WorldWideScience

Sample records for reactant gas composition

  1. Polyimide resin composites via in situ polymerization of monomeric reactants

    Science.gov (United States)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  2. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    Science.gov (United States)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  3. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  4. The effect of layer thickness and composition on the kinetics of solid state reactions in the niobium-selenium system studied using superlattice reactants

    International Nuclear Information System (INIS)

    Fukuto, M.; Kevan, S.D.

    1997-01-01

    The ability to form an amorphous reaction intermediate by the low temperature interdiffusion of a modulated elemental reactant is shown to be a function of the overall composition as well as elemental layer thicknesses in the niobium-selenium system. For niobium-rich reactants, an amorphous reaction intermediate was observed to form upon low temperature annealing of reactants with modulation thicknesses less than 60 A. Further annealing of the amorphous intermediates led to the crystallization of Nb 2 Se, Nb 5 Se 4 or Nb 3 Se 4 depending upon the overall composition of the amorphous intermediate. Modulated elemental reactants with overall compositions containing more than two-thirds selenium were found to heterogeneously nucleate NbSe 2 at the reacting interfaces. The formation of the thermodynamically expected compounds Nb 2 Se 3 , NbSe 3 , and Nb 2 Se 9 at their respective compositions required extended high temperature annealing to react the dichalcogenide with the remaining elemental reactants. A striking difference between the evolution of the low angle diffraction patterns in these two composition regimes suggests the differences in the reaction kinetics result from a composition dependence of the diffusion coefficients. (orig.)

  5. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  6. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  7. Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2010-01-01

    The cell performance enhancement of a proton exchange membrane fuel cell (PEMFC) has been numerically investigated with the prominence-like form catalyst layer surface of the same composition at the cathodic half-cell of a PEMFC. The geometries of the prominence-like form catalyst layer surface are assigned as one prominence, three prominences, and five prominences catalyst layer surfaces with constant distance between two prominences in the same gas diffusion layer (GDL) for the purpose of investigating the cell performance. To confine the current investigation to two-dimensional incompressible flows, we assume that the fluid flow is laminar with a low Reynolds number 15. The results indicate that the prominence-like form catalyst layer surface can effectively enhance the local cell performance of a PEMFC.

  8. Gas Composition Sensor for Natural Gas and Biogas

    NARCIS (Netherlands)

    Boersma, A.; Sweelsen, J.; Blokland, H.

    2016-01-01

    The calorific value of energetic gasses is an important parameter in the quality assessment of gas steams, and can be calculated from the chemical composition of the gas. An array of capacitive sensor electrodes was developed, each functionalized with a gas responsive coating to measure the

  9. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  10. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  11. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  12. Equalization equations in reactant resolution

    Indian Academy of Sciences (India)

    Unknown

    given partitioning of the system in physical or functional space. The most frequently ... Then, the inter-reactant equilibrium is considered. The ... Global equilibrium. Even though the chemical potential in the case of global equilibrium is equalized by definition (see (1)), we repeat here the proof, for the current needs, using.

  13. Normalization of natural gas composition data measured by gas chromatography

    International Nuclear Information System (INIS)

    Milton, Martin J T; Harris, Peter M; Brown, Andrew S; Cowper, Chris J

    2009-01-01

    The composition of natural gas determined by gas chromatography is routinely used as the basis for calculating physico-chemical properties of the gas. Since the data measured by gas chromatography have particular statistical properties, the methods used to determine the composition can make use of a priori assumptions about the statistical model for the data. We discuss a generalized approach to determining the composition, and show that there are particular statistical models for the data for which the generalized approach reduces to the widely used method of post-normalization. We also show that the post-normalization approach provides reasonable estimates of the composition for cases where it cannot be shown to arise rigorously from the statistical structure of the data

  14. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  15. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  16. Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn; Adams, Thad

    2007-01-01

    Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature to achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)

  17. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  18. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    OpenAIRE

    Devikala, S.; Kamaraj, P.

    2011-01-01

    Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA) has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In t...

  19. 30 CFR 36.26 - Composition of exhaust gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements § 36.26 Composition of exhaust gas. (a) Preliminary engine... methane) is a satisfactory substitute for pure methane in these tests. (c) Coupling or adapter. The...

