy Technology Data Exchange (ETDEWEB)
Heyl, G E
1926-05-06
The vapors from a still in which oils, coal tar, pitch, creosote, and c. or solid carbonaccous material such as coal or shale are cracked by being heated to 600/sup 0/ to 1000/sup 0/C. are passed through a fractionating column to remove high-boiling constituents which are passed into a second cracking still. The vapors from this still are treated to separate high-boiling fractions which are passed into a third still. The sills preferably contain removable troughs or liners, which are freed from carbon deposits either after removal from the still or by a scraping disc which is rotated in and moved along the trough. Oil to be cracked is forced by a pump through a preheater to a still. Vapours pass through a carbon separator and dephlegmator to a condenser. The reflux from the dephlegmator is forced by a pump to a still, the vapors from which pass through a carbon separator and a dephlegmator, the reflux from which is passed into a third still fitted with a separate carbon separator, dephlegmator and final condenser.
International Nuclear Information System (INIS)
James, L.A.
1985-08-01
Section XI of the ASME Boiler and Pressure Vessel Code provides rules for the analysis of structures for which cracks or crack-like flaws have been discovered during inservice inspection. The Code provides rules for the analysis of both surface flaws as well as flaws that are embedded within the wall of the pressure vessel. In the case of surface flaws, the Code provides fatigue crack growth rate relationships for typical nuclear pressure vessel steels (e.g., ASTM A508-2 and A533-B) cycled in water environments typical of those in light-water reactors (LWR). However, for the case of embedded cracks, the Code provides crack growth relationships based on results from specimens that were cycled in an elevated temperature air environment. Although these latter relationships are often referred to as applying to ''inert'' environments, the results of this paper will show that an elevated temperature air environment is anything but inert, and that use of such relationships can result in overly pessimistic estimates of fatigue-crack growth lifetimes of embedded cracks. The reason, of course, is that embedded cracks grow in an environment that is probably much closer to a vacuum than an air environment
DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.
2013-01-01
A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.
International Nuclear Information System (INIS)
Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R.
2011-01-01
The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between Δε eff and ΔK eff provides experimental support for the hypothesis that ΔK eff can be considered as the fatigue crack tip driving force.
Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method
International Nuclear Information System (INIS)
Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian
2014-01-01
The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)
Modified Dugdale crack models - some easy crack relations
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1997-01-01
the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...
Temperature effect on Zircaloy-4 stress corrosion cracking
International Nuclear Information System (INIS)
Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.
1999-01-01
Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)
Environmentally assisted cracking in light water reactors
International Nuclear Information System (INIS)
Chopra, O.K.; Chung, H.M.; Gruber, E.E.
1996-07-01
This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials
Giant electrocaloric effect in a cracked ferroelectrics
Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa
2018-04-01
The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.
Influence of cracks on rebar corrosion in carbonated concretes
International Nuclear Information System (INIS)
Ghantous, R.M.; L'Hostis, V.; Poyet, S.; Francois, R.; Tran, N.C.
2015-01-01
This paper presents an experimental program allowing the determination of the effect of pre-cracks and their orientations on both initiation and propagation of reinforcement steel corrosion due to carbonation in different environmental conditions, in order to propose an operational model allowing the evaluation of the kinetic of corrosion of the reinforcement steel in cooling towers of nuclear power plants. The cracking mode that generates cracks which are representative of those appearing on the cooling towers is a three-point bending test performed on prismatic samples of 7*7*28 cm 3 size with 6 mm steel bars. The length of damaged steel / concrete interface, which appears following a three-point bending test, is then quantified. This length could be determining in the initiation and the propagation of corrosion. Results show that this length is dependent on the residual crack opening and that the length of damaged interface in its lower part is larger than that on the upper part due to the Top Bar effect. After cracking, the samples will be exposed to carbon dioxide to ensure carbonation of the steel bar localized at the bottom of the crack and the concrete/steel interface, damaged by the load applied during the three-point bending test. After carbonation of the interface, samples will be submitted to corrosion in different environmental conditions whose effect on the kinetics of corrosion will be determined. The work done so far permits the definition of the cracking protocol (three points bending) that allows obtaining cracks which are representative of those existing on cooling towers. Moreover, the length of steel/concrete damaged interface with respect to crack opening is quantified. It was found that this length is proportional to the crack opening. In addition, it was shown that the Top Bar effect increases the damaged interface length at the lower part of steel bars
Observation and simulation of crack growth in Zry-4
International Nuclear Information System (INIS)
Bertolino, Graciela; Meyer, Gabriel; Perez Ipina, J
2003-01-01
Security and life extension of components of nuclear reactors are the most motivating aspects that encourage to study embrittlement processes of zirconium alloys by reaction with hydrogen.Here, the use of fracture mechanics tests are suitable to monitor the material resistance of components under service.Because many times is difficult to obtain normalized probes from real size components, researchers look for alternative experimental techniques or crack growth simulation from the knowledge of particular material properties.In this work we present the results obtained after experimental observation and computer simulation of crack growth in Zry-4 probes.Experimental observation were obtained by performing flexion tests in three point probes SSEN(B) of 3 x 7 x 32 mm 3 located in the chamber of a scanning electron microscope, measuring in situ the crack length and opening when an external load is applied.Using the information obtained from stress-displacement measurements after tensile tests and the empiric relationship between crack opening and crack length, the crack growth process was simulated.Displacement field in the zone close to the crack tip was obtained by finite elements technique (Castem, DMT, CEA) assuming plain stress, a plastic bilinear homogeneous material and neglecting texture or directional anisotropy.To compare experimental observation and simulation, a grid (10 x 10 μm 2 each square) was drawn in the zone close to the crack tip by selective sputtering.Following the movement of two (three) points of the surface allows to compare uni (bi) dimensional deformation.A good agreement between observation and simulation was observed: after the crack opening grew 28 times (from 1.5 to 42 μm) the base-height relationship of a triangle involving the crack tip change 40% (35%) in the experimental observation (simulation)
Cracking phenomena in lithium-di-silicate glass ceramics
Indian Academy of Sciences (India)
Unknown
Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.
A compound crack in a pipe under tension
International Nuclear Information System (INIS)
Zahoor, A.
1992-01-01
Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.)
A compound crack in a pipe under tension
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A. (Zenith Corp., Rockville, MD (United States))
1992-03-01
Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.).
Lin, Shan
2018-04-01
There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.
Cracking of anisotropic cylindrical polytropes
Energy Technology Data Exchange (ETDEWEB)
Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2017-06-15
We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)
2014-01-01
While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.
International Nuclear Information System (INIS)
Dietzel, W.; Turnbull, A.
2007-01-01
Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.03 and is structured as follows: General aspects of SCC testing; Non-precracked specimens; Precracked specimens - the fracture mechanics approach to SCC; Crack growth measurement; Limitations of the LEFM approach to SCC; The use of SCC data; Guide to selection of mechanical scc test method
The catalytic cracking mechanism of lignite pyrolysis char on tar
International Nuclear Information System (INIS)
Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.
2017-01-01
The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)
Crack width monitoring of concrete structures based on smart film
International Nuclear Information System (INIS)
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-01-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge. (paper)
Crack width monitoring of concrete structures based on smart film
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-04-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.
Catalytic cracking of lignites
Energy Technology Data Exchange (ETDEWEB)
Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)
2013-11-01
A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)
International Nuclear Information System (INIS)
Lee, Shin Young; Song, Ji Ho
2000-01-01
Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks
Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach
International Nuclear Information System (INIS)
Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.
2010-01-01
A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)
Effect of plastic prestrain on the crack tip constraint of pipeline steels
International Nuclear Information System (INIS)
Eikrem, P.A.; Zhang, Z.L.; Nyhus, B.
2007-01-01
Before and during operation, pipelines may suffer from plastic pre-deformation due to accidental loading, cold bending and ground movement. Plastic prestrain not only modifies steel's yield and flow properties but also influences its fracture performance. This paper focuses on the effect of prestrain history on crack driving force and crack tip constraint. A single-edge notched tension specimen has been selected for the study and the crack is assumed to exist before a prestrain history was applied. The results show that prestrain history has a strong effect on the crack tip stress field. A new parameter has been proposed to characterize the prestrain-induced crack tip constraint. For the same crack tip opening displacement level, prestrain history will elevate the crack tip stress field. The prestrain-induced constraint decreases with the increase of loading
Characterization of SCC crack tips and surface oxide layers in alloy 600
Energy Technology Data Exchange (ETDEWEB)
Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2002-09-01
In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
International Nuclear Information System (INIS)
Lamia, L; Spitaleri, C; Cherubini, S; Gulino, M; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Carlin, N; Gameiro Munhoz, M; Gimenez Del Santo, M; Kiss, G G; Somorjai, E; Kroha, V; Kubono, S; La Cognata, M; Pizzone, R G; Li, C; Wen, Qungang; Mukhamedzhanov, A
2013-01-01
The Trojan Horse Method is a powerful indirect technique allowing one to measure the bare nucleus S(E)-factor and the electron screening potential for astrophysically relevant reactions without the needs of extrapolations. The case of the (p,α) reactions induced on the two boron isotopes 10,11 B is here discussed in view of the recent Trojan Horse (TH) applications to the quasi-free 10,11 B+ 2 H reactions. The comparison between the TH and the low-energy direct data allowed us to determine the electron screening potential for the 11 B(p,α) reaction, while preliminary results on the 10 B(p,α) reaction have been extracted.
Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials
DEFF Research Database (Denmark)
Brincker, Rune
In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....
Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading
International Nuclear Information System (INIS)
Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.
2013-01-01
The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD
Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading
Energy Technology Data Exchange (ETDEWEB)
Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.
2013-07-01
The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD
On the use of a woven mat to control the crack path in composite sandwich structures
DEFF Research Database (Denmark)
Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.
2008-01-01
tractionsbetween the separated crack surfaces [4, 5]. The outline of a crack propagating under large scale bridging in a sandwich structure can be seen in Figure 1. The fiber bridging mechanism possesses an increased potential damage tolerance capacity for the sandwich structure if it can be predicatively....... The sign of the moment ratio can be reversed by changing the mounting direction of the wire. If moments with opposite signs are applied e.g. M1/M2 = -1, crack opening in the normal direction is dominating (mode I). If moments with the same sign are applied the crack opening in the tangential direction...
Air-steam leakage through cracks in concrete
International Nuclear Information System (INIS)
Georges Nahas; Helene Simon
2005-01-01
axial load is applied on the reinforcement bars for cracking. In this experiment, about five almost plane vertical traversing cracks are induced. Air-steam pressure is applied in a chamber at the top of the slab. Water leakage is collected at the bottom and measured. A scenario lasting 40 hours is produced with a 4 hour temperature stage at 210 Celsius degrees followed by a 4 hour temperature stage at 160 Celsius degrees. During the experiment, the average crack opening is kept constant at the bottom of the slab by changing the applied axial load. At the top, the concrete slab is heated by heat exchange with the steam in the pressure chamber and thermal expansion of the concrete causes the cracks to close during the first stage and reopen during the following stage. A mechanical calculation with the code CAST3M aims to reproduce the mechanical behavior of the slab during the test, namely closing and reopening of the cracks at the top of the slab, where openings are measured. The model represents the five idealized cracks in bidimensional analysis with real test conditions (pressure and thermal load). The mechanical calculation furnishes data needed by the leakage calculation and unreachable to the experiment that are the internal crack profiles ( variation of the opening with the curvilinear coordinate of the crack inside the concrete slab). Various leakage calculations have been performed: linear internal crack profile with inlet crack opening varying with time, complex internal crack profile given by mechanical calculation, and finally mechanics and thermal hydraulics coupling. (authors)
International Conference on Dynamic Crack Propagation
1973-01-01
The planning meeting for a conference on Dynamic Crack Propagation was held at M.LT. in February 1971 and attended by research workers from several industrial, governmental and academic organizations. It was felt that a more specialized meeting would provide a better opportunity for both U.S. and foreign researchers to exchange their ideas and views on dynamic fracture, a subject which is seldom emphasized in national or international fracture conferences. Dynamic crack propagation has been a concern to specialists in many fields: continuum mechanics, metallurgy, geology, polymer chemistry, orthopedics, applied mathematics, as well as structural design and testing. It impinges on a wide variety of problems such as rock breaking and earthquakes, pressure vessels and line pipes, comminution and the per formance of armament and ordnance, etc. Advances have been numerous, covering theories and experiments from both the microscopic and macro scopic points of view. Hence, the need for comparing the theoretical ...
Fracture of longitudinally cracked ductile tubes
International Nuclear Information System (INIS)
Larsson, H.; Bernard, J.
1978-01-01
Various bulging factor and plasticity correction factor formulations are discussed and a new plasticity correction factor leading to a simple failure law is proposed. Failure stresses predicted by the usual Linear Elastic Fracture Mechanics formula corrected for plasticity are shown to be identical with the Dowling and Townley two-criteria approach if the relevant parameters are chosen in a suitable manner. Burst tests on AISI 304 stainless steel tubes performed at the Joint Research Centre, Ispra are described. The strengthening effect of the sealing patch was taken into account by replacing the Folias bulging factor by a smaller empirical factor determined by Bernard and Henry from fatigue crack growth tests. A flow stress sigma and a toughness Ksub(c) were derived which apply to the prediction of the onset of stable crack growth in 304 stainless steel tubes at room temperature. For other ductile materials and temperatures tentative formulae are proposed. (author)
Dynamic crack propagation through nanoporous media
Nguyen, Thao; Wilkerson, Justin
2015-06-01
The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.
A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld
International Nuclear Information System (INIS)
Xu, Heqin; Mahmoud, Samer; Nana, Ashok; Killian, Doug
2014-01-01
Cracks found in a nuclear power plant reactor coolant system (RCS), such as primary water stress corrosion cracking (PWSCC) and intergranular stress corrosion cracking (IGSCC), usually have natural crack front shapes that can be very different from the idealized semi-elliptical or rectangular shapes considered in engineering handbooks and other analytical solutions based on limited shapes. Simplifications towards semi-elliptical shape or rectangular shape may potentially introduce unnecessary conservatism when the simplified shape has to contain the actual crack shape. On the other hand, it is very time-consuming to create a three-dimensional (3D) finite element (FE) model to simulate crack propagation in a natural shape using existing public-domain software like ABAQUS or ANSYS. In this study, a local deformation-based mesh-mapping (LDMM) method is proposed to model cracks with a natural front shape in any 3D structures. This methodology is first applied to model circumferential surface cracks with a natural crack front shape in the cross-sectional plane of a cylinder. The proposed new method can be applied to simulate both shallow and deep cracks. Also discussed in this paper is a direct method to reproduce welding residual stresses in the crack model using temperature fields combined with other sustained loads to predict crack propagations. With this novel LDMM method, natural crack fronts and non-planar crack faces can be easily modeled. The proposed new method can be used to generate a high-quality finite element model that can be used for both linear-elastic fracture mechanics (LEFM) and elastic–plastic fracture mechanics (EPFM) analyses. The study case illustrates that the proposed LDMM method is easy to implement and more efficient than the existing commercial software
International Nuclear Information System (INIS)
Torii, Tashiyuki; Toi, Norihiko; Nakano, Kohji; Honda, Kazuo
1998-01-01
Using the X-ray method of stress measurement for Ti-6Al-4V alloys, the residual stress near the crack was measured for annealed (AN) and solution treated and aged (STA) titanium alloys, under the condition that the measured X-ray stress was in satisfactory agreement with the applied stress under tension. The residual stress measured in the wake of the propagating fatigue crack, σ r , was compressive, resulting in a smaller crack opening displacement, COD, than theorized. The measured σ r and COD-values let us understand the fatigue crack propagation rate da/dN in terms of the effective stress intensity factor K eff . As a result, the da/dN under the same K eff -value was smaller in the AN specimen with zigzag crack growth than in the STA specimen with straight crack growth, although the da/dN-K eff relationship under various stress amplitudes was represented by a straight line in a log-log scale separately for the AN and STA specimens. (author)
The effect of crack blunting on the competition between dislocation nucleation and cleavage
Fischer, Lisa L.; Beltz, Glenn E.
2001-03-01
To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these
International Nuclear Information System (INIS)
Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki
2012-01-01
Recently, it is reported that the primary water stress corrosion cracking (PWSCC) was occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic testing (UT) is required. Phased array technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)
Crack path and fracture surface modifications in cement composites
Directory of Open Access Journals (Sweden)
Sajjad Ahmad
2015-10-01
Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.
The effect of single overloading on stress corrosion cracking
International Nuclear Information System (INIS)
Ito, Yuzuru; Saito, Masahiro
2008-01-01
In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)
Emerging patterns of crack use in Mexico City.
