WorldWideScience

Sample records for reaction activation energy

  1. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    Science.gov (United States)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  2. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    Rack, E.P.

    1990-05-01

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  3. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  4. Activation measurements of α-induced reactions at sub-Coulomb energies

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Philipp; Dewald, Alfred; Heinze, Stefan; Mayer, Jan; Mueller-Gatermann, Claus; Netterdon, Lars; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Endres, Anne [Institute for Applied Physics, Goethe University Frankfurt am Main (Germany)

    2015-07-01

    Network calculations of the γ process rely almost completely on theoretically predicted reaction rates within the scope of the Hauser-Feshbach Statistical Model. Especially the prediction of cross sections for (γ,α)-reactions at energies within or close to the astrophysically relevant energy window remains a problem due to the uncertainties in the underlying α-optical-model potentials. Although experimental values far above the Coulomb-barrier are well reproduced, commonly used α-optical potentials often fail to describe the trend at energies comparable to those at astrophysical sites of the γ process. Improvements of the adopted optical-model potentials are hampered by the lack of experimental cross sections at sub-Coulomb energies. In order to enlarge the experimental data base, cross sections of the {sup 187}Re(α,n) and {sup 108}Cd(α,n) reactions were investigated using the activation technique with the Cologne Clover Counting Setup. Besides recent experimental results, future plans for more sensitive cross-section studies applying Accelerator Mass Spectrometry using CologneAMS are presented.

  5. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15-December 31, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Energetic halogen atoms or ions, activated by various nuclear transformations are studied in gas, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and liquid and solid aqueous solutions of biomolecular and organic solutes in order to understand better the mechanisms and dynamics of high energy monovalent species. The experimental program and its goals remain the same, consisting of four interrelated areas: (1) The stereochemistry of energetic 18 F, /sup 34m/Cl, and 38 Cl substitution reactions with chiral molecules in the gas and condensed phase is studied. (2) The gas to condensed state transition in halogen high energy chemistry, involving energetic chlorine, bromine, and iodine reactions in halomethanes, saturated and unsaturated hydrocarbons and aqueous solutions of biomolecules and alkyl halides is being investigated in more detail. Current attention is given to defining the nature of the enhancement yields in the condensed phase. Specifically, energetic halogen reactions in liquid and frozen aqueous solutions or organic and biomolecular solutes are studied. (3) Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular and organic solutes in liquid and frozen aqueous solutions are being studied in an attempt to learn more about the activation events in the condensed phase. (4) The applications of hot chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Current attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as site indicators in liquid and frozen aqueous solutions of halogenated bases and nucleosides are currently being developed. 14 references

  6. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  7. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    Science.gov (United States)

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.

  8. Origins of the Unfavorable Activation and Reaction Energies of 1-Azadiene Heterocycles Compared to 2-Azadiene Heterocycles in Diels-Alder Reactions.

    Science.gov (United States)

    Fell, Jason S; Martin, Blanton N; Houk, K N

    2017-02-17

    The reactivities of butadiene, cyclopentadiene, furan, thiophene, pyrrole, and their 1-aza- and 2-aza-derivatives in Diels-Alder reactions with ethylene and fumaronitrile were investigated with density functional theory (M06-2X/6-311G(d,p)). The activation free energies for the Diels-Alder reactions of cyclic 1-azadienes are 10-14 kcal mol -1 higher than those of cyclic 2-azadienes, and the reaction free energies are 17-20 kcal mol -1 more endergonic. The distortion/interaction model shows that the increased activation energies of cyclic 1-azadienes originate from increased transition state distortion energies and unfavorable interaction energies, arising from addition to the nitrogen terminus of the C═N bond.

  9. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  10. Activation energies as the validity criterion of a model for complex reactions that can be in oscillatory states

    Directory of Open Access Journals (Sweden)

    Anić S.

    2007-01-01

    Full Text Available Modeling of any complex reaction system is a difficult task. If the system under examination can be in various oscillatory dynamic states, the apparent activation energies corresponding to different pathways may be of crucial importance for this purpose. In that case the activation energies can be determined by means of the main characteristics of an oscillatory process such as pre-oscillatory period, duration of the oscillatory period, the period from the beginning of the process to the end of the last oscillation, number of oscillations and others. All is illustrated on the Bray-Liebhafsky oscillatory reaction.

  11. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1978--February 14, 1979

    International Nuclear Information System (INIS)

    Rack, E.P.

    1979-02-01

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, were studied in gaseous, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes and other organic systems in order to better understand the mechanisms and dynamics of high energy monovalent species. The experimental and theoretical program consists of six interrelated areas: (1) the reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure and liquid systems; (2) the gas to condensed state transition in halogen high chemistry, involving bromine activated by the (n,γ) and (I.T.) processes in ethane was investigated in more detail; (3) systematics of halogen hot atom reactions. The reactions of 80 Br/sup m/, 80 Br, 82 Br/sup m/ + 82 Br, 82 Br, 128 I, 130 I, and 130 I/sup m/ + 130 I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators; (4) kinetic theory applications of high energy reactions and mathematical development of caging mechanisms were developed; (5) the sterochemistry of 38 Cl substitution reactions involving diastereomeric 1,2-dichloro-1,2-difluorethane in liquid mixtures was completed, suggesting that the stereochemical course of the substitution process is controlled by the properties of the solvent molecules; and (6) the applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems was continued, especially involving aluminum and vanadium trace determinations

  12. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  13. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  14. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  15. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    International Nuclear Information System (INIS)

    1981-02-01

    The stereochemistry of high energy 18 F, /sup 34m/Cl, and 76 Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,γ) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied

  16. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The stereochemistry of high energy /sup 18/F, /sup 34m/Cl, and /sup 76/Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,..gamma..) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied.

  17. The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2017-09-07

    A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.

  18. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rack, E.P.

    1980-02-01

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, /sup 80/Br, /sup 82m/Br + /sup 82/Br, /sup 82/Br, /sup 82/Br, /sup 128/I, /sup 130/I, and /sup 130m/I + /sup 130/I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation to determine the role of hot atom kinetic energy, halogen atom, enantioner structure, steric effects and phase on the extent of substitution by retention of configuration or by Walden inversion. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace element determinations in biological systems was continued.

  19. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    International Nuclear Information System (INIS)

    Rack, E.P.

    1980-02-01

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, 80 Br, /sup 82m/Br + 82 Br, 82 Br, 82 Br, 128 I, 130 I, and /sup 130m/I + 130 I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace elements and trace molecule determinations in biological systems was continued

  20. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  1. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  2. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has...

  3. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  4. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A.V.

    2016-01-01

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of "9"3Nb(d,x)"9"3"m","9"0Mo, "9"2"m","9"1"m","9"0Nb, "8"9","8"8Zr and "8"8","8"7"m","8"7"gY in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  5. Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, K.; Neupane, B.; Zazubovich, V.; Sayre, R. T.; Picorel, R.; Seibert, M.; Jankowiak, R.

    2012-03-29

    It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin {alpha} (Pheo {alpha}) within the D1 protein (Pheo{sub D1}), while Pheo{sub D2} (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q{sub y}-states of Pheo{sub D1} and Pheo{sub D2} bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986-998; Cox et al. J. Phys. Chem. B 2009, 113, 12364-12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo{sub D1} is near 672 nm, whereas Pheo{sub D2} ({approx}677.5 nm) and Chl{sub D1} ({approx}680 nm) have the lowest energies (i.e., the Pheo{sub D2}-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q{sub y} absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472-11482; Germano et al. Biophys. J. 2004, 86, 1664-1672]. To provide more insight into the site energies of both Pheo{sub D1} and Pheo{sub D2} (including the corresponding Q{sub x} transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo{sub D1} is genetically replaced with chlorophyll {alpha} (Chl {alpha}). We show that the Q{sub x}-/Q{sub y}-region site energies of Pheo{sub D1} and Pheo{sub D2} are {approx}545/680 nm and {approx}541.5/670 nm, respectively, in good agreement with our previous assignment

  6. I. Activation energies for the gas phase reactions of hydrogen atom with carbon monoxide and with ethylene. II. Rate constants for the reactions of benzyl cation with triethylphosphine and with triethylarsine in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wang, H.Y.

    1976-01-01

    Two H-atom reactions H + CO + H 2 → HCO + H 2 and H + C 2 H 4 → C 2 H 5 * were separately studied from room temperature to about 100 0 C, and the activation energies for these two reactions were determined in this temperature range. For H + C 2 H 4 system, a small activation energy of 0.2 kcal/mole was obtained in the present narrow temperature range. The low activation energy indicates that the pre-exponential factor has a predominant contribution to the rate constant of this reaction and has about the same magnitude as that of the rate constant. For H + CO system, a fairly large activation energy of more than 7 kcal/mole was speculated in the potential energy surfaces of the system. The activation energy obtained in the present work, however, has a low value of about 2 kcal/mole. This low value reveals the low level of crossing of this reaction in the potential energy surface and thus indicates considerable complexity involved in the surface. Carbonium ions can be formed from chosen solutes in pulse-irradiated 1,2-dichloroethane (RCl) solutions. Upon irradiation, the electrons generated from the ionization of the solvent become localized on chloride ions as a result of their reaction with the neutral solvent molecules. The solvent counterion, RCl + , on the other hand, is free to exchange charge with the solute molecule. By choosing appropriate solutes, carbonium ion can be formed through a dissociative ionization process in the exchange. The benzyl cation was formed from its precursor compound dibenzylmercury and its reactions with two nucleophiles, triethylphosphine and triethylarsine, were separately studied. The formation and decay of benzyl cation were observed at 363 nm, the position of the maximum of its absorption band, and the second-order rate constants for the two reactions were determined at room temperature

  7. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report. [Summaries of research activities at Carnegie-Mellon University

    Energy Technology Data Exchange (ETDEWEB)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed.

  8. Photonuclear reactions at intermediate energy

    International Nuclear Information System (INIS)

    Koch, J.H.

    1982-01-01

    The dominant feature of photonuclear reactions at intermediate energies is the excitation of the δ resonance and one can therefore use such reactions to study the dynamics of δ propagation in a nucleus. Following an introductory section the author comments on photoabsorption on a single nucleon in Section II. A review of the δ-n Greens function and of the photonuclear amplitude is given in Section III. Results for photoabsorption on 4 He are shown in Section IV and compared with the data. Coherent π 0 photoproduction is discussed in Section V and calculations for 12 C are compared to recent measurements. (Auth.)

  9. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  10. Caging in high energy reactions

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  11. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    Science.gov (United States)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  12. Low energy nuclear reaction polyplasmon postulate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, John L. [201 Heritage Drive, Apt. 208, Canton, GA 30093 (United States)], E-mail: RUSSELLJL@aol.com

    2008-11-15

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is

  13. Low energy nuclear reaction polyplasmon postulate

    International Nuclear Information System (INIS)

    Russell, John L.

    2008-01-01

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is absorbed in the plasmon

  14. Measurements of activation cross-sections for the 101Ru(n,p)101Tc reaction for neutrons with energies between 13 and 15 MeV

    International Nuclear Information System (INIS)

    Junhua Luo; Peking University, Beijing; Jiuning Han; Suhong Ge; Zhenlai Liu; Guihua Sun; Rong Liu; Li Jiang

    2013-01-01

    In this study, activation cross-sections were measured for the 101 Ru(n,p) 101 Tc reaction at three different neutron energies from 13.5 to 14.8 MeV. The fast neutrons were produced via the 3 H(d,n) 4 He reaction on K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The data for 101 Ru(n,p) 101 Tc reaction cross-sections are reported to be 15.7 ± 2.0, 18.4 ± 2.7 and 22.0 ± 2.4 mb at 13.5 ± 0.2, 14.1 ± 0.2, and 14.8 ± 0.2 MeV incident neutron energies, respectively. Results were compared with the previous works. (author)

  15. Measurement of activation reaction rate distribution on a mercury target with a lead-reflector and light-water-moderator for high energy proton bombardment using AGS accelerator

    International Nuclear Information System (INIS)

    Kasugai, Yoshimi; Takada, Hiroshi; Meigo, Shin-ichiro

    2001-02-01

    Characteristic of spallation neutrons driven by GeV protons from a mercury target with a lead-reflector and light-water-moderator was studied experimentally using the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Several reaction rates along with the mercury target were measured with the activation method at incident proton energies of 1.94, 12 and 24 GeV. Indium, niobium, aluminum, cobalt, nickel and bismuth were used as activation detectors to cover the threshold energy of between 0.33 and 40.9 MeV. This report summarizes the experimental procedure with all the measured data. (author)

  16. Enhancement Mechanisms of Low Energy Nuclear Reactions

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy o...

  17. Improved Reaction and Activation Energies of [4+2] Cycloadditions, [3+3] Sigmatropic Rearrangements and Electrocyclizations with the Spin-Component-Scaled MP2 Method

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.; Wuerthwein, E.-U.; Grimme, S.

    2004-01-01

    A new quantum mechanical scheme to calculate electronic correlation energies, spin-component-scaled MP2, was tested as a tool to predict reaction energies and barriers in computational organic chemistry. Three common pericyclic reactions with known unsatisfactory MP2 descriptions were reinvestigated

  18. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  19. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  20. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  1. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  2. Activation Energy

    Science.gov (United States)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  3. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  4. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  5. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  6. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  7. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  9. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  10. Breakup reactions at intermediate and high energy

    International Nuclear Information System (INIS)

    Shotter, A.C.; Bice, A.N.

    1981-01-01

    Having considered some general aspects of peripheral break-up reactions involving heavy ions for the incident energy range 10-2000 MeV/A, specific experiments carried out at Berkeley in 1980 in the energy range 10-20 MeV/A are discussed. These indicate that sequential break-up processes from non-sequential inelastic processes both play significant roles in the mechanism. (UK)

  11. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  12. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  13. Study of nuclear reactions and analog isobar states in the system He8 + p for low energy with the help of MAYA active target

    International Nuclear Information System (INIS)

    Demonchy, Ch.E.

    2003-12-01

    With the resent improvements in the field of exotics beams, and specially with the SPIRAL facility at GANIL, we were able to study He 9 shell inversion already known for Be 11 and Li 10 , which are two members of the N=7 family. A new detector was developed and also the software tools for the data analysis. This detector is at the same time the target (active-target) and is called MAYA. The He 9 was studied by determining the properties of its isobaric analogue states in Li 9 . The characteristics of the IAS (isomeric analog state) states were determined by an analysis of the resonances in the elastic scattering cross section for He 8 + p from 2 up to 3.9 MeV/n. A study of (p,d) and (p,t) reactions was done too, in this domain of energy. By comparing the experimental results with calculations, an assignation of spin and parity for two states in He 9 was possible. (author)

  14. Studies of nuclear reaction at very low energies

    International Nuclear Information System (INIS)

    Cecil, F.E.

    1992-01-01

    The deuteron radiative capture reactions on 2 H, 6 Li and 10 B have been measured between center of mass energies of 20 and 140 keV. Of note is the observation that the gamma ray-to-charged particle branching ratio for the DD reaction appears independent of energy down to a center of mass energy of 20 keV, consistent with some and contrary to other theoretical models. We have investigated the ratio of the reactions D(d,p)T and D(d,n) 3 He down to c.m. energies of 3 keV and the ratio of the reactions 6Li(d,p) 7 Li and 6 LI(d,α) 4 He down to a c.m. energy of 19 keV. The DD reaction ratio is independent of energy while the (d,p) branch of the D- 6 Li evinces a significant enhancement at the lowest measured energies. We have continued our investigation of charged particle production from deuterium-metal systems at a modest level of activity. Noteworthy in this investigation is the observation of 3 MeV protons from deuteron beam loaded Ti and LiD targets subjected to extreme thermal disequilibria. Significant facility improvements were realized during the most recent contract period. Specifically the downstream magnetic analysis system proposed to eliminate beam induced contaminants has been installed and thoroughly tested. This improvement should allow the D(a,γ) 6 Li reaction to be measured in the coming contract period. A scattering chamber required for the measurement of the 7 Li( 3 He,p) 9 Be reaction has been designed, fabricated and installed on the accelerator. A CAMAC based charged particle identification system has been assembled also for use in our proposed measurement of the 7 Li( 3 He, p) 9 Be

  15. (p,n) reaction at intermediate energy

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    The use of the (p,n) reaction in exploring effective interactions is reviewed. Some recent data on self-conjugate nuclei taken at the Indiana University Cyclotron Facility (IUCF) are presented, and the differences between low- and high-energy data are emphasized. Experimental problems and techniques used are briefly described. It is concluded that forward-angle (p,n) spectra at energies greater than 100 MeV are dominated by Gamow-Teller (GT) transitions, while Fermi transitions (IAS transitions) dominate near 45 MeV. Prominent GT transitions are expected from a pion-exchange interaction, and it is expected that OPEP is the dominant component of the interaction in the energy range of 100 to 200 MeV. 27 figures, 2 tables

  16. Low energy ion-molecule reactions

    International Nuclear Information System (INIS)

    Farrar, J.M.

    1986-01-01

    The authors work during the past year has focused on several problems in the condensation reactions of C + and CH 3 + with small molecules, particularly hydrocarbons. Their emphasis has been on understanding the dynamics of collision complex formation and isomerization of transient intermediates along the reaction coordinate. In many ionic reactions, intermediates having non-classical valence structures may be nearly as stable as their classical analogs, in contrast with neutral systems where the non-classical structures are much less stable. The C + + NH 3 system shows this behavior, indicating that the non-classical HCNH 2 + structure formed by insertion of C + into the N-H bond serves as a precursor to the products. N-H bond cleavage in this intermediate to form HCNH + occurs over a large barrier and occurs more readily than the 1,2 hydrogen atom shift to form the classical H 2 C = NH + intermediate. Their experimental kinetic energy distribution for this channel is consistent with the presence of a large exit channel barrier. Their recently published work on C + + H 2 O also demonstrates this phenomenon. The CHOH + hydroxycarbene cation serves as the initial intermediate and isomerization to the classical H 2 CO + cation is competitive with O-H or C-H cleavage to yield the formyl, HCO + , or isoformyl, COH + , cations. They have also completed studies on the reactions of C + with O 2 , CH 3 OH, HCN, and the two-carbon containing hydrocarbons ethane, ethylene, and acetylene

  17. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  18. Low energy nuclear reactions: 2007 update

    International Nuclear Information System (INIS)

    Krivit, S. B.

    2007-01-01

    Introduction: This paper presents an overview of the field of low energy nuclear reactions (LENR), a branch of condensed matter nuclear science. It explains some of the various terminologies that have been used to describe this field since it debuted as 'cold fusion' in 1989. The paper also reviews some of the most interesting news and developments regarding low energy nuclear reaction experiments and theory, and some of the sociological and political trends that have affected the field over the last 18 years. It concludes with a list of resources and information for scientists, journalists and decision makers. Understanding the Nature of the Reactions The worldwide LENR research effort includes 200 researchers in 13 nations. Over the last 18 years, 12 international conferences have been held, as well as 7 regional conferences in Italy, 14 in Russia and 7 in Japan. The significant questions that face this field of research are: a) Are LENRs a genuine nuclear reaction? b) If so, is there a release of excess energy? and c) Are transmutations possible? If the answers to these questions turn out to be positive, the next questions will be: d) Is the energy release cost-effective? and e) Are the transmutations useful? Despite the fact that repeatability and reproducibility are challenging, the required parameters for achieving the excess heat effect are well understood. First, a high atomic loading ratio of D into Pd is required. In most conditions, 0.90 is the minimum threshold required to produce an excess heat effect. Second, a high electrical current density in the cathode is needed, 250 mA/cm 2 under most conditions. The third requirement is for some kind of dynamic trigger to impose a deuterium flux in, on or around the cathode. The challenge that researchers face is how to achieve these conditions. Some of the Most Interesting Research Developments Work by Stanislaw Szpak, Pamela Boss and Frank Gordon at the U.S. Navy's SPAWAR Systems Center in San Diego has

  19. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  20. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  1. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  2. Measurement of activation cross-section of long-lived products in deuteron induced nuclear reactions on palladium in the 30-50MeV energy range.

    Science.gov (United States)

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2017-10-01

    Excitation functions were measured in the 31-49.2MeV energy range for the nat Pd(d,xn) 111,110m,106m,105,104g,103 Ag, nat Pd(d,x) 111m,109,101,100 Pd, nat Pd(d,x), 105,102m,102g,101m,101g,100,99m,99g Rh and nat Pd(d,x) 103,97 Ru nuclear reactions by using the stacked foil irradiation technique. The experimental results are compared with our previous results and with the theoretical predictions calculated with the ALICE-D, EMPIRE-D and TALYS (TENDL libraries) codes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Study of nuclear reactions and analog isobar states in the system He{sup 8} + p for low energy with the help of MAYA active target; Etude de reactions et d'etats isobariques analogues dans le systeme {sup 8}He+p, a basse energie a l'aide de la cible active MAYA

    Energy Technology Data Exchange (ETDEWEB)

    Demonchy, Ch.E

    2003-12-01

    With the resent improvements in the field of exotics beams, and specially with the SPIRAL facility at GANIL, we were able to study He{sup 9} shell inversion already known for Be{sup 11} and Li{sup 10}, which are two members of the N=7 family. A new detector was developed and also the software tools for the data analysis. This detector is at the same time the target (active-target) and is called MAYA. The He{sup 9} was studied by determining the properties of its isobaric analogue states in Li{sup 9}. The characteristics of the IAS (isomeric analog state) states were determined by an analysis of the resonances in the elastic scattering cross section for He{sup 8} + p from 2 up to 3.9 MeV/n. A study of (p,d) and (p,t) reactions was done too, in this domain of energy. By comparing the experimental results with calculations, an assignation of spin and parity for two states in He{sup 9} was possible. (author)

  4. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  5. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  6. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  7. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  8. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  9. Exploring Reaction Mechanism on Generalized Force Modified Potential Energy Surfaces (G-FMPES) for Diels-Alder Reaction

    Science.gov (United States)

    Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath

    We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.

  10. Activation barriers for series of exothermic homologous reactions. V. Boron group diatomic species reactions

    Science.gov (United States)

    Blue, Alan S.; Belyung, David P.; Fontijn, Arthur

    1997-09-01

    Semiempirical configuration interaction (SECI) theory is used to predict activation barriers E, as defined by k(T)=ATn exp(-E/RT). Previously SECI has been applied to homologous series of oxidation reactions of s1, s2, and s2p1 metal atoms. Here it is extended to oxidation reactions of diatomic molecules containing one s2p1 atom. E values are calculated for the reactions of BH, BF, BCl, AlF, AlCl, AlBr, GaF, GaI, InCl, InBr, InI, TlF, TlCl, TlBr, and TlI with O2, CO2, SO2, or N2O. These values correlate with the sums of the ionization potentials and Σ-Π promotion energies of the former minus the electron affinities of the latter. In the earlier work n was chosen somewhat arbitrarily, which affected the absolute values of E. Here it is shown that examination of available experimental and theoretical results allows determination of the best values of n. Using this approach yields n=1.9 for the present series. For the seven reactions which have been studied experimentally, the average deviation of the SECI activation barrier prediction from experiment is 4.0 kJ mol-1. Energy barriers are calculated for another 52 reactions.

  11. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  12. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  13. Low-energy Electro-weak Reactions

    International Nuclear Information System (INIS)

    Gazit, Doron

    2012-01-01

    Chiral effective field theory (EFT) provides a systematic and controlled approach to low-energy nuclear physics. Here, we use chiral EFT to calculate low-energy weak Gamow-Teller transitions. We put special emphasis on the role of two-body (2b) weak currents within the nucleus and discuss their applications in predicting physical observables.