  20. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  1. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  2. New fundamental equations of thermodynamics for systems in chemical equilibrium at a specified partial pressure of a reactant and the standard transformed formation properties of reactants

    International Nuclear Information System (INIS)

    Alberty, R.A.; Oppenheim, I.

    1993-01-01

    When temperature, pressure, and the partial pressure of a reactant are fixed, the criterion of chemical equilibrium can be expressed in terms of the transformed Gibbs energy G' that is obtained by using a Legendre transform involving the chemical potential of the reactant that is fixed. For reactions of ideal gases, the most natural variables to use in the fundamental equation are T, P', and P B , where P' is the partial pressure of the reactants other than the one that is fixed and P B is the partial pressure of the reactant that is fixed. The fundamental equation for G' yields the expression for the transformed entropy S', and a transformed enthalpy can be defined by the additional Legendre transform H'=G'+TS'. This leads to an additional form of the fundamental equation. The calculation of transformed thermodynamic properties and equilibrium compositions is discussed for a simple system and for a general multireaction system. The change, in a reaction, of the binding of the reactant that is at a specified pressure can be calculated using one of the six Maxwell equations of the fundamental equation in G'

  3. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  4. Synthesis of new thermoelectrics using modulated elemental reactants

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, M D; Sellinschegg, H; Johnson, D C

    1997-07-01

    A series of new, metastable ternary crystalline compounds with the skutterudite crystal structure have been synthesized using modulated elemental reactants. The initial reactants are made up of multiple repeats of a {approximately}25 {angstrom} thick unit containing elemental layers of the desired ternary metal, iron and antimony. Low temperature annealing (150 C) results in interdiffusion of the elemental layers to form amorphous reaction intermediates. Annealing these intermediates at temperatures between 200 C and 250 C results in exothermic crystallization of the desired skutterudite crystal structure. Most of the new compounds prepared are only kinetically stable, decomposing exothermically to form thermodynamically more stable mixtures of binary compounds and elements. Low angle x-ray diffraction studies show that the resulting films are exceedingly smooth. These films have an ideal geometry for measuring properties of importance for thermoelectric devices--the Seebeck coefficient and the electrical conductivity. Thermal conductivity can be measured using a modification of the 3{omega} technique of Cahill. Samples can be produced rapidly, allowing for systematic screening and subsequent optimization as a function of composition and doping levels.

  5. Chemical composition and heterogeneous reactivity of soot generated in the combustion of diesel and GTL (Gas-to-Liquid) fuels and amorphous carbon Printex U with NO2 and CF3COOH gases

    Science.gov (United States)

    Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B.

    2018-03-01

    The heterogeneous reactions of nitrogen dioxide (NO2) and trifluoroacetic acid (CF3COOH) with soot produced by diesel and GTL (gas-to-liquid) fuels were investigated using a Knudsen flow reactor with mass spectrometry as a detection system for gas phase species. Soot was generated with a 4 cylinder diesel engine working under steady-state like urban operation mode. Heterogeneous reaction of the mentioned gases with a commercial carbon, Printex U, used as reference, was also analyzed. The initial and the steady-state uptake coefficients, γ0 and γss, respectively, were measured indicating that GTL soot reacts faster than diesel soot and Printex U carbon for NO2 gas reactant. According to the number of reacted molecules on the surface, Printex U soot presents more reducing sites than diesel and GTL soot. Initial uptake coefficients for GTL and diesel soot for the reaction with CF3COOH gas reactant are very similar and no clear conclusions can be obtained related to the initial reactivity. The number of reacted molecules calculated for CF3COOH reactions shows values two orders of magnitude higher than the corresponding to NO2 reactions, indicating a greater presence of basic functionalities in the soot surfaces. More information of the surface composition has been obtained using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) before and after the reaction of soot samples with gas reactants. As conclusion, the interface of diesel and GTL soot before reaction mainly consists of polycyclic aromatic hydrocarbons (PAHs), nitro-compounds as well as ether functionalities. After reaction with gas reactant, it was observed that PAHs and nitro-compounds remain on the soot surface and new spectral bands such as carbonyl groups (carboxylic acids, aldehydes, esters and ketones) are observed. Physical properties of soot from both fuels studied such as BET surface isotherm and SEM analysis were also developed and related to the observed reactivity.