Valdez, Avelardo; Kaplan, Charles; Nowotny, Kathryn M; Natera-Rey, Guillermina; Cepeda, Alice
2015-08-01
Recent studies in Mexico have documented a significant increase in crack cocaine use, indicating the potential for an emerging drug epidemic. Ethnographic observations and interviews were used describe the profiles and patterns of use among street-recruited crack users in Mexico City. The data came from an international research collaboration funded by the National Institutes of Health. A polythetic typology was developed based on five dimensions central to categorizing patterns of crack use behavior: frequency of use, duration of use, context, social networks, and social contracts. Four types of users were discovered applying these dimensions: dabblers, stable users, crack heads, and old heads. Although several similarities were documented between patterns of crack use in Mexico and those in the United States and Western Europe, several key aspects distinguished crack users in this population: (1) self-regulated use; (2) non-linear progression of crack; and (3) the influence of the dimensions pertaining to setting, social networks, and social contract as contributing to understanding of the previous two. Further, we provide a discussion of how specific contextual factors in Mexico may be giving rise to these emerging patterns. Compared to the U.S. and Europe, this study finds that the majority of crack users were able to self-regulate their use without major disruption to daily social functioning. As crack use spreads in Mexico and other Latin American countries, we need to recognize the importance of social context in developing more tailored health and social responses that are specific to these developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessment of Hot Crack Properties of Laser Welded Stainless Steel
DEFF Research Database (Denmark)
Juhl, Thomas Winther; Olsen, Flemming Ove
2003-01-01
Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...... measurements for prediction of phases, (3) Various crack tests to assess the crack susceptibility of alloys and (4) A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been investigated and recommendations...
Simplified method of computation for fatigue crack growth
International Nuclear Information System (INIS)
Stahlberg, R.
1978-01-01
A procedure is described for drastically reducing the computation time in calculating crack growth for variable-amplitude fatigue loading when the loading sequence is periodic. By the proposed procedure, the crack growth, r, per loading is approximated as a smooth function and its reciprocal is integrated, rather than summing crack growth cycle by cycle. The savings in computation time results since only a few pointwise values of r must be computed to generate an accurate interpolation function for numerical integration. Further time savings can be achieved by selecting the stress intensity coefficient (stress intensity divided by load) as the argument of r. Once r has been obtained as a function of stress intensity coefficient for a given material, environment, and loading sequence, it applies to any configuration of cracked structure. (orig.) [de
Fatigue crack growth in austenitic stainless steel piping
International Nuclear Information System (INIS)
Bethmont, M.; Cheissoux, J.L.; Lebey, J.
1981-04-01
The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches
Forced oscillations of cracked beam under the stochastic cyclic loading
Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.
2018-05-01
An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.
Technique to eliminate helium induced weld cracking in stainless steels
International Nuclear Information System (INIS)
Chin-An Wang; Chin, B.A.
1992-01-01
Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials
Cracking in Drying Colloidal Films
Singh, Karnail B.; Tirumkudulu, Mahesh S.
2007-05-01
It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.
International Nuclear Information System (INIS)
Francois, D.
1975-01-01
The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr
Directory of Open Access Journals (Sweden)
Li Ming Zhou
2016-01-01
Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.
Prediction of Crack Growth Aqueous Environments.
1983-06-01
ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 II...34no crack" has at least a vestigial rupture, associated with cyclic loading of the oxide film at the crack tip. The curve labeled "crack" was obtained...be an effect of crack opening. For the data set labeled "crack", the vestigial crack, although short, is very tight and the impedance is large. Under
Directory of Open Access Journals (Sweden)
Y. Nakai
2015-10-01
Full Text Available In rolling contact fatigue (RCF, cracks usually initiate from inclusions beneath the surface and propagate to the contact surface. In the present study, synchrotron radiation computed laminography (SRCL imaging was performed to observe flaking defects during the RCF of a high-strength steel. Specially fabricated inclusion-rich steel plate specimens were employed in the experiments. For the in situ observation of crack propagation, a compact RCF testing machine was developed, and a 4D analysis scheme was applied to the data obtained by SRCL. RCF tests were carried out near the measurement hatch of the beam line used SRCL to enable the successive observation of crack initiation and growth behaviors. Specimens before and after the occurrence of flaking were observed by SRCL, and flaking defects and cracks under the surface were successfully detected. As a result, details of the crack initiation and flaking process in RCF could be discussed. Shear-type horizontal cracks were found to initiate after the initiation and propagation of tensile-type vertical cracks along inclusions, where the face of the vertical cracks was perpendicular to the rolling direction and rolling surface. Therefore, the formation of vertical cracks is considered to affect shear-type crack formation and flaking, where the shape and length of inclusions also affect the initiation and propagation of vertical cracks.
Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi
2011-08-01
To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.
Modeling of a Curvilinear Planar Crack with a Curvature-Dependent Surface Tension
Zemlyanova, A. Y.; Walton, J. R.
2012-01-01
An approach to modeling fracture incorporating interfacial mechanics is applied to the example of a curvilinear plane strain crack. The classical Neumann boundary condition is augmented with curvature-dependent surface tension. It is shown that the considered model eliminates the integrable crack-tip stress and strain singularities of order 1/2 present in the classical linear fracture mechanics solutions, and also leads to the sharp crack opening that is consistent with empirical observations. Unlike for the case of a straight crack, for a general curvilinear crack some components of the stresses and the derivatives of the displacements may still possess weaker singularities of a logarithmic type. Generalizations of the present study that lead to complete removal of all crack-tip singularities, including logarithmic, are the subject of a future paper. © 2012 Society for Industrial and Applied Mathematics.
Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C
Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.
2015-08-01
The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
Buckling Analysis of Edge Cracked Sandwich Plate
Directory of Open Access Journals (Sweden)
Rasha Mohammed Hussein
2016-07-01
Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
Fracture behavior of filament in Nb{sub 3}Sn strands with crack-bridging model
Energy Technology Data Exchange (ETDEWEB)
Yong, Huadong, E-mail: yonghd@lzu.edu.cn; Yang, Penglei; Xue, Cun; Zhou, Youhe
2016-01-15
Highlights: • The crack-bridging model is used to study the fracture behavior of filaments. • Two different fracture modes are characterized by the number of bridging bronzes. • Short twist pitch has better mechanical stability for the tensile loadings. • The widths of bridging bronze and filament have different effects for the central crack and two collinear cracks. - Abstract: The Nb{sub 3}Sn strands which have high critical field are used in cable-in-conduit conductors (CICCs). The superconducting strands are twisted multistage and experience complex thermal and electromagnetic loadings. Due to their brittleness, the cracking of the Nb{sub 3}Sn filaments will occur under mechanical loading. In this paper, based on the linear elastic fracture theory, we study the effects of tension loading on the fracture behavior of central crack firstly. The strain energy release rates for different twist pitches and cabling stages are presented. As the triplet is subjected to the uniaxial strain, the cracking probability will increase with the twist pitch. The crack number increases with the applied strain, and wider filament or bronze can lead to smaller crack number under the same applied strain. In addition, multistage cabling has better mechanical stability. Next, the two collinear crack problem is considered. The variations of microcrack number show that the wider bronze can provide more resistance for the propagating of the large cracks. We can conclude that the bronze plays an important role in improving the stability and strength.
Fracture behavior of filament in Nb_3Sn strands with crack-bridging model
International Nuclear Information System (INIS)
Yong, Huadong; Yang, Penglei; Xue, Cun; Zhou, Youhe
2016-01-01
Highlights: • The crack-bridging model is used to study the fracture behavior of filaments. • Two different fracture modes are characterized by the number of bridging bronzes. • Short twist pitch has better mechanical stability for the tensile loadings. • The widths of bridging bronze and filament have different effects for the central crack and two collinear cracks. - Abstract: The Nb_3Sn strands which have high critical field are used in cable-in-conduit conductors (CICCs). The superconducting strands are twisted multistage and experience complex thermal and electromagnetic loadings. Due to their brittleness, the cracking of the Nb_3Sn filaments will occur under mechanical loading. In this paper, based on the linear elastic fracture theory, we study the effects of tension loading on the fracture behavior of central crack firstly. The strain energy release rates for different twist pitches and cabling stages are presented. As the triplet is subjected to the uniaxial strain, the cracking probability will increase with the twist pitch. The crack number increases with the applied strain, and wider filament or bronze can lead to smaller crack number under the same applied strain. In addition, multistage cabling has better mechanical stability. Next, the two collinear crack problem is considered. The variations of microcrack number show that the wider bronze can provide more resistance for the propagating of the large cracks. We can conclude that the bronze plays an important role in improving the stability and strength.
Redox reactions induced by hydrogen in deep geological nuclear waste disposal
International Nuclear Information System (INIS)
Truche, L.
2009-10-01
The aim of this study is to evaluate the abiotic hydrogen reactivity in deep geological nuclear waste storage. One crucial research interest concerns the role of H 2 as a reducing agent for the aqueous/mineral oxidised species present in the site. Preliminary batch experiments carried out with Callovo-Oxfordian argillite, synthetic pore water and H 2 gas lead to an important H 2 S production, in only few hours at 250 C to few months at 90 C. In order to explore whether H 2 S can originate from sulphate or pyrite (few percents of the argillite) reduction we performed dedicated experiments. Sulphate reduction experimented in di-phasic systems (water+gas) at 250-300 C and under 4 to 16 bar H 2 partial pressure exhibits a high activation energy (131 kJ/mol) and requires H 2 S initiation and low pH condition as already observed in other published TSR experiments. The corresponding half-life is 210,000 yr at 90 C (thermal peak of the site). On the contrary, pyrite reduction into pyrrhotite by H 2 occurs in few days at temperature as low as 90 C at pH buffered by calcite. The rate of the reaction could be described by a diffusion-like rate law in the 90-180 C temperature interval. The obtained results suggest that pyrite reduction is a process controlled both by the H 2 diffusion across the pyrrhotite pits increasing during reaction progress and the reductive dissolution of pyrite. These new kinetics data can be applied in computation modelling, to evaluate the degree and extent of gas pressure buildup by taking into account the H 2 reactive geochemistry. (author)
A method for the 3-D quantification of bridging ligaments during crack propagation
International Nuclear Information System (INIS)
Babout, L.; Janaszewski, M.; Marrow, T.J.; Withers, P.J.
2011-01-01
This letter shows how a hole-closing algorithm can be used to identify and quantify crack-bridging ligaments from a sequence of X-ray tomography images of intergranular stress corrosion cracking. This allows automatic quantification of the evolution of bridging ligaments through the crack propagation sequence providing fracture mechanics insight previously unobtainable from fractography. The method may also be applied to other three-dimensional materials science problems, such as closing walls in foams.
Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation
Abd El-Fattah A. Rizk
2012-01-01
The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...
Repair welding of cracked steam turbine blades
International Nuclear Information System (INIS)
Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.
1999-01-01
The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure
Energy Technology Data Exchange (ETDEWEB)
Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)
2016-04-15
Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.
On the variation in crack-opening stresses at different locations in a three-dimensional body
Chermahini, R. G.; Blom, Anders F.
1990-01-01
Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.
Directory of Open Access Journals (Sweden)
Kim S.-W.
2017-06-01
Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.
Probabilistic Analysis of Crack Width
Directory of Open Access Journals (Sweden)
J. Marková
2000-01-01
Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.
Multispecimen fatigue crack propagation testing
International Nuclear Information System (INIS)
Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.
1981-01-01
Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs
Monitoring crack growth using thermography
International Nuclear Information System (INIS)
Djedjiga, Ait Aouita; Abdeldjalil, Ouahabi
2008-01-01
The purpose of this work is to present a novel strategy for real-time monitoring crack growth of materials. The process is based on the use of thermal data extracted along the horizontal axis of symmetry of single edge notch tension (SENT) specimens, during fatigue tests. These data are exploited using an implemented program to detect in situ the growth of fatigue crack, with the critical size and propagation speed of the crack. This technique has the advantage to be applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. (authors)
Password Cracking Using Sony Playstations
Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet
Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.
Directory of Open Access Journals (Sweden)
Yongshui Kang
2014-10-01
Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.
Subsurface metals fatigue cracking without and with crack tip
Directory of Open Access Journals (Sweden)
Andrey Shanyavskiy
2013-07-01
Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.
Delayed hydride cracking behavior for zircaloy-2 plate
International Nuclear Information System (INIS)
Mills, J.W.; Huang, F.H.
1991-01-01
The delayed hydride cracking (DHC) behaviour for Zircaloy-2 plate was characterized at temperatures ranging from 300 to 550 o F. Specimens with a longitudinal (T-L) orientation exhibited a classic two-stage DHC response. At K values slightly above the threshold level (K th ), crack-growth rates increased dramatically with increasing K values (stage I). The K th value was found to be 11 and 14 ksi√ in at 400 and 500 o F. At high K values (stage II), cracking rates were relatively insensitive to applied K levels. Stage II crack growth was a thermally activated process described by an Arrhenius-type relationship with an activation energy of 65 kJ/mol. This energy level agreed with the theoretical activation energy for hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature (300 o F), an overtemperature cycle was required to initiate DHC. The magnitude of the thermal excursion required to initiate cracking was found to increase at higher test temperatures. Specimens with a transverse(L-T) orientation showed a very low sensitivity to DHC because of an unfavorable crystallographic orientation for hydride reorientation. Metallographic and fractographic examinations were performed to understand the DHC mechanism. (author)
The stress corrosion cracking of copper nuclear waste containers
International Nuclear Information System (INIS)
King, F.; Litke, C.D.; Ikeda, B.M.
1999-01-01
The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a 'limited propagation' argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J ox ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NANO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J ox are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained. (author)
The stress corrosion cracking of copper nuclear waste containers
International Nuclear Information System (INIS)
King, F.; Litke, C.D.; Ikeda, B.M.
1999-01-01
The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a limited propagation argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J OX ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NaNO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J OX are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained
Numerical evaluation of cracked pipes under dynamic loading
International Nuclear Information System (INIS)
Petit, M.; Jamet, P.
1989-01-01
In order to apply the leak-before-break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic, loadings must be studied. A simple finite element model of a cracked pipe has been developed and implemented in the general purpose computer code CASTEM 2000. The model is a generalization of the approach proposed by Paris and Tada (1). Considered loads are bending moment and axial force (representing thermal expansion and internal pressure.) The elastic characteristics of the model are determined using the Zahoor formulae for the geometry-dependent factors. Owing to the material behabior plasticity must be taken into account. To represent the crack growth, the material is defined by two characteristic values: J 1c which is the level of energy corresponding to crack initiation and the tearing modulus, T, which governs the length of propagation of the crack. For dynamic loads, unilateral conditions are imposed to represent crack closure. The model has been used for the design of dynamic tests to be conducted on shaking tables. Test principle is briefly described and numerical results are presented. Finally evaluation of margin, due to plasticity, in comparison with the standard design procedure is made
Cross-validated detection of crack initiation in aerospace materials
Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios
2014-03-01
A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.
A simple model for enamel fracture from margin cracks.
Chai, Herzl; Lee, James J-W; Kwon, Jae-Young; Lucas, Peter W; Lawn, Brian R
2009-06-01
We present results of in situ fracture tests on extracted human molar teeth showing failure by margin cracking. The teeth are mounted into an epoxy base and loaded with a rod indenter capped with a Teflon insert, as representative of food modulus. In situ observations of cracks extending longitudinally upward from the cervical margins are recorded in real time with a video camera. The cracks appear above some threshold and grow steadily within the enamel coat toward the occlusal surface in a configuration reminiscent of channel-like cracks in brittle films. Substantially higher loading is required to delaminate the enamel from the dentin, attesting to the resilience of the tooth structure. A simplistic fracture mechanics analysis is applied to determine the critical load relation for traversal of the margin crack along the full length of the side wall. The capacity of any given tooth to resist failure by margin cracking is predicted to increase with greater enamel thickness and cuspal radius. Implications in relation to dentistry and evolutionary biology are briefly considered.
Evaluation of stress corrosion crack growth in BWR piping systems
International Nuclear Information System (INIS)
Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.
1985-05-01
This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs
Adaptive Road Crack Detection System by Pavement Classification
Directory of Open Access Journals (Sweden)
Alejandro Amírola
2011-10-01
Full Text Available This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
1999-01-01
Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.
International Nuclear Information System (INIS)
Mulraney, D.
1997-01-01
The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs
Metallurgy of stress corrosion cracking
International Nuclear Information System (INIS)
Donovan, J.A.
1973-01-01
The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)
Shapes formed by interacting cracks
Daniels, Karen
2012-02-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.
The crack growth mechanism in asphaltic mixes
Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.
1995-01-01
The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive
Dynamic Crack Branching - A Photoelastic Evaluation,
1982-05-01
0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD
21 CFR 137.190 - Cracked wheat.
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...