  14. Complete active space second order perturbation theory (CASPT2) study of N({sup 2}D) + H{sub 2}O reaction paths on D{sub 1} and D{sub 0} potential energy surfaces: Direct and roaming pathways

    Energy Technology Data Exchange (ETDEWEB)

    Isegawa, Miho; Liu, Fengyi [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Maeda, Satoshi [Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-10-21

    We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.

  15. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  16. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  17. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  18. Enhancement mechanisms of low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L. [Joint Institute for Nuclear Research, JINR, 6 Joliot Curie Street, Dubna, Moscow Region 141980 (Russian Federation)

    2006-07-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong.

  19. Enhancement mechanisms of low energy nuclear reactions

    International Nuclear Information System (INIS)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L.

    2006-01-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong

  20. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  1. Energy gains from lattice-enabled nuclear reactions

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    The energy gain of a system is defined as the ratio of its output energy divided by the energy provided to operate the system. Most familiar systems have energy gains less than one due to various inefficiencies. By contrast, lattice-enabled nuclear reactions (LENR) offer high energy gains. Theoretical values in excess of 1000 are possible. Energy gains over 100 have already been reported. But, they have not yet been sustained for commercially significant durations. This article summarizes the current status of LENR energy gains. (author)

  2. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  3. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion...... mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...

  4. Precompound decay models for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1989-11-01

    The formulations used for precompound decay models are presented and explained in terms of the physics of the intranuclear cascade model. Several features of spectra of medium energy (10--1000 MeV) reactions are summarized. Results of precompound plus evaporation calculations from the code ALICE are compared with a wide body of proton, alpha, and heavy ion induced reaction data to illustrate both the power and deficiencies of predicting yield of these reactions in the medium energy regime. 23 refs., 13 figs

  5. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    hitting anything solid, they will create secondary electrons. These electrons are in fact the energy source needed to run interstellar chemistry. Slow electrons can in principle trigger three different primary processes in a molecule. The first is ionisation by electron impact (EI), which is used to create ions in mass spectrometry. In this process an electron hits a molecule M and knocks an outer shell electron to create a cation. This occurs whenever the electron energy is above the ionisation threshold of the target molecule. Another possibility is the attachment of a slow electron to a molecule to create an anion. This can occur at sharply defined resonance energies specific to the molecule M. A third possibility is to excite the molecule M to a neutral state M∗ .[9] M + e- -> M+ + 2 e- (Electron impact ionisation) M + e- -> M- (Electron attachment) M + e- -> M∗ + e- (Neutral excitation) The created states M+ , M- and M∗ are usually not stable states so they very often dissociate into ions and radicals, which can then further react with neighbouring molecules to form new chemical species. In these chemical reactions some products can be formed even at very low temperatures that would otherwise require a lot of thermal energy and/or special catalysts. The formation of ethylamine from ethylene and ammonia by hydroamination is one such example. The reaction is characterized by a high activation barrier caused by the electronic repulsion between the electron density rich C=C double bound and the lone pair electrons of ammo-nia. The reaction also has a highly negative entropy, so it becomes less favourable at higher temperatures, ruling out heat as a means to facilitate the reaction. In classical chemistry this problem is overcome by the use of catalysts. Unfortunately there still is no general catalyst for this kind of reaction. Recently it was shown that the reaction can efficiently be induced by low energy electron radiation.[10] One of the reaction partners is

  6. Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview

    Directory of Open Access Journals (Sweden)

    Davide Ravelli

    2015-01-01

    Full Text Available Photocatalytic reactions have been defined as those processes that require both a (not consumed catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal equilibrium. This consideration brings in the question whether a part of the photon energy is incorporated into the photochemical reaction products. Data are provided for representative organic reactions involving or not molecular catalysts and show that energy storage occurs only when a heavily strained structure is generated, and in that case only a minor part of photon energy is actually stored (ΔG up to 25 kcal·mol−1. The green role of photochemistry/photocatalysis is rather that of forming highly reactive intermediates under mild conditions.

  7. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  8. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  9. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  10. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  11. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...

  12. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.

  13. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N 2 O in place of N 2 are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly

  14. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu [Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607 (United States)

    2016-03-21

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.

  15. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    International Nuclear Information System (INIS)

    Li, Wenjin; Ma, Ao

    2016-01-01

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C 7eq → C 7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.

  16. Energy Sharing and Energy Feedback: Affective and Behavioral Reactions to Communal Energy Displays

    Energy Technology Data Exchange (ETDEWEB)

    Leygue, Caroline, E-mail: caroline.leygue@nottingham.ac.uk [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); Ferguson, Eamonn [School of Psychology, University of Nottingham, Nottingham (United Kingdom); Skatova, Anya [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); Spence, Alexa [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); School of Psychology, University of Nottingham, Nottingham (United Kingdom)

    2014-07-25

    Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date, there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  17. Energy sharing and energy feedback: Affective and behavioral reactions to communal energy displays.

    Directory of Open Access Journals (Sweden)

    Caroline eLeygue

    2014-07-01

    Full Text Available Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  18. Energy Sharing and Energy Feedback: Affective and Behavioral Reactions to Communal Energy Displays

    International Nuclear Information System (INIS)

    Leygue, Caroline; Ferguson, Eamonn; Skatova, Anya; Spence, Alexa

    2014-01-01

    Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date, there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  19. The (γ, p) reaction in 30Si, 68Zn and 130Te at intermediate energies

    International Nuclear Information System (INIS)

    Bulow, B.; Johnsson, B.; Nilsson, M.

    1977-01-01

    The yields of (γ, p) reactions on 30 Si, 68 Zn and 130 Te have been measured as a function of the bremsstrahlung end-point energy, Esub(γ, max), in the energy range 75-800 MeV, using the activation method. Cross sections have been deduced and are compared to results obtained using a semiempirical model. (Auth.)

  20. The nuclear structure and low-energy reactions (NSLER) collaboration

    International Nuclear Information System (INIS)

    Dean, D J

    2006-01-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible

  1. The Unimolecular Reactions of CF3CHF2 Studied by Chemical Activation: Assignment of Rate Constants and Threshold Energies to the 1,2-H Atom Transfer, 1,1-HF and 1,2-HF Elimination Reactions, and the Dependence of Threshold Energies on the Number of F-Atom Substituents in the Fluoroethane Molecules.

    Science.gov (United States)

    Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E

    2017-11-22

    The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.

  2. Bibliographic survey of medium energy inclusive reaction data

    International Nuclear Information System (INIS)

    Arthur, E.D.; Madland, D.G.; McClellan, D.M.

    1986-04-01

    A bibliographic survey of inclusive reaction data (experimental and theoretical) for several projectile types having energies between 50 and 1000 MeV has been completed. Approximately one thousand references selected from this survey describe the current state of knowledge for particle-induced inclusive reaction data. The search covered data for the following projectiles: p, d, t, 3 He, 4 He, and lithium ions

  3. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  4. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  5. Catalytic activity of catalysts for steam reforming reaction. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-05-01

    Japan Atomic Energy Research Institute has been developing a hydrogen production system by means of steam reforming of methane (chemical reation: CH{sub 4} + H{sub 2}O = CO + 3H{sub 2}) coupling with High Temperature Engineering Test Reactor (HTTR) to demonstrate effectiveness of high-temperature nuclear heat utilization. Prior to construction of HTTR hydrogen production system, a mock-up test facility with a full-scale reaction tube was constructed to investigate transient behavior of the hydrogen production system an establish system controllability. In order to predict transient behavior and hydrogen productivity of the hydrogen production system, it is important to estimate the reaction characteristics under the same temperature and pressure conditions as those of HTTR hydrogen production system. For the purpose of investigate an apparent activation energy of catalysts, catalytic activity test using small apparatus was carried out under the condition of methane flow rate from 1.18 x 10{sup -3} to 3.19 x 10{sup -3} mol/s, temperature from 500 to 900degC, pressure from 1.1 to 4.1MPa, and mol ratio of steam to methane from 2.5 to 3.5. It was confirmed that apparent activation energies of two kinds of Ni catalysts which are to be used in the mock-up test were 51.7 and 57.4kJ/mol, respectively, and reaction rate constants were propositional to the value from P{sup -0.15} to P{sup -0.33}. (author)

  6. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  7. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  8. Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).

  9. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    Science.gov (United States)

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  10. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  11. dd →3 Hen Reaction at Intermediate Energies

    International Nuclear Information System (INIS)

    Ladygina, N. B.

    2012-01-01

    The dd → 3 Hen reaction is considered at the energies between 200 and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized 3He wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power T 20 at the zero scattering angle are presented in comparison with the experimental data. (author)

  12. A primer for electroweak induced low-energy nuclear reactions

    Indian Academy of Sciences (India)

    paper is devoted to delineating the unifying features and to an overall synthesis of .... reaction e− + p → n + νe for electrons and protons of very low kinetic energy ..... of Z protons and N = (A − Z) neutrons where A is the total number of nucleons.

  13. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  14. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan

    2018-02-06

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  15. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter A.; Mielke, Alexander

    2018-01-01

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  16. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1993-03-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated

  17. (γ,2n) reactions in complexe nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1976-01-01

    The Monte Carlo Method has been used in the intranuclear cascade model for the calculation of the cross sections of the (γ,2n) reactions in complex nuclei 9 Be, 12 C, 16 O, 59 Co, 103 Rh, 127 I, 197 Au and 209 Bi at intermediate energies (200MeV-1000MeV). The initial photon-interaction via the photomesonic and quasi-deuteron mechanisms have been taken into account. The nuclear model used was a degenerate Fermi gas of nucleons, and the Pauli exclusion principle was considered in all secondary interactions. To improve accuracy in the results of the calculations, 30000 cascades have been followed for each target nucleus at a given incident photon energy. The probabilities of the various (γ,2n) reactions, as well as the correspondent cross section obtained, are summarized in tables and graphs. New data on the cross sections of the 59 Co (γ,2n) and 209 Bi (γ,2n) reactions at photon energies between 300 MeV and 1000MeV are also reported. These measurements were obtained with the Bremsstrahlung beams of the Frascati 1 GeV Electron Synchrotron. A comparison between all existing data in the literature on the (γ,2n) reaction cross sections and the estimates by the Monte Carlo Method, is presented. (Author) [pt

  18. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  19. Use of a GDMS for high-energy reaction data

    International Nuclear Information System (INIS)

    Moorhead, W.G.

    1978-01-01

    At CERN, data on high-energy reactions is being compiled using a Generalized Data Management System. The GDMS is a stand-alone system designed for administrative and engineering applications. The Data Base at present contains about 20,000 cross-section values, each linked to a description of the corresponding reaction, and the publication from which the value was derived. The immediate objective is to produce the widely circulated Compilation Reports, and the standard Report Generator of the GDMS is being used for this. Direct retrieval is also possible

  20. Multi-step direct reactions at low energies

    International Nuclear Information System (INIS)

    Marcinkowski, A.; Marianski, B.

    2001-01-01

    Full text: The theory of the multistep direct (MSD) reactions of Feshbach, Kerman and Koonin has for quite some time become a subject of controversy due to the bi orthogonal distorted waves involved in the transition amplitudes describing the MSD cross sections. The bi orthogonal wave functions result in non-normal DWBA matrix elements, that can be expressed in terms of normal DWBA matrix elements multiplied by the inverse elastic scattering S-matrix. It has been argued that the enhancing inverse S-factors are washed out by averaging over energy in the continuum. As a result normal DWBA matrix elements are commonly used in practical calculations. Almost all analyses of inelastic scattering and charge-exchange reactions using the DWBA matrix elements have concluded that nucleon emission at low energies can be described as one-step reaction mainly. On the other hand, it has been shown that the limits imposed by the energy weighted sum rules (EWSR's) on transition of given angular momentum transfer lead to a significant reduction of the one step cross section that can be compensated by the enhanced MSD cross sections obtained with the use of the non-normal DWBA matrix elements. Very recently the MSD theory of FKK was modified to include collective excitations and the non-normal DWBA matrix elements and the prescription for calculations of the cross sections for the MSD reactions was given. In the present paper we present the results of the modified theory used for describing the 93 Nb (n,xn) 93 Nb reaction at incident energy of 20 MeV and the 65 Cu (p,xn) 65 Zn reaction at 27 MeV. The results show enhanced contributions from two-, three- and four step reactions. We investigate the importance of the multi-phonon, multi particle hole and the mixed particle hole-phonon excitations in neutron scattering to the continuum. We also show the importance of the different sequences of collisions of the leading continuum nucleon that contribute to the MSD (p,n) reaction. When all

  1. Angular evolution of peripheral heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C; Roynette, J.C

    1985-01-01

    Energy spectra and angular distributions of projectile-like fragments have been measured in the vicinity of the grazing angle for the 40 Ar+ 40 Ca and 40 Ar+ 208 Pb reactions at 44MeV/nucleon. Measurements of the 40 Ar+ 40 Ca system at 27MeV/nucleon and 20 Ne+ 208 Pb reaction at 44MeV/nucleon at one angle have also been performed. For fragments with charge and mass close to the projectile numerous deviations from the standard fragmentation model have been observed including rapidly changing shapes of the angular distributions with the fragment mass. Moreover the isotopic distributions and mean fragment velocities are strongly dependent on detection angle. A surface transfer reaction component dominant at the grazing angle can be separated from a second component which cannot be entirely accounted for by a simple fragmentation mechanism

  2. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  3. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  4. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  5. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    International Nuclear Information System (INIS)

    Rack, E.P.

    1976-02-01

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38 Cl for Cl substitution following 37 Cl(n,γ) 38 Cl in liquid meso and dl-(CHFCl) 2 . A technique was also developed for the radioassay of Al in urine specimens

  6. Reactions with weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    Nanal, Vandana

    2014-01-01

    In reactions with weakly bound nuclei, the effect of breakup on fusion process has attracted much attention in recent years. The experimental study shows that breakup channel leads to suppression of complete fusion at above barrier energies due to loss of flux. The fusion barrier distribution can provide a further insight into understanding the influence of coupling to the breakup channels. Similar information could be obtained from the elastic and quasielastic (QEL) scattering because of the conservation of the reaction flux (i.e. R+T= 1), where R is the reflection probability and T is the transmission probability. Thus, quasi-elastic scattering at backward angles is the counterpart of the fusion process and it is expected that the barrier distributions extracted from two processes, namely, QEL and fusion should be similar. While this is true for tightly bound reaction systems, in reactions involving weakly bound projectiles significant differences have been observed for QEL barrier distributions with and without inclusion of breakup processes. This talk will present the recent results for fusion and quasi-elastic scattering in "6","7Li + "1"9"7Au system. Developmental efforts towards a momentum achromatic separator, MARIE, to extract projectile-like secondary ion beams following the reactions of heavy-ion beams from superconducting LINAC booster at Mumbai will also be presented. (author)

  7. Energy spectrum of 208Pb(n,x) reactions

    Science.gov (United States)

    Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.

    2018-02-01

    Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.

  8. Photonucleon reactions in 40Ca at intermediate energies

    International Nuclear Information System (INIS)

    Adler, J.-O.; Bulow, B.; Jonsson, G.G.; Lindgren, K.

    1976-01-01

    The yields of the reactions 40 Ca(γ,n) 39 Ca* and 40 Ca(γ,p) 39 K* to the first three excited states have been measured for bremsstrahlung with end-point energies in the region 100-750 MeV. The C 2 S values for the first excited state were deduced from the pion photoproduction contribution to the measured yields. (Auth.)

  9. Probing nuclei with high-energy hadronic reactions

    International Nuclear Information System (INIS)

    Moss, J.M.

    1995-01-01

    I review the subject of hadron-nucleus collisions at energies where peturbative theory is applicable. Reactions studied experimentally at the Fermilab Tevatron and CERN's Super Proton Synchrotron include the Drell-Yan Process, direct photon production, quarkonium production, and open charm production. I conclude with an observation about a new era of proton-nucleus and nucleus-nucleus experiments which will be carried out at the hadron colliders, RHIC and LHC

  10. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  11. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  12. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  13. New Mechanism of Low Energy Nuclear Reactions Using Superlow

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    2006-03-01

    We proposed a new mechanism of LENR (low energy nuclear reactions) cooperative processes in the whole system - nuclei+atoms+condensed matter can occur at smaller threshold than the corresponding ones assoiciated with free constituents. The cooperative processes can be induced and enhanced by (``superlow energy'') external fields. The excess heat is the emission of internal energy, and transmutations from LENR are the result of redistribution of the internal energy of the whole system. A review of possible stimulation mechanisms of LENR is presented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the known fundamental physical laws: The universal resonance synchronization principle, and based on it, different enhancement mechanisms of reaction rates are responsible for these processes. The excitation and ionization of atoms may play the role of a trigger for LENR. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0511092 v1 30 Nov 2005. F.A. Gareev, In: FPB-98, Novosibirsk, June 1998, p.92; F.A.Gareev, G.F. Gareeva, in: Novosibirsk, July 2000, p.161. F.A. Gareev, I.E. Zhidkova and Yu.L. Ratis, Preprint JINR P4-2004-68, Dubna, 2004. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0505021 9 May 2005.

  14. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  15. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  16. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    OpenAIRE

    Oyunbileg G; Batnyagt G; Enkhsaruul B; T Takeguchi

    2018-01-01

    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the ...

  17. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    Science.gov (United States)

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  18. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  19. The energy spilling reactions of bacteria and other organisms.

    Science.gov (United States)

    Russell, James B

    2007-01-01

    For many years it was assumed that living organisms always utilized ATP in a highly efficient manner, but simple growth studies with bacteria indicated that the efficiency of biomass production was often at least 3-fold lower than the amount that would be predicted from standard biosynthetic pathways. The utilization of energy for maintenance could only explain a small portion of this discrepancy particularly when the growth rate was high. These ideas and thermodynamic arguments indicated that cells might have another avenue of energy utilization. This phenomenon has also been called 'uncoupling', 'spillage' and 'overflow metabolism', but 'energy spilling' is probably the most descriptive term. It appears that many bacteria spill energy, and the few that do not can be killed (large and often rapid decrease in viability), if the growth medium is nitrogen-limited and the energy source is in 'excess'. The lactic acid bacterium, Streptococcus bovis, is an ideal bacterium for the study of energy spilling. Because it only uses substrate level phosphorylation to generate ATP, ATP generation can be calculated with a high degree of certainty. It does not store glucose as glycogen, and its cell membrane can be easily accessed. Comparative analysis of heat production, membrane voltage, ATP production and Ohm's law indicated that the energy spilling reaction of S. bovis is mediated by a futile cycle of protons through the cell membrane. Less is known about Escherichia coli, but in this bacterium energy spilling could be mediated by a futile cycle of potassium or ammonium ions. Energy spilling is not restricted to prokaryotes and appears to occur in yeasts and in higher organisms. In man, energy spilling may be related to cancer, ageing, ischemia and cardiac failure. Copyright (c) 2007 S. Karger AG, Basel.

  20. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  1. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  2. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  3. Energy Model of Neuron Activation.

    Science.gov (United States)

    Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana

    2017-02-01

    On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.

  4. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    Science.gov (United States)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  5. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  6. Tunneling and reflection in unimolecular reaction kinetic energy release distributions

    Science.gov (United States)

    Hansen, K.

    2018-02-01

    The kinetic energy release distributions in unimolecular reactions is calculated with detailed balance theory, taking into account the tunneling and the reflection coefficient in three different types of transition states; (i) a saddle point corresponding to a standard RRKM-type theory, (ii) an attachment Langevin cross section, and (iii) an absorbing sphere potential at short range, without long range interactions. Corrections are significant in the one dimensional saddle point states. Very light and lightly bound absorbing systems will show measurable effects in decays from the absorbing sphere, whereas the Langevin cross section is essentially unchanged.

  7. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    International Nuclear Information System (INIS)

    Frisch, M.J.; Binkley, J.S.; Schaefer, H.F. III

    1984-01-01

    The relative energies of the stationary points on the FH 2 and H 2 CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H 2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Moller--Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H 2 →FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol -1 of the experimental value using the largest basis set considered. The qualitative features of the H 2 CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended

  8. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  9. Unimolecular reactions of 1,1,1-trichloroethane, 1,1,1-trichloropropane, and 3,3,3-trifluoro-1,1,1-trichloropropane: determination of threshold energies by chemical activation.

    Science.gov (United States)

    Turpin, Martha A; Smith, Kylie C; Heard, George L; Setser, D W; Holmes, Bert E

    2014-10-09

    The recombination of CCl3 radicals with CH3, CH3CH2, and CF3CH2 radicals was used to generate CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3 molecules with approximately 87 kcal mol(-1) of vibrational energy in a bath gas at room temperature. The competition between collisional deactivation and unimolecular reaction by HCl elimination was used to obtain the experimental rate constants for each molecule. These experimental rate constants were matched to calculated statistical unimolecular rate constants to assign threshold energies to the three HCl elimination reactions. The models needed for the calculations of the rate constants were obtained from molecular structure calculations using density functional theory (DFT) with the hybrid density-functional MO6-2X recommended by Truhlar for transition states. The assigned threshold energies are 52 ± 2, 50 ± 2, and 52 ± 2 kcal mol(-1) for CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3, respectively, and the CH3 and CF3 groups have only a minor effect on the threshold energies for HCl elimination. The DFT calculated threshold energies are in agreement with the experimentally assigned values. The addition of Cl atoms to the same carbon atom lowers the threshold energy for HCl elimination in the CH3CH2Cl, CH3CHCl2, and CH3CCl3 series. This trend, which is the opposite of that for CH3CH2F, CH3CHF2, and CH3CF3, is discussed in terms of transition-state structure and correlated with the relative stabilities of CH3CH2(+), CH3CHCl(+), and CH3CCl2(+) ions; the relative stabilities are based on the hydride affinities obtained from calculations. Comparison of the reactions of CH3CCl3 and CH2ClCHCl2 shows that the threshold energy is much higher for the isomer with chlorine atoms on both carbon atoms.

  10. Surface-Activated Coupling Reactions Confined on a Surface.

    Science.gov (United States)

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  11. International energy-promotion-activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Comprehensive promotion of energy and environmental measures are demanded in order to realize improvement in energy demand/supply structures in developing countries where increase in energy demand is anticipated. To achieve this goal, technical transfer related to energy saving technologies and clean coal as well as international energy promotion activities are implemented in China and Indonesia since fiscal 1993. In the field of energy saving, model operations are performed to improve efficiency in such energy consuming fields as steel making, power generation, and oil refining, in addition to cooperation in structuring databases and establishing master plans. In the clean coal field, model operations are conducted to reduce environmental load in coal utilizing areas, in addition to cooperation in establishing master plans for coal utilization. This paper describes feasibility studies on environmentally harmonious coal utilization systems in developing countries, assistance to introduction thereof, and joint verification operations. To rationalize international energy usage, basic surveys on energy utilization efficiency improvement and model operations are carried out mainly in the Asia-Pacific countries.

  12. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  13. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  14. The astrophysical S factor for dd reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskii, Vit.M.; Bystritsky, V.M.; Grebenyuk, V.M.

    2001-01-01

    The experimental results of measurements of the astrophysical S factor for dd reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high-current generator of the High-Current Electronics Institute (Tomsk, Russia). The measured values of S factors for the deuteron collision energies 1.80, 2.06, and 2.27 keV are S dd = 114 ± 68, 64 ± 30, and 53 ± 16 keV b, respectively. The corresponding cross sections for dd reaction, described as a product of the barrier factor and measured astrophysical S factor are: σ dd n (E col = 1.80 keV) = (4.3 ± 2.6) x 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) x 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ± 0.6) x 10 -32 cm 2 [ru

  15. Analysis by nuclear reactions and activations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2001-01-01

    A current bibliography based on INIS Atomindex with 78 references on Analysis by nuclear reactions and activations has been prepared for year 1998. References are arranged by first authors' name. (N.T.)