  6. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  7. Composite Chern-Simons gauge boson in anyon gas

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Hung Son.

    1990-08-01

    It was shown that in a free anyon gas there exists a composite vector gauge field with the effective action containing a Chern-Simons term. The momentum dependence of the energy of the composite boson was found. The mixing between Chern-Simons boson and photon gives rise to the appearance of new quasiparticles - Chern-Simons polaritons. The dispersion equations of Chern-Simons polaritons were derived. (author). 14 refs

  8. Toward the first study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase: The Mu+H2*(v=1) reaction by stimulated Raman pumping

    International Nuclear Information System (INIS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Matsuda, Yasuyuki; Pratt, Francis; Gumplinger, Peter; Momose, Takamasa; Torikai, Eiko; Fleming, Donald

    2009-01-01

    Stimulated Raman pumping (SRP) is used to produce H 2 in its first vibrational state, in order to measure, for the first time, the Mu+H 2 *(v=1)→MuH+H reaction rate at room temperature, as a prototypical example of new directions in gas-phase muonium chemistry, utilizing the pulsed muon beam and a new dedicated laser system at the RIKEN/RAL Laboratory. Reported here is a preliminary result but the final results are expected to provide definitive new tests of reaction rate theory on the highly accurate H 3 potential energy surface. The major difficulty in this experiment, compared to the standard SRP process, is to ensure a homogeneous excitation over a volume of several cm 3 and of sufficient intensity to ensure a measurable Mu relaxation rate. The techniques used to accomplish this are described. The experiment utilizes the 2nd harmonic output of a Nd:YAG laser (532 nm) with pulse energies up to 500 mJ at a repetition rate of 25 Hz. Different optical setups have been constructed and tested in order to optimize the number of laser-pumped H 2 molecules and their overlap with the stopping profile of the muon beam in the reaction cell (total volume ∼100x40x4mm 3 ). The first result of this experiment gives a measured relaxation rate due to laser excitation of λ*=0.085±0.051μs -1 , consistent with theory but limited by both low statistics and particularly a high background relaxation rate.

  9. Real-time composition determination of gas mixtures

    NARCIS (Netherlands)

    Lötters, Joost Conrad; van der Wouden, E.J.; Groenesteijn, Jarno; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2014-01-01

    We have designed and implemented an analytical calculation model with which we can real-time determine the composition of gas mixtures. The model is based upon a multi-parameter flow measurement system, consisting of a Coriolis and thermal flow sensor, a density meter and a pressure sensor. The

  10. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  11. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...... to solve mass balance equation for the gaseous mixture with heat and fractional mass transport equations. Temperature change resulting from fluid expansion and viscous heat dissipation is included in heat transport in addition to advection and conduction. We have used a modified version of the Peng...

  12. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  13. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    Science.gov (United States)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  14. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    International Nuclear Information System (INIS)

    PACKER, M.J.

    2000-01-01

    The purpose of this document is to evaluate selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying operations. The problems were evaluated to answer specific design questions. The document is formatted as a topical report with each section representing a specific problem solution. The problem solutions are reported in the calculation format specified in HNF-1613, Rev. 0, EP 7.6

  15. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  16. Composite harm to plants by sulfurous acid gas and oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J

    1971-01-01

    The composite effects on plants of sulfur dioxide and ozone, SO/sub 2/ and PAN, SO/sub 2/ and nitrogen dioxide, and NO/sub 2/ and ozone were studied. Pinto bean plants were exposed to SO/sub 2/ or O/sub 3/ only, to each gas alternately, and to a mixture of the two. The degree of injury by the gas or gases was indicated in percentage by area of the leaves damaged. In cases where no geometric effect occurred the damage to the plant by the individual gas had been great; damage from the individual gas had been slight in these cases where such an effect was observed. The geometric effect is produced when the density of SO/sub 2/ is rather low, generally 0.05-0.25 ppm. A mixture of SO/sub 2/ and O/sub 3/ was applied to a tabacco plant; it affected fully grown leaves. In experiments on the composite effects of SO/sub 2/ and PAN on bean, tomato and pepper plants, PAN affected mainly young leaves while SO/sub 2/ affected mature ones. These effects were arithmetric rather then geometric. The SO/sub 2/ and NO/sub 2/ were also studied in the same manner. When SO/sub 2/ and NO/sub 2/ were mixed, a geometric effect was conspicuous in damage to vegetables, the symptoms of damage by either of the two appeared about the same, younger leaves being affected less. When treated with the two gases alternately, the damage was greater if the plants were first treated with NO/sub 2/; possible causes for this effect are discussed. No significant composite effect of NO/sub 2/ and O/sub 3/ was observed.