International Nuclear Information System (INIS)
Sellem, C.; Perroud, J.P.; Loude, J.F.
1975-01-01
A counter telescope consisting of gas proportional counters, a thin semiconductor detector and a thick one has been built and used for the study of the angular differential cross sections of (n, charged particles) reactions induced by 14 MeV neutrons. Detection of the α-particles emitted in the neutron production reaction 3 H(d,n) 4 He gives a time reference for the measurement of the time of flight of the charged particles and allows a precise monitoring of the intensity of the neutron beam. High energy protons, deuterons and tritons are identified by their energy losses in the thin semiconductor detector and in the thick one and by their time of flight. Low energy protons, deuterons, tritons and all α-particles stop in the thin semiconductor detector and are identified by their energy losses in this detector and in one gas proportional counter as well as by their time of flight. It is possible to identify and to measure the energy of all charged particles in the energy range of 2 to 15 MeV: a very low background results from the use of the time of flight. (Auth.)
International Nuclear Information System (INIS)
Sanchez-Mejorada, G.; Frias, D.; Negron-Mendoza, A.; Ramos-Bernal, S.
2008-01-01
The dependence of the response of chemical dosimeters as a function of the irradiation temperature is an important issue that has not yet been addressed within a mathematical modeling framework. The temperature dependence of the dose-response function has to be taken into account in practical applications, mainly in frozen food sterilization by radiation. Significant errors may occur if the dependence of the dosimeter response on the irradiation temperature is not taken into account properly. The experimental results obtained irradiating iron salt solutions at different temperatures below and above 0 deg. C show that the change in the valence of Fe 2+ as a function of dose are linear for both liquid and frozen solutions. This led us to conclude that the iron salt solution seems suitable for low-temperature applications having a linear dose-response up to 600 Gy, despite a progressive decrease of sensitivity as temperature decreases. A nonlinear differential model for the kinetics of reactions induced by radiation in iron salt solutions was established. In the model a temperature correction factor was included in order to take into account abrupt changes observed in the kinetics of the chemical process when the irradiated solution's allotropic phase changes from liquid to solid (ice). Fitting the kinetic model to the experimental results at different temperatures we found the temperature correction factors
Directory of Open Access Journals (Sweden)
J. Rotrekl
2013-12-01
Full Text Available The addition of layered silicates can significantly affect the phase behaviour of both immiscible thermoplastic blends and partially miscible thermoset systems that undergo reaction-induced phase separation (RIPS during curing. This study focuses on the phase behaviour of polycaprolactone (PCL/epoxy in the presence of organically modified montmorillonite (oMMT. Due to the high dynamic asymmetry caused by the differences in the molecular weights and viscosities of the PCL and the uncured epoxy, the critical point is localised at low PCL concentrations, as indicated by the pseudophase diagram. The addition of oMMT to the system led to the marked shift of the critical point towards higher concentrations of PCL, with an increase in the oMMT content occurring as a consequence of the preferential localisation of the clay in the epoxy phase, making this phase more dynamically slow. Significant changes in morphology, including phase inversion of the PCL/epoxy systems caused by the presence of oMMT, were recorded for PCL concentrations ranging from 10 to 30%.
Crack propagation in dynamic thermoelasticity
International Nuclear Information System (INIS)
Bui, H.D.
1980-01-01
We study the singular thermoelastic fields near the crack tip, in the linear strain assumption. The equations are coupled and non linear. The asymptotic expansions of the displacement and the temperature are given for the first and the second order. It is shown that the temperature is singular when the crack propagates. However, this field does not change the dominant singularity of the mechanical field which is the same as that obtained in the theory of isothermal elasticity [fr
Early age stress-crack opening relationships for high performance concrete
DEFF Research Database (Denmark)
Østergaard, Lennart; Lange, David A.; Stang, Henrik
2004-01-01
Stress–crack opening relationships for concrete in early age have been determined for two high performance concrete mixes with water to cementitious materials ratios of 0.307 and 0.48. The wedge splitting test setup was used experimentally and the cracked nonlinear hinge model based...... on the fictitious crack model was applied for the interpretation of the results. A newly developed inverse analysis algorithm was utilized for the extraction of the stress–crack opening relationships. Experiments were conducted at 8, 10, 13, 17, 22, 28, 48, 168 h (7 days) and 672 h (28 days). At the same ages...
Ductile failure simulation of tensile plates with multiple through-wall cracks
International Nuclear Information System (INIS)
Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae
2009-01-01
In this paper, failure behaviors of ductile plates with multiple cracks are simulated, finite element analyses using ABAQUS. To simulate crack coalescence or propagation of multiple cracks, a technique to reduce stresses within an finite element is proposed and implemented using user-defined subroutines provided in ABAQUS. In the proposed method, all stress components reduce to almost zero when the effective strain reaches critical values which are a function of the stress triaxiality. A main benefit of the proposed numerical scheme is its simplicity. The proposed scheme is applied to simulate multiple-cracked plate tests by Japanese researchers. Simulated maximum loads are compared with experimental ones, showing overall good agreements.
A review and assessment of crack case problems in pressurized systems on the space shuttle
International Nuclear Information System (INIS)
Patin, R.M.; Forman, R.G.; Horiuchi, G.K.
1993-01-01
The principal effort for fracture control during development of the Space Shuttle was concentrated on primary structure, pressure vessels, and the main engines. The real occurrence of crack problems leading to safety-of-flight reviews, however, have been primarily affiliated with pressurized subsystems in the vehicle. The cracking of components in pressurized subsystems has occurred mostly from lack of weld penetration, porosity, and joint design oversight where mode 2 loading accelerated the crack initiation process. This paper provides a synopsis of several crack cases that have occurred, and points out the importance of applying a comprehensive fracture control plan to pressurized systems in space programs
International Nuclear Information System (INIS)
Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi
1991-01-01
This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)
Crack growth behaviour of aluminium wrought alloys in the Very High Cycle Fatigue regime
Directory of Open Access Journals (Sweden)
Bülbül Fatih
2018-01-01
Full Text Available Investigations have shown that in the regime of Very High Cycle Fatigue (VHCF “natural” crack initiation often takes place underneath the material surface leading to crack propagation without contact to atmospheric components. In order to elucidate the environmental damage contribution and its effect on the VHCF long crack propagation, fatigue experiments with alternating environment (vacuum and laboratory air were performed. An ultrasonic fatigue testing system (USFT equipped with a small vacuum chamber was applied that enables the in-situ examination of the long fatigue crack propagation at a resonance frequency of about 20 kHz by using a long distance microscope. By means of the Focused-Ion-Beam technique, micro-notches were prepared in the USFT specimens. The tests were carried out on the aluminium alloys EN-AW 6082 and 5083 in different conditions. It has been found that the atmosphere has a significant influence on the VHCF long crack propagation which manifests itself in the crack path as well as in the crack growth rates. Because of pronounced single sliding in vacuum, shear-stress-controlled crack propagation was detected whereas in laboratory air normal-stress-controlled crack propagation occurred. Furthermore, it has been proven that the secondary precipitation state of the aluminium alloy significantly influences the VHCF long crack propagation in vacuum.
The stability of through-wall circumferential cracks in cylindrical pipes subjected to bending loads
International Nuclear Information System (INIS)
Smith, E.
1983-01-01
Tada, Paris and Gamble have used the tearing modulus approach to show that when a circumferential through-wall crack exists in a 304 SS circular cylindrical pipe, and the pipe is subjected to an applied bending moment, then crack growth requires the rotation at the pipe-ends to be increased, (i.e. crack growth is stable), unless the pipe length is unduly large. On this basis it was concluded that unstable fracture is unlikely to occur in BWR SS piping, when the system is designed in accord with the ASME Code load levels for normal operation and anticipated transients. The Tada-Paris-Gamble analysis focuses on the inter-relation between instability and the onset of crack extension, and does not specifically consider the possibility that a crack might become unstable after some stable crack extension. The paper addresses this aspect of the crack stability problem using a crack tip opening angle criterion for crack extension, which has similarities with the tearing modulus approach. The results show that unstable fracture should not occur even after some stable crack extension, again provided that the pipe length is not unduly large. In other words, guillotine failure of a pipe in a BWR system is unlikely, even though the ASME Code limiting stress levels as might be exceeded, as may be the case with a very severe earthquake. (orig./HP)
Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.
Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli
2017-10-20
Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.
Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor
Directory of Open Access Journals (Sweden)
Zhiping Liu
2017-10-01
Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.
Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere
Hayashi, Morihito; Toeda, Kazunori
In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.
Development of phased array UT procedure for crack depth sizing on nickel based alloy weld
International Nuclear Information System (INIS)
Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki
2012-01-01
Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)
International Nuclear Information System (INIS)
Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin
2008-01-01
The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed
Sheared semi-infinite crack originating at the boundary of a circular ...
African Journals Online (AJOL)
The configuration studied is that of a non-homogeneous infinite solid containing a central hole and a semi-infinite crack, originating from one side of the hole. Longitudinal shear loads of magnitude Tj, j = 1, 2 are applied on parts of the crack surface. It is found that the dominant fracture characteristic is that of a hole or semi ...
The effect of couple-stresses on the stress concentration around a moving crack
Directory of Open Access Journals (Sweden)
S. Itou
1981-01-01
Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.
Crack monitoring method for an FRP-strengthened steel structure based on an antenna sensor
Liu, Z.; Chen, Kai; Li, Z.; Jiang, X.
2017-01-01
Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it
Application possibility of the direct current conduction method for nondestructive crack measurement
International Nuclear Information System (INIS)
Riedl, R.
1982-01-01
An important value to determine the danger of cracks is the determination of crack depths. The crack depth can be determined quite accurate by means of the direct current conduction method, if one holds onto certain rules. Often complicated experimental set-ups are applied. However, portable commercial devices can be obtained that can be used for partial fluxation, that yield good results. By means of two examples: crack conduction samples in which the built-up of a constant-cracking is persued up to a certain depth, as well as the persuasion of an continuing crack in a bearing cylinder, shall be demonstrated that is very well possible to record accurate profiles with commercial devices and to avoid expensive measurement devices. (orig.) [de
Ali, Abdulbaset; Hu, Bing; Ramahi, Omar
2015-05-15
This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.
Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation
Directory of Open Access Journals (Sweden)
Abdoullah Namdar
2016-03-01
Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.
International Nuclear Information System (INIS)
Lambert, F.J. Jr.
1976-07-01
A study on autogenous welding of Type 309 thin stainless steel sheet was made after experiencing cracking difficulties on several commercial heats. A relationship exists between the sum of the phosphorus plus sulfur, the ferrite control of the weld metal, and the crack sensitivity of autogenously made welds. A new simple weld test for thin-gage sheet is utilized for studying the susceptibility to cracking. A chemistry modification is suggested to alleviate possible weld cracking when autogenously welding this grade. The principles of crack sensitivity prediction could apply to other austenitic stainless steel types where chemistry limits are such that ferrite is possible
On the mechanism of crack propagation resistance of fully lamellar TiAl alloy
International Nuclear Information System (INIS)
Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.
2006-01-01
The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious
Compressive failure with interacting cracks
International Nuclear Information System (INIS)
Yang Guoping; Liu Xila
1993-01-01
The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack
International Nuclear Information System (INIS)
Musienko, Andrey; Cailletaud, Georges
2009-01-01
The motivation of the study is the development of a coupled approach able to account for the interaction between environment and plasticity in a polycrystalline material. The paper recalls first the constitutive equations used to describe the behavior of the grain core and of the grain boundary (GB). The procedure that is applied to generate synthetic polycrystalline aggregates with an explicit representation of the grain boundary area by 2D or 3D finite elements is then described. The approach is applied to the modeling of iodine-assisted stress corrosion cracking (IASCC) in Zircaloy tubes used in nuclear power plants.
International Nuclear Information System (INIS)
Kobayashi, S.; Horikiri, M.
2001-06-01
This report shows the results of crack inspection in crack propagation tests that were carried out at the Air-cooling Thermal Transient Test Facility (ATTF). Test specimens were made of 304 type austenitic stainless steel, and they were the same cylindrical shape, 1,500 mm in height, 130 mm in outer diameter and 30 mm in thickness. And they had initial slits machined on inner surfaces. Firstly the specimens were heated up to 650degC in a furnace, then cooled by pressurized air blowing through the specimen for 90 seconds. These cyclic changes of temperature gradients in the wall of specimens were loaded. Specimens were tested for several years. The specimen No. CPTT-102 with machined two circumferential slits and two semi-elliptical slits was tested up to 10,000 cycles. And the specimen No. CPTT-103 with machined six semi-elliptical slits of different length respectively was tested up to 5,000 cycles. Cracks of specimens were inspected nondestructively for a giving cycle in these tests. Applied inspection methods were ultra-sonic testing, potential-drop method and inner surface observation. Ultra-sonic testing was carried out by applying the pulse-echo method. Potential-drop testing was carried out by measurement of localized constant direct current beyond cracks. Photographs of the inner surface of specimens were taken using a bore-scope. The results of ultra-sonic testing have been close to destructive test results. The depth of crack by the potential-drop method was almost corresponding to destructive test results, too. Photographs of the inner surface were synthesized by the computer, and connection between main crack and hair crack was observed. (author)
Directory of Open Access Journals (Sweden)
Panos G. Charalambides
2016-05-01
Full Text Available This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions, (b the neutral axis rotations (slope of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.
Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu
2014-10-01
This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.
Energy Technology Data Exchange (ETDEWEB)
Badia, J. M.; Antoranz, J. M.; Tarin, P.; Simon, A. G.; Piris, N. M.
2004-07-01
The goal of this work is to prove the validity of using synthetic sea water as an alternative method instead of the NaCl solution used in stress corrosion crack growth tests in aluminium alloys, according to ASTM G 44. Several samples of 7075 alloy have been tested in different conditions and directions in both environments, which can be considered as equivalent. Only the samples tested in thickness direction have shown crack growth during the test. The use of sea water entails a great advantage in practice, by less superficial alteration, and less therefore a much more reliable measure of the crack. (Author) 8 refs.
Analysis of weld solidification cracking in cast nickel aluminide alloys
International Nuclear Information System (INIS)
Santella, M.L.; Feng, Z.
1995-01-01
A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results
Cracking in Flexural Reinforced Concrete Members
DEFF Research Database (Denmark)
Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German
2017-01-01
The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....
Dynamic ductile fracture of a central crack
Tsai, Y. M.
1976-01-01
A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.
Fatigue cracking in road pavement
Mackiewicz, P.
2018-05-01
The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.
Steel weldability. Underbead cold cracking
International Nuclear Information System (INIS)
Marquet, F.; Defourny, J.; Bragard, A.
1977-01-01
The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking
Role of hydrogen in stress corrosion cracking
International Nuclear Information System (INIS)
Mehta, M.L.
1981-01-01
Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)
A crack opening stress equation for fatigue crack growth
Newman, J. C., Jr.
1984-01-01
A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.
Seismic behaviour of un-cracked and cracked thin pipes
International Nuclear Information System (INIS)
Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.
1995-01-01
In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs
Mechanics of quasi-static crack growth
Energy Technology Data Exchange (ETDEWEB)
Rice, J R
1978-10-01
Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
International Nuclear Information System (INIS)
Yusa, Noritaka; Chen, Zhenmao; Miya, Kenzo; Cheng, Weiying
2002-01-01
This paper proposes a reliability parameter to enhance an version scheme developed by authors. The scheme is based upon an artificial neural network that simulates mapping between eddy current signals and crack profiles. One of the biggest advantages of the scheme is that it can deal with conductive cracks, which is necessary to reconstruct natural cracks. However, it has one significant disadvantage: the reliability of reconstructed profiles was unknown. The parameter provides an index for assessment of the crack profile and overcomes this disadvantage. After the parameter is validated by reconstruction of simulated cracks, it is applied to reconstruction of natural cracks that occurred in steam generator tubes of a pressurized water reactor. It is revealed that the parameter is applicable to not only simulated cracks but also natural ones. (author)
Effect of Crack Tip Stresses on Delayed Hydride Cracking in Zr-2.5Nb Tubes
International Nuclear Information System (INIS)
Kim, Young Suk; Cheong, Yong Moo
2007-01-01
Delayed hydride cracking (DHC) tests have shown that the DHC velocity becomes faster in zirconium alloys with a higher yield stress. To account for this yield stress effect on the DHC velocity, they suggested a simple hypothesis that increased crack tip stresses due to a higher yield stress would raise the difference in hydrogen concentration between the crack tip and the bulk region and accordingly the DHC velocity. This hypothesis is also applied to account for a big leap in the DHC velocity of zirconium alloys after neutron irradiation. It should be noted that this is based on the old DHC models that the driving force for DHC is the stress gradient. Puls predicted that an increase in the yield stress of a cold worked Zr-2.5Nb tube due to neutron irradiation by about 300 MPa causes an increase of its DHC velocity by an order of magnitude or 2 to 3 times depending on the accommodation energy values. Recently, we proposed a new DHC model that a driving force for DHC is not the stress gradient but the concentration gradient arising from the stress-induced precipitation of hydrides at the crack tip. Our new DHC model and the supporting experimental results have demonstrated that the DHC velocity is governed primarily by hydrogen diffusion at below 300 .deg. C. Since hydrogen diffusion in Zr-2.5Nb tubes is dictated primarily by the distribution of the β-phase, the DHC velocity of the irradiated Zr-2.5Nb tube must be determined mainly by the distribution of the β-phase, not by the increased yield stress, which is in contrast with the hypothesis of the previous DHC models. In short, a controversy exists as to the effect on the DHC velocity of zirconium alloys of a change in the crack tip stresses by irradiation hardening or cold working or annealing. The aim of this study is to resolve this controversy and furthermore to prove the validity of our DHC model. To this end, we cited Pan et al.'s experiment where the delayed hydride cracking velocity, the tensile strengths
A microstructural study of dynamic crack propagation in nuclear graphites
International Nuclear Information System (INIS)
Burchell, T.D.; McEnaney, B.; Tucker, M.O.; Rose, A.P.G.