  16. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  17. Energy Considerations for Plasma-Assisted N-Fixation Reactions

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2014-09-01

    Full Text Available In a time of increasing concerns about the immense energy consumption and poor environmental performance of contemporary processes in the chemical industry, there is great need to develop novel sustainable technologies that enhance energy efficiency. There is abundant chemical literature on process innovations (laboratory-scale around the plasma reactor itself, which, naturally, is the essential part to be intensified to achieve a satisfactory process. In essence, a plasma process needs attention beyond reaction engineering towards the process integration side and also with strong electrical engineering focus. In this mini-review, we have detailed our future focus on the process and energy intensification of plasma-based N-fixation. Three focal points are mainly stressed throughout the review: (I the integration of renewable energy; (II the power supply system of plasma reactors and (III process design of industrial plasma-assisted nitrogen fixation. These different enabling strategies will be set in a holistic and synergetic picture so as to improve process performance.

  18. Heavy-ion reactions at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1991-01-01

    The title covers a very broad area of both experimental and theoretical studies. The common characteristic of heavy-ion collisions at these energies, compared to what is usually seen at higher energies, is the important interplay between different reaction channels or internal degrees of freedom. The couplings between the various channels can result in important multistep contributions to a given channel. These often have to be treated explicitly, for example by solving the appropriate set of coupled equations. In contrast, at higher energies the effects of these couplings frequently can be represented in a simple, average way, as is done when one introduces an imaginary part to the optical potential for elastic scattering. At first, it might be thought that the possible importance of multistep transitions would be a strong disadvantage of working at these energies. However, although the analysis of the data becomes more complicate, the study of these terms and their interferences can be a rich source of information. In particular, it can tell us, indirectly, something about transitions between two excited states. Overviews of some of these phenomena have been presented elsewhere; here I have selected two topics as representative. Even then I cannot go into much detail, so perhaps this paper is best regarded as providing some references as the stating point for a literature search exclamation point

  19. Calculation of neutron monitor reaction cross sections of {sup 90}Zr in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    Many nuclear data for n + {sup 90}Zr reaction were calculated by using optical model evaporation model and exciton model. The program SPEC, including the first to the sixth particle emission processes, was used in our calculations. The calculated results show that the activation products {sup 89,88}Zr and {sup 88,87}Y are important neutron monitor reaction products for n + {sup 90}Zr reaction in energy range up to 100 MeV. (4 figs.).

  20. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  1. A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace

    Science.gov (United States)

    Kruskopf, Ari; Visuri, Ville-Valtteri

    2017-12-01

    In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

  2. Stereo and regioselectivity in ''Activated'' tritium reactions

    International Nuclear Information System (INIS)

    Ehrenkaufer, R.L.E.; Hembree, W.C.; Wolf, A.P.

    1988-01-01

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the α-amino C-H position mostly with retention of configuration. Labeling predominated at the single β C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the α-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs

  3. Enhanced emission of high-energy photons perpendicular to the reaction plane in α+Th reactions

    International Nuclear Information System (INIS)

    Tegner, P.; Marianski, B.; Morsch, H.P.; Rogge, M.; Bargholtz, C.; Decowski, P.; Zemlo, L.

    1991-01-01

    High-energy photon and neutron emission has been measured in coincidence with fission fragments in α+ 232 Th reactions at 170 MeV. From measurements parallel and perpendicular to the fission plane, anisotropies relative to the reaction plane were determined. The in-plane/out-of-plane intensity ratio is 0.72(7) for photons with energies above 20 MeV and 11(3) for neutrons at 35 MeV. The result for high-energy photons can be explained by nucleon-nucleon bremsstrahlung if the initial flow of nucleons has a correlation to the reaction plane similar to the one observed for fast neutrons

  4. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  5. Reactions induced by low energy electrons in cryogenic films

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    We review recent research on reactions (including dissociation) initiated by low-energy electron bombardment of monolayer and multilayer molecular solids at cryogenic temperatures. With incident electrons of energies below 20 eV, dissociation is observed by the electron stimulated desorption (ESD) of anions from target films and is attributed to the processes of dissociative electron attachment (DEA) and to dipolar dissociation. It is shown that DEA to condensed molecules is sensitive to environmental factors such as the identity of co-adsorbed species and film morphology. The effects of image-charge induced polarization on cross-sections for DEA to CH3Cl are also discussed. Taking as examples, the electron-induced production of CO within multilayer films of methanol and acetone, it is shown that the detection of electronic excited states by high resolution electron energy loss spectroscopy can be used to monitor electron beam damage. In particular, the incident energy dependence of the CO indicates that below 19 eV, dissociation proceeds via the decay of transient negative ions (TNI) into electronically excited dissociative states. The electron induced dissociation of biomolecular targets is also considered, taking as examples the ribose analog tetrahydrofuran and DNA bases adenine and thymine, cytosine and guanine. The ESD of anions from such films also show dissociation via the formation of TNI. In multilayer molecular solids, fragment species resulting from dissociation, may react with neighboring molecules, as is demonstrated in anion ESD measurements from films containing O 2 and various hydrocarbon molecules. X-ray photoelectron spectroscopy measurements reported for electron irradiated monolayers of H 2 O and CF 4 on a Si - H passivated surface further show that DEA is an important initial step in the electron-induced chemisorption of fragment species

  6. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  7. Nuclear structure and reaction studies at medium energies

    International Nuclear Information System (INIS)

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  8. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  9. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  10. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    Science.gov (United States)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  11. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    Science.gov (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  12. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  13. An ab initio potential energy surface for the reaction N+ + H2→ NH+ + H

    International Nuclear Information System (INIS)

    Gittins, M.A.; Hirst, D.M.

    1975-01-01

    Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N + + H 2 →NH + + H are reported. For the collinear approach of N + to H 2 , the 3 Σ - surface has no activation barrier and has a shallow well (ca.1eV). For perpendicular approach (Csub(2V)symmetry) the 3 B 2 states is of high energy, the 3 A 2 state has a shallow well but as the bond angle increases the 3 B 1 states decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3 B 1 (HNH) + . (auth.)

  14. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  15. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  16. Consequences of wave function orthogonality for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Noble, J.V.

    1978-01-01

    In the usual models of high-energy bound-state to continuum transitions no account is taken of the orthogonality of the bound and continuum wave functions. This orthogonality induces considerable cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p), (γ,p), and (π,N), which are simply not included in the distorted-wave Born-approximation calculations which to date remain the only computationally feasible heirarchy of approximations. The object of this paper is to present a new formulation of the bound-state to continuum transition problem, based upon flux conservation, in which the orthogonality of wave functions is taken into account ab initio. The new formulation, while exact if exact wave functions are used, offers the possibility of using approximate wave functions for the continuum states without doing violence to the cancellations induced by orthogonality. The method is applied to single-particle states obeying the Schroedinger and Dirac equations, as well as to a coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several types of absorption vertex are considered, and in the (π,N) case the equivalence of pseudoscalar and pseudovector πNN coupling is seen to follow directly from wave function orthogonality

  17. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  18. ENEA activities on photovoltaic energy

    International Nuclear Information System (INIS)

    Coiante, D.; Messana, C.

    1989-01-01

    Photovoltaic conversion appears to be a promising technology for producing electricity. Photovoltaic (PV) solar cells directly convert sun radiation into electricity, without needing moving parts or any kind of fuel. In a long term perspective, PV conversion is expected to become an integrative energy source; at present, high costs are the main limiting factor of the diffusion of PV technology. Costs can be reduced through the joint effect of technological innovation and mass production: therefore, the Italian strategy consists in promoting the gradual enlargement of production volumes and, at the same time, the introduction of less expensive technologies and processes, as soon as they become available. The main responsibility for PV strategies and activities is assigned to ENEA, the Italian National Commission for Nuclear and Alternative Energy Sources. The ENEA five year plan (1985-1989) had allocated about 100 M$ in the PV sector and, as a result, today ENEA is the main national organization promoting PV energy development. ENEA programs include both in house research and external activities. The latter are carried out by universities and industrial firms and concern the whole PV production process from raw materials to complete systems. In Italy there are three main industrial enterprises which produce PV modules an systems: Italsolar (formerly Pragma, ENI group), Ansaldo (IRI group) and Helios Technology, a private firm. Their total annual production capacity amounts to about 2 MW per shift, and is expected to increase in the near future. In 1986, the whole production has been about 0.7 MW: a substantial share of this production has been marketed abroad, mostly as complete systems. (author). 6 tabs

  19. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    Science.gov (United States)

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  20. High-energy γ rays resulting from low-energy nuclear reactions in light nuclei

    Science.gov (United States)

    Rose, Paul B.; Erickson, Anna S.

    2018-06-01

    Products resulting from 3.02 MeV deuterons incident on a natural boron target have been investigated by way of γ -ray spectroscopy and activation analysis. This study uses observed γ rays and cascades to deduce the populated states from the reaction products. Die-away measurements are included to investigate the built-up activation from the target and compared with tabulated half-lives to further understand the plethora of reactions taking place. Many of the observed γ rays, such as 15.1 MeV, result from the formation of excited states of 12C, while others are secondary and tertiary processes from α breakup resulting in 8Be.

  1. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    Science.gov (United States)

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-08

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design.

  2. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  3. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  4. Study of reactions induced by the halo nucleus 11Li with the active target MAYA

    International Nuclear Information System (INIS)

    Roger, Th.

    2009-09-01

    Active targets are perfect tools for the study of nuclear reactions induced by very low intensity radioactive ion beams. They also enable the simultaneous study of direct and compound nuclear reactions. The active target MAYA, built at GANIL, has been used to study the reactions induced by a 4.3*A MeV 11 Li beam at the ISAC2 accelerator TRIUMF (Canada). The angular distributions for the elastic scattering and the one and two neutron transfer reaction have been reconstructed. The elastic scattering angular distribution indicates a strong enhancement of the flux absorption with respect to the neighbouring nuclei. From a coupled channel analysis of the two neutron transfer reaction for different three body models, the information on the structure of the halo of the Borromean nucleus 11 Li have been extracted. Meanwhile, the energy dependence of the elastic scattering reaction has been studied, using the active target MAYA as a thick target. The resulting spectrum shows a resonance around 3 MeV centre of mass. This resonance could be an isobaric analog state of 12 Li, observed in 12 Be. R matrix calculations have been performed in order to extract the parameters (spin and parity) of this state. (author)

  5. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  6. Gamow Teller strength from charge exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Haeusser, O.

    1989-07-01

    Detailed studies of the spin-isospin structure of nuclear excitations are possible at TRIUMF's medium resolution spectrometer using the (n,p), ( p → , p →/ ) and (p,n) reactions. We discuss here results on isospin symmetry of inelastic nucleon scattering reactions populating isospin triads in A=6 and A=12 nuclei. The β + Gamow Teller strength function from (n,p) reactions on (sd) and (fp) shell targets is found to be substantially quenched compared to current nuclear structure models using the free-nucleon axial-vector coupling constant. (Author) 22 refs., 3 figs

  7. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  8. New Insight into the Hydrogen Evolution Reaction under Buffered Near-Neutral pH Conditions: Enthalpy and Entropy of Activation

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2016-01-01

    performance was summarized with respect to the binding energy of the reaction intermediate species, a classic volcano-shaped relationship was obtained. Interestingly, the temperature sensitivity analysis disclosed that smaller activation energies did

  9. Audience reaction movie trailers and the Paranormal Activity franchise

    OpenAIRE

    Alexander Swanson

    2015-01-01

    This article addresses the concept and growing practice of audience reaction movie trailers, specifically for films in the horror genre. Popularized by the Paranormal Activity series of films, these trailers primarily utilize green night-vision video footage of a movie theater audience reacting to the film being advertised, yet also consist of webcam recordings of screaming fans, documentary-style B-roll footage of audiences filing into preview screenings with high levels of anticipation, and...

  10. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  11. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  12. Low-energy heavy-ion reactions: Some recent developments

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1989-01-01

    We address three areas: behavior of the optical model at low energies and associated phenomena, fusion at near- and sub-barrier energies; where does fusion occur?, and recent examples of explicit coupled-channels effects at low energies. 74 refs., 18 figs

  13. Energy conservation and maximal entropy production in enzyme reactions.

    Science.gov (United States)

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measurement of activity yields for 12C(#betta#, n)11C, 14N(#betta#, n)13N, and 16O(#betta#, n)15O reactions as a function of electron beam energy and angle from the electron beam using thick target produced bremsstrahlung

    International Nuclear Information System (INIS)

    Piltingsrud, H.V.

    1983-01-01

    The calculation of activity yields from practical photonuclear target systems designed to produce short-lived positron emitting radionuclides for nuclear medicine purposes requires certain basic information. These include a knowledge of the photon source (bremsstrahlung energy spectrum and intensity as a function of angle from the electron beam) and the #betta#, n activation cross section of the secondary target element. A lack of adequate information concerning these parameters motivated the present study in which activity yields for the reactions 12 C(#betta#, n) 11 C, 14 N(#betta#, n) 13 N, and 16 O(#betta#, n) 15 O were measured as a function of energy of and angle from the electron beam between 16 and 30 MeV and 0 0 and 30.5 0 , respectively. The data indicate highly complex relationships between the activity yield and the experimental variables. Also indicated are possible applications of the data to indicate the energy of an electron beam producing a given bremsstrahlung field in which activation measurements are made

  15. Poly (3, 4-ethylendioxithiophene) (PEDOT) oxidation: activation energy and conformational energy

    International Nuclear Information System (INIS)

    Otero, T F; Romero, M C

    2008-01-01

    The oxidation kinetics of films of the conducting polymer PEDOT-C1O4 after electrochemical reduction by polarization at increasing cathodic potential was studied by potential steps. The response i/t presents a maximum at intermediate oxidation times. At the maximum the reaction occurs under chemical kinetic control following the expected current variations from the Chemical and Electrochemical Kinetics, when reactant concentrations or temperatures are changed. The obtained activation energy of the oxidation present two ranges as a function of the cathodic potential of prepolarization: constant values after prepolarization at low cathodic potentials and a lineal variation after prepolarization at increasing high cathodic potentials. According with the conformational relaxation model during electrochemical reduction the polymer shrinks, closes and packs the conformational structure. The activation energy for the subsequent oxidation includes two terms: the constant chemical activation energy and the conformational energy required to relax the packed polymeric structure. The conformational energy only appears after prepolarization at more cathodic potentials than the closing potential where more packed conformations were obtained. The conformational activation energy accounts the energetic requirements to relax and unfold the polymeric chains generating the required free volume to lodge balancing counterions; meanwhile the chemical activation energy accounts the energetic requirements for the electrochemical reaction to occur.

  16. Experimental studies on excitation functions of the proton-induced activation reactions on silver

    International Nuclear Information System (INIS)

    Uddin, M.S.; Hagiwara, M.; Baba, M.; Tarkanyi, F.; Ditroi, F.

    2005-01-01

    Excitation functions were measured for the production of 106m,105 Ag, 103,101,100 Pd, 105,102,101m,100,99 Rh and 97 Ru via proton-induced activation reactions on natural silver using a stacked foil technique in the energy range 11-80 MeV. The residual activity measurements were carried out nondestructively by the high-resolution HPGe γ-ray spectroscopy. Thick target integral yields were deduced using the measured cross-sections from the respective threshold energies of the investigated reactions up to 80 MeV. The present work gives new results for the investigated radionuclides. The data in MENDL-2P deduced with the theoretical model code ALICE-IPPE are consistent in shape with the measured values, but show disagreement in magnitude

  17. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  18. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  19. Nuclear reactions of high energy deuterons with medium mass targets

    International Nuclear Information System (INIS)

    Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi

    1994-01-01

    Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)

  20. The production of high energy neutrons by secondary reactions

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Roney, T.J.; Staples, D.R.; Harmon, J.F.; Burkhart, J.H.

    1994-01-01

    The potential of using binary reactions in targets containing Be is discussed. Data are presented from the use of Be and BeF 2 targets bombarded with 1.5, 1.7, 1.8 and 1.9 MeV protons. Neutron production is enhanced by the presence of the F by factors of ∼4

  1. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  2. Energy: Canadians' attitudes and reactions (1975-1980)

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.H.G.; Keller, G.

    1981-01-01

    Analysis of 6 1975-80 surveys of Canadian public attitudes towards the energy situation was undertaken in this report. Some conclusions were as follows. An increase was shown in the number of Canadians who consider energy as one of the problems facing Canada because of its increasing cost (rather than fear of shortages). The proportion of those who think the energy shortage is serious has remained stable since 1976 at about 60%, with more people concerned about gasoline and heating fuel shortages than with natural gas and electricity. There has been an increase in those who claim they engage in energy conservation behavior; a related attitude is that Canadians believe that individual efforts to conserve energy are important. There is no demographic characteristic consistently related to attitudes and behavior, but there are some geographic ones: Halifax and Ottawa residents view the energy problem more seriously than other urban residents, Calgary residents less seriously. Government policies to ration energy or increase prices would meet with heavy resistance; advertising and financial incentives are preferred as policies to meet conservation problems. Past government information programs have reached up to 40% of the public. Two major groups were identified among the public: the hostiles, who think the energy issue is a bit of a hoax, and the knowledgeables, who have a positive conservation attitude and a high degree of energy related knowledge. Some demographic characteristics of these groups are described, and recommendations are made on the kinds of government information programs that should be pursued. 22 tabs.

  3. Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.

    Science.gov (United States)

    Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R

    2014-10-14

    The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a

  4. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  5. Low-energy deuteron-induced reactions on Nb-93

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Koning, A.J.; Mrázek, Jaromír; Šimečková, Eva; Štefánik, Milan; Závorka, Lukáš

    2013-01-01

    Roč. 88, č. 1 (2013), 014612 ISSN 0556-2813 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced reactions * cross sections * breakup mechanism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.881, year: 2013 http://prc.aps.org/pdf/PRC/v88/i1/e014612

  6. Deuterium cluster model for low energy nuclear reactions (LENR)

    Science.gov (United States)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  7. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  8. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    International Nuclear Information System (INIS)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-01-01

    A review is given for the explanation of the measurements of Miley (et al.) of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li (et al.) from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li (et al.) were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping

  9. Simulation mechanisms of low energy nuclear reaction using super flow energy external fields

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; ); Ratis, Yu.I.

    2005-01-01

    Full text: The review of possible stimulation mechanisms of the LENR (low energy nuclear reactions) is represented. We have concluded that transamination of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle and based on its different enhancement mechanisms of reaction rates are responsible for these processes. The excitation nd ionization of atom may play role as trigger for LERN. Investigation of this phenomenon requires knowledge of different branches if science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor re-productivity of experimental data in due ti the fact LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical re-productivity principle should be reconsidered for LENR experiments. Poor re-productivity and unexpected results do not means that the experiment is wrong. Our main conclusion: LENR may be understand in terms of the modern theory without any violation of the basic physics. 2) Weak and electromagnetic interactions may show the strong influence of the surrounding conditions on the nuclear processes. 3) Universal resonance synchronization principle is a key issue to make a bridge between various scales of interactions and it is responsible for self-organization of hierarchical systems independent of substances, fields and interactions. We bring some arguments in favor of the mechanism - order based on order - declared by Schroedinger in fundamental problem of contemporary science. 4) The universal resonance synchronization principle became a fruitful interdisciplinary science of general laws of self-organized processes in different branches of physics because it is consequence of the energy conservation law and resonance

  10. Measurement of activation cross sections for quasi-monoenergetic neutron induced reactions of {sup 89}Y

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)

    2017-09-15

    The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)

  11. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  12. A simulation for energy dissipation in nuclear reactions

    International Nuclear Information System (INIS)

    Mshelia, E.D.; Ngadda, Y.H.

    1989-01-01

    A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)

  13. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  14. Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy

    Science.gov (United States)

    Mondal, Ashok; Adhikari, S.; Basu, C.

    2017-09-01

    The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.

  15. National energy ombudsman. 2013 activity report

    International Nuclear Information System (INIS)

    Gaubert, Jean; Merville, Denis; Lechevin, Bruno; Mialot, Stephane

    2014-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This report summarizes the 2013 national energy ombudsman's activity in the domains of energy transition, conciliation between energy operators and consumers, consumers information, mediation, dispute settlement, markets opening, energy prices, quality of supply, smart meters, fight against energy poverty etc

  16. Direct reactions in inverse kinematics for nuclear structure studies far off stability at low incident energies

    International Nuclear Information System (INIS)

    Egelhof, P.

    1997-02-01

    The investigation of light-ion induced direct reactions with exotic beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The present contribution will focus on the investigation of few-nucleon transfer reactions, which turn out to be most favourably studied with good-quality low-energy radioactive beams, as provided by the new generation of radioactive beam facilities presently planned or under construction at Caen, Grenoble, Munich, and elsewhere. An overview on the physics motivation, basically concerning nuclear structure and nuclear astrophysics questions, is given. Of particular interest are the nuclear shell model in the region far off stability, the two-body residual interaction in nuclei, the structure of halo nuclei, as well as the understanding of the r-process scenario. The experimental conditions, along with the experimental concept, for such measurements are discussed with particular emphasis on the kinematical conditions, the observables, as well as the appropriate detection schemes. The concept of a large solid angle TPC ionization chamber as an active target for experiments with low-energy radioactive beams is presented. It turns out to be a highly effective detection scheme, well suited for the present experimental conditions, at least for light exotic beams up to Z∼20. (orig.)

  17. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  18. Consumer Activities and Reactions to Social Network Marketing

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2017-06-01

    Full Text Available The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM referral behaviour, and purchase intentions. Consumers are investigated based on their attitudes toward social network marketing and basic socio-demographic covariates using data from a sample size of 700 Bulgarian respondents (age group 21–54 years, Internet users, urban inhabitants. Factor and cluster analyses are applied. It is found that consumers are willing to receive information about brands and companies through social networks. They like to talk in social networks about these brands and companies and to share information as well (factor 2, brand engagement. Internet users are willing to share information received through social network advertising (factor 1, wom referral behaviour but they would not buy a certain brand as a result of brand communication activities in social networks (factor 3, purchase intention. Several practical implications regarding marketing activities through social networks are drawn.

  19. Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy

    International Nuclear Information System (INIS)

    Huang, M.; Chen, Z.; Kowalski, S.; Ma, Y. G.; Wada, R.; Hagel, K.; Barbui, M.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Keutgen, T.; Bonasera, A.; Wang, J.

    2010-01-01

    The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a sym /T, as a function of fragment mass A. The extracted values increase from 5 to ∼16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are ∼4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.

  20. Cross section measurement and integral test for several activation reactions using T + d and thick-Li + d sources

    International Nuclear Information System (INIS)

    Dumais, J.R.; Tanaka, S.; Odano, N.; Iwasaki, S.; Sugiyama, K.

    1988-01-01

    Recent activities on the area of the cross section measurement for several activation reactions at Department of Nucl. Eng., Tohoku Univ. are described. The first subject is the cross section measurement for (n,2n) reaction on aluminum using the RTNS-II neutron source. Cross sections with rather small error band were obtained for the incident neutron energies from 14 to 14.7 MeV. The second one is the status of the program for the integral experiments on several reactions using the thick Li + d source at Tohoku Fast Neutron Lab. The experimental results showed the usefullness of the source as a tool for the cross section assessment. (author)

  1. Studies of high energy hadron-hadron reactions

    International Nuclear Information System (INIS)

    Maansson, O.