  17. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  18. Variations in composition of farmyard manure in biologic gas production

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Welte, E; Kemmler, G

    1953-01-01

    The advantages of the ''Bihugas'' method, Schmidt-Eggersgluss system, are discussed. The losses of organic matter and of C are about 33 percent for a gas output of 270 l/kg of organic matter, but 55 percent of the C of the decomposition products is utilized as mixed gas (about 60 percent as methane). The gas output amounts to 3-7 m/sup 3/ per 100 kg fresh manure. The maximum heating value of the mixed gas is 5700 kcal. The loss of N is only 1 percent of the total N; no P, K, and Ca are lost. No formation of humus was observed. The average composition of fermented manure was dry matter 10.56 organic matter 6.9, C 3.47, N 0.36, ammonia N in percentage of total N 38, K/sub 2/O/sub 7/ 0.27, CaO 0.18, and P/sub 2/O/sub 5/ 0.13 percent. The process, compared with the conventional handling of manure, decreases losses in N from 18.5 percent to 1 percent, and those in C from 38 percent to 7.3 percent.

  19. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  20. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  1. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  2. Fluid-induced vibration of composite natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G.P.; Cheraghi, N.; Taheri, F. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, NS (Canada)

    2005-02-01

    Advancements in materials bonding techniques have led to the use of reinforced composite pipelines. The use of steel pipe with a fiber-reinforced composite over-wrap together has produced an exceptionally strong pipe with positive advantages in weight and corrosion resistivity. Understanding the dynamic characteristics of this kind of sub-sea composite pipelines, which often accommodate axial flow of gas, and prediction of their response is of great interest. This paper presents a state-variable model developed for the analysis of fluid-induced vibration of composite pipeline systems. Simply supported, clamped and clamped-simply supported pipelines are investigated. The influence of fluid's Poisson ratio, the ratio of pipe radius to pipe-wall thickness, laminate layup, the ratio of liquid mass density to pipe-wall mass density, the fluid velocity, initial tension and fluid pressure are all considered. The results of our proposed methodology are compared with those of finite element analysis, using ANSYS ssoftware. (Author)

  3. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  4. Modeling of the reactant conversion rate in a turbulent shear flow

    Science.gov (United States)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  5. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  6. Study of the ionization of alkane-electron scavenger reactant mixtures irradiated by 60Co gamma rays

    International Nuclear Information System (INIS)

    Bonnet, Jacques.

    1977-01-01

    This study deals with ionization of alkane-electron scavenger reactant mixtures, irradiated by 60 Co γ-rays. It is shown that the extrapolated free-ion yields (extrapolated yield method) decrease with the reactant concentration. On the basis of ONSAGER model and theoretical treatment of MOZUMDER, the cross sections of epithermal electron attachment in hexane, cyclohexane, 2,2-dimethylbutane, cyclopentane, 2,2,4-trimethylpentane for CCl 4 , C 7 F 14 , C 6 H 5 Br, C 6 H 5 Cl, C 6 F 14 , (C 6 H 5 ) 2 are determined. A comparison between gas-phase and liquid-phase cross sections is established [fr

  7. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  8. Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures

    NARCIS (Netherlands)

    Gersen, Sander; van Essen, Martijn; van Dijk, Gerco; Levinsky, Howard

    2014-01-01

    The physicochemical origins of how changes in fuel composition affect autoignition of the end gas, leading to engine knock, are analyzed for a natural gas engine. Experiments in a lean-burn, high-speed medium-BMEP gas engine are performed using a reference natural gas with systematically varied

  9. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  10. Emissions and efficiency of a domestic gas stove burning natural gases with various compositions