1986-01-01
This paper reports a new microstructural study of dynamic crack propagation in three nuclear graphites: (i) PGA, the moderator material in UK Magnox reactors; (ii) IMl-24, the moderator material in UK Advanced gas cooled reactors (AGR); and (iii) a pitch coke graphite, which is used in the fabrication of AGR fuel sleeves. The fracture mechanisms in nuclear graphites are initiated by microcrack formation at low stresses. Typically, microcracks form in regions of well-aligned binder or at favourably-oriented pores, where stress is concentrated. With increasing applied loads, microcracks propagate taking advantage of easy cleavage paths or linking with pores. Eventually, coalescence of such cracks and inherent porosity produces a crack of critical length for fast fracture. (orig./MM)
Crack classification in concrete beams using AE parameters
Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.
2017-11-01
The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.
Crack arrest toughness measurements with A533B steel
International Nuclear Information System (INIS)
Salonen, Seppo.
1979-11-01
This work covers crack arrest toughness measurements on A533B steel done at the Technical Research Centre of Finland. These measurements are one part of a multinational effort, involving 30 laboratories. The aim of the cooperative test program is to examine two test procedures for measuring the crack arrest toughness, to give information about their reproducibility, and to identify the factors affecting the interpretation. The principles given for the testing were easy to apply in general and the results were satisfactory. Some factors in the test runs and in the specimen's behaviour are indicated which can cause error in the results or make implementation of the test more difficult. By comparing the results from our laboratory with average values from the test program a good agreement can be seen. Crack arrest toughness values derived from the compared procedures with a static analysis agree closely, but values calculated using a dynamic analysis differ considerably. (author)
Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures
International Nuclear Information System (INIS)
Castellani, A.; Fontana, A.
1977-01-01
Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking
Standard test method for measurement of creep crack growth times in metals
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension δai = 0.2 mm from the onset of first applied force and creep crack growth rate, ˙a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1998-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1999-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material
Energy Technology Data Exchange (ETDEWEB)
He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)
2015-08-26
Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a
Stress intensity factors and constant stress terms for interface cracks
International Nuclear Information System (INIS)
Fett, T.; Rizzi, G.
2004-01-01
In bi-material joints cracks can propagate along the interface or kink into one of the two materials. Whereas the energy release rate can be applied for interface cracks in the same way as usual for homogeneous materials, the computation of stresses in the vicinity of the crack tip is significantly more complicated. In order to assess crack kinking, it is necessary to know the mixed-mode stress intensity factor contributions K I and K II as well as the constant stress terms in the two materials. Whereas the stress intensity factors are available for a large number of infinite and semi-infinite bodies, there is experimental interest in practically used test specimens. This especially holds for the constant x-stress terms. Finite element computations are performed for the special case of a disappearing second Dundurs parameter, i.e. β=0. The fracture mechanics parameters K I , K II , σ 0 for the interface crack are reported in the form of diagrams and approximate relations. (orig.)
Nonlinear ultrasonic wave modulation for online fatigue crack detection
Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark
2014-02-01
This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.
Ultrasonic phased array with surface acoustic wave for imaging cracks
Directory of Open Access Journals (Sweden)
Yoshikazu Ohara
2017-06-01
Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.
Cascaded image analysis for dynamic crack detection in material testing
Hampel, U.; Maas, H.-G.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.
Evaluation of plastic collapse behavior for multiple cracked structures
International Nuclear Information System (INIS)
Moon, Seong In; Chang, Yoon Suk; Kim, Young Jin; Lee, Jin Ho; Song, Myung Ho; Choi, Young Hwan; Hwang, Seong Sik
2004-01-01
Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed
Ultrasonic detection of cracks in uniaxial glass fibre rods
CSIR Research Space (South Africa)
Loveday, PW
2006-01-01
Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...
Recent advances in modelling creep crack growth
International Nuclear Information System (INIS)
Riedel, H.
1988-08-01
At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs
Basic study on development of monitoring for crack propagation
International Nuclear Information System (INIS)
Enoki, Manabu; Kishi, Teruo; Kawasaki, Hirotsugu; Aoto, Kazumi
2000-03-01
The system for detecting the generation and propagation of cracks in products and materials has been investigated in this research. Firstly, in order to apply the method to harsh environment such as plant equipment, the system with laser interferometer which cables to detect fracture in non-contact way was tried. It was confirmed that the heterodyne interferometer with He-Ne laser could detect elastic waves propagating through materials, and the non-contact system with four interferometers to detect acoustic emission (AE) wave was developed. It was applied to the thermal stress fracture in alumina coating materials. AE wave during cooling of specimens due to microfracture near the interfaces was detected and the generation time, location, size and fracture mode could be evaluated by the inverse analysis. Thus, the quantitative system for evaluating AE wave was developed and the validity of this system was confirmed. Secondly, in order to predict the crack initiation, the detection tests which were performed to detect a change in damage in the pre-stage of micro crack initiation were tried. For the components that were subject to transient cyclic thermal loading changes, the ultrasonic detection test was performed, and the obtained echo was analyzed. Furthermore, the measurement of micro hardness was performed by using the micro hardness tester for the grain boundary at near crack. The ultrasound velocity which could detect damaged state before crack initiation was estimated from the wavelet analysis of ultrasonic echoes obtained here. It was confirmed to be possible to predict the crack initiation from the change of micro hardness on the grain boundary. (author)
American Society for Testing and Materials. Philadelphia
2006-01-01
1.1 This standard covers the determination of the resistance to stable crack extension in metallic materials in terms of the critical crack-tip-opening angle (CTOAc), ψc and/or the crack-opening displacement (COD), δ5 resistance curve (1). This method applies specifically to fatigue pre-cracked specimens that exhibit low constraint (crack-length-to-thickness and un-cracked ligament-to-thickness ratios greater than or equal to 4) and that are tested under slowly increasing remote applied displacement. The recommended specimens are the compact-tension, C(T), and middle-crack-tension, M(T), specimens. The fracture resistance determined in accordance with this standard is measured as ψc (critical CTOA value) and/or δ5 (critical COD resistance curve) as a function of crack extension. Both fracture resistance parameters are characterized using either a single-specimen or multiple-specimen procedures. These fracture quantities are determined under the opening mode (Mode I) of loading. Influences of environment a...
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
Directory of Open Access Journals (Sweden)
X. Chen
2016-06-01
Full Text Available This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.
On multiple crack detection in beam structures
Energy Technology Data Exchange (ETDEWEB)
Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)
2013-01-15
This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.
Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy
Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.
2008-01-01
A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.
Directory of Open Access Journals (Sweden)
L.Y. Yang
2014-07-01
Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.
Comparison of crack arrest methodologies
International Nuclear Information System (INIS)
Anon.
1979-01-01
The ASTM Cooperative Test Program Data were used to compare the static (K/sub Ia/) and dynamic (K/sud ID/, K/sub IDm/) approaches to crack arrest. K/sub Ia/ is not dependent on K/sub Q/. This is consistent with the requirements of the static approach, but not the dynamic one which requires that K/sub Ia/ decrease with K/sub Q/ if K/sub ID/ (= K/sub IDm/) is a constant. K/sub ID/ increases systematically with K/sub Q/ at a rate that is consistent with calculations based on the use of a constant value for K/sub Ia/ which is equal to its measured mean value. Only in the limiting case of very short crack jumps (associated with very low average crack speeds) can K/sub ID/ be identified as a minimum value at which K/sub ID/ = K/sub IDm/. In this case K/sub IDm/ approx. K/sub Ia/ approx. K/sub Im/. The latter is the idealized minimum value of K that will support the continued propagation of a running crack
The analysis of cracked structures
International Nuclear Information System (INIS)
Davidson, I.
1974-01-01
A brief review of the general problem of stable crack systems in many classes of structures, notably reinforced concrete structures, is made. Very simple methods of analysis are derived and some elaboration is described, as well as methods of optimising the calculations. Analytical methods are compared with experiments
Cracks in functionally graded materials
International Nuclear Information System (INIS)
Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.
2003-01-01
The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage
Severity parameters for steam cracking
Golombok, M.; Bijl, J.L.M.; Kornegoor, M.
2001-01-01
There are several ways to measure severity in steam cracking which are all a function of residence time, temperature, and pressure. Many measures of severity are not practicable for experimental purposes. Our experimental study shows that methane make is the best measure of severity because it is an
Steam hydrocarbon cracking and reforming
Golombok, M.
2004-01-01
Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity
Petrochemical promoters in catalytic cracking
International Nuclear Information System (INIS)
Gomez, Maria; Vargas, Clemencia; Lizcano, Javier
2010-01-01
This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (?C3= / ?LPG).
Fatigue crack growth in fiber reinforced plastics
Mandell, J. F.
1979-01-01
Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.
Dynamic photoelastic investigation of crack arrest
International Nuclear Information System (INIS)
Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.
1977-01-01
Crack arrest and crack arrest toughness are of great interest, particularly for studies pertaining to safety of nuclear reactor pressure vessels. Investigations are needed in which the instantaneous values of stress intensity factor (K) can be observed during crack propagation and arrest. Such observations are possible if the test specimens are made from plates of a transparent photoelastic sensitive material. Values of K as a function of crack speed are shown for Homalite 100 and various epoxy blends. 9 figures
Crack Propagation by Finite Element Method
H. Ricardo, Luiz Carlos
2017-01-01
Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...
Fatigue crack growth in additive manufactured products
Directory of Open Access Journals (Sweden)
A. Riemer
2015-10-01
Full Text Available Additive Manufacturing (AM is a new innovative technique that allows the direct fabrication of complex, individual, delicate and high-strength products, based on their 3D data. Selective Laser Melting (SLM is one of the AM processes that generates metallic components layer by layer using powder-bed technique. The irradiation and consequent melting of metallic powder is realised by the laser source. Employing SLM, especially complex and individual products, such as implants or aerospace parts, are well suited for economic production in small batches. The first important issue in this work was to analyse the fatigue crack growth (FCG in titanium alloy Ti-6-4 and stainless steel 316L processed by SLM. As a first step, stress intensity range decreasing tests were performed on SLM samples in their “as-built” condition. The next step was to adopt measures for optimisation of fatigue crack growth performance of SLM parts. For this purpose various heat treatments such as stress relief annealing and hot isostatic pressing (HIP were applied to the CT specimens. Finally, the strong impact of heat treatment on the residual lifetime was demonstrated by numerical fatigue crack growth simulations. For this purpose, the hip joint implant consisting of Ti-6-4 and processed by SLM was taken into account. It was found that residual stresses have a strong influence on the crack growth in Ti-6-4, while the influence of the micro-pores on the threshold values remains low. In contrast the results for 316L show that its fracturemechanical behaviour is not affected by residual stresses, whereas the microstructural features lead to modification in the da/dN-K-data. The second fundamental aim of this work was to demonstrate the possibilities of the SLM process. For that reason, the individually tailored bicycle crank was optimised regarding its weight and local stresses and finally manufactured using the SLM system. The iterative optimisation procedure was based on
Crack detection using image processing
International Nuclear Information System (INIS)
Moustafa, M.A.A
2010-01-01
This thesis contains five main subjects in eight chapters and two appendices. The first subject discus Wiener filter for filtering images. In the second subject, we examine using different methods, as Steepest Descent Algorithm (SDA) and the Wavelet Transformation, to detect and filling the cracks, and it's applications in different areas as Nano technology and Bio-technology. In third subject, we attempt to find 3-D images from 1-D or 2-D images using texture mapping with Open Gl under Visual C ++ language programming. The fourth subject consists of the process of using the image warping methods for finding the depth of 2-D images using affine transformation, bilinear transformation, projective mapping, Mosaic warping and similarity transformation. More details about this subject will be discussed below. The fifth subject, the Bezier curves and surface, will be discussed in details. The methods for creating Bezier curves and surface with unknown distribution, using only control points. At the end of our discussion we will obtain the solid form, using the so called NURBS (Non-Uniform Rational B-Spline); which depends on: the degree of freedom, control points, knots, and an evaluation rule; and is defined as a mathematical representation of 3-D geometry that can accurately describe any shape from a simple 2-D line, circle, arc, or curve to the most complex 3-D organic free-form surface or (solid) which depends on finding the Bezier curve and creating family of curves (surface), then filling in between to obtain the solid form. Another representation for this subject is concerned with building 3D geometric models from physical objects using image-based techniques. The advantage of image techniques is that they require no expensive equipment; we use NURBS, subdivision surface and mesh for finding the depth of any image with one still view or 2D image. The quality of filtering depends on the way the data is incorporated into the model. The data should be treated with
BWR pipe crack remedies evaluation
International Nuclear Information System (INIS)
Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.; Kuzay, T.; Rybicki, E.F.; Stonesifer, R.B.
1988-01-01
Piping in light-water-reactor power systems has been affected by several types of environmental degradation. This paper presents results from studies of (1) stress corrosion crack growth in fracture mechanics specimens of modified Type 347 SS and Type 304/308L SS weld overlay material, (2) heat-to-heat variations in stress corrosion cracking (SCC) of Types 316NG and 347 SS, (3) SCC of sensitized Type 304 SS in water with cupric ion or organic acid impurities, (4) electrochemical potential (ECP) measurements under gamma irradiation, (5) SCC of ferritic steels, (6) strain-controlled fatigue of Type 316NG SS in air at ambient temperature, and (7) through-wall residual stress measurements and finite-element calculation of residual stresses in weldments treated by a mechanical stress improvement process (MSIP). Fracture-mechanics crack-growth-rate tests on Type 316NG SS have shown that transgranular cracking can occur even in high purity environments, whereas no crack growth was observed in Type 347 SS even in impurity environments. In tests on weld overlay specimens, no cracks penetrated into the overlay even in impurity environments. Instead, the cracks branched when they approached the overlay, and then grew parallel to interface. In SCC tests on sensitized Type 304 SS, cupric ions at concentrations greater than ∼1 ppm were found to be deleterious, whereas organic acids at this concentration were not detrimental. Tests on several ferritic steels indicate a strong correlation between the sulfur content of the steels and susceptibility to SCC. External gamma radiation fields produced a large positive shift in the ECP of Type 304 SS at low dissolved-oxygen concentrations (<5 ppb), whereas in the absence of an external gamma field there was no difference in the ECP values of irradiated and nonirradiated material. Fatigue data for Type 316NG SS are consistent with the ASME code mean curve at high strains, but fall below the curve at low strains. Calculations of the
Correction to the crack extension direction in numerical modelling of mixed mode crack paths
DEFF Research Database (Denmark)
Lucht, Tore; Aliabadi, M.H.
2007-01-01
In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...
Fatigue crack growth from a cracked elastic particle into a ductile matrix
Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.
2008-01-01
The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the
Assessment of cracking in dissimilar metal welds
International Nuclear Information System (INIS)
Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.
2001-08-01
During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation
Solidification cracking in austenitic stainless steel welds
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, ... Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to ... behaviour appear to be complex and the mechanisms thereof are not completely under- stood. Development of ...
Universal Shapes formed by Interacting Cracks
Fender, Melissa; Lechenault, Frederic; Daniels, Karen
2011-03-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.
Problems of procedure for studying crack resistance
International Nuclear Information System (INIS)
Babak, A.V.; Uskov, E.I.