    1982-01-01

    The first part of this thesis concerns the possibility of obtaining a quantity that reveals more of the primary scattering of partons, than the single particle spectra for high-p(sub)T reactions. K -K is shown to be such a quantity for 90degree scattering. A p(sub)T-dependence of P(sub)t(sup)-5.4 is data from FNAL and ISR. A model for low-p(sub)T baryon production is presented. This one-dimensional string model gives longitudinal single particle spectra in good agreement with exp. data. A model for polarization of inclusively produced hyperons is presented. A baryon is pictured as a Y-shaped string with quarks at the ends. One of the quarks is kicked out in the reaction, leading to a basically one-dim. string system. The motion of the string junction is shown to be important for the understanding of polarization phenomena. Lowest order QCD is studied with respect to color factors in the production amplitude in order to find final string configurations in high-p(sub)T events. The basis for a Monte Carlo program for complete high-p(sub)T events is discussed. (author)

  2. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  3. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  4. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-01-01

    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  5. A facility for low energy charged particle induced reaction studies

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Yu, L.D.; Intarasiri, S.; Tippawan, U.

    2000-01-01

    In Chiang Mai, a highly stable low energy ion accelerator (0 - 350 kV) facility is being established. A subnano-second pulsing system will be incorporated into the beam transport line. The detecting system will consist of a time-of-flight charged particle spectrometer and a high resolution gamma-ray system. The new facility will be used in the studies of low energy heavy ion backscattering and charged particle induced cross section measurement in the interests of material characterization and nucleosynthesis. (author)

  6. Needs for experiment and theory in intermediate energy reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1991-01-01

    We summarize several reasons intermediate energy data are needed in both basic and applied science. The status of the data base at energies up to 2 GeV is cursorily reviewed. Experimental excitation functions, single and double differential cross sections are compared with predictions of the nuclear model code ALICE. The strengths and weaknesses of the code to reproduce data are summarized. Opinions are given as to areas where data are too few or totally lacking, yet are needed for the verification of models and theories. (author). 25 refs, 22 figs

  7. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Directory of Open Access Journals (Sweden)

    Oyunbileg G

    2018-02-01

    Full Text Available The oxygen reduction reaction (ORR is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM and a transmission electron microscope (TEM analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.

  8. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  9. Low-energy nuclear reactions with double-solenoid

    Indian Academy of Sciences (India)

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems ...

  10. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  11. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  12. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    International Nuclear Information System (INIS)

    Lorenzen, J.; Brune, D.

    1973-01-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  13. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-07-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  14. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  15. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  16. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  17. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  18. Unitary screening corrections in high energy hadron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Maor, U

    1994-10-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for elastic and diffractive hadron-hadron and photon-hadron scattering in the energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Reggeon model with no such corrections. It is argued that the saturation of cross sections is attained at different scales for different channels. In particular, we point out that whereas the saturation scale for elastic scattering apparently above the Tevatron energy range, the appropriate diffraction scale is considerably lower and can be assessed with presently available data. A review of the relevant data and its implications is presented. (author). 12 refs, 3 figs, 2 tabs.

  19. Audience reaction movie trailers and the Paranormal Activity franchise

    Directory of Open Access Journals (Sweden)

    Alexander Swanson

    2015-03-01

    Full Text Available This article addresses the concept and growing practice of audience reaction movie trailers, specifically for films in the horror genre. Popularized by the Paranormal Activity series of films, these trailers primarily utilize green night-vision video footage of a movie theater audience reacting to the film being advertised, yet also consist of webcam recordings of screaming fans, documentary-style B-roll footage of audiences filing into preview screenings with high levels of anticipation, and close-up shots of spectator facial expressions, accompanied by no footage whatsoever from the film being advertised. In analyzing these audience-centric promotional paratexts, my aim is to reveal them as attempting to sell and legitimize the experiential, communal, and social qualities of the theatrical movie viewing experience while at the same time calling for increased fan investment in both physical and online spaces. Through the analysis of audience reaction trailers, this article hopes to both join and engender conversations about horror fan participation, the nature of anticipatory texts as manipulative, and the current state of horror gimmickry in the form of the promotional paratext.

  20. A model for consecutive spallation and fragmentation reactions in inverse kinematics at relativistic energies

    International Nuclear Information System (INIS)

    Napolitani, P.; Tassan-Got, L.; Bernas, M.; Armbruster, P.

    2003-04-01

    Secondary reactions induced by relativistic beams in inverse kinematics in a thick target are relevant in several fields of experimental physics and technology, like secondary radioactive beams, production of exotic nuclei close to the proton drip line, and cross-section measurements for applications of spallation reactions for energy production and incineration of nuclear wastes. A general mathematical formulation is presented and successively applied as a tool to disentangle the primary reaction yields from the secondary production in the measurement of fission of a 238 U projectile impinging on a proton target at the energy of 1 A GeV. (orig.)

  1. Argentine nuclear energy standardization activities

    International Nuclear Information System (INIS)

    Boero, Norma; Corcuera, Roberto; Palacios, Tulio A.; Hey, Alfredo M.; Berte, G.; Trama, L.

    2004-01-01

    The International Organization for Standardization (ISO) has more than 200 Technical Committees that develop technical standards. During April 2004 took place in Buenos Aires the 14th Plenary of the ISO/TC 85 Nuclear Energy Committee. During this Plenary issues as Nuclear Terminology, Radiation Protection, Nuclear Fuels, Nuclear Reactors and Irradiation Dosimetry was dealt with. 105 International delegates and 45 National delegates (belonging to CNEA, ARN, NASA, INVAP, CONUAR, IONICS and other organizations) attended the meetings. During this meeting ISO/TC 85 changed its scope; the new scope of the Committee is 'Standardization in the fields of peaceful applications of nuclear energy and of the protection of individuals against all sources of ionizing radiations'. This work summarizes the most important advances and resolutions about the development of standards taken during this meeting as well as the main conclusions. (author) [es

  2. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    Science.gov (United States)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A theoretical methods.

  3. Pre-equilibrium emission of nucleons from reactions induced by medium-energy heavy ions

    International Nuclear Information System (INIS)

    Korolija, M.; Holuh, E.; Cindro, N.; Hilscher, D.

    1984-01-01

    Recent data on fast-nucleon emission in heavy-ion-induced reactions are analysed successfully in terms of pre-equilibrium models; it is shown that the relevant parameters of those models preserve the physical meaning they have in light-ion-induced reactions. The initial exciton number obtained from a Griffin-plot analysis and the initial number of degrees of freedom, which is the relevant parameter of the modified HMB model, appear to be approximately equal for a given reaction at a given energy. It is inferred that, for heavy-ion reactions, the determination of such a parameter is substantially dominated by the centre-of-mass energy per nucleon above the Coulomb barrier, in contrast with the results of nucleon-induced reactions

  4. Flavor production in bar pp reactions at low energies

    International Nuclear Information System (INIS)

    Eisenstein, R.A.

    1994-01-01

    Associated production processes have been known since the 1050's. The solution to the puzzle they presented was to introduce the 'strangeness' quantum number, along with the notion of its conservation in strong interactions. For example, the reaction π + n → K + Λ is described both as the t-channel exchange of a K 0 meson, ans as an s-channel process involving the annihilation of a d bar d quark pair and the subsequent production of an s bar s pair. This basic 'flavor-production' process and ones like it are the focus of widespread interest and the subject of this talk. The physics to be addressed is the nature of the quark annihilation and the creation process, which is expected to proceed according to the rules of quantum chromodynamics (QCD). According to these ideas, it will be dominated by perturbative QCD (essentially single-gluon exchange) at high momentum; at low momentum the process is expected to involve a very complicated multiple gluon exchange since it is in the nonperturbative regime

  5. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  7. 32S-induced reactions at 10 MeV/u bombarding energy

    International Nuclear Information System (INIS)

    Betz, J.; Graef, H.; Novotny, R.; Pelte, D.; Winkler, U.

    1983-01-01

    The deep-inelastic processes of the reactions 32 S+ 28 Si, sup(nat)S, 40 Ca, 58 Ni, 74 Ge are studied at 10 MeV/u bombarding energy employing a kinematical coincidence spectrometer. From the measured energies, momenta, masses and atomic numbers of two heavy fragments the corresponding parameters for the unobserved reaction products and the reaction Q-values are deduced. It is found that the reactions generally show the pattern of a normal deep-inelastic process which is followed by the evaporation of several light particles. But with much less intensities other processes also seem to occur: three-fragment excit channels and incomplete energy damping which is correlated with the emission of a few light particles of high momenta. (orig.)

  8. Experimental Study of Photon Induced Reactions on 3He and 4He at Low Energies

    International Nuclear Information System (INIS)

    Tornow, W.

    2011-01-01

    Data are reported for the photodisintegration cross section of the reaction 3 He(γ, p) 2 H at ten energies between 7.0 and 16.0 MeV. Very preliminary data are presented for the reaction 4 He(γ, p) 3 H between 22.0 and 29.5 MeV in 0.5 MeV energy steps, and for the reaction 4 He(γ, n) 3 He at three energies around 28.0 MeV. High-pressure He/Xe gas scintillators served as target and detector. Our data are in better agreement with recent theoretical calculations than the majority of the existing data for all three reactions, but differ significantly from recent data taken with a mono-energetic photon beam and a time-projection chamber. (author)

  9. Drift-tube studies of ion-molecule reactions at low collision energies

    International Nuclear Information System (INIS)

    Chatterjee, B.K.

    1988-01-01

    This thesis presents experimental studies of ion-molecule reactions at low collision energies using two drift tube mass spectrometer apparatus. The reactions studied are (i) proton transfer from HeH + to ArH + , (ii) charge and ion transfer reactions of O 2 2+ with NO, CO 2 , Ne and O 2 + ( 4 π u ) with CO 2 , (iii) oxidation reactions of Zr + and ZrO + with NO, CO 2 and O 2 , (iv) vibrational quenching reactions of H 3 + with He, (v) termolecular clustering reactions of H 2 CN + and H 2 CN + (HCN) (with He as the third body), (vi) three body association reactions of H + and D + with He (with He as the third body) and (vii) termolecular association reaction of NO + with NO (with Ne as third body). All the reactions were studied at thermal energies (at room temperature), reactions of O 2 2+ with NO and CO 2 , Zr + with NO/CO 2 /O 2 were also studied at center-of-mass energies higher than thermal and the association reactions of H 2 CN + /H 2 CN + (HCN) with HCN and H + /D + with He were studied at low temperatures. In addition, the thesis presents model calculations for the sweep-out effect which is an instrumental effect. A super Langevin rate constant is introduced which is a higher-order correction to the Langevin model. A theoretical model for the three-body ion-atom association rate constant is presented in the appendix of the thesis

  10. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  11. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  12. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    Science.gov (United States)

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  13. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  14. Public reactions to large-scale energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Midden, C J; Daamen, D D; Verplanken, B

    1986-02-01

    In the first part of this article we discuss certain factors which are of influence upon the perception of risks connected to energy technologies. Several studies show that the catastrophic potential and the degree to which people consider negative consequences to be controllable are the main factors which influence this perception. In the next part differences between experts and lay people are discussed. Lay people are found to be bad at making numerical estimates of annual fatality frequencies of different causes of death. High frequencies appear to be underestimated and low frequencies overestimated. We conclude that differences between experts and lay people may be partly explained by the use of different concepts in talking about risks. In the third part attitudes on the use of nuclear energy and coal for the generation of electricity are discussed. Attitudes are determined by the observed probability of negative consequences rather than the expected probability of positive effects. It appears that the differences between the two groups are mostly not based on ideology but rather determined by a fairly rational trade-off of expected risks and advantages. The last part is concerned with the siting of nuclear power plants. The fact that people living near nuclear plants give a lower estimate of the risks than people living further away can be explained in a number of ways. Finally we discuss the problem of compensation for local residents and representatives in the choice of a site for a new plant. Our conclusion is that the usefulness of such strategies depends on the fact whether the perception of risks on a local level is based on feelings of insecurity or on an expert-like risk assessment. 4 figs., 35 refs.

  15. Nanoscopic analysis using Maruhn-Greiner theory by energy based variables in lattice for low energy nuclear reactions (LENRs)

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; WooTae Ho

    2016-01-01

    Maruhn-Greiner theory is investigated for the low energy nuclear reactions (LENRs) in the aspect of the energy productions. Conventional nuclear reactions could give the hints in another kind of the nuclear theoretical utilizations. The results of simulations show the ranges of the configurations for H-ion to Pd with 10; 000 ions as 10 and 180 keV. The most probable ranges are 30 and 600 nanometers respectively. In the simulation result of broad energy regions, the cutoff energy, 350 keV , is very significant in analyzing the LENR, because the range usually depends on the entering particle, target particle, and energy of the entering particle. Therefore, the 350 keV shows there is priority for hydrogen interaction from the energy. In the analysis, the water (H_2O) has the better possibility in LENR after the 350 keV . Following the simulation for searching LENRs, the possible conditions that include the energy based variables of atomic ranges, Debye length, and reaction time has been investigated for the designed energy productions

  16. Convergence to Equilibrium in Energy-Reaction-Diffusion Systems Using Vector-Valued Functional Inequalities

    Science.gov (United States)

    Mielke, Alexander; Mittnenzweig, Markus

    2018-04-01

    We discuss how the recently developed energy dissipation methods for reaction diffusion systems can be generalized to the non-isothermal case. For this, we use concave entropies in terms of the densities of the species and the internal energy, where the importance is that the equilibrium densities may depend on the internal energy. Using the log-Sobolev estimate and variants for lower-order entropies as well as estimates for the entropy production of the nonlinear reactions, we give two methods to estimate the relative entropy by the total entropy production, namely a somewhat restrictive convexity method, which provides explicit decay rates, and a very general, but weaker compactness method.

  17. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  18. ACT-XN: Revised version of an activation calculation code for fusion reactor analysis. Supplement of the function for the sequential reaction activation by charged particles

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu

    2007-09-01

    The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)

  19. Alpha-particle energy spectra measured at forward angles in heavy-ion-induced reactions

    International Nuclear Information System (INIS)

    Borcea, C.; Cierlic, E.; Kalpakchieva, R.; Oganessian, Yu.Ts.; Penionzhkevich, Yu.E.

    1980-01-01

    Energy spectra have been measured for α-particles emitted in the bombardment of 159 Tb, 181 Ta, 197 Au, and 232 Th nuclei by 20 Ne, 22 Ne, and 40 Ar projectiles. The reaction products emitted in the angular range (0+-2)deg relative to the beam direction were analyzed using a magnetic spectrometer and detected by means of a semiconductor ΔE-E telescope. It was found that in all cases the experimentally measured maximum α-particle energy almost amounts to the maximum possible value calculated from the reaction energy balance for a two-body exit channel. A correlation was found between the measured absolute cross section in different target-projectile combinations and the α-particle binding energy in the target nuclei. On the basis of the obtained results a conclusion has been drawn that the α-particles are emitted in the early stage of the reaction

  20. Recoil properties of radionuclides formed in photospallation reactions on complex nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Haba, Hiromitsu; Oura, Yasuji; Shibata, Seiichi; Furukawa, Michiaki; Fujiwara, Ichiro

    2001-01-01

    A short review is given on our studies of recoil properties of radionuclides formed in photospallation reactions induced by bremsstrahlung of end-point energies (E 0 ) from 600 to 1100 MeV, in which the thick-target thick-catcher method was employed. The measurements have been successful on 14, 24, 26, 31, 21 and 20 nuclides from nat V, nat Cu, 93 Nb, nat Ag, nat Ta, and 197 Au, respectively. Reflecting the resonance character in a photonuclear reaction, the mean ranges FW and BW in the forward and backward directions, respectively, are E 0 -independent at the studied energies and classified into two groups accounting for the (γ, xn) (x ≥ 1) and (γ, xnyp) (x, y ≥ 1) processes. The forward-to-backward ratios (F/B) are independent of the mass difference (ΔA) between a product (A p ) and a target (A t ) and also of A t . The kinematic properties of the product nuclei were analyzed by the two-step vector velocity model. The forward velocity ν after the first step of photon-reaction is quite different from that of proton-reaction at proton energies of E p ≤ 3 GeV, though the difference disappears at higher energies. On the other hand, the mean kinetic energy T of the residual nucleus in the second step is almost equal to that of proton-reaction irrespective of E p . A comparison with T values calculated by the PICA (Photon-Induced Intranuclear Cascade Analysis) code at E 0 =400 MeV was also performed. It was found that although the code well reproduces the experimental results of nat V and nat Cu, the same calculation for heavier targets gives T values lower than the experimental results, indicating some nuclear-structure effect, such as a medium effect notably at A t ≥ 100. An average kinetic energy carried off by the emitted particles ε s =T/(ΔA/A t ) of both photon- and proton-reactions seem to increase with an increase of A t up to around A t =100, and become almost constant at larger A t , implying some change in the nuclear structure effect in this

  1. A dual resonance model for high energy electroweak reactions

    International Nuclear Information System (INIS)

    Picard, Jean-Francois

    1995-01-01

    The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass

  2. Energy flow and particle spectra with respect to the reaction plane for Au+Au collisions at AGS energies

    International Nuclear Information System (INIS)

    Zhang Yingchao; Wessels, J.P.

    1995-01-01

    Transverse energy flow is studied by exploiting the near 4π calorimetric coverage of experiment E877. A Fourier decomposition of the azimuthal transverse energy distributions in different regions of pseudorapidity is performed as a function of the centrality in order to describe the event shape. The extracted coefficients are compared to model predictions. Using the E877 forward spectrometer, triple differential cross section for protons and π + are measured with respect to the reaction plane determined by calorimeters. The variation of slope parameters at different orientations to the reaction plane is obtained by fitting to thermal Boltzmann distributions. (orig.)

  3. Status of experimental data of proton-induced reactions for intermediate-energy nuclear data evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yukinobu; Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Yamano, Naoki; Fukahori, Tokio

    1998-11-01

    The present status of experimental data of proton-induced reactions is reviewed, with particular attention to total reaction cross section, elastic and inelastic scattering cross section, double-differential particle production cross section, isotope production cross section, and activation cross section. (author)

  4. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    International Nuclear Information System (INIS)

    Janek, S; Svensson, R; Jonsson, C; Brahme, A

    2006-01-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11 C and 15 O but also 13 N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12 C, 16 O and 14 N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12 C, 16 O and 14 N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  5. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  6. Specialized reactions: reactions at intermediate energies: Baryon--nucleus collisions, 150 MeV--1 GeV

    International Nuclear Information System (INIS)

    Igo, G.

    1974-01-01

    The high energy collision approximation proposed by Glauber to describe experimental data at the upper end of the intermediate range is reviewed. Some aspects of the model which limit its validity are outlined. Elastic scattering of protons from light nuclei is discussed in the framework of the Glauber model. For data in the energy region near 200 MeV, the plane wave impulse approximation (PWIA) and the distorted wave impulse approximation (DWIA) are applied. Quasielastic scattering is treated by considering (p,p') and (p,2p) reactions with light nuclei. A short discussion of the high resolution spectrometer facility at LAMPF and the SPES 1 facility at Saturne is given. (46 figures, 3 tables, 102 references) (U.S.)

  7. Cross-section studies of relativistic deuteron reactions obtained by activation method

    CERN Document Server

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  8. Commission for energy regulation - 2012 Activity Report

    International Nuclear Information System (INIS)

    2013-06-01

    After a presentation of the organisation, role and missions of the French Commission for Energy Regulation (CRE), and of its relationship with other institutional actors, this report describes and comments the action of the CRE in the fields of dialogue and transparency. It presents and comments key figures regarding the electricity and gas retail markets. It reports and comments the European reaction to the cold peak of February 2012 (historical peak for consumption and prices, inquiry on the causes of these price peaks, need of a European market). The next part addresses the relationship between electricity grids and territories (solidarity between electricity grids as the basis of the Europe of energy, evolution of French grids to face new needs and to take regional and local dimensions into account). Another part addresses gas infrastructures which are considered as the cornerstone of a good operation for the French market and for the integration of the European energy market (gas world market in 2012, definition of a target model for the gas market by European regulators, evolution of the French market in compliance with the European target model, new tariffs for the use of natural gas transport networks). The report then addresses the development of renewable energies: actions of CRE (bidding, opinion of tariffs), influence of renewable energy development on electricity prices on gross markets, needed evolution of electricity grids. A last part addresses the issues of energy cost, demand management, and struggle against energy poverty

  9. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    Science.gov (United States)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  10. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  11. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  12. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  13. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  14. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  15. Mixed quantum-classical studies of energy partitioning in unimolecular chemical reactions

    Science.gov (United States)

    Bladow, Landon Lowell

    A mixed quantum-classical reaction path Hamiltonian method is utilized to study the dynamics of unimolecular reactions. The method treats motion along the reaction path classically and treats the transverse vibrations quantum mechanically. The theory leads to equations that predict the disposai of the exit-channel potential energy to product translation and vibration. In addition, vibrational state distributions are obtained for the product normal modes. Vibrational excitation results from the curvature of the minimum energy reaction path. The method is applied to six unimolecular reactions: HF elimination from fluoroethane, 1,1-difluoroethane, 1,1-difluoroethene, and trifluoromethane; and HCl elimination from chloroethane and acetyl chloride. The minimum energy paths were calculated at either the MP2 or B3LYP level of theory. In all cases, the majority of the vibrational excitation of the products occurs in the HX fragment. The results are compared to experimental data and other theoretical results, where available. The best agreement between the experimental and calculated HX vibrational distributions is found for the halogenated ethanes, and the experimental deduction that the majority of the HX vibrational excitation arises from the potential energy release is supported. It is believed that the excess energy provided in experiments contributes to the poorer agreement between experiment and theory observed for HF elimination from 1,1-difluoroethene and trifluoromethane. An attempt is described to incorporate a treatment of the excess energy into the present method. However, the sign of the curvature coupling elements is then found to affect the dynamics. Overall, the method appears to be an efficient dynamical tool for modeling the disposal of the exit-channel potential energy in unimolecular reactions.

  16. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction.

    Science.gov (United States)

    Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong

    2017-06-01

    By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

  17. Applications of the photo-nuclear reaction data for activation analysis

    International Nuclear Information System (INIS)

    Odsuren, M.; Khuukhenkhuu, G.; Turbold, A.; Davaa, S.; Baatarkhuu, D.

    2015-01-01

    In the relative method of activation analysis by continuum wide spectrum gamma-rays the same isotope is usually used for standard reference element and sample material in connection with different dependence of the reaction cross sections on the irradiation beam energy. But, in practice suitable isotopes for reference element are not always available. So, in this paper, we suggest a new method for photo-activation analysis in which is used the correction factor. This factor takes into account the difference in the photo-nuclear reaction cross section dependence on the gamma-ray energy for standard reference isotope and sample elements. The correction factor is determined by three methods of experimental, theoretical and TALYS evaluation. Pure metal foils of Au, Cu and Mo were irradiated by bremsstrahlung gamma-rays on the electron cyclic accelerator Microtron MT-22 at the Nuclear Research Center, National University of Mongolia. Gamma spectra of the activated metal foils were measured by HP-Ge detector to obtain element contents in the samples. It was shown that experimental results with correction factors are satisfactorily in agreement with real values of the element contents in the samples

  18. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  19. Reaching to a featured formula to deduce the energy of the heaviest particles producing from the controlled thermonuclear fusion reactions

    Science.gov (United States)

    Majeed, Raad H.; Oudah, Osamah N.

    2018-05-01

    Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.