    International Nuclear Information System (INIS)

    Yungchang Ko; Tahui Lin

    2003-01-01

    The heating value of a fuel, which depends on its composition, strongly affects burner performance. Using the same gas stove to burn natural gas with various heating values is inappropriate and hazardous due to the possible occurrence of incomplete combustion (i.e. a great increase of CO emissions and/or soot formation), liftoff, flashback and inadequate heat input. In this study, we aim to assess the effects of changes in gas composition on burner performance and propose suitable design or operational factors of domestic gas stoves burning natural gas with various heating values. A single gas burner, originally designed for burning natural gas with low heating value, is adopted to investigate the effects of variations in gas composition on the burner performance. The influence of five significant parameters, including gas composition, primary aeration, gas flow rate (heat input), gas supply pressure, and loading height, on the thermal efficiency and CO emissions were reported and discussed. Using natural gas with high heating value instead of natural gas with low heating value results in a decrease in thermal efficiency (due to higher thermal input) and an increase in CO emission (caused by incomplete combustion). These problems can be significantly improved by decreasing the gas pressure to a suitable value, by enlarging the primary aeration to a favorable level, by selecting a proper thermal input, or by adjusting the optimized heating height. (Author)

  11. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  12. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of exhaust-gas composition. 36.43... TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be..., hydrogen, methane, nitrogen, oxides of nitrogen, and aldehydes, or any other constituent prescribed by MSHA...

  13. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  14. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  15. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  16. Method for online measurement of the CHON composition of raw gas from biomass gasifier

    International Nuclear Information System (INIS)

    Neves, Daniel; Thunman, Henrik; Tarelho, Luís; Larsson, Anton; Seemann, Martin; Matos, Arlindo

    2014-01-01

    Highlights: • Measuring the CHON composition of a raw gas by current methods is challenging. • An alternative method is to burn the raw gas before measuring the CHON composition. • The CHON contents of the raw gas can be accurately measured by the alternative method. • Measuring the CHON contents of the raw gas is now performed in a “one-step” analysis. • The new method is used to evaluate the operation of a dual fluidised bed gasifier. - Abstract: For unattended biomass gasification processes, rapid methods for monitoring the elemental composition (CHON) of the raw gas leaving the gasifier are needed. Conventional methods rely on time-consuming and costly laboratory procedures for analysing the condensable part of the raw gas. An alternative method, presented in this work, assesses the CHON composition of raw gas in a “one step” analysis without the need to previously characterise its chemical species composition. Our method is based on the quantitative conversion of a raw gas of complex chemical composition into CO 2 , H 2 O, and N 2 in a small combustor. The levels of these simple species can be measured with high accuracy and good time resolution, and the CHON composition of the raw gas can be determined from the mass balance across the combustor. To evaluate this method, an online combustion facility was built and used to analyse the raw gas from the Chalmers 2-MW th dual fluidised bed steam gasifier. Test runs of the developed facility demonstrated complete combustion of the raw gas and the measurements were both fast and reliable. The new method used in combination with zero-dimensional reactor modelling provides valuable data for the operational monitoring of gasification processes, such as the degree of fuel conversion, composition of the char exiting the gasifier, oxygen transport by catalytic bed material, and amount of condensables in raw gas

  17. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  18. Effect of gas release in hot molding on flexural strength of composite friction brake

    Science.gov (United States)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  19. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  20. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  1. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  2. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  3. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  4. Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor

    Science.gov (United States)

    2013-05-01

    changes in Raman spectroscopy data when single wall carbon nanotubes (SWNT) are immersed in various liquids, including common organics (12). In...Resistance -- (82) 2007 Su H2O MWNT PMMA, KOH Gas Impedance -- (83) 2011 Tang H2O MWNT PI Gas Resistance -- (84) 2003 Wang H2O2, NADH SWNT

  5. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  7. Chemical Composition, In Situ Degradability and In Vitro Gas ...

    African Journals Online (AJOL)

    The leguminous tree tagasaste is highly productive in the Ethiopian ... and conservation practices, could substantially change the nutritive value of a given ...... in vitro gas production and stoichiometric relationship between short chain fatty acid ...