1984-01-01
Procedures are developed for studying crack resistance in sintered hot-worked tungsten within 20-2200 deg C. Certain structural properties of the installation for studying high-temperature crack resistance of tungsten are considered. Technological peculiarities of eccentric tensile strength of tungsten specimens and methodical peculiarities of initjation and fixation of initial cracks in specimens of different tungsten alloys are studied
International Nuclear Information System (INIS)
Marsh, D.; Green, D.; Parker, R.
1984-01-01
This paper reports the results of an experiment in which a severe thermal cycle comprising of alternate upshocks and downshocks has been applied to an axisymmetric feature with an internal, partial penetration weld and crevice. The direction of cracking and crack growth rate were observed experimentally and detailed records made of the thermal cycle. A second part to the paper, reported separately, compares a linear elastic fracture mechanics assessment of the cracking to the experimental observations
Crack propagation in touch ductile materials. Phase II
International Nuclear Information System (INIS)
Venter, R.D.; Sinclair, A.N.; McCammond, D.
1989-06-01
The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability
International Nuclear Information System (INIS)
Raquet, O.
1994-01-01
A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl 2 aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a 'riddle' for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author)
Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field
International Nuclear Information System (INIS)
Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing
2010-01-01
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of micro-crack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field. (cross-disciplinary physics and related areas of science and technology)
Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics
International Nuclear Information System (INIS)
Zhang Jun; Li, Victor C.
2004-01-01
Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known
The COD concept and its application to fracture mechanical evaluation of cracked components
International Nuclear Information System (INIS)
Kockelmann, H.
1984-01-01
Based on a comprehensive literature study, this report critically evaluates the current state of experiences with the COD concept in fracture mechanics. First the concept is explained and the procedure of materials testing with a view to fracture mechanics is discussed in detail with emphasis on: The definition of crack shape modification; the procedure to detect crack modification, with subsequent comparison; the determination of material characteristics; the impact on the characteristics of the crack tip opening and the dispersion of results. The correlation between crack tip opening characteristics and notch impact strength is explained, and the methods applied for analysis of the streses affecting the structural components are shown. The design-based and failure threshold curves and the treatment of real crack geometries are also discussed. Problems still to be solved are shown. (orig./HP) [de
DEFF Research Database (Denmark)
Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A. O.
The characterization of the tensile behavior of strain hardening cementitious composites (SHCC) is of significant importance to the material design. In a previous work the tensile stress-crack opening response of different types of SHCC was characterized using notched specimens tested in direct...... tension, where a single crack was obtained and mechanically characterized by performing Single Crack Tension Test (SCTT). In this study the tensile behavior of SHCC materials is characterized under eccentric tensile load using the Compact Tension Test (CTT). The long edge notch placed in the rectangular...... plate specimens and the eccentrically applied tensile load create the local conditions necessary to the initiation of a single crack at the tip of the notch. Further propagation and opening of the crack in Mode I allow the assessment of the tensile load-displacement relationship. The experimental...
Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys
Alderliesten, R. C.; Schijve, J.; Krkoska, M.
Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Aoki, Shigeru; Kikuchi, Masanori; Arai, Yoshio; Kashima, Koichi; Watanabe, Takayuki; Shimakawa, Takashi
1993-01-01
The paper describes stable crack growth behaviors in welded CT specimens made of nuclear pressure vessel A533B class 1 steel, in which initial cracks are placed to be normal to fusion line. At first, using the relations between the load-line displacement (δ) and the crack extension amount (Δa) measured in experiments, the generation phase finite element crack growth analyses are performed, calculating the applied load (P) and various kinds of J-integrals. Next, the simplified crack growth analyses based on the GE/EPRI method and the reference stress method are performed using the same experimental results. Some modification procedures of the two simplified assessment schemes are discussed to make them applicable to inhomogeneous materials. Finally, a neural network approach is proposed to optimize the above modification procedures. 20 refs., 13 figs., 1 tab
International Nuclear Information System (INIS)
Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.
2004-01-01
The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inarguable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data
Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys
International Nuclear Information System (INIS)
Yonezawa, T.; Onimura, K.
1987-01-01
In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)
Use of FBG sensors for monitoring cracks of the equestrian statue of Bartolomeo Colleoni in Venice
Directory of Open Access Journals (Sweden)
F. Felli
2014-10-01
Full Text Available The Bartolomeo Colleoni monument suffered for years damage from the local climate. The process of restoring the Colleoni equestrian statue, started in 2003, allowed to understand how the bronze statue was originally cast and manufactured and the techniques used in its construction. During this process a relevant crack on the right foreleg was investigated in correspondence of the cast-on joining the right foreleg to the front portion of the horse body. The crack was investigated experimentally by Fiber Bragg Grating (FBG sensors, avoiding any modelling because of the very complex structure of the statue. An array of FBG sensors connected in series was glued on the crack with the aim of capturing live information about the effect of applying stress on the crack opening. The monitoring system was successfully tested during repositioning of the RIDER on the horse and is available for long term inspection of the crack opening evolution.
A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation
Schiefelbein, Bryan Edward
Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to
Delayed hydride cracking: theoretical model testing to predict cracking velocity
International Nuclear Information System (INIS)
Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys
2009-01-01
Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)
Comparison of thermal cracking and hydro-cracking yield distributions
Energy Technology Data Exchange (ETDEWEB)
Romero, S.; Sayles, S. [KBC Advanced Technologies Inc., Houston, TX (United States)
2009-07-01
Operators of bitumen upgraders are faced with the challenge of obtaining maximum performance from existing equipment whose performance is already pushed to the limits. The main constraint is the primary upgrader processes, notably coking and hydrocracking. Under the current economic conditions, funding for new equipment is difficult. However, changes can be made to optimize unit performance by better understanding the basic kinetics in thermal cracking and hydrocracking. This paper reviewed the yield distribution differences between thermal cracking and hydrocracking to provide insight into the basic components of operational changes. The objective was to compare yields, product quality distributions and the elemental balances. The opportunities to increase production and improve performance were then analyzed quantitatively within the existing unit equipment limits. tabs., figs.
Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk
2016-08-04
This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C 12 A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.
Prediction of PWSCC in nickel base alloys using crack growth rate models
International Nuclear Information System (INIS)
Thompson, C.D.
1995-01-01
The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides,, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxide found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip. (author). 12 refs, 27 figs
Analysis of crack opening stresses for center- and edge-crack tension specimens
Directory of Open Access Journals (Sweden)
Tong Di-Hua
2014-04-01
Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.
Acquisition of Inertia by a Moving Crack
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
Factors controlling nitrate cracking of mild steel
International Nuclear Information System (INIS)
Donovan, J.A.
1977-01-01
Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
International Nuclear Information System (INIS)
Krishnan, Suresh; Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1996-01-01
Fracture analysis of Zr-2 pressure tubes having through wall axial crack was done using finite element method. The analysis was done for tubes in as received condition. During reactor operation the mechanical properties of Zr-2 undergo changes. The analysis is valid for pressure tubes of newly commissioned reactors. The main aim of the study was to determine critical crack length of pressure tubes in normal operating conditions. Elastic plastic fracture analysis was done for different crack lengths to determine applied J-integral values. Tearing modulus instability concept was used to evaluate critical crack length. One of the important parameter studied was, the effect of crack face pressure, which leaking fluid exert on the crack faces/lips of through wall axial crack. Its effect was found to be significant for pressure tubes. It increases the applied J-integral values. Approximate analytical solutions which takes into account the plasticity ahead of crack tip, are available and widely used. These formulae do not take into account the crack face pressure. Since, for the present situation the effect of crack face pressure is significant hence, detailed finite analysis was necessary. Detailed 3D finite element analysis gives an insight into the variation of J-integral values over the thickness of pressure tube. It was found that J values are maximum at the middle layer of the tube. A peak factor on J values was defined and evaluated as ratio of maximum J to average J across the thickness, crack opening area for each length was also evaluated. The knowledge of crack opening area is useful for leak before break studies. The failure assessment was also done using Central Electricity Generating Board (CEGB) R-6 method considering the ductile tearing. The reserve factors (or safety margins) for different crack lengths was evaluated using R-6 method. (author). 30 refs., 21 figs., 34 tabs
Crack analysis of multicavity prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Gallix, R.; Liu, T.C.; Lu, S.C.H.
1975-01-01
A new method to perform the crack analysis of non-axisymmetric, multicavity prestressed concrete reactor vessels (PCRV's) subjected to hypothetical overpressure by using an axisymmetric two-dimensional finite element computer code is presented. Concrete, steel liner, bonded reinforcing steel and prestressing steel elements are modeled. The limiting tensile strain criterion is adopted for concrete cracking. The steel elements are assumed to be elastic/perfectly plastic. Von Mises yield criterion and Prandtl-Reuss flow equations define the behavior of the liner in the range of plastic deformations. An orthotropic stress-strain constitutive law is utilized for cracked concrete elements. To account for the presence of penetrations and secondary cavities in the PCRV, a modified finite element model based on the concept of effective moduli is adopted. The pressure in these cavities is simulated by equivalent axisymmetric pressure distributions. In the analysis, the pressure is applied incrementally. For a given pressure, the displacements, strains, and stresses are computed. The state of strains or stresses is then examined against the cracking or yield criteria. If cracking or yield is indicated, the stiffness and load matrices for the cracked and yielding elements are recomputed and a new equilibrium is sought. This procedure is repeated until the desired convergence of the solution is achieved. The validity of the adopted approach utilizing the two-dimensional finite element method for overpressure analyses of non-axisymmetric PCRV's is demonstrated through comparisons with two multicavity PCRV scale models. A reliable and conservative estimate of PCRV behavior under overpressure is obtained
Dynamic crack initiation toughness : experiments and peridynamic modeling.
Energy Technology Data Exchange (ETDEWEB)
Foster, John T.
2009-10-01
This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model
Energy Technology Data Exchange (ETDEWEB)
El Arem, S.
2006-01-15
The aim of this work is to study the dynamic response of a cracked rotor to establish some possibilities for early on line crack detection. First, a review on experimental, numerical and analytical works on the dynamics of cracked rotors is given. Then, an original method of calculating the behavior of a cracked beam section in bending with shearing effects is presented. The nonlinear behavior relations are derived from a three-dimensional model taking into account the unilateral contact conditions on the crack's lips. Based on an energy formulation, this method could be applied to any geometry of crack. The exploration by different numerical integration methods of the vibratory response of some models of cracked rotors is presented in the third chapter of this thesis. The un-cracked parts of a rotor are represented by elements of bar or beam type, and the cracked section by a nonlinear spring taking into account the breathing mechanism of the cracks. At the end of this part, an original method of construction of a finite element of a cracked beam is presented. The final chapter is devoted to the analytical study of the system with 2 degrees of freedom. The breathing mechanism of the crack is taken into account by considering specific periodic variation of the global stiffness of the system. The differential equations system is solved using the harmonic balance method. The linear stability of the periodic solutions is studied by the Floquet theory. Some vibratory parameters are proposed as crack indicators. (author)
International Nuclear Information System (INIS)
Li, Muyuan; You, Jeong-Ha
2015-01-01
Highlights: • A theoretical interpretation is presented for deep crack of W monoblocks at 20 MW/m"2. • A consecutive process of crack initiation and growth was modeled in two stages. • The lifetime to crack initiation and the driving force of fracture are assessed. • Numerical predictions in this study agree well with the experimental findings. - Abstract: The HHF qualification tests conducted on the ITER divertor target prototypes showed that the tungsten monoblock armor suffered from deep cracking due to fatigue, when the applied high-heat-flux load approaches 20 MW/m"2. In spite of the critical implication of the deep cracking of armor on the structural integrity of a whole target component, no rigorous interpretation has been given to date. In this paper, a theoretical interpretation of the observed deep cracking feature is presented. A two-stage modeling approach is employed where deep cracking is thought to be a consecutive process of crack initiation and crack growth, which is assumed to be caused by plastic fatigue and brittle facture, respectively. The fatigue lifetime to crack initiation on the armor surface and the crack tip load of brittle fracture are assessed as a function of crack length and heat flux loads. The potential mechanisms of deep cracking are discussed for a typical slow transient high-heat-flux load cycle. It is shown that the quantitative predictions delivered in this study agree well with the observed findings offering insight into the nature of tungsten armor failure.
International Nuclear Information System (INIS)
Misawa, Toshihei; Sugawara, Hideo; Harada, Tadashi
1979-01-01
A study has been made of corrosion fatigue crack growth for Inconel 600 solution-annealed at 1100 0 C for 0.5 h in 85 0 C 50% NaOH solution with a frequency of 1.1 cycle per minute. The effect of potential on the corrosion fatigue crack growth rate (da/dN) as a function of ΔK was examined and the fracture surfaces were observed. The results obtained are as follows: (1) The crack growth rate and the cracking mode were affected by the applied potentials in the anodic polarization curve. The value of da/dN was arranged in the following order of the observed potentials: secondary passive region > corrosion potential > primary active region > primary passive region. (2) Intergranular cracking took place at a secondary passive potential (-0.04 V vs SCE) which gave a maximum crack growth rate. Transgranular cracking with fatigue striations occurred at the other potentials. (3) The variation in current with the alternating loading was observed at the potentials where transgranular cracking occurred, whereas no appreciable correlation between current and cyclic loading was shown at a potential of -0.04 V where the intergranular mode cracking occurred. (4) It is pointed out to be helpful in studying the influence of applied potential on the accelerated rate of cracking at the crack tip by the ''crack-tip opening displacement'' estimated from the stress intensity, as the major mechanical condition. (author)
Environmentally assisted cracking of LWR materials
International Nuclear Information System (INIS)
Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.
1995-12-01
Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections
Energy Technology Data Exchange (ETDEWEB)
Javanmardi, F.; Leger, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Civil, Mining and Geological Engineering; Tinawi, R. [Quebec Univ., Montreal, PQ (Canada)
2004-07-01
Concrete dams could sustain cracking and damage during maximum design earthquakes (MDE). Dam safety guidelines are established so that dams maintain a stable condition following MDE oscillatory motions. In this study, a theoretical model was developed to calculate the uplift pressure variations along concrete cracks with moving walls. The proposed model was verified using experimental crack test data. The model was applied in a finite element computer program for dynamic analysis of gravity dams considering hydro-mechanical water-crack coupling. An analysis of a typical 90 metre dam subjected to low and high frequency sinusoidal accelerations demonstrated that water can penetrate into part of a seismically initiated crack. Pressure tends to develop in a region close to the crack mouth, therefore detrimental effects for the global dam stability are unlikely to occur. The study showed that the seismic uplift force during the heel crack opening mode is small compared to the dam weight. This preliminary study suggests that the critical sliding safety factors (SSF) of the dam against downstream sliding could be computed by considering zero uplift pressure in the crack region subjected to tensile opening. 14 refs., 1 tab., 7 figs.
Rayleigh-wave scattering by shallow cracks using the indirect boundary element method
International Nuclear Information System (INIS)
Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J
2009-01-01
The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks
Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue
Energy Technology Data Exchange (ETDEWEB)
Paggi, Marco [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: marco.paggi@polito.it; Carpinteri, Alberto [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
2009-05-15
The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.
Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue
International Nuclear Information System (INIS)
Paggi, Marco; Carpinteri, Alberto
2009-01-01
The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.
A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.
2018-03-01
A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.
Influence of overloads on dwell time fatigue crack growth in Inconel 718
Energy Technology Data Exchange (ETDEWEB)
Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Moverare, Johan [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Siemens Industrial Turbomachinery AB, Materials Technology, SE-61283 Finspång (Sweden); Eriksson, Robert; Johansson, Sten [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)
2014-08-26
Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate.
Influence of overloads on dwell time fatigue crack growth in Inconel 718
International Nuclear Information System (INIS)
Saarimäki, Jonas; Moverare, Johan; Eriksson, Robert; Johansson, Sten
2014-01-01
Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate
Effect of tensile overloads on fatigue crack growth of high strength steel wires
International Nuclear Information System (INIS)
Haag, J.; Reguly, A.; Strohaecker, T.R.
2013-01-01
Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress
Effect of wetting-drying cycles on soil desiccation cracking behaviour
Directory of Open Access Journals (Sweden)
Tang Chao-Sheng
2016-01-01
Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.
International Nuclear Information System (INIS)
Gendron, T.S.; Slade, J.P.