  20. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  1. Theoretical study on pp → pnπ+ reaction at medium energies

    International Nuclear Information System (INIS)

    Ouyang, Zhen; Xie, Jujun; Zou, Bingsong; Xu, Hushan

    2009-01-01

    The pp → pnπ + reaction is a channel with the largest total cross section for pp collision in COSY/CSR energy region. In this work, we investigate individual contributions from various N* and Δ* resonances with mass up to about 2 GeV for the pp → pnπ + reaction. We extend a resonance model, which can reproduce the observed total cross section quite well, to give theoretical predictions of various differential cross sections for the present reaction at T p = 2.88 GeV. It could serve as a reference for identifying new physics in the future experiments at HIRFL-CSR. (author)

  2. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  3. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  4. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  5. National energy ombudsman. 2012 activity report

    International Nuclear Information System (INIS)

    Merville, Denis; Lechevin, Bruno; Mialot, Stephane; Lefeuvre, Katia

    2013-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This 2012 edition of the National energy ombudsman's activity report has adopted a somewhat original, but very informative, format: an abc which allows us to take a look back at the highlights of 2012 and to summarise the great energy challenges that the National Energy Ombudsman has worked on since 2007: Achievements, Activity, Amicable agreement, Billing decree, Consultation, Disconnections, Energy voucher, National debate on energy transition, help to consumers, lowering gas prices, best management of public resources, communicating gas meter project, Peak hours and off-peak hours, Unpaid bills, Commercially sensitive information, Disputes, Mediation, development of the European Network of Independent Energy Ombudsmen, Combat against energy poverty, Consumer protection, Back billing time limit, Supply quality, Complaint, Recommendations, Debt distress, rise in prices etc

  6. Nucleon charge exchange reaction and antiproton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kronenfeld, J.

    1985-02-01

    This work treats the medium energy nuclear (p,n) charge exchange reaction to analog states and the low energy elastic scattering of antiprotons and investigates the central aspects of a microscopic theory based on multiple-scattering series which are pertinent to these reactions. A two-step term of the Distorted Wave Impulse Approximation (DWIA) in treating the (p,n) reaction, was included. For the very absorptive p-bar interaction with nuclei we conjecture that a partial infinite summation, constituing a renormalization of the single scattering term of the optical potential series provides the dominant feature of this interaction. In this work the excitation of analog states is calculated and it was found that the (p,n) reaction is described fairly well by the DWIA. In the first part of the work the (p,n) reaction in the energy range 100-200 MeV was treated. The DWIA calculations were based on eikonalization. In the second part of the work the p-barA interaction with the selfconsistent scheme mentioned above, for scattering energies 30-120 MeV, was examined. (author)

  7. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  8. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2018-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy...... restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting...

  9. Isovector couplings for nucleon charge-exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Love, W.G.; Nakayama, K.; Franey, M.A.

    1987-01-01

    The isovector parts of the effective nucleon-nucleon interaction are studied by examination of the reaction /sup 14/C(p,n) at intermediate energies near zero momentum transfer with use of recently developed G-matrix and free--t-matrix interactions. The spin-independent coupling (V/sub tau/) exhibits a strong energy and density dependence which, in the case of the G matrix based on the Bonn potential, significantly improves the agreement between calculated values of chemical bondV/sub σ//sub tau//V/sub tau/chemical bond 2 at q = 0 and those recently extracted from the reaction /sup 14/C

  10. Development of various reaction abilities and their relationships with favorite play activities in preschool children.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro

    2013-10-01

    This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.

  11. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  12. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.

    Science.gov (United States)

    Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua

    2018-06-14

    Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  14. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode

  15. The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV

    Science.gov (United States)

    Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.

    2017-09-01

    The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  16. The energy spectrum of neutrons from 7Li(d,n8Be reaction at deuteron energy 2.9 MeV

    Directory of Open Access Journals (Sweden)

    Mitrofanov Konstantin V.

    2017-01-01

    Full Text Available The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n3He, D(d,n3He, 7Li(p,n7Be, T(d,n4He, 7Li(d,n8Be, 9Be(d,n10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n8Be and 9Be(d,n10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC “SSC RF – IPPE” using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p27Mg, 27Al(n,α24Na, 113In(n,n'113mIn, 115In(n,n'115mIn, 115In(n,γ116mIn, 58Ni(n,p58mCo, 58Ni(n,2n57Ni, 197Au(n,γ198Au, 197Au(n,2n196Au, 59Co(n,p59Fe, 59Co(n,2n58m+gCo, 59Co (n,g60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  17. Size-selective electrocatalytic activity of (Pt)n/MoS2for oxygen reduction reaction

    DEFF Research Database (Denmark)

    Bothra, Pallavi; Pandey, Mohnish; Pati, Swapan K.

    2016-01-01

    In the present work, we have investigated the electrocatalytic activity of the oxygen reduction reaction (ORR), O2 + 4H+ + 4e− → 2H2O, for (Pt)n clusters (n = 1, 2, 3, 5, 7, 10 and 12) adsorbed on semiconducting (2H) and metallic (1T) MoS2 monolayers using first principles density functional theory....... We have considered four elementary reactions involved in ORR within a unified electrochemical thermodynamic framework and the corresponding Gibbs adsorption free energies of the key intermediates (*OOH, *O, *OH) associated with each step have been calculated. The results indicate that the reduction...... of adsorbed hydroxyl (*OH) to water (*OH + H+ + e− → H2O) is the bottleneck step in the ORR process. The adsorption free energy of *OH (ΔG*OH) is found to be the thermodynamic descriptor for the present systems. Eventually, the ORR activity has been described as a function of ΔG*OH and a volcano plot...

  18. Contribution to the phenomenological study of two-body reactions at high energy; Contribution a l'etude phenomenologique des reactions a deux corps a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tannoudji, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A phenomenological model suited for the description of arbitrary two-body reactions at high energies is presented and applied to the analysis of {pi} - nucleon, K - nucleon, et K-bar - nucleon scattering.The idea is that the Regge-pole model does not take into account the whole content of the unitarity relation and has to be modified, as is currently done in one-particle exchange models, so that it may include absorptive corrections.In terms of a rather economical set of free parameters,we obtain a satisfactory agreement with all available data, including the recent evidence for a nonvanishing polarization in {pi}{sup -} p {pi}{sup 0} n reaction. We then reinterpret our parametrization of the amplitudes in terms of poles and branch points in the complex angular-momentum plane for the crossed channel. (author) [French] Un modele phenomenologique adapte a la description des reactions a deux corps a haute energie est presente et applique a l'analyse des diffusions {pi} - nucleon, K - nucleon, et K-bar - nucleon. L'idee essentielle est que le modele d'echange de poles de Regge ne tient pas compte du contenu total de la relation d'unitarite et doit etre modifie, comme cela a ete propose dans le cas de l'echange de particules, de facon a tenir compte de corrections de type absortif. Au moyen d'un ensemble relativement economique de parametres libres nous obtenons un accord satisfaisant avec tous les resultats disponibles, y compris l'existence recemment mise en evidence d'une polarisation non nulle dans la reaction {pi}{sup -} p {pi}{sup 0} n. Nous interpretons notre fa n d'ecrire les amplitudes au moyen de poles et de points de branchement dans le plan complexe du moment angulaire pour la voie croisee. (auteur)

  19. Cooperative Enhancement Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2006-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold energies then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  20. New cooperative mechanisms of low-energy nuclear reactions using super low-energy external field

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.

    2006-01-01

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system. (author)

  1. New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.

  2. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  3. New Cooperative Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  4. Reaction mechanism and nuclear correlations study by low energy pion double charge exchange

    International Nuclear Information System (INIS)

    Weinfeld, Z.

    1993-06-01

    In pion double-charge-exchange (DCX) reactions, a positive (negative) pion is incident on a nucleus and a negative (positive) pion emerges. These reactions are of fundamental interest since the process must involve at least two nucleons in order to conserve charge. Although two nucleon processes are present in many reactions they are usually masked by the dominant single nucleon processes. DCX is unique in that respect since it is a two nucleon process in lowest order and thus may be sensitive to two-nucleon correlations. Measurements of low energy pion double-charge-exchange reactions to the double-isobaric-analog-state (DIAS) and ground-state (GS) of the residual nucleus provide new means for studying nucleon-nucleon correlations in nuclei. At low energies (T π 7/2 shell at energies ranging from 25 to 65 MeV. Cross sections were measured on 42,44,48 Ca, 46,50 Ti and 54 Fe. The calcium isotopes make a good set of nuclei on which to study the effects of correlations in DCX reactions

  5. Analysis of active piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yiliang CUI

    2018-02-01

    Full Text Available Most of the existing piezoelectric traps are designed for a narrow frequency range of vibration, but the surrounding environment has a very wide frequency range, and the frequency may also be subject to change, causing the problem of difficult to achieve energy capture or capture inefficiency. In order to solve problem, a new T-type piezoelectric cantilever is proposed as a capture energy structure in the paper. To begin with the aspects of structural design and circuit design, the static analysis, modal analysis and resonance analysis of the structure are carried out and the natural frequency and excitation frequency of the device are analyzed. The design and calculation of the power consumption and the loss of the components of the circuit are analyzed by the simulation and verification of the active capture energy circuit, and the active and passive techniques are compared and analyzed, the simulation of the active capture circuit is verified by analyzing the power consumption of the circuit and the maximum power obtained by the active technology is 5 times of that of the passive technology. And then the voltage-controlled active boundary control method can be used for interface circuit design, taking the initiative to use each piezoelectric transduction cycle triggered by the electrical boundary conditions to effectively increase the input piezoelectric pump energy, and then increase output power. The way of utilizing the active trapping of piezoelectric materials is innovated, which has a positive effect on the development of piezoelectric traps.

  6. Parameterization of pion production and reaction cross sections at LAMPF energies

    International Nuclear Information System (INIS)

    Burman, R.L.; Smith, E.S.

    1989-05-01

    A parameterization of pion production and reaction cross sections is developed for eventual use in modeling neutrino production by protons in a beam stop. Emphasis is placed upon smooth parameterizations for proton energies up to 800 MeV, for all pion energies and angles, and for a wide range of materials. The resulting representations of the data are well-behaved and can be used for extrapolation to regions where there are no measurements. 22 refs., 16 figs., 2 tabs

  7. Energy dependence of the 3He(3He,π+)6Li reaction

    International Nuclear Information System (INIS)

    Le Bornec, Y.; Hibou, F.; Bimbot, L.; Hennino, T.; Jourdain, J.C.; Reide, F.; Tatischeff, B.; Willis, N.; Aslanides, E.; Bergdolt, G.; Fassnacht, P.; Racca, C.; Boudard, A.; Bruge, G.; Lugol, J.C.

    1983-01-01

    The 3 He( 3 He, π + ) 6 Li reaction has been studied as a function of energy using the 3 He beam at SATURNE. Cross sections for the 6 Li ground state (1 + ) and 2.18 MeV (3 + ) levels have been obtained at 350, 420, 500 and 600 MeV incident energies at angles THETAsub(π)(lab)=15 0 and 40 0 . These results are compared with two theoretical predictions. (orig.)

  8. Research on high-energy chemical reactions. Annual progress report, August 1, 1974--October 31, 1975

    International Nuclear Information System (INIS)

    Cross, R.J. Jr.

    1975-10-01

    Product yields for the reactions T* + c - C 6 D 12 → c - C 6 D 11 T, DT have been measured using a beam of T* formed by charge exchange in the energy range of 25 eV to 100 eV. A computer program was written to calculate the probability of collision vs. energy of a beam of T* moderated by He gas

  9. Consumer Activities and Reactions to Social Network Marketing

    OpenAIRE

    Bistra Vassileva

    2017-01-01

    The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM) referral behaviour, and purchase intentions. Consumers are investigated ...

  10. Renewable energy activities in Senegal: a review

    International Nuclear Information System (INIS)

    Youm, I.; Sarr, J.; Kane, M.M.; Sall, M.

    2000-01-01

    Like many countries in Africa, Senegal is facing economical decline, energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. What is required is a strategy to implement renewable energy technologies at large scale. The government and many non-governmental organisations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper present a review of activities in the field of renewable energy applications in Senegal, which goes back to the mid 1970s and will discuss the socio-economic benefits that the country has derived from these environmentally sound and appropriate sources of energy. The development and trial of systems were mostly funded so far by donor agencies in collaboration with government and NGOs. Among the applications being supported are solar lighting, water pumping and small power plants. Recent efforts have been aimed at restructuring the programmes and giving them a market orientation. Future trends, some suggestion and recommendations for successful dissemination of renewable energy sources are also drawn. The present situation is seen to be much more promising and favourable for renewable energy. (Author)

  11. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  12. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  13. Commission of energy regulation. 2004 activity report

    International Nuclear Information System (INIS)

    2004-01-01

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  14. Reaction channels of 6,7Li+28Si at near-barrier energies

    International Nuclear Information System (INIS)

    Pakou, A; Rusek, K; Nicolis, N G; Alamanos, N; Doukelis, G; Gillibert, A; Kalyva, G; Kokkoris, M; Lagoyannis, A; Musumarra, A; Papachristodoulou, C; Perdikakis, G; Pierroutsakou, D; Pollacco, E C; Spyrou, A; Zarkadas, Ch

    2005-01-01

    The production of α-particles in the reactions 6,7 Li+ 28 Si was studied as a means to disentangle the various reaction channels at near-barrier energies. The competition between compound and direct reactions was determined by using the shape of angular distributions and statistical model calculations. DWBA calculations were also performed to probe the various direct channels. It was found that, approaching barrier, transfer channels are the most dominant for both reactions. For 7 Li+ 28 Si d-transfer is one of the contributing channels without excluding t-transfer, while for 6 Li+ 28 Si, n-transfer and p-transfer have substantial contribution but without excluding d-transfer

  15. Inclusive quasielastic neutrino reactions in 12C and 16O at intermediate energies

    International Nuclear Information System (INIS)

    Singh, S.K.; Oset, E.

    1993-01-01

    Inclusive quasielastic neutrino (antineutrino) reactions on 12 C and 16 O at intermediate energies (50< E<400 MeV) are studied to investigate the effects of the nuclear medium on the total cross section and the energy spectrum of the outgoing leptons. The calculations are done in the local density approximation and various nuclear effects like Pauli blocking, Fermi motion, and strong-interaction renormalizations due to the presence of nucleons are taken into account. The corrections due to Coulomb effects are included which have been hitherto neglected in inclusive reactions. The results presented here are applicable to the inclusive reactions with neutrino beams planned to look for neutrino oscillations in the Los Alamos experiments or the experiments with underground detectors looking for atmospheric or solar flare neutrinos

  16. Progress in applyiong the FKK multistep reaction theory to intermediate-energy data evaluation

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1994-01-01

    Recent developments to the physics modeling in the FKK-GNASH code system are reviewed. We describe modifications to include a linking of multistep direct and multistep compound processes, which are important when the incident energy is less than about 30 MeV. A model for multiple preequilibrium emission is given, and compared with experimental measurements of proton reactions on 90 Zr at 160 MeV. We also give some preliminary observations concerning FKK calculations which use both normal and non-normal DWBA matrix elements. We describe the application of the FKK-GNASH code to a range of nuclear data applications, including intermediate energy reactions of importance in the accelerator transmutation of waste, and fast neutron and proton cancer radiation treatment. We outline areas where further work is needed for the accurate modeling of nuclear reactions using the FKK theory

  17. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)

    2004-06-01

    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  18. Emission of high-energy charged particles at 00 in Ne-induced reactions

    International Nuclear Information System (INIS)

    Borcea, C.; Gierlik, E.; Kalinin, A.M.; Kalpakchieva, R.; Oganessia, Yu.Ts.; Pawlat, T.; Penionzhkevich, Yu.E.; Ryakhlyuk, A.V.

    1982-01-01

    Inclusive energy spectra have been measured for light charged particles emitted in the bombardment of 232 Th, 181 Ta, sup(nat)Ti and 12 C targets by 22 Ne ions at 178 MeV and sup(nat)Ti target by 20 Ne ions at 196 MeV. The reaction products were analysed and detected by means of a ΔE-E telescope placed in the focal plane of a magnetic spectrometer located at an angle of 0 deg with respect to the beam direction. In all the reactions studied light charged particles with an energy close to the respective calculated kinematic limit for a two-body exit channel are produced with relatively great probability. The results obtained make it possible to draw some conclusions about the reaction mechanism involving the emission of light charged particles

  19. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  20. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  1. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    International Nuclear Information System (INIS)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH 3 I → CH 3 + IBr (ΔH 0 0 = 13 kcal/mole) and Br + CF 3 I → CF 3 + IBr (ΔH 0 0 = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF 3 I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF 3 I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF 3 I

  2. Towards an unambiguous determination of the excitation energy of the projectile in heavy-ion reactions?

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A.M.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2002-03-01

    The excitation energy of the quasi-projectiles produced in heavy-ion collisions is determined for the {sup 58}Ni+{sup 197}Au reactions at 52 and 90 AMeV. A new method is proposed for isolating unambiguously the particles evaporated by the source. It consists in observing them at small angles along the flight direction of the source. (authors)

  3. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.

  4. Angular dependences of the tensor analyzing powers in the dd→3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd→ 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown

  5. Effect of free-particle collisions in high energy proton and pion-induced nuclear reactions

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.

    1975-07-01

    The effect of free-particle collisions in simple ''knockout'' reactions of the form (a,aN) and in more complex nuclear reactions of the form (a,X) was investigated by using protons and pions. Cross sections for the 48 Ti(p,2p) 47 Sc and the 74 Ge(p,2p) 73 Ga reactions were measured from 0.3 to 4.6 GeV incident energy. The results indicate a rise in (p,2p) cross section for each reaction of about (25 +- 3) percent between the energies 0.3 and 1.0 GeV, and are correlated to a large increase in the total free-particle pp scattering cross sections over the same energy region. Results are compared to previous (p,2p) excitation functions in the GeV energy region and to (p,2p) cross section calculations based on a Monte Carlo intranuclear cascade-evaporation model. Cross section measurements for (π/sup +-/, πN) and other more complex pion-induced spallation reactions were measured for the light target nuclei 14 N, 16 O, and 19 F from 45 to 550 MeV incident pion energy. These measurements indicate a broad peak in the excitation functions for both (π,πN) and (π,X) reactions near 180 MeV incident energy. This corresponds to the large resonances observed in the free-particle π + p and π - p cross sections at the same energy. Striking differences in (π,πN) cross section magnitudes are observed among the light nuclei targets. The experimental cross section ratio sigma(π - ,π - n)/sigma(π + ,πN) at 180 MeV is 1.7 +- 0.2 for all three targets. The experimental results are compared to previous pion and analogous proton-induced reactions, to Monte Carlo intranuclear cascade-evaporation calculations, and to a semi-classical nucleon charge exchange model. (108 references) (auth)

  6. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  7. A new study of {sup 10}B(p,α){sup 7}Be reaction at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Caciolli, A.; Depalo, R. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Sezione di Padova, Padova (Italy); Broggini, C.; Menegazzo, R. [INFN, Sezione di Padova, Padova (Italy); La Cognata, M.; Puglia, S.M.R.; Sergi, M.L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Lamia, L. [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mou, L.; Rigato, V.; Rossi Alvarez, C. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Romano, S.; Spitaleri, C. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Tumino, A. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Universita degli Studi di Enna ' ' Kore' ' , Facolta di Ingegneria e Architettura, Enna (Italy)

    2016-05-15

    The {sup 10}B(p,α){sup 7}Be reaction is of great interest since it has many applications in different fields of research such as nuclear astrophysics, nuclear physics, and models of new reactors for clean energy generation. This reaction has been studied at the AN2000 accelerator of the INFN National Laboratories of Legnaro (LNL). The total cross section has been measured in a wide energy range (250-1182 keV) by using the activation method. The decays of the {sup 7}Be nuclei produced by the reaction were measured at the low counting facility of LNL by using two fully shielded high-purity germanium detectors. The present dataset shows a large discrepancy with respect to one of the previous data at the same energies and reduces the total uncertainty to the level of 6%. An R-matrix calculation has been performed on the present data using the parameters from previous Trojan Horse measurements for the 10 and 500 keV resonances. The present data do not lay on the R-matrix fit in one point suggesting the existence of a {sup 11}C level not observed yet. Further nuclear investigations are needed to confirm this hypothesis. (orig.)

  8. Activation of generalised inflammatory reaction following electrical cardioversion.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Mysiak, Andrzej; Mazurek, Walentyna

    2004-09-01

    Restoration of sinus rhythm in patients with atrial fibrillation (AF) is associated with an increased risk of thrombo-embolic complications due to delayed return of the left atrial and left atrial appendage systolic function. Direct current cardioversion (DC), used for AF termination, may cause myocardial injury and subsequent activation of inflammatory response. A C-reactive protein (CRP) is a non-specific marker of inflammation. To examine the effects of external DC of AF or atrial flutter (AFlut) on inflammatory processes. The study group consisted of 35 patients (20 females and 15 males, mean age 67.9+/-9.7 years, range 46-83 years) with paroxysmal or persistent AF/AFlut who underwent elective DC. CRP plasma concentration was measured before and 24 hours after DC. The mean total DC energy was 431.2 J. CRP plasma concentration increased significantly following DC - from 3.9+/-3.4 ng/ml before DC to 7.2+/-6.7 ng/ml after DC (p<0.0001). CRP level correlated with body mass index (r=0.34, p<0.05), however, this correlation became non-significant after inclusion of the presence of diabetes into the statistical model. There was also a positive correlation between CRP values before and after DC (r=0.72, p<0.0001). No correlation between CRP and gender, total power of DC nor the number of DC shocks was detected. External DC of AF/Aflut causes activation of inflammatory processes measured as a significant increase in the CRP plasma concentration.

  9. Nuclear data activity at Atomic Energy Research Establishment, Savar, Dhaka

    International Nuclear Information System (INIS)

    Bhuiyan, S.I.; Molla, N.I.

    1995-01-01

    The nuclear data activity at AERE, Savar is briefly presented in this paper. Major thrust is on the customization of cross section libraries for general purpose reactor and shielding calculations. The processing codes that are available are NJOY91.91, some AMPX-Modules and the modules in SCALE-PC. Recent measurements on cross section data over the energy range 13-15 MeV at the Institute of Nuclear science and Technology have been reviewed. Measurements and calculations are based on the determination of excitation functions of neutron induced reactions on the elements and isotopes of FRT-relevant structural materials. (author)

  10. High energy nuclear reactions ('Spallation') and their application in calculation of the Acceleration Driven Systems (ADS)

    International Nuclear Information System (INIS)

    Rossi, Pedro Carlos Russo

    2011-01-01

    This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the

  11. Boosting the Performance of the Nickel Anode in the Oxygen Evolution Reaction by Simple Electrochemical Activation

    KAUST Repository

    Shinagawa, Tatsuya

    2017-03-27

    The development of cost-effective and active water-splitting electrocatalysts that work at mild pH is an essential step towards the realization of sustainable energy and material circulation in our society. Its success requires a drastic improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. A simple electrochemical protocol has been developed to activate Ni electrodes, by which a stable NiOOH phase was formed, which could weakly bind to alkali-metal cations. The electrochemically activated (ECA) Ni electrode reached a current of 10 mA at <1.40 V vs. the reversible hydrogen electrode (RHE) at practical operation temperatures (>75 °C) and a mild pH of ca. 10 with excellent stability (>24 h), greatly surpassing that of the state-of-the-art NiFeOx electrodes under analogous conditions. Water electrolysis was demonstrated with ECA-Ni and NiMo, which required an iR-free overall voltage of only 1.44 V to reach 10 mA cmgeo(-2) .

  12. Boosting the performance of the nickel anode in the oxygen evolution reaction by simple electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Shinagawa, Tatsuya; Ng, Marcus Tze-Kiat; Takanabe, Kazuhiro [King Abdullah Univ. of Science and Technology (KAUST), KAUST Catalysis Center (KCC) and Physical Sciences and Engineering Div. PSE, Thuwal (Saudi Arabia)

    2017-04-24

    The development of cost-effective and active water-splitting electrocatalysts that work at mild pH is an essential step towards the realization of sustainable energy and material circulation in our society. Its success requires a drastic improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. A simple electrochemical protocol has been developed to activate Ni electrodes, by which a stable NiOOH phase was formed, which could weakly bind to alkali-metal cations. The electrochemically activated (ECA) Ni electrode reached a current of 10 mA at <1.40 V vs. the reversible hydrogen electrode (RHE) at practical operation temperatures (>75 C) and a mild pH of ca. 10 with excellent stability (>24 h), greatly surpassing that of the state-of-the-art NiFeO{sub x} electrodes under analogous conditions. Water electrolysis was demonstrated with ECA-Ni and NiMo, which required an iR-free overall voltage of only 1.44 V to reach 10 mA cm{sub geo}{sup -2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Magnetic field dependence of vortex activation energy

    Indian Academy of Sciences (India)

    ... the resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 (BSCCO) superconductors. Thermally activated flux flow behaviour is seen in all the three systems and clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 ...

  14. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Chunzhen Yang

    2017-05-01

    Full Text Available Triggering the redox reaction of oxygens has become essential for the development of (electro catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively, CO or hydrocarbons oxidation, NO reduction and others. While the formation of ligand hole for perovskites is well-known for solid state physicists and/or chemists and has been widely studied for the understanding of important electronic properties such as superconductivity, insulator-metal transitions, magnetoresistance, ferroelectrics, redox properties etc., oxygen electrocatalysis in aqueous media at low temperature barely scratches the surface of the concept of oxygen ions oxidation. In this review, we briefly explain the electronic structure of perovskite materials and go through a few important parameters such as the ionization potential, Madelung potential, and charge transfer energy that govern the oxidation of oxygen ions. We then describe the surface reactivity that can be induced by the redox activity of the oxygen network and the formation of highly reactive surface oxygen species before describing their participation in catalytic reactions and providing mechanistic insights and strategies for designing new (electro catalysts. Finally, we give a brief overview of the different techniques that can be employed to detect the formation of such transient oxygen species.

  15. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  16. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  17. Intermediate and high energy nuclear reactions at the hadronic structural level

    Energy Technology Data Exchange (ETDEWEB)

    Slowinski, B [Institute of Physics, Warsaw, University of Technology, Poland, Institute of Atomic Energy, Swierk, (Poland)

    1997-12-31

    Form tens of MeV to several hundred of GeV is stretched out quite a large interval of energy when the interaction between hadrons (for instance, pion/nucleon-nucleus and nucleus-nucleus reactions) can be described by the considerably simplified way with still acceptable accuracy. This happens because in this energy region hadrons (i.e. pions, nucleons etc.) remain quasiparticles of nuclear matter mostly without revealing any internal structure, their de Broglie`s wavelength is much shorter as compared to the average intranuclear nucleon`s distance, and the energy transfers in the reaction are, on the average, significantly greater than the binding energy of nucleons inside nuclei. Consequently an approach to the analysis of these phenomena based on simple geometric and probabilistic considerations is justifiable, especially for many practical purposes, in particular, for shielding and dosimetric estimations, material behaviour prediction, as well as for the approximate evaluation of electronuclear breeding effects in different composites of target materials, for nuclear passivation problems and so on. In this work basic physical reasons of such a simplified picture of intermediate and high energy nuclear reactions are presented. The most usual phenomenological models of hadronic multiple emission/production and recent results of the cascade evaporation type models, are also discussed. 2 figs.

  18. Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium); Tárkányi, F.; Takács, S.; Ditrói, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary)

    2015-11-01

    In the frame of the systematical study of light ion induced nuclear reactions activation cross sections for deuteron induced reactions on monoisotopic {sup 103}Rh were extended to 50 MeV incident energy. Excitation functions were measured in the 49.8–36.6 MeV energy range for the {sup 103}Rh(d,xn){sup 100,101}Pd, {sup 103}Rh(d,pxn){sup 99m,99g,100,101m,101g,102m,102g}Rh and {sup 103}Rh(d,x){sup 97,103}Ru reactions by using the stacked foil irradiation technique and off-line high resolution γ-ray spectrometry. The experimental results are compared to our previous results and to the theoretical predictions in the TENDL-2014 library (TALYS 1.6 code).

  19. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  20. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  1. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  2. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  3. Studying astrophysical reactions with low-energy RI beams at CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2016-01-01

    Full Text Available Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS, the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α15O reaction at astrophysical energies via the three body reaction 2H(18F, α15On. The 18F(p, α 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  4. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1991-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  5. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, A.

    1992-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  6. The surrogate-reaction method and excitation-energy sorting in nuclear fission

    International Nuclear Information System (INIS)

    Jurado, Beatriz

    2015-01-01

    This manuscript summarises the main activities that I have carried out during the last ten years of research at the Centre d'etudes Nucleaires de Bordeaux-Gradignan (CENBG). It is, to a great extent, a synthesis of nine articles. They can be consulted by the reader that would like to have more detailed information. These articles are denoted as Article I, II.. all along the manuscript. The manuscript is intended to be accessible to PhD students not familiar with the topic. Chapter 1 recalls some of the basic ideas of statistical mechanics and discusses the applicability of its concepts to nuclei. Some of these concepts, in particular the concept of statistical equilibrium, are essential for the topics covered by chapters 2 and 3. Chapter 2 summarises the studies performed by the CENBG collaboration on the surrogate-reaction method in the last ten years. Chapter 3 summarises part of the work done on the modelling of nuclear fission in collaboration with Karl-Heinz Schmidt, it considers the partition of excitation energy and unpaired nucleons in fission on the basis of statistical mechanics. Chapters 2 and 3 contain the bulk of my work, each of them has its own introduction and conclusion sections. Chapter 4 presents the medium and long-term experimental perspectives for the topics described in chapters 2 and 3. (author)

  7. International codes and model intercomparison for intermediate energy activation yields

    International Nuclear Information System (INIS)

    Rolf, M.; Nagel, P.

    1997-01-01

    The motivation for this intercomparison came from data needs of accelerator-based waste transmutation, energy amplification and medical therapy. The aim of this exercise is to determine the degree of reliability of current nuclear reaction models and codes when calculating activation yields in the intermediate energy range up to 5000 MeV. Emphasis has been placed for a wide range of target elements ( O, Al, Fe, Co, Zr and Au). This work is mainly based on calculation of (P,xPyN) integral cross section for incident proton. A qualitative description of some of the nuclear models and code options employed is made. The systematics of graphical presentation of the results allows a quick quantitative measure of agreement or deviation. This code intercomparison highlights the fact that modeling calculations of energy activation yields may at best have uncertainties of a factor of two. The causes of such discrepancies are multi-factorial. Problems are encountered which are connected with the calculation of nuclear masses, binding energies, Q-values, shell effects, medium energy fission and Fermi break-up. (A.C.)

  8. (3He,α) reaction mechanism at high energy and neutron inner shell structure

    International Nuclear Information System (INIS)

    Wiele, J. van de.

    1980-01-01

    The ( 3 He,α) reaction on 12 C, 16 O, 28 Si, 58 Ni, 90 Zr, 118 Sn, 124 Sn and 208 Pb targets has been studied at Esub( 3 He) = 217 MeV (or 205 MeV) in order to investigate the reaction mechanism at high energy and large momentum transfer. The reaction yields large cross sections at very forward angles and strongly enhances the largest orbital momentum transfer. The angular distribution shapes are well reproduced in the frame-work of the Z-R- D.W.B.A. analysis if we use a unique empirical α-potential: Vsub(α)(Esub(α)) = Vsub( 3 He)(3/4 Esub(α)) + Vsub(n)(1/4 Esub(α)). The excitation energy spectra have been measured up to 100 MeV in the residual light and medium nuclei and up to about 16 MeV in heavy nuclei. In addition to the well-known low-lying levels, peaks or broad structures are observed for each nucleus at higher excitation energies. They are attributed to pick up from inner shells: 1s( 11 C and 15 O), 1p( 27 Si), 1d5/2 + 1p( 57 Ni), 1f7/2( 89 Zr) 1g9/2 117 Sn, 123 Sn and 1h11/2( 207 Pb). Selectivity and localization of direct and indirect pick up ( 3 He,α) reactions were studied. Finite range calculations show that this reaction is not very sensitive to the details of the range from function but only to D 0 coefficient and range R. A microscopic α-nucleus optical potential calculated with n-n dependent and independent density forces is able to reproduce both elastic scattering and pick up reaction angular distributions [fr

  9. Excitation functions of proton induced reactions on {sup nat}Fe in the energy region up to 45 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Naik, Haladhara [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Radiochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-03-01

    The excitation functions of various reaction products such as {sup 55,56,57}Co, {sup 52}Fe, {sup 52,54}Mn, and {sup 51}Cr in the {sup nat}Fe(p, x) reactions were measured by the stacked-foil activation technique in the energy range between their respective reaction threshold and 45 MeV at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The present experimental data were compared with the existing literature data. It was found that excitation function of {sup 56,57}Co and {sup 51}Cr from the {sup nat}Fe(p, x) reaction are in agreement with the literature data. However, the cross-sections for {sup nat}Fe(p, x){sup 52}Fe reactions are lower and those for {sup nat}Fe(p, x){sup 52}Mn and {sup nat}Fe(p, x){sup 54}Mn reactions are higher than the literature data. The reaction cross-sections of the above mentioned reaction products were also compared with those from the TENDL-2012 library based on the TALYS-1.4 program as a function of proton energy, which was reproduced the trend of the excitation functions of the experimental {sup nat}Fe(p, x) reaction cross-section. The integral yields for thick target of the investigated radionuclides were calculated from the excitation function.

  10. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  11. IFP Energies nouvelles. 2016 Activity Report - Innovating for energy

    International Nuclear Information System (INIS)

    2017-01-01

    IFP Energies Nouvelles is a major research and training player in the fields of energy, transport and the environment. From research to industry, technological innovation is central to all its activities, structured around three strategic priorities: sustainable mobility, new energies and responsible oil and gas. As part of the public-interest mission with which it has been tasked by the public authorities, IFPEN focuses on: - providing solutions to take up the challenges facing society in terms of energy and the climate, promoting the transition towards sustainable mobility and the emergence of a more diversified energy mix; - creating wealth and jobs by supporting French and European economic activity, and the competitiveness of related industrial sectors. An integral part of IFPEN, its graduate engineering school - IFP School - prepares future generations to take up these challenges. IFPEN has proven expertise across the entire value chain, from fundamental research to innovation. It is funded both by a state budget and by its own resources provided by industrial partners. The latter account for over 50% of IFPEN's total budget, a configuration that is quasi unique in France. The aim of IFPEN's R and I programs is to overcome existing scientific and technological challenges in order to develop innovations that can be used by industry. IFPEN's fundamental research program aims to create a bedrock of knowledge essential for the development of innovations. The scientific expertise of IFPEN's researchers is internationally recognized and they are regularly consulted by the public authorities to provide their insight in their specific fields to inform the decision-making process. IFPEN's economic model is based on the transfer to industry of the technologies developed by its researchers. This technology transfer to industry generates jobs and business, fostering the economic development of fields and approaches related to the mobility, energy and eco-industry sectors

  12. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  13. CORRELATION BETWEEN PREEXPONENTIAL FACTOR AND ACTIVATION ENERGY OF ISOAMYLALCOHOL HYDROGENOLYSIS ON PLATINUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available Arrhenius equation stated that reaction will proceed faster at higher temperature and with lower activation energy (Ea. Many literatures reported that preexponential factor (A is constant for certain reaction and there is no relation between A and Ea. Experiment on the reaction of isoamylalcohol hydrogenolysis showed that logarithm of A increased linearly with Ea. The result of this investigation suggests that the rate of a process is affected by the number of active centers on the surface of a catalysts, which influences the value of the pre-exponential term in the expression for the rate constant of a reaction. An increase in the number of active centers corresponds to a higher value of A, the active centers would be less effective and is attended by a growth in the value of Ea. Therefore, reaction with lower activation energy will not always has higher reaction rate due to decreasing of Ea.   Keywords: isoamylalcohol hydrogenolysis, preexponential factor, activation  energy.

  14. IFP Energies Nouvelles. 2014 Activity report - Innovating for energy

    International Nuclear Information System (INIS)

    2015-01-01

    As part of the public-interest mission with which it has been tasked by the public authorities, IFP Energies Nouvelles (IFPEN) focuses on: - providing solutions to take up the challenges facing society in terms of energy and the climate, promoting the emergence of a sustainable energy mix, - creating wealth and jobs by supporting French and European economic activity, and the competitiveness of related industrial sectors. Despite the current economic environment, 2014 was a good year for IFPEN. In the field of renewable energies, major milestones were reached in two significant projects dedicated to the production of second generation biofuels in which IFPEN is very actively involved: processes developed in Futurol TM are already in the pre-marketing phase, while the construction of the two pilot units for the BioTfueL project has just been launched. In the field of ocean energies, IFPEN research has led to the first partnership agreements relating to floating wind turbines anchor technologies and command control systems for wind energy and wave energy conversion. In the transport sector, game-changing concepts are beginning to emerge, such as smart battery charging and a Rankine cycle system for an internal combustion engine transforming combustion heat into energy. In addition, IFPEN have joined forces with innovative SMEs to boost their research in the fields of electric power-trains and power electronics. Finally, IFPEN launched an eco-driving application that has proved extremely popular with the public. Turning now to oil and gas, IFPEN continued to expand its range of basin and reservoir simulation, modeling and characterization software, and it signed several contracts in the field of chemical enhanced recovery solutions with its EOR (Enhanced Oil Recovery) Alliance TM partners. IFPEN also developed new generations of high-performance catalysts and improved the conversion rate of its processes to enable refiners to convert increasingly heavy crudes and

  15. The Magnetic Free Energy in Active Regions

    Science.gov (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  16. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Science.gov (United States)

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Proliferative activity as a prognostic factor of a human tumor radiation reactions

    International Nuclear Information System (INIS)

    Karakulov, R.K.; Pelevina, I.I.

    1986-01-01

    The following questions are considered: 1) whether cell proliferation initial parameters can serve for predicting the tumor radial reaction; 2) whether proliferative activity change can be a criterion for estimating the treatment efficiency; 3) acquisition of data on biological peculiarities of different types of tumors. Connection between proliferative activity drop and clinical reaction under tumor radiotherapy is ascertained

  18. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    Science.gov (United States)

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  19. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  20. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  1. Nuclear energy Division - 2011 Activity report

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  2. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    Science.gov (United States)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  3. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  4. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    Science.gov (United States)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  5. Health Activities Project (HAP): Action/Reaction Module.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing activities in timing, improving, and practicing to improve reaction…

  6. National energy ombudsman - 2010 activity report

    International Nuclear Information System (INIS)

    2010-01-01

    This report first gives an overview of the evolutions noticed on the energy market (natural gas and electric power) from the mediator's point of view for the consumer protection: improvement of transparency, struggle against energy precariousness, improvement of the protection of European consumers. Some figures and a description of a typical week of work are given to illustrate the mediator's activity. Solutions are proposed to improve practices: excess payment, index correction, set prices, first necessity tariff, and bill readability. Some social indicators are given and a financial report is provided

  7. Contribution to the study of reactions induced by a low-energy He3 beam on a C12 target

    International Nuclear Information System (INIS)

    Schapira, Jean-Paul

    1965-01-01

    This research thesis reports the study concerning which reaction mode will better describe a nucleus in which the excitation energy is between two extremes. Due to experimental considerations and abilities, this study focuses on light target nuclei and carbon 12. The author describes experimental techniques used for angular distributions (targets, detection system), describes the experimental techniques for activation experiments (experimental set-up, targets, measurement of relative efficient cross section, result analysis, measurement of absolute efficient cross section). The author discusses the experimental results (excitation functions and angular distributions) and the interpretation of elastic scattering results (theoretical background, computation approach, analysis of elastic scattering) and the results of the C 12 (He 3 , α)C 11 reaction [fr

  8. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  9. Investigation of (n, p) and (n, alpha) reactions with thermal and resonance energy neutrons

    CERN Document Server

    Gledenov, Yu M

    2002-01-01

    Influence of results of (n, alpha) and (n, p) reactions cross section and asymmetry measurements on certain branches of fundamental and applied science is considered. For instance, some of the cross sections are critical for comprehension of many scenarios of nuclear synthesis in the Universe. They are also used for studying some aspects of nuclear structure and fundamental symmetries, such as mixing of isospin and non-retaining of spatial parity. And, finally, cross sections of the reactions are of applied interest, for reactor materials technologies specifically. Types of sources and methods of (n, p) and (n, alpha) reactions measurements in energy range of thermal and resonance neutrons are described in the review. Special attention is paid to measurements in radioactive relatively short-lived samples and very small stable samples. Several examples of the measurements are provided, which are of scientific interest, as they permit demonstrating the method used. Possible future measurements are discussed in ...

  10. Dissipative processes in 18O + 9Be and 18O + 181Ta reactions at Fermi energies

    International Nuclear Information System (INIS)

    Erdemchimeg, B.; Mikhailova, T.I.; Artyukh, A.G.; Kaminski, G.; Sereda, Yu.M.; Erdemchimeg, B.; Kaminski, G.; Sereda, Yu.M.; Colonna, M.; Di Toro, M.; Wolter, H.H.

    2010-01-01

    A study of peripheral nuclear collisions at Fermi energies with transport models is presented. It is motivated by experiments devoted to studying of isotopic yields in the reactions 18 O on 9 Be and 181 Ta at E/A = 35 MeV measured at very forward angles. The data show a two-component structure, one centered at beam velocity ('direct component') and another at lower velocities ('dissipative component'). It is shown that the transport calculations describe the general features of the dissipative component of the reaction. In our calculations we take into account the evaporation of the excited, primary projectile-like residues due to statistical decay. This improves the comparison of the results of the calculations with experiment. We find substantially different behavior of the dissipative component in the reactions with light and heavy target.

  11. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  12. Mechanisms of emission of particles charged in 6Li + 6Li and 6Li + 10B reactions at low energies

    International Nuclear Information System (INIS)

    Quebert, Jean

    1964-01-01

    The lithium 6 nucleus is a projectile of interest to study nuclear reactions at low energy due to the possibility to obtain high heats of reaction, and to its structure which can play an important role in the projectile-target interaction. This research thesis focused on the study of two low-energy reactions provoked by lithium projectiles. These reactions are studied within the framework of the theoretical model of aggregates. The first part presents the experimental conditions of both reactions, reports the development and analysis of nuclear plates, and the transformation of a given type of particle histogram into a spectrum in the mass centre system. The next parts report the study of the 6 Li + 6 Li reaction (previous results, kinematic analysis, spectrum of secondary particles, theoretical analysis of results) and of the 6 Li + 10 B reaction (previous results, experimental results, study of the continuous spectrum of alpha particle, reaction mechanisms)

  13. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  14. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  15. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    Science.gov (United States)

    Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2017-10-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences

  16. Direct reactions induced by 16O on 208Pb at high incident energy

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)

  17. The 3rd Nordic meeting on high energy reactions in nuclei

    International Nuclear Information System (INIS)

    Green, A.M.; Kullander, S.

    Abstracts of the 31 lectures given at the meeting are presented. Major emphasis was placed on the nucleon-nucleon and nucleon-antinucleon interaction in bound and unbound systems. Four of the ten sessions were devoted to this subject. Two sessions contained lecture and seminars on 'Isobars in nuclei', two were devoted to hadron-nucleus reactions, one to high-energy heavy-ion reactions and one to new developments of experimental tools. This latter session had two talks, one about channeling with GeV particles and the other about the planned low-energy antiproton facility LEAR at CERN. Talks of more general character were 'The experimental programme at the CERN SC', 'Accelerator produced nuclear fuel' and 'The upsilons, a new family of quark-antiquark bound state'. (JIW)

  18. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  19. Stable and efficient nitrogen-containing-carbon based electrocatalysts for reactions in energy conversion systems.

    Science.gov (United States)

    Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2018-05-17

    High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  1. Background studies of high energy γ rays from (n,γ) reactions in the CANDLES experiment

    Science.gov (United States)

    Nakajima, K.; Iida, T.; Akutagawa, K.; Batpurev, T.; Chan, W. M.; Dokaku, F.; Fushimi, K.; Kakubata, H.; Kanagawa, K.; Katagiri, S.; Kawasaki, K.; Khai, B. T.; Kino, H.; Kinoshita, E.; Kishimoto, T.; Hazama, R.; Hiraoka, H.; Hiyama, T.; Ishikawa, M.; Li, X.; Maeda, T.; Matsuoka, K.; Moser, M.; Nomachi, M.; Ogawa, I.; Ohata, T.; Sato, H.; Shamoto, K.; Shimada, M.; Shokati, M.; Takahashi, N.; Takemoto, Y.; Takihira, Y.; Tamagawa, Y.; Tozawa, M.; Teranishi, K.; Tetsuno, K.; Trang, V. T. T.; Tsuzuki, M.; Umehara, S.; Wang, W.; Yoshida, S.; Yotsunaga, N.

    2018-07-01

    High energy γ rays with several MeV produced by (n,γ) reactions can be a trouble for low background measurements in the underground laboratories such as double beta decay experiments. In the CANDLES project, which aimed to observe the neutrino-less double beta decay from 48Ca, γ rays caused by (n,γ) reactions were found to be the most significant background. The profile of the background was studied by measurements with a neutron source and a simulation with a validity check of neutron processes in Geant4. The observed spectrum of γ rays from (n,γ) reactions was well reproduced by the simulated spectra, which were originated from the surrounding rock and a detector tank made of stainless steel. The environmental neutron flux was derived by the observed event rate of γ rays from (n,γ) reactions using the simulation. The thermal and non-thermal neutron flux were found to be (1.3 ± 0.6) ×10-6 cm-2s-1 and (1.1 ± 0.5) ×10-5 cm-2s-1 , respectively. It is necessary to install an additional shield to reduce the background from (n,γ) reaction to the required level.

  2. On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions

    Directory of Open Access Journals (Sweden)

    Alessandro Pellis

    2016-09-01

    Full Text Available Microwave energy (MWe is, nowadays, widely used as a clean synthesis tool to improve several chemical reactions, such as drug molecule synthesis, carbohydrate conversion and biomass pyrolysis. On the other hand, its exploitation in enzymatic reactions has only been fleetingly investigated and, hence, further study of MWe is required to reach a precise understanding of its potential in this field. Starting from the authors’ experience in clean synthesis and biocatalyzed reactions, this study sheds light on the possibility of using MWe for enhancing enzyme-catalyzed polycondensation reactions and pre-polymer formation. Several systems and set ups were investigated involving bulk and organic media (solution phase reactions, different enzymatic preparations and various starting bio-based monomers. Results show that MWe enables the biocatalyzed synthesis of polyesters and pre-polymers in a similar way to that reported using conventional heating with an oil bath, but in a few cases, notably bulk phase polycondensations under intense microwave irradiation, MWe leads to a rapid enzyme deactivation.

  3. Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD

    International Nuclear Information System (INIS)

    Armesto, Nestor; Bondarenko, Sergey; Quiroga-Arias, Paloma; Milhano, Jose Guilherme

    2008-01-01

    We examine numerically different zero-dimensional reaction-diffusion processes as candidate toy models for high-energy QCD evolution. Of the models examined-Reggeon Field Theory, Directed Percolation and Reversible Processes-only the latter shows the behaviour commonly expected, namely an increase of the scattering amplitude with increasing rapidity. Further, we find that increasing recombination terms, quantum loops and the heuristic inclusion of a running of the couplings, generically slow down the evolution.

  4. Final stage of high energy hadron-nucleus nuclear collision reactions

    International Nuclear Information System (INIS)

    Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.

    1996-01-01

    The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs

  5. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  6. Reaction and total cross sections for low energy π+ and π- on isospin zero nuclei

    International Nuclear Information System (INIS)

    Saunders, A.; Ho/ibraten, S.; Kraushaar, J.J.; Kriss, B.J.; Peterson, R.J.; Ristinen, R.A.; Brack, J.T.; Hofman, G.; Gibson, E.F.; Morris, C.L.