2003-01-01
The CANDU industry has a predictive capability for most Heat Transport System (HTS) degradation issues that allows utilities to apply cost-effective maintenance programs. The standard approach for maintenance programs is focussed inspection and planned replacement. Some examples of degradation issues with deterministic failure rates are feeder thinning, and pressure tube elongation and deuterium ingress. However, the cracking observed in Point Lepreau Generating Station (PLGS) outlet feeder first bends is one notable exception to this behaviour. A predictive capability for feeder cracking does not currently exist for several reasons. First, the mechanism of feeder cracking, stress corrosion cracking (SCC), has to some degree a random nature. Second, although a probable environment causing cracking has been identified, the precise stress and environmental conditions for feeder crack initiation and propagation have not been defined. Finally, the very low incidence of feeder cracking observed to-date (four, all at PLGS) precludes a probabilistic or statistical prediction of failure rate. Generally, utilities select a Life Cycle Management Plan that ensures safe operation and has the lowest Net Present Value cost. In preparing a Feeder Life Cycle Management Plan, New Brunswick Power (NBP) has recognized that the Net Present Value cost is very sensitive to failure rate. Since the failure rate for feeder cracking is not well defined, the following three scenarios were considered to bound the probability of future failures at PLGS. (author)
International Nuclear Information System (INIS)
Izumo, Hironobu; Ishida, Takuya; Kawamata, Kazuo; Inoue, Shuichi; Ide, Hiroshi; Saito, Takashi; Ishitsuka, Etsuo; Chimi, Yasuhiro; Ise, Hideo; Miwa, Yukio; Ugachi, Hirokazu; Nakano, Junichi; Kaji, Yoshiyuki; Tsukada, Takashi
2009-04-01
To evaluate integrity of irradiation-assisted stress corrosion cracking (IASCC) on in-core structural materials used in light water reactors (LWRs), useful knowledge regarding IASCC has been obtained mainly by post-irradiation examinations (PIEs). In the core of commercial LWRs, however, the actual IASCC occurs under the effects of irradiation on both materials and high-temperature water environment. Therefore, it is necessary to confirm the suitability of the knowledge by PIE with comparison to IASCC behaviors during in-core SCC tests. Fundamental techniques for in-core crack growth and crack initiation tests have been developed already at the Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency (JAEA). For the in-core crack growth test technique, to evaluate the effects of neutron irradiation on stainless steels irradiated to low neutron fluences, it is indispensable to develop new loading technique which is applicable to compact tension (CT) specimens with thickness of 0.5 inch (0.5T), from the viewpoint of validity based on the fracture mechanics. Based on the present technical investigation for the in-core loading technique, it is expected that a target load of 7.6 kN approximately can apply to a 0.5T-CT specimen by adopting a loading unit of a lever type instead of the previous uni-axial tension type. For the in-core crack initiation test technique, moreover, construction of a loading unit adopting linear variable differential transformers (LVDTs) has been investigated and technical issues have examined. (author)
Nonlocal Effects of Crack Curving.
1982-07-01
close vTcinity of the crack tip. Supported by the Office of Naval Research. 2 For brittle solids, a fracture criterion based on the maximum tensile...Reidel Pubi. Co. Dordrecht. Holland. pp. 271-318, 1978. [13] A.S. Jayatilaka, Fracture of Engineering Brittle Materials, Appl. Sci. Publishers, London...Crescent leach Road, Glen Cove * Long Island, New Tork 11542 Commanding Officer (2) U.s Amy Research Office PO, Sax 12211 Research Triangle Park. C 27709 8
International Nuclear Information System (INIS)
Puls, M.P.
1984-12-01
There is a strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions. Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of γ- and delta-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation, but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process
The Growth of Small Corrosion Fatigue Cracks in Alloy 7075
Piascik, Robert S.
2015-01-01
The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack
2013-11-01
In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.
Energy Technology Data Exchange (ETDEWEB)
Zhang, B.; Fan, J.; Chudnovsky, A. [Illinois Univ., Chicago, IL (United States); Gogotsi, Y. [Drexel Univ., Philadelphia, PA (United States); Teitsma, A. [Gas Technology Inst., Chicago, IL (United States)
2000-07-01
Field observations indicate that stress corrosion cracking (SCC) in a near neutral pH environment starts with microcracks growing from corrosion pits on the external surface of the buried pipe. A complex phenomenon, SCC combines stochasticity and determinism resulting in the evolution of a SCC colony. The authors proposed a statistical model which generates a random field of corrosion pits and crack initiation at randomly selected pits. Using the framework of the Crack Layer theory, a thermodynamic model of individual stress corrosion growth was also developed recently. Relations between the crack growth, hydrogen diffusion and corrosion rates on one hand and corresponding thermodynamic forces on the other were used to develop the mathematical realization of the stress corrosion crack growth model. Additionally, there is a quick overview of the experimental program for determination of the kinetic coefficients employed in the crack growth equations. A simulation of SCC colony evolution, including a stage of the large-scale crack interaction is provided by applying the individual crack growth law to random configuration of multiple cracks. Finally, the FRANC2D Finite Element Methods resulted in a computer simulation of multi-crack cluster formation within the colony. 14 refs., 15 figs.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
Splendor and misery of the distorted wave method applied to heavy ions transfer reactions
International Nuclear Information System (INIS)
Mermaz, M.C.
1979-01-01
The success and failure of the Distorted Wave Method (DWM) applied to heavy ion transfer reactions are illustrated by few examples: one and multi-nucleon transfer reactions induced by 15 N and 18 O on 28 Si target nucleus performed on the vicinity of Coulomb barrier respectively at 44 and 56 MeV incident energy
International Nuclear Information System (INIS)
Moshier, W.C.; James, L.A.
1997-01-01
Environmentally assisted cracking (EAC) in low alloy steels was found to be dependent on externally applied potential in low sulfur steels in high temperature water. EAC could be turned on when the specimen was polarized anodically above a critical potential. However, hydrogen (H) additions inhibited the ability of potential to affect EAC. The behavior was related to formation of H ions during H oxidation at the crack mouth. A mechanism based on formation of H sulfide at the crack tip and H ions at the crack mouth is presented to describe the process by which sulfides and H ions affect the critical sulfide concentration at the crack tip
A finite element analysis of stable crack growth in inhomogeneous materials
International Nuclear Information System (INIS)
Miyazaki, N.; Sakai, T.; Nakagaki, M.; Sasaki, T.
1993-01-01
The finite element method was applied to generation phase analyses for stable crack growth in inhomogeneous materials. Experimental data on stable crack growth in bimaterial CT specimens, which were composed of a base metal and a weld metal, were numerically simulated using the node-release technique, and the variations of the fracture mechanics parameters such as J-integral. T*-integral. J-circumflex-integral and CTOA were calculated. The effects of the fusion line and the weld on the near crack fracture mechanics parameters were discussed. (author)
Interface crack growth for anisotropic plasticity with non-normality effects
DEFF Research Database (Denmark)
Tvergaard, Viggo; Legarth, Brian Nyvang
2007-01-01
A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological...... an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness...
Cracking and Deformation Modelling of Tensile RC Members Using Stress Transfer Approach
Directory of Open Access Journals (Sweden)
Ronaldas Jakubovskis
2016-12-01
Full Text Available The paper presents a modeling technique for bond, cracking and deformation analysis of RC members. The proposed mod-eling technique is not restricted by the geometrical dimensions of the analyzed member and may be applied for various load-ing conditions. Tensile as well as bending RC members may be analyzed using the proposed technique. Adequacy of the modeling strategy was evaluated by the developed numerical discrete crack algorithm, which allows modeling deformation and cracking behavior of tensile RC members. Comparison of experimental and numerical results proved the applicability of the proposed modeling strategy.
Considering the edge-crack sensitivity of a hot-rolled steel in forming simulation
Gläsner, T.; Schneider, M.; Troitzsch, M.; Westhäuser, S.
2016-11-01
The formability of sheet metal materials is locally reduced by shear cutting operations, and as a result the risk of a crack during further processing is increased at the edge. Materials particularly susceptible to this are described as sensitive to edge-cracking. A procedure for quantitatively determining edge-crack sensitivity and for applying corresponding characteristic values has not been previously established. Below, two test methods and an approach for using the results in an extended forming limit diagram are presented. The producibility of a collar drawn test component as well as a chassis component is reevaluated using this extended forming limit diagram.
A nonlinear interface model applied to masonry structures
Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella
2015-12-01
In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.
Fatigue crack propagation behavior under creep conditions
International Nuclear Information System (INIS)
Ohji, Kiyotsugu; Kubo, Shiro
1991-01-01
The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)
The concept of the average stress in the fracture process zone for the search of the crack path
Directory of Open Access Journals (Sweden)
Yu.G. Matvienko
2015-10-01
Full Text Available The concept of the average stress has been employed to propose the maximum average tangential stress (MATS criterion for predicting the direction of fracture angle. This criterion states that a crack grows when the maximum average tangential stress in the fracture process zone ahead of the crack tip reaches its critical value and the crack growth direction coincides with the direction of the maximum average tangential stress along a constant radius around the crack tip. The tangential stress is described by the singular and nonsingular (T-stress terms in the Williams series solution. To demonstrate the validity of the proposed MATS criterion, this criterion is directly applied to experiments reported in the literature for the mixed mode I/II crack growth behavior of Guiting limestone. The predicted directions of fracture angle are consistent with the experimental data. The concept of the average stress has been also employed to predict the surface crack path under rolling-sliding contact loading. The proposed model considers the size and orientation of the initial crack, normal and tangential loading due to rolling–sliding contact as well as the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The MATS criterion is directly applied to equivalent contact model for surface crack growth on a gear tooth flank.
Experimental Dynamic Analysis of a Breathing Cracked Rotor
Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.
2017-09-01
Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.
Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials
International Nuclear Information System (INIS)
Ma, Young Wha; Yoon, Kee Bong
2009-01-01
Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials
Neutron imaging of water penetration into cracked steel reinforced concrete
International Nuclear Information System (INIS)
Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.
2010-01-01
Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.
Study of creep crack growth behavior of 316LN welds
International Nuclear Information System (INIS)
Venugopal, S.; Kumar, Yatindra; Sasikala, G.
2016-01-01
Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)
Monitoring crack growth by a potential drop method
International Nuclear Information System (INIS)
Tomlinson, J.R.
1978-01-01
A theoretical model has been developed for the surface current flow and potential distribution around a surface breaking crack. This model's predictions have been confirmed in the laboratory and the method applied on site. It proved possible by careful design and rigorous testing to overcome the problems of interference in an electrically noisy environment. The principal weaknesses of the technique are that it is only capable of detecting cracks that break the accessible surface of the component, and that there may be problems with conductive bridging across the crack. On the other hand, the lack of any sophisticated probe in contact with the component makes the method suitable for high temperature use, and, being an electrical method, it is capable of continuous use. The use of a.c., as opposed to d.c., enables lower currents to be used. Given good access to the crack tip, a high sensitivity can be obtained, which enables noise rejection to be achieved with the use of a high threshold. (orig.) [de
Material size effects on crack growth along patterned wafer-level Cu–Cu bonds
DEFF Research Database (Denmark)
Tvergaard, Viggo; Niordson, Christian Frithiof; Hutchinson, John W.
2013-01-01
together. Crack growth along the bond interface is here studied numerically using finite element analyses. The experiments have shown that plasticity in the Cu films makes a major contribution to the macroscopic interface toughness. To account for the size dependence of the plastic flow a strain gradient...... plasticity model is applied here for the metal. A cohesive zone model is applied to represent the crack growth along the bond between the two Cu films. This cohesive zone model incorporates the effect of higher order stresses in the continuum, such that the higher order tractions on the crack faces decay...... the toughness peak and the subsequent plateau level are highly sensitive to the value of the characteristic material length. A small material length, relative to the thickness of the Cu film, gives high toughness whereas a length comparable to the film thickness gives much reduced crack growth resistance...
Crack growth resistance for anisotropic plasticity with non-normality effects
DEFF Research Database (Denmark)
Tvergaard, Viggo; Legarth, Brian Nyvang
2006-01-01
For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...
Hydrogen Assisted Cracking of High Strength Steel Welds
1988-05-01
differs in general from the previous models in that hydrogen is assumed , to enhance local plasticity rather than truly embrittle the lattice. 5) Formation...measured. - The salient caracteristics of the IIW test include: - A 10mm X 15mm X 30mm specimen machined from mild steel with a sur- . .. face ground...hydrogen so %4. -. ,*. that a crack can grow under a lower applied stress. This theory has been criticized on the basis that the small but finite plastic
Energy Technology Data Exchange (ETDEWEB)
Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)
2013-08-15
Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.
International Nuclear Information System (INIS)
Peyrat, Christine
1997-01-01
A phenomenological study of Stress Corrosion Cracking (SCC) cracks initiation and growth was carried out on a Z 2 CN 18.10 stainless steel in a boiling aqueous magnesium chloride solution at 153 deg. C. The characterization method exploits the morphological information (cracks shape and size distribution) available on a specimen after SCC test. This method, independent of any mechanistic hypothesis, led to the analytical representation of the growth rate of a given crack as a function of its depth and of the density of deeper cracks. The presence of this last parameter could be the expression of a 'shielding effect' of mechanical origin, exerted by the cracks of large size. A 'true initiation' rate was calculated by an extrapolation based on the analytical expression of the growth rate. This analytical representation of cracks initiation and growth accounts for the saturation observed in the experimental determination of the 'apparent initiation'. As time goes, the number of cracks deeper than a given threshold depth tends towards a limit which depends very strongly on the chosen threshold. This saturation effect can be interpreted as exclusively due to the way the small cracks propagate, as the 'true initiation' rate can be expressed versus time by a simple power law. In the case of slow strain rate tests, it is shown that the kinetic parameters characteristic of initiation and growth depend on the applied elongation rate. In particular, the initial crack growth rate increases with elongation rate. The validity domains of the proposed expressions have been specified by means of SCC tests carried out under different types of mechanical loading. (author) [fr
Applicability assessment of plug weld to ITER vacuum vessel by crack propagation analysis
International Nuclear Information System (INIS)
Ohmori, Junji; Nakahira, Masataka; Takeda, Nobukazu; Shibanuma, Kiyoshi; Sago, Hiromi; Onozuka, Masanori
2006-03-01
In order to improve the fabricability of the vacuum vessel (VV) of International Thermonuclear Experimental Reactor (ITER), applicability of plug weld between VV outer shell and stiffening ribs/blanket support housings has been assessed using crack propagation analysis for the plug weld. The ITER VV is a double-wall structure of inner and outer shells with ribs and housings between the shells. For the fabrication of VV, ribs and housings are welded to outer shell after welding to inner shell. A lot of weld grooves should be adjusted for welding outer shell. The plug weld is that outer shells with slit at the weld region are set on ribs/housings then outer shells are welded to them by filling the slits with weld metal. The plug weld can allow larger tolerance of weld groove gap than ordinary butt weld. However, un-welded lengths parallel to outer sell surface remain in the plug weld region. It is necessary to evaluate the allowable un-welded length to apply the plug weld to ITER VV fabrication. For the assessment, the allowable un-welded lengths have been calculated by crack propagation analyses for load conditions, conservatively assuming the un-welded region is a crack. In the analyses, firstly allowable crack lengths are calculated from the stresses of the weld region. Then assuming initial crack length, crack propagation is calculated during operation period. Allowable initial crack lengths are determined on the condition that the propagated cracks should not exceed the allowable crack lengths. The analyses have been carried out for typical inboard straight region and inboard upper curved region with the maximum housing stress. The allowable initial cracks of ribs are estimated to be 8.8mm and 38mm for the rib and the housing, respectively, considering inspection error of 4.4mm. Plug weld between outer shell and ribs/housings could be applicable. (author)
Crack turning in integrally stiffened aircraft structures
Pettit, Richard Glen
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture
On applicability of crack shape characterization rules for multiple in-plane surface cracks
International Nuclear Information System (INIS)
Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su
2009-01-01
The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.
The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2
International Nuclear Information System (INIS)
Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.
1987-01-01
Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)
Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel
1975-04-01
work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently
Crack formation and prevention in colloidal drops
Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook
2015-08-01
Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.
Fluid structural response of axially cracked cylinders
International Nuclear Information System (INIS)
Garnich, M.R.; Simonen, F.A.
1985-03-01
The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
A probabilistic model of brittle crack formation
Chudnovsky, A.; Kunin, B.
1987-01-01
Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.
Numerical Study of Corrosion Crack Opening
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan
2008-01-01
is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...
Simulation of cracks in tungsten under ITER specific heat loads
International Nuclear Information System (INIS)
Peschany, S.
2006-01-01
withstand high heat flux. Fusion Engineering and Design v. 81/1-7 pp. 275-279] has been applied. Originally the code has been developed for simulation of brittle destruction in CFC and graphites. It has been tested against plasma gun experiments and proved reliability of its predictions. Now it has been modified to simulate crack formation in tungsten using a model for crack generation in the resolidified surface layer and propagation of cracks in the bulk. The model assumes that initially the resolidified layer is stress-less at the melting temperature and then the tensile stress develops in the layer during its cooling down. First results of the simulations are reported. The simulations reproduce tungsten crack morphology and predict the crack densities and the cracks depth. (author)
Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)
Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth
2016-04-01
Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures
International Nuclear Information System (INIS)
Ulaganathan, Jaganathan; Newman, Roger C.