    1996-01-01

    Reaction and total cross sections for π + and π - on targets of 2 H, 6 Li, C, Al, Si, S, and Ca have been measured for beam energies from 42 to 65 MeV. The cross sections are proportional to the target mass at 50 MeV, consistent with transparency to these projectiles. The cross sections are compared to theoretical calculations. copyright 1996 The American Physical Society

  7. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  8. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F. A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  9. The combined resonance tunneling and semi-resonance level in low energy D-D reaction

    International Nuclear Information System (INIS)

    Li Xingzhong; Jin Dezhe; Chang Lee

    1993-01-01

    When nuclear potential wells are connected by an atomic potential well, a new kind of tunneling may happen even if there is no virtual energy level in nuclear potential wells. The necessary condition for this combined resonance tunneling is the resonance in the atomic potential well. Thus, the nuclear reaction may be affected by the action in atomic scale in terms of combined resonance tunneling. The nuclear spectrum data support this idea. (author)

  10. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  11. Peripheral heavy-ion induced reactions at intermediate energies 20MeV

    International Nuclear Information System (INIS)

    Barrette, J.; Berthier, B.; Chavez, E.

    1984-03-01

    Inclusive energy spectra and angular distributions of projectile like fragments in reactions induced by a 44 MeV/nucleon 40 Ar beam bombarding 27 Al and sup(nat)Ti targets show many of the features of high energy fragmentation. However, several aspects such as energy dissipation and production of fragments heavier than the projectile are reminiscent of a low energy behaviour

  12. The Effect of Sports and Physical Activity on Elderly Reaction Time and Response Time

    Directory of Open Access Journals (Sweden)

    Abdolrahman Khezri

    2014-07-01

    Full Text Available Objectives: Physical activities ameliorate elderly motor and cognitive performance. The aim of this research is to study the effect of sport and physical activity on elderly reaction time and response time. Methods & Materials: The research method is causal-comparative and its statistical population consists of 60 active and non-active old males over 60 years residing at Mahabad city. Reaction time was measured by reaction timer apparatus, made in Takei Company (YB1000 model. Response time was measured via Nelson’s Choice- Response Movement Test. At first, reaction time and then response time was measured. For data analysis, descriptive statistic, K-S Test and One Sample T Test were used Results K-S Test show that research data was parametric. According to the results of this research, physical activity affected reaction time and response time. Results: of T test show that reaction time (P=0.000 and response time (P=0.000 of active group was statistically shorter than non- active group. Conclusion: The result of current study demonstrate that sport and physical activity, decrease reaction and response time via psychomotor and physiological positive changes.

  13. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  14. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    Science.gov (United States)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; hide

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  15. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  16. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Shao, Yuyan; Yan, Pengfei; Cheng, Yingwen; Han, Kee Sung; Nie, Zimin; Wang, Chongmin; Yang, Jihui; Li, Xiaolin; Bhattacharya, Priyanka; Mueller, Karl T.; Liu, Jun

    2016-04-18

    Rechargeable aqueous batteries are attracting growing interest for energy storage due to their low cost and high safety. Fundamental understanding of highly reversible aqueous reactions is critical for building high-performance batteries. Herein, we studied the reversibility of Zn/MnO2 battery chemistry in mild aqueous MnSO4 electrolytes. α-MnO2 nanofibers were used as a high performance cathode. Our study provides good evidence for a conversion reaction mechanism through reversible formation of short nanorods and nanoparticle aggregates. This reversible conversion reaction provides an operating voltage of 1.44 V, high capacity of 285 mAh g-1, excellent rate and capacity retention of 92% after 5000 cycles. Zn metal anode also shows high reversibility in the mild aqueous MnSO4 electrolytes. The highly reversible and stable chemistries in aqueous Zn/MnO2 batteries open new opportunity for energy storage technologies with potentially high energy density, high safety, and low cost.

  17. Experimental investigation of dd reaction in range of ultralow energies using Z-pinch

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Grebenyuk, V.M.; Parzhitskij, S.S.

    1998-01-01

    Results of the experiments to measure the dd reaction cross section in the range of deuteron collision energies from 0.1 keV to 1.5 keV using Z-pinch technique are presented. The experiment was performed at the Pulsed Ion Beam Accelerator of the High-Current Electronics Institute in Tomsk. The dd fusion neutrons were registered by scintillation detectors using time-of-flight method and BF 3 detectors of thermal neutrons. At 90% confidence level, the upper limits of the neutron producing dd reaction cross sections are obtained for average deuteron collision energies of 0.11, 0.34, 0.37 and 1.46 keV. The results demonstrate that high-intensity pulsed accelerators with a generator current of 2-3 MA allow the dd reaction cross sections to be measured in the range of deuteron collision energies from 0.8 keV to 3 keV

  18. Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?

    Science.gov (United States)

    Grubert, E.

    2017-12-01

    Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.

  19. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  20. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  1. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  2. Reliable protein folding on non-funneled energy landscapes: the free energy reaction path

    OpenAIRE

    Lois, Gregg; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2008-01-01

    A theoretical framework is developed to study the dynamics of protein folding. The key insight is that the search for the native protein conformation is influenced by the rate r at which external parameters, such as temperature, chemical denaturant or pH, are adjusted to induce folding. A theory based on this insight predicts that (1) proteins with non-funneled energy landscapes can fold reliably to their native state, (2) reliable folding can occur as an equilibrium or out-of-equilibrium pro...

  3. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction

    Science.gov (United States)

    Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei

    2018-04-01

    A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.

  4. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, α, of the energy spectrum, E(k) ∼ k -α , and the total spectral energy, W = ∫E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of α and W as A = 10 b (αW) c , with b = -7.92 ± 0.58 and c = 1.85 ± 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  5. Two-particle one-hole multiple-scattering contribution to 17O energies using an energy-dependent reaction matrix

    International Nuclear Information System (INIS)

    Bando, H.; Krenciglowa, E.M.

    1976-01-01

    The role of 2p1h correlations in 17 O is studied within a multiple-scattering formalism. An accurate, energy-dependent reaction matrix with orthogonalized plane-wave intermediate states is used to assess the relative importance of particle-particle and particle-hole correlations in the 17 O energies. The effect of energy dependence of the reaction matrix is closely examined. (Auth.)

  6. Pneumatic tool torque reaction: reaction forces, displacement, muscle activity and discomfort in the hand-arm system.

    Science.gov (United States)

    Kihlberg, S; Kjellberg, A; Lindbeck, L

    1993-06-01

    Reaction forces, hand-arm displacement, muscle activity and discomfort ratings were studied during the securing of threaded fasteners with three angle nutrunners with different shut-off mechanisms, but with the same spindle torque (72-74 Nm). The three tools were tested according to the method specified in ISO 6544. One of the tools had an almost instantaneous shut-off. Another had a more slowly declining torque curve. For the third tool the maximum torque was maintained for a while before shut-off. Twelve male subjects participated in the study. A force platform measured the reaction force between the subject and the floor. The option of the hand-arm system and the shoulder was measured with an optoelectronic measuring system. The muscle activity (EMG) in six muscles in the arm and shoulder was measured with surface electrodes. Significant differences in the arm movements and ground reaction forces were found between the three tools. The smallest values were found with the fast shut-off tool while the delayed shut-off tool caused the largest values. The EMG measures gave inconsistent response patterns. Discomfort ratings were highly correlated with the time for which the tool torque exceeded 90% of peak preset torque, but the time for which the tool torque exceeded 90% of peak calculated by the method specified in ISO 6544. Nutrunners with a shut-off mechanism that causes a slowly decreasing torque or a torque that is maintained for a while before shut-off should be avoided. If no substitutes are available, then a torque reaction bar should be mounted on the tool.

  7. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes.

    Science.gov (United States)

    Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini

    2016-05-03

    In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.

  8. Review of activities concerning sodium water reaction in LMFBR

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1984-01-01

    This paper presents a review of activities concerning safety engineering programme for steam generators of FBT reactor in India. Leak rate and its effect and leak detection system are briefly discussed

  9. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  10. S-factor of 14 N (α, γ)18 F reaction at low-energies

    Science.gov (United States)

    Khalili, H.

    2018-06-01

    The astrophysical S-factor of the 14 N (α, γ)18 F reaction has been studied at range of bombarding energy 1-1.30 MeV. The 14 N (α, γ)18 F process is important in low energy astrophysics so that a possible source of energy in massive stars which have spent their hydrogen cycle. Using the Wood-saxon potential model, we have been calculated non resonances the astrophysical S-factors for the E 2 transition and our results for Eα = 0.0 MeV is S ≈ 0.5 MeV.b where from experimental is measured to Eα = 0.0 is S ≈ o . 7 MeV.b (Couch et al., 1971) that in comparison with our data good agreement is achieved for the astrophysical S-factor of this process.

  11. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  12. Intermediate- and high-energy reactions of uranium with neon and carbon

    International Nuclear Information System (INIS)

    McGaughey, P.L.

    1982-11-01

    Target fragment production from the interactions of 1.0, 3.0, 4.8, and 12 GeV 12 C and 5.0, 8.0, 20, and 42 GeV 20 Ne with uranium has been measured using off-line gamma-ray spectroscopic techniques. The experimental charge and mass yield distributions are generally consistent with the concepts of limiting fragmentation and factorization at energies of 3.0 GeV and above. The total projectile kinetic energy was found to be the relevant scaling parameter for the comparison of reactions induced by projectiles of different sizes. Light fragments with mass number less than 60 were found to violate limiting fragmentation, and had excitation functions that were strongly increasing with projectile energy until 8.0 to 12.0 GeV. With the 1.0 GeV 12 C beam the pattern of mass yields was quite different from that of all the other reactions, with the normal peak in the fission mass region (80 < A < 145), but with much lower yields below mass number 60 and between mass numbers 145 and 210, indicating that these fragments are formed primarily in very energetic reactions in which large excitation energies are transferred to and significant amounts of mass are removed from the target nucleus. Theoretical predictions of the intra-nuclear cascade, nuclear fireball, and nuclear firestreak models are compared with the experimental results. The intra-nuclear cascade and nuclear firestreak models are both able to predict the general shapes of the experimental distributions, with the exception of the yields for the lightest fragments

  13. Experimental determination of proton induced reaction cross sections on {sup nat}Ni near threshold energy

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Shuza [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Chakraborty, Animesh Kumer [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics; Spellerberg, Stefan; Spahn, Ingo; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Shariff, Md. Asad; Das, Sopan [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Rashid, Md. Abdur [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2016-08-01

    A newly developed facility at the 3 MV Tandem Accelerator at Dhaka for measurement of proton induced reaction cross sections in the energy region below 5 MeV is outlined and tests for the beam characterization are described. The results were validated by comparison with the well-known excitation function of the {sup 64}Ni(p, n){sup 64}Cu reaction. Excitation functions of the reactions {sup nat}Ni(p, x){sup 60,61}Cu, {sup nat}Ni(p, x){sup 55,57,58m+g}Co and {sup nat}Ni(p, x){sup 57}Ni were also measured from threshold to 16 MeV using the stacked-foil technique, whereby irradiations were performed with 5 MeV protons available at the Tandem Accelerator and 16.7 MeV protons at the BC 1710 cyclotron at Juelich, Germany. The radioactivity was measured using HPGe γ-ray detectors. A few results are new, the others strengthen the database. In particular, the results of the reaction {sup nat}Ni(p, x){sup 61}Cu below 3 MeV could serve as beam monitor.

  14. On the nucleon effective mass role to the high energy proton spallation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, B.M., E-mail: biank_ce@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, 24210-346 Niterói, RJ (Brazil); Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil); Pinheiro, A.R.C. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Universidade Federal do Acre, BR 364 km 04, 69920-900 Rio Branco, AC (Brazil); Gonçalves, M. [Comissão Nacional de Energia Nuclear, Rua General Severiano 90, 22290-901 Rio de Janeiro, RJ (Brazil); Duarte, S.B. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Cabral, R.G. [Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil)

    2016-04-15

    We explore the effect of the nucleon effective mass to the dynamic evolution of the rapid phase of proton–nucleus spallation reactions. The analysis of the relaxation time for the non-equilibrium phase is studied by variations in the effective mass parameter. We determine the final excitation energy of the hot residual nucleus at the end of cascade phase and the de-excitation of the nuclear system is carried out considering the competition of particle evaporation and fission processes. It was shown that the excitation energy depends of the hot compound residual nucleus at the end of the rapid phase on the changing effective mass. The multiplicity of particles was also analyzed in cascade and evaporation phase of the reaction. The use of nucleon effective mass during cascade phase can be considered as an effect of the many-body nuclear interactions not included explicitly in a treatment to the nucleon–nucleon interaction inside the nucleus. This procedure represents a more realistic scenario to obtain the neutron multiplicity generated in this reaction, which is a benchmark for the calculation of the neutronic in the ADS reactors.

  15. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  16. The 14N(p, γ)15O reaction studied at low and high beam energy

    International Nuclear Information System (INIS)

    Marta, Michele

    2012-01-01

    The Bethe-Weizsaecker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters' age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun's luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision. The 14 N(p,γ) 15 O reaction is the slowest reaction of the Bethe-Weizsaecker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15 O. Recent experiments studied the region of the resonance at E p = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies. The present research work studied the 14 N(p,γ) 15 O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range E p = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors. At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15 O have been

  17. CEA nuclear energy Directorate - Activity report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the activities of the Directorate at the international level, of its scientific activities, and of the consideration given to quality, and a presentation of the transverse program on advanced materials, this report proposes presentations of activities in different domains: future nuclear industrial systems (reactors of 4. generation, back-end of the future cycle, sustainable management of nuclear materials, fundamental scientific and technological research), optimization of the present industrial nuclear activity (reactors of 2. and 3. generation, front-end and back-end of the fuel cycle), the main tools for nuclear development (numerical simulation, the Jules Horowitz reactor), valorisation, economic support of Haute-Marne and Meuse territories (the Syndiese project), nuclear dismantling and decontamination (dismantling projects, projects and works in Fontenay-aux-Roses, Grenoble and Saclay, waste and material flow management, nuclear service facilities, transports). It also presents the activities of some specific CEA centres like Marcoule (R and D in fuel cycle), Cadarache (future energies) and Saclay (nuclear sciences and simulation of reactors and fuel cycle)

  18. Energy and Rate Determinations to Activate the C-C σ-BOND of Acetone by Gaseous NI^+

    Science.gov (United States)

    Castleberry, Vanessa A.; Dee, S. Jason; Villarroel, Otsmar J.; Laboren, Ivanna E.; Frey, Sarah E.; Bellert, Darrin J.

    2009-06-01

    A unique application of a custom fabricated photodissociation spectrometer permits the determination of thermodynamic properties (activation energies), reaction rates, and mechanistic details of bare metal cation mediated C-C σ-bond activation in the gas phase. Specifically, the products and rates resulting from the unimolecular decomposition of the Ni^+Acetone (Ni^+Ac) adduct are monitored after absorption of a known amount of energy. The three dissociative products which are observed in high yield are Ni^+, Ni^+CO, and CH3CO^+. The latter two fragment ions result from the activation of a C-C σ-bond. It was found that minimally 14 000 cm^{-1} of energy must be deposited into the adduct ion to induce C-C bond breakage. Preliminary results for the Ni^+ activation of the C-C σ-bond of acetone indicate that there are (at least) two low energy reaction coordinates leading to C-C bond breakage. The lower energy pathway emerges from the doublet ground state with an upper limit to the activation energy of 14 000 cm^{-1} and reaction rate ≈0.14 molecules/μs. The higher energy path is assumed to be along the quartet reaction coordinate with a minimum activation energy of 18 800 cm^{-1} (relative to the ground state) and a slightly slower reaction rate.

  19. Energy National Mediator activity report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    After some data illustrating the activity of the Energy National Mediator in 2009, and an interview of a representative of this institution who comments its practice, this report proposes the opinions of the different involved actors (communities, consumer associations, providers, and so on) about the mediator. It puts the adopted strategy in perspective from the past year to the coming one. It describes the missions: information, advice, protection. It reports actions, recommendations and facts for 2009 in terms of consumer information, group mediation, poverty management, samples of analysed disputes. It presents the social organisation and gives a financial assessment of the institution

  20. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  1. Polymeric reaction of polymer-monomer system for pressure sensitive adhesives by low energy electron beam

    International Nuclear Information System (INIS)

    Takiguchi, R.; Uryu, T.

    1985-01-01

    Application of low-energy electron beam to non-solvent type pressure sensitive adhesives is investigated. The adhesive properties such as peel strength and holding time (dead-load strength) were closely related to the reaction of acrylate polymer-monomer systems. The reaction behavior is elucidated by combining the measurement of gel fraction, infrared spectrum of gel, and the molecular weight distribution detected by gel permeation chromatography. It was important for the production of pressure sensitive adhesives by electron beam that the adhesive with high peel strength and long holding time is composed of a proper combination of three factors, that is, about 35% gel fraction, 25% monomer units in gel, and 15% graft efficiency by irradiating the polymer-monomer system containing low molecular weight poly (butyl acrylate). (author)

  2. The search for high-energy deuterons in the 3He +3He reaction

    International Nuclear Information System (INIS)

    Pigeon, R.; Slobodrian, R.J.

    1979-01-01

    High-energy deuterons have been detected from the 3 He + 3 He reaction with a system sensitive to cross-sections of 0.6 nb sr -1 . Several tests have permitted to evaluate the small contribution of spurious events. The deuterons are kenematically consistent with the reaction 3 He + 3 He→ 2 H + 4 He + e + +ν, but the measured cross-section at 20deg laboratory is too high for a weak-interaction process; (1.3 +- 0.2) nb sr -1 . It might be due to an interaction of intermediate strength causing the decay of pp pairs ( 3 He) into deuterons. Other alternatives and the implications concerning fusion processes and the production of neutrinos in the sun are discussed in the text

  3. Reaction dynamics studies for the system 7Be + 208Pb at Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Mazzocco M.

    2017-01-01

    Full Text Available The scattering process of the Radioactive Ion Beam 7Be from a 208Pb target was measured at three near-barrier energies. The quasi-elastic angular distributions were analyzed within the framework of the optical model to extract the reaction cross sections. The results are compared with those obtained for the reactions induced by the mirror projectile 7Li and by the lightest particle-stable lithium isotope 6Li on the same target. The angular distributions for the production of the two 7Be constituent clusters, namely 3He and 4He, were also measured. In agreement with what observed for the interaction of 7Be with lighter targets, the production of the heavier helium isotope resulted to be much more abundant than that of its lighter counterpart.

  4. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  5. Reaction dynamics studies for the system 7Be + 208Pb at Coulomb barrier energies

    Science.gov (United States)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Marquinez-Duran, G.; Martel, I.; Nicoletto, M.; Pakou, A.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stroe, L.

    2017-11-01

    The scattering process of the Radioactive Ion Beam 7Be from a 208Pb target was measured at three near-barrier energies. The quasi-elastic angular distributions were analyzed within the framework of the optical model to extract the reaction cross sections. The results are compared with those obtained for the reactions induced by the mirror projectile 7Li and by the lightest particle-stable lithium isotope 6Li on the same target. The angular distributions for the production of the two 7Be constituent clusters, namely 3He and 4He, were also measured. In agreement with what observed for the interaction of 7Be with lighter targets, the production of the heavier helium isotope resulted to be much more abundant than that of its lighter counterpart.

  6. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  7. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  8. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  9. Estimating activity energy expenditure: how valid are physical activity questionnaires?

    Science.gov (United States)

    Neilson, Heather K; Robson, Paula J; Friedenreich, Christine M; Csizmadi, Ilona

    2008-02-01

    Activity energy expenditure (AEE) is the modifiable component of total energy expenditure (TEE) derived from all activities, both volitional and nonvolitional. Because AEE may affect health, there is interest in its estimation in free-living people. Physical activity questionnaires (PAQs) could be a feasible approach to AEE estimation in large populations, but it is unclear whether or not any PAQ is valid for this purpose. Our aim was to explore the validity of existing PAQs for estimating usual AEE in adults, using doubly labeled water (DLW) as a criterion measure. We reviewed 20 publications that described PAQ-to-DLW comparisons, summarized study design factors, and appraised criterion validity using mean differences (AEE(PAQ) - AEE(DLW), or TEE(PAQ) - TEE(DLW)), 95% limits of agreement, and correlation coefficients (AEE(PAQ) versus AEE(DLW) or TEE(PAQ) versus TEE(DLW)). Only 2 of 23 PAQs assessed most types of activity over the past year and indicated acceptable criterion validity, with mean differences (TEE(PAQ) - TEE(DLW)) of 10% and 2% and correlation coefficients of 0.62 and 0.63, respectively. At the group level, neither overreporting nor underreporting was more prevalent across studies. We speculate that, aside from reporting error, discrepancies between PAQ and DLW estimates may be partly attributable to 1) PAQs not including key activities related to AEE, 2) PAQs and DLW ascertaining different time periods, or 3) inaccurate assignment of metabolic equivalents to self-reported activities. Small sample sizes, use of correlation coefficients, and limited information on individual validity were problematic. Future research should address these issues to clarify the true validity of PAQs for estimating AEE.

  10. The astrophysical S-factor for dd-reactions at keV-energy range

    International Nuclear Information System (INIS)

    Bystritskii, V.; Bystritsky, V.; Chaikovsky, S.

    2001-01-01

    The experimental results of measurements of the astrophysical S-factor for dd-reaction at keV-energy range collision energies using liner plasma technique are presented. The experiments were carried out at the high current generator of the Institute of High-Current Electronics in Tomsk, Russia. The measured values of the S-factors for the deuteron collision energies 1.80, 2.06 and 2.27 keV are S dd =(114±68), (64±30), (53±16) b x keV, respectively. The corresponding cross sections for dd-reactions, described as a product of the barrier factor and measured astrophysical S-factor, are σ dd n (E col =1.80 keV)=(4.3±2.6) x 10 -33 cm 2 ; σ dd n (E col =2.06 keV)=(9.8±4.6) x 10 -33 cm 2 ; σ dd n (E col =2.27 keV)=(2.1±0.6) x 10 -32 cm 2 . (orig.) [de

  11. Generation and scaling behaviour of high-energy pions in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Riess, F.

    1979-12-01

    Calculations with the help of a collision approximation as carried out in this study, are certainly linked with many uncertainties. The different forms of pulse distributions and cross sections used cover however such a broad region of possibilities, that even detailed calculations will not give any results essentially deviating from those obtained here. The various assumptions and statements could be relatively easily investigated using the collision approximation. Hence the above-mentioned aim, to pick out the principal information from the statement is achieved. It was shown that taking the two assumptions - nucleon-nucleon collisions only and - consideration of a cluster effect, in both cases the experimental results for a given reaction can be well reproduced as long as one only regards one projectile energy. It is important in the first case that the pulse distribution in the region of 0,5 to 1 GeV/c contains sufficiently large components - a simple Gauss distribution with a 'normal' parameter from nuclean physics is not sufficient here. The cluster statement provides the high-energy pions through the changed kinematics, compared to pure nucleon-nucleon collisions, and through the greater energy provided by a cluster in the reaction. (orig./HSI) [de

  12. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

    Directory of Open Access Journals (Sweden)

    Oscar D. Montoya-Giraldo

    2014-01-01

    Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

  13. Development of catalysts for chemical reactions driven by concentrated solar energy

    International Nuclear Information System (INIS)

    Berman, A.; Levitan, R.; Levy, M.