2014-01-01
The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved
Energy analysis of crack-damage interaction
Chudnovsky, A.; Wu, Shaofu
1989-01-01
The energy release rates associated with a main crack propagating into a surrounding damage zone, and a damage zone translation relative to the main crack, as well as an energy of interaction between the two are analyzed. The displacement and stress fields for the crack-damage interaction problem are reconstructed employing a semi-empirical stress analysis and experimental evaluation of the average craze density in the crazed zone.
Measuring Crack Length in Coarse Grain Ceramics
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.
Outcome of Endodontically Treated Cracked Teeth
2016-06-01
directed by: CAPT Te!Ty Webb, D.D.S., M.S. A " cracked tooth" is defined as a thin surface enamel and dentin disruption of unknown depth, and is often...OUTCOME OF ENDODONTICALL Y TREATED CRACKED TEETH by David Michael Dow II, D.D.S. Lieutenant Commander, Dental Corps United States Navy A thesis...copyrighted material in the thesis manuscript titled: "Outcome ofEndodontically Treated Cracked Teeth" is appropriately acknowledged and, beyond
Statistical damage analysis of transverse cracking in high temperature composite laminates
International Nuclear Information System (INIS)
Sun Zuo; Daniel, I.M.; Luo, J.J.
2003-01-01
High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established
Catalytic cracking of hydrocarbon oils
Energy Technology Data Exchange (ETDEWEB)
1940-09-12
A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.
Modelling of environmentally assisted cracking
International Nuclear Information System (INIS)
Aaltonen, P.; Saario, T.; Ehrnsten, U.; Haenninen, H.; Itaeaho, M.; Piippo, J.
1998-01-01
During the use of nuclear reactors the properties of the structural materials change. Variations in the operation environment, such as changes in water chemistry, may enhance the development and growth of flaws. Neutron radiation causes embrittlement for in-core vessel materials. Radiation, together with water chemistry, increases the possibility of stress corrosion cracking in stainless steels and superalloys used in the reactor internal parts. Research on structural materials endeavours to study the ageing mechanisms of materials, and the possibilities and methods of preventing or forecasting the damage caused to structures by ageing. (orig.)
T-stresses for internally cracked components
International Nuclear Information System (INIS)
Fett, T.
1997-12-01
The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de
The detectability of cracks using sonic IR
Morbidini, Marco; Cawley, Peter
2009-05-01
This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.
On governing equations for crack layer propagation
Chudnovsky, A.; Botsis, J.
1988-01-01
Results of analysis on damage distribution of a crack layer, in a model material, supported the self-similarity hypothesis of damage evolution which has been adopted by the crack layer theory. On the basis of measurements of discontinuity density and the double layer potential technique, a solution to the crack damage interaction problem has been developed. Evaluation of the stress intensity factor illustrated the methodology. Analysis of experimental results showed that Arrhenius type constitutive relationship described very well the expansion of the active zone of a crack layer.
On cracking of charged anisotropic polytropes
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)
2017-01-01
Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.
Cracking of open traffic rigid pavement
Directory of Open Access Journals (Sweden)
Niken Chatarina
2017-01-01
Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.
Lateral rigidity of cracked concrete structures
International Nuclear Information System (INIS)
Castellani, A.; Chesi, C.
1979-01-01
Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)
Investigations of Low Temperature Time Dependent Cracking
Energy Technology Data Exchange (ETDEWEB)
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro
1998-01-01
This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)
Statistical distribution of time to crack initiation and initial crack size using service data
Heller, R. A.; Yang, J. N.
1977-01-01
Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.
Stress corrosion cracking mitigation by ultrasound induced cavitation technique
Energy Technology Data Exchange (ETDEWEB)
Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)
2014-07-01
Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)
Limit load assessment of centre cracked plates under biaxial loading
International Nuclear Information System (INIS)
Meek, C.; Ainsworth, R.A.
2015-01-01
Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ 2 perpendicular to the crack and Bσ 2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B
Stress corrosion cracking mitigation by ultrasound induced cavitation technique
International Nuclear Information System (INIS)
Fong, C.; Lee, Y.C.; Yeh, T.K.
2014-01-01
Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)
Mechanical behaviour of cracked welded structures including mismatch effect
International Nuclear Information System (INIS)
Hornet, P.
2002-01-01
The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of
Directory of Open Access Journals (Sweden)
In-Seok Yoon
2012-01-01
Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.
On fatigue crack growth in ductile materials by crack-tip blunting
DEFF Research Database (Denmark)
Tvergaard, Viggo
2004-01-01
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...
Crack-opening area calculations for circumferential through-wall pipe cracks
Energy Technology Data Exchange (ETDEWEB)
Kishida, K.; Zahoor, A.
1988-08-01
This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications.
Crack-opening area calculations for circumferential through-wall pipe cracks
International Nuclear Information System (INIS)
Kishida, K.; Zahoor, A.
1988-08-01
This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications
The plane elasticity problem for a crack near the curved surface
Lebedeva, M. V.
2018-05-01
The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.
Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures
Aktaa, J.; Lerch, M.
2006-07-01
The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.
Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures
International Nuclear Information System (INIS)
Aktaa, J.; Lerch, M.
2006-01-01
The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 deg. C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 (R is the load ratio with R = F min /F max where F min and F max are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature
Stress intensity factors for complete internal and external cracks in spherical shells
International Nuclear Information System (INIS)
Chao, Y.J.; Chen, H.
1989-01-01
Cracks or flows found in the nuclear structure must be fully evaluated to assure the safety of the plant. The weight function method has been widely used in the determination of stress intensity factors for cracks under stress gradient e.g. for thermal shock loading. The unique features of the weight function method is that once the weight function for a particular cracked geometry is determined the stress intensity factors at the crack tip for any loading applied to the flawed structure can be calculated by a simple integration. In this paper the stress intensity factors of the complete, part-through internal and external cracks in a spherical shell are determined. The finite element method was used to develop the weight functions for the flawed geometry. The approximate crack surface profile was used to derive the weight functions. The stress intensity factors associated with the cracks in spherical shells under internal pressure are determined by both the weight functions and the direct finite element method
The influence of creep properties on crack propagation in thermal barrier coatings
International Nuclear Information System (INIS)
Baeker, Martin
2010-01-01
Thermal barrier coatings are used to protect turbine blades from the high temperature of the process gas inside a turbine. They consist of a metallic bond coat and of a ceramic top coat with low thermal conductivity. During service, an additional oxide layer forms between bond coat and top coat that eventually causes failure. Finite element simulations show that the roughness of the interface between top and bond coat is crucial for determining the stress state. Lifetime models have been inferred that assume that cracks form in the peak positions at small oxide thickness and propagate when the oxide layer grows and the stress field shifts. A two-dimensional finite element model of crack propagation in the TBC layer is presented. Since the cracks propagate near a material interface and since plasticity may occur in the bond coat, standard tools of fracture mechanics for predicting the crack propagation direction are difficult to apply. This problem is circumvented in a very simple way by propagating short 'test cracks' in different directions and optimising to find the crack direction with the maximum energy release rate. It is shown that the energy release rate and the crack propagation direction are sensitive to the details of the stress state and especially to the creep properties of the materials. Implications for failure models are discussed.
Position control of desiccation cracks by memory effect and Faraday waves.
Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio
2013-01-01
Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.
K{sub I}-T estimation for embedded flaws in pipes - Part II: Circumferentially oriented cracks
Energy Technology Data Exchange (ETDEWEB)
Qian Xudong, E-mail: cveqx@nus.edu.s [Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)
2010-04-15
This paper, in parallel to the investigation on axially embedded cracks reported in the companion paper, presents a numerical study on the linear-elastic K{sub I} and T-stress values over the front of elliptical cracks circumferentially embedded in the wall of a pipe/cylindrical structure, under a uniform pressure applied on the inner surface of the pipe. The numerical procedure employs the interaction-integral approach to compute the linear-elastic stress-intensity factor (SIF) K{sub I} and T-stress values for embedded cracks with practical sizes at different locations in the wall of the pipe. The parametric study covers a wide range of geometric parameters for embedded cracks in the pipe, including: the wall thickness to the inner radius ratio (t/R{sub i}), the crack depth over the wall thickness ratio (a/t), the crack aspect ratio (a/c) and the ratio of the distance from the centerline of the crack to the outer surface of the pipe over the pipe wall thickness (e{sub M}/t). The parametric investigation identifies a significant effect of the remaining ligament length on both the T-stress and K{sub I} values at the crack-front location (denoted by point O) nearest to the outer surface of the pipe and at the crack-front location (denoted by point I) nearest to the inner surface of the pipe. The numerical investigation establishes the database to derive approximate functions from a nonlinear curve-fitting procedure to predict the T-stress and K{sub I} values at three critical front locations of the circumferentially embedded crack in a pipe: points O, I and M. The proposed T-stress and K{sub I} functions utilize a combined second-order polynomial and a power-law expression, which presents a close agreement with the T-stress and K{sub I} values computed from the very detailed finite element models. The comparison between the circumferentially embedded crack and the axially embedded crack indicates that both the T-stress and K{sub I} values at crack-front points O and
Energy Technology Data Exchange (ETDEWEB)
Hall, M.M. Jr.; Symons, D.M.
1996-05-01
A strain energy density-distance criterion was previously developed and used to correlate rising-load K{sub c} initiation data for notched and fatigue precracked specimens of hydrogen precharged Alloy X-750. This criterion, which was developed for hydrogen embrittlement (HE) cracking, is used here to correlate static-load stress corrosion cracking (SCC) initiation times obtained for smooth geometry, notched and fatigue precracked specimens. The onset of SCC crack growth is hypothesized to occur when a critical strain, which is due to environment-enhanced creep, is attained within the specimen interior. For notched and precracked specimens, initiation is shown by analysis to occur at a variable distance from notch and crack tips. The initiation site varies from very near the crack tip, for highly loaded sharp cracks, to a site that is one grain diameter from the notch, for lower loaded, blunt notches. The existence of hydrogen gradients, which are due to strain-induced hydrogen trapping in the strain fields of notch and crack tips, is argued to be controlling the site for initiation of cracking. By considering the sources of the hydrogen, these observations are shown to be consistent with those from the previous HE study, in which the characteristic distance for crack initiation was found to be one grain diameter from the notch tip, independent of notch radius, applied stress intensity factor and hydrogen level.
Coupled FEM-DBEM method to assess crack growth in magnet system of Wendelstein 7-X
Directory of Open Access Journals (Sweden)
R. Citarella
2013-10-01
Full Text Available The fivefold symmetric modular stellarator Wendelstein 7-X (W7-X is currently under construction in Greifswald, Germany. The superconducting coils of the magnet system are bolted onto a central support ring and interconnected with five so-called lateral support elements (LSEs per half module. After welding of the LSE hollow boxes to the coil cases, cracks were found in the vicinity of the welds that could potentially limit the allowed number N of electromagnetic (EM load cycles of the machine. In response to the appearance of first cracks during assembly, the Stress Intensity Factors (SIFs were calculated and corresponding crack growth rates of theoretical semi-circular cracks of measured sizes in potentially critical position and orientation were predicted using Paris’ law, whose parameters were calibrated in fatigue tests at cryogenic temperature. In this paper the Dual Boundary Element Method (DBEM is applied in a coupled FEM-DBEM approach to analyze the propagation of multiple cracks with different shapes. For this purpose, the crack path is assessed with the Minimum Strain Energy density criterion and SIFs are calculated by the J-integral approach. The Finite Element Method (FEM is adopted to model, using the commercial codes Ansys or Abaqus;, the overall component whereas the submodel analysis, in the volume surrounding the cracked area, is performed by FEM (“FEM-FEM approach” or alternatively by DBEM (“FEM-DBEM approach”. The “FEM-FEM approach” considers a FEM submodel, that is extracted from the FEM global model; the latter provide the boundary conditions for the submodel. Such approach is affected by some restrictions in the crack propagation phase, whereas, with the “FEM-DBEM approach”, the crack propagation simulation is straightforward. In this case the submodel is created in a DBEM environment with boundary conditions provided by the global FEM analysis; then the crack is introduced and a crack propagation analysis
Effects of friction and high torque on fatigue crack propagation in Mode III
Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are
Crack stability analysis of low alloy steel primary coolant pipe
Energy Technology Data Exchange (ETDEWEB)
Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others
1997-04-01
At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.
Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements
International Nuclear Information System (INIS)
Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael
1999-01-01
Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed
Development of crack shape: LBB methodology for cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)
1997-04-01
For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.
Textural Analysis of Fatique Crack Surfaces: Image Pre-processing
Directory of Open Access Journals (Sweden)
H. Lauschmann
2000-01-01
Full Text Available For the fatique crack history reconstitution, new methods of quantitative microfractography are beeing developed based on the image processing and textural analysis. SEM magnifications between micro- and macrofractography are used. Two image pre-processing operatins were suggested and proved to prepare the crack surface images for analytical treatment: 1. Normalization is used to transform the image to a stationary form. Compared to the generally used equalization, it conserves the shape of brightness distribution and saves the character of the texture. 2. Binarization is used to transform the grayscale image to a system of thick fibres. An objective criterion for the threshold brightness value was found as that resulting into the maximum number of objects. Both methods were succesfully applied together with the following textural analysis.
Fundamental solutions in piezoelectricity. Penny-shaped crack solution
International Nuclear Information System (INIS)
Dyka, Ewa; Rogowski, Bogdan
2006-01-01
The problem of electroelasticity for piezoelectric materials is considered. For axially symmetric states three potentials are introduced, which determine the displacements, the electric potentials, the stresses, the components of the electric field vector and the electric displacements in a piezoelectric body. These fundamental solutions are utilized to solve the penny-shaped crack problem. Two cases of boundary-value problems are considered, namely the permeable and impermeable crack boundary conditions. Exact solutions are obtained for elastic and electric fields. The main results are the stress intensity factor for singular stress and the electric displacement intensity factor. The numerical results are presented graphically to show the influence of applied mechanical and electrical loading on the analyzed quantities and to clarify the effect of anisotropy of piezoelectric materials. It is show that the influence of anisotropy of the materials on these fields is significant
Mechanistic differences between transgranular and intergranular stress corrosion cracking
International Nuclear Information System (INIS)
Serebrinsky, Santiago A.; Galvele, Jose R.
2000-01-01
Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)
Evaluation of throughwall crack pipes under displacement controlled loading
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
1987-02-01
Tearing modulus solutions are developed for flawed throughwall pipes subjected to displacement controlled loading. Two cases of loading were considered: (1) a displacement controlled bending loading, and (2) a displacement controlled axial tension loading. A revised version of the EPRI J-integral estimation scheme is used in the development of the solutions. These solutions can be used for the entire range of elastic-plastic loading, from linear elastic, contained yielding, to large scale yielding of the crack section. Experimental data from pipes in bending were used to assess the accuracy of the compliant loading solutions. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. These solutions are shown to have good accuracy when used to predict the experimental results. The methodology and procedure can also be applied to part-throughwall cracks. These solutions have application to the leak before break fracture mechanics analyses.
Evaluation of throughwall crack pipes under displacement controlled loading
International Nuclear Information System (INIS)
Zahoor, A.
1987-01-01
Tearing modulus solutions are developed for flawed throughwall pipes subjected to displacement controlled loading. Two cases of loading were considered: (1) a displacement controlled bending loading, and (2) a displacement controlled axial tension loading. A revised version of the EPRI J-integral estimation scheme is used in the development of the solutions. These solutions can be used for the entire range of elastic-plastic loading, from linear elastic, contained yielding, to large scale yielding of the crack section. Experimental data from pipes in bending were used to assess the accuracy of the compliant loading solutions. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. These solutions are shown to have good accuracy when used to predict the experimental results. The methodology and procedure can also be applied to part-throughwall cracks. These solutions have application to the leak before break fracture mechanics analyses. (orig.)
International Nuclear Information System (INIS)
Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.
1985-01-01
A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)
Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A
2010-05-01
Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.
Distributed crack analysis of ceramic inlays
Peters, M.C.R.B.; Vree, de J.H.P.; Brekelmans, W.A.M.
1993-01-01
In all-ceramic restorations, crack formation and propagation phenomena are of major concern, since they may result in intra-oral fracture. The objective of this study was calculation of damage in porcelain MOD inlays by utilization of a finite-element (FE) implementation of the distributed crack
In-reactor fatigue crack propagation
International Nuclear Information System (INIS)
Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.
1979-08-01
An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods
Crack Tip Mechanics in Distortion Gradient Plasticity
DEFF Research Database (Denmark)
Fuentes-Alonso, Sandra; Martínez Pañeda, Emilio
2017-01-01
Gradient Plasticity (DGP), the influence on crack tip mechanics of DGP's distinguishing features that entail superior modelling capabilities has not been investigated yet. In this work crack tip fields are thoroughly examined by implementing the higher order theory of DGP in an implicit finite element...
Entering a Crack: An Encounter with Gossip
Henderson, Linda
2014-01-01
In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND... consecutive cracked ligaments nor more than a total of six cracked ligaments in any one girth joint. (c... ligaments may be repaired by welding. (n) Welding repairs to drums of power boilers, except as otherwise...
Crack velocity measurement by induced electromagnetic radiation
International Nuclear Information System (INIS)
Frid, V.; Rabinovitch, A.; Bahat, D.
2006-01-01
Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality
Crack velocity measurement by induced electromagnetic radiation
Energy Technology Data Exchange (ETDEWEB)
Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)
2006-07-31
Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.
Positioning Community Art Practices in Urban Cracks
Verschelden, Griet; Van Eeghem, Elly; Steel, Riet; De Visscher, Sven; Dekeyrel, Carlos
2012-01-01
This article addresses the position of community art practices and the role of practitioners in urban cracks. Community art practices raise possibilities for a reconceptualisation of the concept of community and an extension of the concept of art in public space. Urban cracks are conceptualised as spatial, temporal and relational manifestations of…
Corrosion and Cracking of Reinforced Concrete
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
Modelling of the deterioration of reinforced concrete has in recent years changed from being a deterministic modelling based on experience to be stochastic modelling based on sound and consistent physical, chemical and mechanical principles. In this paper is presented a brief review of modern mod...... for time to initial corrosion, time to initial cracking, and time to a given crack width may be obtained....
Mechanism for iodine cracking of zirconium claddings
International Nuclear Information System (INIS)
Novikov, V.V.
1991-01-01
The mechanism of iodine cracking of zirconium cladding is analyzed taking into account the effect of stresses on diffusion. A decisive effect of the stress gradiemt on crack propagation in an agressive medium is shown. The experimental data are compared with the proposed model
Crack Formation in Grouted Annular Composite
DEFF Research Database (Denmark)
Sørensen, Eigil V.
The objective of the present analysis is to identify the reason for extensive crack formation which occurred during an annulus grouting performance test, to evaluate possible consequences of the cracking, and to recommend measures to be taken in order to avoid similar problems in the future....
Quenching cracks - formation and possible causes
International Nuclear Information System (INIS)
Macherauch, E.; Mueller, H.; Voehringer, O.
1976-01-01
The most important principles controlling the martensitic hardening of steels containing carbon are presented, and their effects on the cracks formed by tempering are discussed. Micro-crack formation, influenced by any increase in the carbon content, is dependent on the variations of martensitic morphology; this factor is of decisive importance. Apart from micro residual stresses, macro residual stresses become increasingly involved in the crack development. This is dependent on the given content of carbon and increase in the dimensions of the samples. Based on the empirical values gained from experience about cracks formed by tempering and using a schematic diagram, the constructive influences on the propensity to cracks formed by tempering, with regard to materials and processing, are evaluated. Also the effects of thermic, mechanical and chemical after-treatments upon the propensity to tempering cracks are discussed. In conclusion, the problem of the formation of cracks in hardened parts, i.e. the elongation of the cracks under static stress, is treated briefly. (orig.) [de
Crack Monitoring of Operational Wind Turbine Foundations.
Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-08-21
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.
Corrosion of steel in cracked concrete: a microscale study
Pacheco, J.; Savija, B.; Schlangen, E.; Polder, R.B.
2014-01-01
The influence of concrete cracking upon reinforcement corrosion is complex. Cracks allow fast penetration of chlorides, potentially leading to a shorter initiation period of reinforcement corrosion. Structural regulations control acceptable crack width values based on the exposure class of the
Crack growth by micropore coalescence at high temperatures
International Nuclear Information System (INIS)
Beere, W.
1981-01-01
At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)
Analysis of 3D crack propagation by microfocus computed tomography
International Nuclear Information System (INIS)
Ao Bo; Chen Fuxing; Deng Cuizhen; Zeng Yabin
2014-01-01
The three-point bending test of notched specimens of 2A50 forging aluminum was performed by high frequency fatigue tester, and the surface cracks of different stages were analyzed and contrasted by SEM. The crack was reconstructed by microfocus computed tomography, and its size, position and distribution were visually displayed through 3D visualization. The crack propagation behaviors were researched through gray value and position of crack front of 2D CT images in two adjacent stages, and the results show that crack propagation is irregular. The projection image of crack was obtained if crack of two stages projected onto the reference plane respectively, a significant increase of new crack propagation was observed compared with the previous projection of crack, and the distribution curve of crack front of two stages was displayed. The 3D increment distribution of the crack front propagation was obtained through the 3D crack analysis of two stages. (authors)
Mitigation strategies for reflective cracking in pavements : [research project capsule].
2013-12-01
Refl ection cracks are caused by discontinuities (cracks or joints) in underlying layers, : which propagate through hot-mix asphalt (HMA) overlay due to continuous movement : at the crack prompted by thermal expansion and traffi c loading. If the new...
Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing
2016-06-17
In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.
Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions
International Nuclear Information System (INIS)
Gomez Sanchez, Andrea V.
2006-01-01
In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es
Failure prediction for Crack-in-Corrosion defects in natural gas transmission pipelines
International Nuclear Information System (INIS)
Bedairi, B.; Cronin, D.; Hosseini, A.; Plumtree, A.
2012-01-01
Cracks occurring coincidentally with corrosion (Crack-in-Corrosion or CIC), represent a new hybrid defect in pipelines that are not directly addressed in the current codes or assessment methods. To understand the failure response of these defects, the finite element method using an elastic–plastic fracture mechanics approach was applied to predict the failure pressures of comparable crack, corrosion and CIC defects in 508 mm diameter pipe with 5.7 mm wall thickness. Failure pressure predictions were made based on measured tensile, Charpy impact and J testing data, and validated using experimental rupture tests. Plastic collapse was predicted for corrosion and crack defects using the critical strength based on the material tensile strength, whereas fracture was predicted using the measured J 0.2 value. The model predictions were found to be conservative for the CIC defects (17.4% on average), 12.4% conservative for crack-only defects, and 3.2% conservative for corrosion defects compared to the experimental tests, demonstrating the applicability of the material-based failure criteria. For the defects considered in this study, all were predicted to fail by plastic collapse. The finite element method provided less conservative predictions than existing corrosion or crack-based analytical methods. Highlights: ► Cracks occurring coincidentally with corrosion represent a new hybrid defect in pipelines. ► Existing methods for prediction corrosion and crack defect failure pressures are conservative. ► The FE method can provide improved prediction of rupture pressure using actual material properties. ► Failure was predicted using FE with a critical stress for plastic collapse and J value for fracture. ► FE failure pressure predictions for crack in corrosion defects were 17% conservative on average.
Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock
Morshed, S.; Chesnokov, E.
2017-12-01
Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA
Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels
International Nuclear Information System (INIS)
Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.
2000-01-01
A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)
International Nuclear Information System (INIS)
Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho
2016-01-01
Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.
Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin
2014-04-01
This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.
Quantification of water penetration into concrete through cracks by neutron radiography
International Nuclear Information System (INIS)
Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.
2009-01-01
Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.
Stress intensity factors and weight functions for cracks in front of notches
International Nuclear Information System (INIS)
Fett, T.
1993-12-01
The knowledge of stress intensity factors for cracks at notch roots is important for the fracture mechanical treatment of real components. Stress intensity factor solutions are available only for special notches and externally applied loads. For the treatment of more complex loadings as thermal stresses near the notch root the weight function is needed in addition. In the first part of this report weight functions for cracks in front of internal notches are derived from stress intensity factor solutions under external loading available in the literature. The second part deals with cracks in front of edge notches. Limit cases of stress intensity factors are derived which allow to estimate stress intensity factors for cracks in front of internal elliptical notches with arbitrary aspect ratio of the ellipse and for external notches. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.
International Nuclear Information System (INIS)
Basu, D.; Sarkar, B.K.
1996-01-01
Short surface cracks were generated by Vickers indentation on the polished surface of alumina and different zirconia toughened alumina (ZTA) specimens, and their morphology was studied by serial sectioning. These cracks were grown in three-point bend tests under stepwise loading, and variation of toughness with crack extension was plotted to graphically separate the contributions from residual stress intensity and applied stress intensity factors. The plateau toughness determined from the intercept height of the crack extension plots exhibited an upward trend with zirconia content up to 15 vol% ZrO 2 addition in the composition, which was proportional to the fraction of transformable tetragonal grains contributing to transformation toughening. copyright 1996 Materials Research Society
Study on shear transfer analysis of reinforced concrete across a crack
Energy Technology Data Exchange (ETDEWEB)
Endoh, Takao; Katoh, Osamu
1984-11-01
It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained.
A study on shear transfer analysis of reinforced concrete across a crack
International Nuclear Information System (INIS)
Endoh, Takao; Katoh, Osamu
1984-01-01
It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained. (author)
The application of an atomistic J-integral to a ductile crack.
Zimmerman, Jonathan A; Jones, Reese E
2013-04-17
In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.
International Nuclear Information System (INIS)
Li Qun; Chen Yiheng
2008-01-01
The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials is clarified. Based on the extended Stroh theory, the Coulombic traction, usually neglected in piezoelectric fracture, is imposed on the interface crack surfaces. It is found that the low-capacitance medium (air or vacuum) inside the crack gap yields some large Coulombic traction as compared to the applied mechanical loading whether the remanent polarization of piezoelectric material is considered or not. Thus, previous investigations based on the traction-free condition underestimate the role of the Coulombic traction and in turn may yield unexpected errors for the effective stress intensity factor (SIF) and energy release rate (ERR) at the crack tip. (technical note)
Thermal Analysis of a Cracked Half-plane under Moving Point Heat Source
Directory of Open Access Journals (Sweden)
He Kuanfang
2017-09-01
Full Text Available The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. The analytical solution and the numerical means are combined to analyze the transient temperature distribution of a cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked half-plane structure under moving point heat source are presented and discussed in detail.
Time-dependent crack growth and fracture in concrete
International Nuclear Information System (INIS)
Zhou Fan Ping.
1992-02-01
The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs
Developments in delayed hydride cracking in zirconium alloys
International Nuclear Information System (INIS)
Puls, Manfred P.
2008-01-01
Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)
Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks
Directory of Open Access Journals (Sweden)
Ling Cao
2016-01-01
Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.
Process and device for magnetic crack testing
International Nuclear Information System (INIS)
Seiler, D.; Meili, E.; Fuchs, E.
1983-01-01
There is a problem of sufficient crack depth discrimination to suppress fault signals or pictures due to unevenness not caused by cracks. To solve this, when magnetising in the preferred direction of adhesion, the effect depending on the direction of the crack, before magnetic powder detection, magnetic powder is blown on, showing the fault and for the comparison of the adhesion effect crack direction characteristics it is blown on parallel to the preferred direction, or if one wants to stress the directional characteristic, it is blown on transversely to the preferred direction. In both cases one blows with the same force, without removing the magnetic powder remnants relevant to faults in the intended crack areas. This strong blowing removes the magnetic powder remnants relevant to interference and not relevant to faults. (orig./HP) [de
Strain rate effects in stress corrosion cracking
Energy Technology Data Exchange (ETDEWEB)
Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)
1990-03-01
Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.
Compliance characteristics of cracked UO2 pellets
International Nuclear Information System (INIS)
Williford, R.E.; Mohr, C.L.; Lanning, D.D.
1981-01-01
The thermally induced cracking of UO 2 fuel pellets causes simultaneous reductions of the bulk (extrinsic) fuel thermal conductivity and elastic moduli to values significantly less than those for solid pellets. The magnitude of these bulk properly reductions was found to be primarily dependent on the amount of crack area in the transverse plane of the fuel. The model described herein uses a simple description of the crack geometry to couple the fuel rod thermal and mechanical behaviors by relating in-reactor data to Hooke's Law and a crack compliance model. Data from the NRC/PNL Halden experiment IFA-432 show that for a typical helium-filled BWR-design rod at 30 kW/m, the effective thermal conductivity and elastic moduli of the cracked fuel are 4/5 and 1/40 of that for solid pellets, respectively
Study of fission reactions induced by 4,6He and 7Li beams on 209Bi and 208Pb targets
Directory of Open Access Journals (Sweden)
Lukyanov S.M.
2013-12-01
Full Text Available Study of fission reactions induced by 4,6He and 7Li beams on 209Bi and 208Pb targets, leading to the production of 210,212A compound nuclei, was performed. It was shown that the fission excitation functions for the three reactions 4,6He + 209Bi and 7Li + 208Pb had similar behavior within the experimental error for a broad range of energy. More likely, halo structure of 6He is not reflected on the fission reaction mechanism. Otherwise, a large value of the fusion cross section was observed so far, as it could be expected in the case of weakly bound character of 6He projectile.
Crack shape developments and leak rates for circumferential complex-cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)
1997-04-01
A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.
Fully plastic crack opening analyses of complex-cracked pipes for Ramberg-Osgood materials
International Nuclear Information System (INIS)
Jeong, Jae Uk; Choi, Jae Boong; Huh, Nam Su; Kim, Yun Jae
2016-01-01
The plastic influence functions for calculating fully plastic Crack opening displacement (COD) of complex-cracked pipes were newly proposed based on systematic 3-dimensional (3-D) elastic-plastic Finite element (FE) analyses using Ramberg-Osgood (R-O) relation, where global bending moment, axial tension and internal pressure are considered separately as a loading condition. Then, crack opening analyses were performed based on GE/EPRI concept by using the new plastic influence functions for complex-cracked pipes made of SA376 TP304 stainless steel, and the predicted CODs were compared with FE results based on deformation plasticity theory of tensile material behavior. From the comparison, the confidence of the proposed fully plastic crack opening solutions for complex-cracked pipes was gained. Therefore, the proposed engineering scheme for COD estimation using the new plastic influence functions can be utilized to estimate leak rate of a complex-cracked pipe for R-O material.
Optimisation of the Crack Pattern in Continuously Reinforced Concrete Pavements
Ren, D.
2015-01-01
Recent field investigations on several new Continuously Reinforced Concrete Pavements (CRCP) in Belgium indicate that its crack pattern is characterized by low mean crack spacing along with a high percentage of clusters of closely spaced cracks. Field surveys also indicate that it is difficult to significantly reduce the probability of a non-uniform crack pattern - such as closely spaced cracks, meandering, and Y-cracks - by only slightly adjusting the amount of longitudinal steel. Non-unifor...
Cracks assessment using ultrasonic technology
Energy Technology Data Exchange (ETDEWEB)
Martinez, Maria Pia; Tomasella, Marcelo [OLDELVAL S.A. Oleoductos del Valle, Rio Negro (Argentina). Pipeline Integrity Dept.
2005-07-01
The goal of Oldelval Integrity Program is to prevent ruptures and leaks, developing strategies for a better handling of the integrity of our pipelines. In order to achieve it we have studied and modeled each process that involved in the integrity pipeline. Those processes are mainly based on defects reported by an internal inspection tool and supplied with field inspection and monitoring data. Years of evaluation, study and the continuous effort overturned towards a phenomenon that worries to the industry, as it is the SCC. Since 1998 up to 2004 SCC was included in the integrity program with some preventive maintenance programs. The accomplishment of the inspection based on ultrasound tools, is the culmination of years of evaluation and investigations supported by field digs and materials susceptibility. This paper describes Oldelval's results with ultrasonic crack detection tool, and how it can be reliably to detect SCC. (author)
Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness
AL-Shudeifat, Mohammad A.
2015-07-01
The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.
Dislocation model of a subsurface crack
International Nuclear Information System (INIS)
Yang, F.; Li, J.C.
1997-01-01
A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics
Identification of cracks in thick beams with a cracked beam element model
Hou, Chuanchuan; Lu, Yong
2016-12-01
The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.
International Nuclear Information System (INIS)
Alvarez, J.A.; Gutierrez-Solana, F.
1999-01-01
Cracking processes suffered by new structural and piping steels when used in petroleum or other energy installations have demonstrated the need for a cracking resistance characterization methodology. This methodology, valid for both elastic and elastoplastic regimes, should be able to define crack propagation kinetics as a function of their controlling local parameters. This work summarizes an experimental and analytical methodology that has been shown to be suitable for characterizing cracking processes using compact tensile specimens, especially subcritical environmentally assisted ones, such as those induced by hydrogen in microalloyed steels. The applied and validated methodology has been shown to offer quantitative results of cracking behavior and to correlate these with the existing fracture micromechanisms. (orig.)