    1992-03-01

    The aim of this phase of the work is to study commercially available low priced catalysts, for the methanation and reforming processes in the closed-loop solar chemical heat pipe. This report summarized some long term tests of commercially available methanation catalysts and the measurement of their active surface before and after reaction. It was found that the 1%Ru on alumina stars catalysts (prepared by Englehard Company according to our request) is very active and stable at 350-750 C. The catalyst 'A' produced in Russia, is less active, however, did not lose the mechanical strength. The 50% Ni/SiO 2 catalyst is active as the 'A' catalyst but loses its activity after treatment at temperature > 600 C, its geometrical size shrinked. (authors). 25 refs., 25 figs., 36 tabs

  14. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  15. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  16. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  17. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Manwoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-08-15

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on {sup nat}Cd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the {sup 110,113g,117m}Sn, {sup 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117g}In, and {sup 111m,115g}Cd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  18. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    KAUST Repository

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  19. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  20. De-excitation gamma-ray technique for improved resolution in intermediate energy photonuclear reactions

    International Nuclear Information System (INIS)

    Kuzin, A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Fissum, K.; Issaksson, L.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Gregel, J.

    1997-01-01

    The 12 C (γ,p) reaction was studied. The experiment was done at the MAX Laboratory of Lund University, using tagged photons with energy between 50 and 70 MeV and natural carbon targets. It has been possible to detect γ-ray emitted from the residual nucleus, in coincidence with photoprotons leading to the excited residual state. The 200 KeV gamma-ray resolution permitted the identification of the residual states and allowed off-line cuts to be made in order to identify the excitation region in 11 B from what particular de-excitation gamma-ray were seen. 9 refs., 1 tab., 3 figs

  1. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  2. On the Determination of the 7Be(n, α)4He Reaction Cross Section at BBN Energies

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Bertulani, C. A.; Hou, S. Q.; La Cognata, M.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2017-12-01

    7Be destruction channels are currently a matter of study because of their influence on the 7Li cosmological abundances. Here, we determine the cross section of the (n, α) reaction by using Trojan Horse experimental data for the 7Li(p, α)4He reaction and correcting for Coulomb effects. The deduced 7Be(n, α)4He data overlap with the Big Bang nucleosynthesis energies and the deduced reaction rate allows us to evaluate the corresponding cosmological implications.

  3. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  4. Low energy ion-molecule reaction dynamics and chemiionization kinetics: Progress report, February 1, 1985-January 31, 1988

    International Nuclear Information System (INIS)

    Farrar, J.M.

    1988-01-01

    The research program at Rochester is devoted to an understanding of the dynamics of elementary gas phase ionic reactions by using the molecular beam methods. We seek to elucidate pathways for energy disposal in elementary reactions, with the goal of using this information to understand the topology of the potential surfaces which govern the reaction, applying the results to ionic channels in combustion systems. We have made significant accomplishments in several distinct areas of research in crossed beam studies of ion-neutral reaction dynamics in the past three years. Our research has focused on the following topics and has resulted in 15 publications and submissions to major journals, with several additional manuscripts in preparation: dynamics of gas phase proton transfer reactions, gas phase carbon and methyl cation chemistry, reactive scattering from double minimum potentials, reactions of highly vibrationally excited ions: NH 3 + + D 2 , and electron and proton transfer reactions of anions. 9 refs

  5. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  6. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  7. Multiple scattering theory and applications for intermediate energy reactions of nuclei

    International Nuclear Information System (INIS)

    Ludeking, L.D.

    1979-01-01

    Interactions of two composite clusters are treated in a multiple scattering framework whereby many-particle operators are decomposed into a systematic and finite series such that there is an ordered sequestering according to particle rank. Thus, an N-body operator is written as the superposition of all distinct groupings of interactions that occur between particle pairs, triplets, quartets, etc., such that all groupings contain at least one particle from each of the composite systems. It is demonstrated how the transition operator, a reaction operator, and an optical potential may be described in this context. The general structure of such decompositions is shown, and the connection to the standard multiple-scattering prescriptions, delineated. The direct reaction amplitude for stripping and pickup is described, and the two potential formula of Gell-Mann and Goldberger is derived. The multiple scattering formalism for direct reactions is constructed in the eikonal approximation. The sensitivity of the transition cross section to the target density and nucleon-nucleon density correlations are examined in this framework. The limitations of the zero-range approximation to the deuteron vertex function are examined by comparison with the finite-range vertex function at a range of energies. 25 figures, 5 tables

  8. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  9. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  10. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  11. Energy distribution of neutrons from the (n,2n) reaction in 238U

    International Nuclear Information System (INIS)

    Misulovin, A.

    1978-12-01

    Energy distribution of the first and second neutrons from (n,2n) scattering event in 238 U was evaluated according to the consistent compound nucleus model recently proposed by Segev. The law for deriving the energy distribution of secondary neutrons from a (n,2n) scattering event, depends on whether the reaction is considered as a simultaneous emission of two neutrons from one compound nucleus, or a successive emission of neutrons from different compound nuclei. Segev has presented a means of calculating the energy distribution assuming the latter model. The laws presented in the ENDF/B data files suggest the former model. The evaluation was based on inelastic level excitation and evaporation data for 238 U and 237 U. Data was retrieved from ENDF/B files. The evaporation data for 237 U was based on (γ,n) reaction 238 U. The inelastic level excitation data for 237 U was evaluated at the Soreq Nuclear Research Centre. It is concluded from the application of Segev's model to 238 U, that the energetic spectrum of secondary neutrons, is harder in the high range of energy than the one predicted by the use of the distribution law presented in ENDF/B data files. The spectrum of secondary (n,2n) neutrons, resulting from the interaction of 14 MeV neutrons in 238 U calculated with Segev's model, is compared with the corresponding spectrum of the LLL library, ENDF/B library and the recent evaluation of BNWL. It is found that the spectrum evaluated by LLL and BNWL is harder than that evaluated with Segev's model

  12. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  13. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  14. Investigations of (. cap alpha. ,. cap alpha. 'x) reactions up to 40 MeV/A bombarding energy

    Energy Technology Data Exchange (ETDEWEB)

    Machner, H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Kernphysik; Feldmeier, H [ed.

    1980-02-01

    The angle integrated cross sections of continuous nucleon spectra from light ion induced reactions could be well reproduced within nonequilibrium statistical models. An extended exciton model even allows the calculations of angular distributions. Energy and linear momentum dissipation are treated with the help of a generalized master equation. The Exciton Coalescence Model (ECM) reproduces the angular distributions of complex particles emitted in nuclear reactions at moderate energies.

  15. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    International Nuclear Information System (INIS)

    Warshaw, S I

    2001-01-01

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF

  16. Low-energy d+d fusion reactions via the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A., E-mail: tumino@lns.infn.it [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy); Spitaleri, C. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mukhamedzhanov, A.M. [Cyclotron Institute Texas A and M University, College Station, TX (United States); Typel, S. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH - Theorie, Darmstadt (Germany); Aliotta, M. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Burjan, V. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Gimenez del Santo, M. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Kiss, G.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); ATOMKI, Debrecen (Hungary); Kroha, V.; Hons, Z. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); La Cognata, M.; Lamia, L. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mrazek, J. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Pizzone, R.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Piskor, S. [Nuclear Physics Institute of ASCR, Rez (Czech Republic); Rapisarda, G.G.; Romano, S.; Sergi, M.L.; Sparta, R. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy)

    2011-06-06

    The bare nucleus S(E) factors for the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured for the first time via the Trojan Horse Method off the proton in {sup 3}He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  17. Low energy p-Be nuclear reactions for depth-profiling Be in alloys

    International Nuclear Information System (INIS)

    Pronko, P.P.; Okamoto, P.R.; Weidersich, H.

    1977-01-01

    Beryllium distributions within the first micron of the surface of nickel- or copper-based alloys were investigated with a 300-keV proton probe utilizing low energy nuclear reactions. Be was segregated in Ni by point defect flows to the surface of the specimen during Ni-ion bombardment of elevated temperatures. The nuclear reactions used are 9 Be(p,d) 8 Be and 9 Be(p,α) 6 Li. The deuteron and alpha groups are simultaneously observable using a standard surface barrier detector. Observations were made at a 150 0 scattering angle; a 2.5 μ mylar filter in front of the detector was used for observing the deuteron yields. The alpha group may be observed with or without the filter depending on whether counting statistics or energy resolution are the more important constraints. Significant Be segregation toward the surface was observed in specimens after irradiation at 625 0 C to 23 dpa with 3.2-MeV Ni ions. Concentrations of Be were nearly doubled within 500 A of the surface and a region depleted of Be extended below the surface layer to a depth of about 3000 A. These results are in agreement with predictions

  18. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  19. Low-energy d+d fusion reactions via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.M.; Typel, S.; Aliotta, M.; Burjan, V.; Gimenez del Santo, M.; Kiss, G.G.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Pizzone, R.G.; Piskor, S.; Rapisarda, G.G.; Romano, S.; Sergi, M.L.; Sparta, R.

    2011-01-01

    The bare nucleus S(E) factors for the 2 H(d,p) 3 H and 2 H(d,n) 3 He reactions have been measured for the first time via the Trojan Horse Method off the proton in 3 He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4±1.8 MeVb for 3 H+p and 60.1±1.9 MeVb for 3 He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  20. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Reisenweaver, D W.; )

    2005-01-01

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  1. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A

    International Nuclear Information System (INIS)

    Prunet, M.

    1995-01-01

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley's Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, π + π - annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to α-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 μ) for better mass resolution, in particular in the ρ region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, α-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt) α dependence with α ≅ 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the ρ, ω vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs

  2. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo for proton activation analysis (PAA) purposes

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Alzahrani, J.; Azzam, A.; Nuclear Research Center, Cairo

    2011-01-01

    The experimental proton induced reaction cross sections on some elements of the Havar alloy were measured using the activation method and the well established stacked-foil technique combined with high resolution gamma-ray spectroscopy. They included the reactions nat Ni(p,x) 57 Ni, nat Co(p,x) 58(m+g) Co and nat Mo(p,x) 94g,95g,96(m+g) Tc, the aim being to obtain reliable data in the proton energy range up to 26 MeV for some important reactions to be used in the proton activation analysis of steel or other alloys. Irradiations were performed using the CS-30 Cyclotron at KFSH and RC, Riyadh, Saudi Arabia. The activity measurements were carried out in PNU laboratories, Riyadh, Saudi Arabia. The experimental excitation functions for the investigated reactions were constructed and compared with the performed computed theoretical nuclear model calculations using two different codes: ALICE-IPPE and TALYS. A comparison between our measured cross-section values and the available published data is also presented, with a view to checking the consistency of the reported experimental work from various laboratories.

  3. Calculating activation energies for temperature compensation in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2011-01-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation

  4. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    Science.gov (United States)

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. © 2016 British Society for Immunology.

  5. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    International Nuclear Information System (INIS)

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.; Palit, R.; Majumdar, I.; Joshi, P. K.; Jain, H. C.

    2008-01-01

    Measurement of fusion cross sections for the 6,7 Li + 24 Mg reactions by the characteristic γ-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these γ-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l cr ) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions

  6. Transfer of energy from irradiated crystals to redox reactions: iodide/bromate and nitrite/bromate systems

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Madhava Rao, B.S.; Bedekar, M.J.

    1978-01-01

    Earlier it had been shown by the authors that some of the redox reactions, which do not take place at room temperature can be induced by γ radiation. The yields are proportional to the dose. Results reported here show that instead of direct irradiation, the energy stored in irradiated crystals in the form of F and hole centres can be available, in part, in effecting redox reactions. The mechanism of such an energy transfer is discussed with reference to reactions in the I - +BrO 3 - and NO 2 - +BrO 3 - systems due to the addition of irradiated NaCl. (author)

  7. The Limit of Free Magnetic Energy in Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  8. Applications of Potential Energy Surfaces in the Study of Enzymatic Reactions

    OpenAIRE

    Bushnell, Eric A. C.; Huang, WenJuan; Gauld, James W.

    2012-01-01

    From a generated PES, one can determine the relative energies of species involved, the sequence in which they occur, and the activation barrier(s) associated with individual steps or the overall mechanism. Furthermore, they can provide more insights than a simple indication of a path of sequential mechanistic structures and their energetic relationships. The investigation into the activation of O2 by alpha-ketoglutarate-dependent dioxygenase (AlkB) clearly shows the opportunity for spin inver...

  9. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.

    Science.gov (United States)

    Zhou, Yong; Zhang, Dong H

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH4 reaction and the H2+CH3 reaction are calculated. Simulations of the H+CH4 reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable high accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH4 rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H2+CH3 reaction are found to be in good consistency with experimental observations.

  10. Wind energy activities at UNIANDES, Colombia

    International Nuclear Information System (INIS)

    Pinilla, A.

    1991-01-01

    In Colombia, a cooperation has been established between the Universidad de Los Andes and local manufacturers. It shows that the interaction between a local R ampersand D institution and local manufacturers can stimulate the introduction of small wind pumps. Wind energy activities at the University started in 1973, which resulted in the first product in 1976. Two wind pumps have been developed. One is the Jober (D=2.5 m, H<25m, 900 US$, 600 when installed), the other is the Gaviotas (D=2m, H<15m, 450 US$) wind pump. A lot of good, low cost measuring equipment has been developed at the University, a.o. an electro-magnetic flow meter, which costs only 200 US$ (commercially available products cost 3,000 US$). Good experiences have been obtained in research under field conditions, with participation of the end-users. Gaviotas has a remarkable marketing strategy: during the wet season some 40 to 60 wind pumps are manufactured. In the dry season each installed Gaviotas wind pump is visited for maintenance. These maintenance visits are combined with promotion: potential users in the neighbourhood are taken to the wind pumps for demonstration. Regarding future activities, a proposal for a joint program with the Technical University in Eindhoven (Netherlands) and the Reading University in the United Kingdom has been approved. 6 figs., 4 ills., 5 refs

  11. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  12. Halogenating reaction activity of aromatic organic compounds during disinfection of drinking water

    International Nuclear Information System (INIS)

    Guo Gaimei; Chen Xiaodong

    2009-01-01

    The halogenating reactions of five aromatic organic compounds (AOCs) with aqueous chlorine (HOCl/OCl - ) and aqueous bromine (HOBr/OBr - ) were studied with an aim to compare the formation properties of haloacetic acids (HAAs) for the corresponding chlorination or bromination reactions of AOCs, respectively. The experiment results indicated that the HAAs substitution efficiency for the bromination reactions of AOCs was greater than that for the chlorination reactions, and the formation of HAAs had a strong dependence on the chemical structure of AOCs. The chlorination or bromination reaction activities for the AOCs with electron donating functional groups were higher than that for them with electron withdrawing functional groups. The kinetic experiments indicated that the reactions of aqueous bromine with phenol were faster than those of aqueous chlorine with phenol and the halogen consumption exhibited rapid initial and slower consumption stages for the reactions of phenol with aqueous chlorine and bromine, respectively. In addition, the HAAs production for the chlorination reaction of phenol decreased with the increase of pH. These conclusions could provide the valuable information for the effective control of the disinfection by-products during drinking water treatment operation

  13. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    Science.gov (United States)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational

  14. Microwave activation of palladium nanoparticles for enhanced ethanol electrocatalytic oxidation reaction in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, MB

    2015-02-01

    Full Text Available in alkaline medium (in terms of high mass activity stability and fast reaction kinetics). The remarkable microwave-induced properties on the Pd catalyst promise to revolutionize the use of microwave for catalyst activation for enhanced heterogeneous catalysis...

  15. Cross Sections for the Production of Residual Nuclides by Proton-Induced Reactions with Uranium at Medium Energies

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Michel, R.; Uosif, M.A.M.; Issa, S.A.M.; Flamentc, J.L.; David, J.C.; Leray, S.

    2009-01-01

    The production of residual nuclides by proton-induced reactions on uranium is investigated using activated targets from irradiation experiments at Saturne II synchrocyclotron at the Laboratory National Saturne/Saclay. These investigations contribute to the European research project NUDATRA within the IP EUROTRANS in which the feasibility of accelerator-driven transmutation of nuclear waste is evaluated. Experimental cross sections are derived from gamma-spectrometric measurements. A total of 1894 cross-section was deter-mined covering 44 residual nuclides in the energy range from 211 MeV to 2530 MeV. The experimental data together with those of earlier work of our group are discussed in the context of theoretical excitation functions calculated by the newly developed INCL4 + ABLA and the TALYS codes

  16. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  17. Evaluation of reactor induced (n,p) reactions for activation analysis of titanium in geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Garcia, R; Cohen, I M [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1984-05-01

    The possibilities of reactor induced (n,p) reactions as a tool for neutron activation analysis of titanium in geological samples are discussed. The interference of calcium and scandium is experimentally evaluated. Results for Ti, Ca and Sc in GSP-1 and PCC-1 standard rocks are presented. Based on the experimental values, it is concluded that the /sup 47/Ti(n,p)/sup 47/Sc reaction is the most favourable for titanium determination. 11 refs.

  18. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Passell, Thomas O.

    2006-01-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ∼ 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)

  19. Alternative Interpretation of Low-Energy Nuclear Reaction Processes with Deuterated Metals Based on the Bose-Einstein Condensation Mechanism

    Science.gov (United States)

    Kim, Yeong E.; Passell, Thomas O.

    2006-02-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ~50, implying that (D + Li) reactions may be occuring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested.

  20. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Passell, Thomas O. [TOP Consulting, PO Box 336, Palo Alto, CA 94302-0336 (United States)

    2006-07-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of {approx} 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)

  1. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Tobin, M.T.; Vujic, J.L.; Sanz, J.

    1996-01-01

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF 2 ) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established

  2. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  3. Applications of Potential Energy Surfaces in the Study of Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Eric A. C. Bushnell

    2012-01-01

    Full Text Available From a generated PES, one can determine the relative energies of species involved, the sequence in which they occur, and the activation barrier(s associated with individual steps or the overall mechanism. Furthermore, they can provide more insights than a simple indication of a path of sequential mechanistic structures and their energetic relationships. The investigation into the activation of O2 by alpha-ketoglutarate-dependent dioxygenase (AlkB clearly shows the opportunity for spin inversion, where one can see that the lowest energy product may be formed via several possible routes. In the investigation of uroporphyrinogen decarboxylase III (UROD, the use of QM/MM methods allowed for the inclusion of the anisotropic protein environment providing greater insight into the rate-limiting barrier. Lastly, the mechanism of 6-phospho-α-glucosidase (GlvA was discussed using different active site models. In particular, a continuum model PES was compared to the gas-phase PES.

  4. Calculation of the energy of explosives with a partial reaction model. Comparison with cylinder test data

    Energy Technology Data Exchange (ETDEWEB)

    Sanchidrian, Jose A.; Lopez, Lina M. [Universidad Politecnica de Madrid - E.T.S.I. Minas, Rios Rosas 21, E-28003 Madrid (Spain)

    2006-02-15

    The energy delivered by explosives is described by means of the useful expansion work along the isentrope of the detonation products. A thermodynamic code (W-DETCOM) is used, in which a partial reaction model has been implemented. In this model, the reacted fraction of the explosive in the detonation state is used as a fitting factor so that the calculated detonation velocity meets the experimental value. Calculations based on such a model have been carried out for a number of commercial explosives of ANFO and emulsion types. The BKW (Becker-Kistiakowsky-Wilson) equation of state is used for the detonation gases with the Sandia parameter set (BKWS). The energy delivered in the expansion (useful work) is calculated, and the values obtained are compared with the Gurney energies from cylinder test data at various expansion ratios. The expansion work values obtained are much more realistic than those from an ideal detonation calculation and, in most cases, the values predicted by the calculation are in good agreement with the experimental ones. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    Science.gov (United States)

    Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan

    2008-10-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.

  6. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  7. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis

    2017-01-01

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen...... improvement over pure MnOx. These films are characterized with operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. The magnitude of the enhancement is correlated to the size of the Au domains, where larger domains...

  8. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  9. Simple Activity Demonstrates Wind Energy Principles

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  10. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  11. Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Kibsgaard, Jakob; Hellstern, Thomas R.; Choi, Shin-Jung

    2017-01-01

    We report the first synthesis of a fully contiguous large area supported thin film of highly ordered mesoporous Ru and RuO2 and investigate the electrocatalytic properties towards the oxygen evolution reaction (OER). We find that the nanoscale porous network of these catalysts provides significant...... enhancements in geometric OER activity without any loss in specific activity. This work demonstrates a strategy for engineering materials at the nanoscale that can simultaneously decrease precious metal loading and increase electrode activity....

  12. Extended sudden approximation model for high-energy nucleon removal reactions

    Energy Technology Data Exchange (ETDEWEB)

    Carstoiu, F.; Sauvan, E.; Orr, N.A. [Caen Univ., Lab. de Physique Corpusculaire, Institut des Sciences de la Matiere et du Rayonnement, IN2P3-CNRS ISMRA, 14 (France); Carstoiu, F. [IFIN-HH, Bucharest-Magurele (Romania); Bonaccorso, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2004-04-01

    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of {sup 17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)

  13. Extended sudden approximation model for high-energy nucleon removal reactions

    International Nuclear Information System (INIS)

    Carstoiu, F.; Sauvan, E.; Orr, N.A.; Carstoiu, F.; Bonaccorso, A.

    2004-04-01

    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17 C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)

  14. 1H(d,2p)n reaction at 2 GeV deuteron energy

    International Nuclear Information System (INIS)

    Erohuml, J.; Fodor, Z.; Koncz, P.; Seres, Z.; Perdrisat, C.F.; Punjabi, V.; Boudard, A.; Bonin, B.; Garcon, M.; Lombard, R.; Mayer, B.; Terrien, Y.; Tomasi, E.; Boivin, M.; Yonnet, J.; Bhang, H.C.; Youn, M.; Belostotsky, S.L.; Grebenuk, O.G.; Nikulin, V.N.; Kudin, L.G.

    1994-01-01

    The 1 H(d,2p)n deuteron breakup reaction was measured at 2 GeV deuteron energy in a kinematically complete experiment. Fivefold differential cross sections are given in a wide range of kinematical variables and analyzed in terms of impulse approximation and NN rescattering. The deuteron momentum density was determined and deviations were found depending on the value of the four-momentum transfer |t| in the scattering process. At low |t| the momentum densities are in good agreement with the impulse approximation whereas large discrepancies were found above q∼200 MeV/c when the four-momentum transfer was large. Various possible origins of the anomalous behavior at high q values are discussed

  15. Aspects of kinematical coincidence measurements of excitation energy division in damped reactions

    International Nuclear Information System (INIS)

    Toke, J.; Schroeder, W.U.; Huizenga, J.R.; Rochester Univ., NY

    1990-01-01

    It is shown that the finite resolution inherent in the kinematical coincidence method leads to systematic errors in the deduced (primary) physical quantities if the latter are calculated based on mass and linear momentum conservation equations alone. As an example, application of this method for measuring excitation energy of the fragments from damped reactions is reviewed. In such a case, finite resolution effects generate significant instrumental, or 'background' correlations between the physical quantities reconstructed in a straightforward fashion, hence, if not accounted for, they may lead to the qualitative misinterpretation of the data. Experimental measures are discussed which appear necessary in order to ensure proper accuracy of the finite resolution corrections. An alternative method of data analysis is presented which is much less susceptible to the finite resolution effects discussed. (orig.)

  16. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  17. Role of rotational energy component in the dynamics of 16O+198Pt reaction

    Directory of Open Access Journals (Sweden)

    Sharma Manoj K.

    2017-01-01

    Full Text Available The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS and the non-sticking (INS limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2 and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia.

  18. Salient features of heavy ion reactions in the intermediate energy region

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1987-01-01

    In this lecture the attention is focused on the most central and therefore generally also the most violent collisions. It is necessary to remember that the non-participating volumes could be very different for symmetric and asymmetric reactions. The onset of the multifragmentation channel or rather the cease of the fusion process is the first topic to be discussed. This question is directly related to the limitation in energy and momentum transfer and thus to the question about nuclear transparency. Exclusive data on multifragmentation on an event-by-event basis, which may help the model constructors, is presented as the second topic. In lecture the onset of fragmentation, fragment sizes in multifragmentation processes, the origin of light particle correlations and emission of pions and kaons close to the threshold are discussed

  19. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  20. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.