  8. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  9. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    Science.gov (United States)

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  10. Polymeric Electrolyte Membrane Photoelectrochemical (PEM-PEC Cell with a Web of Titania Nanotube Arrays as Photoanode and Gaseous Reactants

    Directory of Open Access Journals (Sweden)

    Tsampas M.N.

    2017-01-01

    Photoanodes of titania nanotube arrays, TNTAs, were developed, for the first time, on a Ti-web of microfiber substrates, by electrochemical anodization. The performance of TNTAs/Ti-web photoanodes were evaluated in both gaseous and liquid reactants. Due to the presence of reliable reference electrode in gas phase direct comparison of the results was possible. Gas phase operation with He or Air as carrier gases and only 2.5% of water content exhibits very promising photoefficiency in comparison with conventional PEC cells.

  11. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  12. Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media

    Science.gov (United States)

    Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.

    2017-12-01

    When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.

  13. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.; Pal, Pinaki; Wooldridge, Margaret S.; Mansfield, Andrew B.

    2015-01-01

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  14. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.

    2015-04-02

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  15. MCO gas composition for low reactive surface areas

    International Nuclear Information System (INIS)

    Packer, M.J.

    1998-01-01

    This calculation adjusts modeled output (HNF-SD-SNF-TI-040, Rev. 2) by considering lower reactive fuel surface areas and by increasing the input helium backfill overpressure from 0.5 to 1.5 atm (2.5 atm abs) to verify that MCO gas-phase oxygen concentrations can remain below 4 mole % over a 40 year interim period under a worst case condition of zero reactive surface area. Added backfill gas will dilute any gases generated during interim storage and is a strategy within the current design capability. The zero reactive surface area represents a hypothetical worst case example where there is no fuel scrap and/or damaged spent fuel rods in an MCO. Also included is a hypothetical case where only K East fuel exists in an MCO with an added backfill overpressure of 0.5 atm (1.5 atm abs)

  16. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    Science.gov (United States)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  17. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  18. Gas and porewater composition of shallow sediments in the Tuaheni Basin, New Zealand

    Science.gov (United States)

    Rose, P. S.; Coffin, R. B.; Yoza, B.; Boyd, T. J.; Crutchley, G. J.; Mountjoy, J. J.; Pecher, I. A.

    2015-12-01

    Seismic profiles collected during previous investigations on the Hikurangi Margin, off the North Island, New Zealand showed bottom simulating reflectors (BSRs), which are generally indicative of the presence of free gas. Further, double BSRs clearly identified in the Tuaheni Basin were hypothesized to result from differences in gas composition and fluid migration. During a cruise on the RV Tangaroa in June 2015 (TAN 1508) additional seismic data were collected and used to identify piston coring targets. Coring locations were selected to sample around BSR pinch-outs and possible fluid migration pathways to determine gas composition and flux. Shallow sediments collected in June 2015 in the Tuaheni Basin had relatively low sediment headspace CH4 concentrations (6000ppm. Higher molecular weight alkanes were not detected in the sediment headspace gas at any location. Sediment porewater sulfate, chloride and sulfide concentrations will be presented with CH4concentration profiles and geophysical data.

  19. Gas leak tightness of SiC/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Daisuke, E-mail: hayasaka@oasis.muroran-it.ac.jp [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Park, Joon-Soo. [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE-SiC/SiC has extremely densified microstructure compared with other SiC/SiC composite like CVI. • Excellent helium and hydrogen gas-leak tightness of SiC/SiC composites by DEMO-NITE method from prototype industrialization production line was presented. • The excellence against stainless steel and Zircaloy at elevated temperature, together with generic excellent properties of SiC will be inevitable for innovative blanket and divertors for DEMO- and power- fusion reactors. - Abstract: SiC/SiC composite materials are attractive candidates for high heat flux components and blanket of fusion reactor, mainly due to their high temperature properties, radiation damage tolerance and low induced radioactivity. One of the challenges for SiC/SiC application in fusion reactors is to satisfy sufficient gas leak tightness of hydrogen and helium isotopes. Although many efforts have been carried-out, SiC/SiC composites by conventional processes have not been successful to satisfy the requirements, except SiC/SiC composites by NITE-methods. Toward the early realization of SiC/SiC components into fusion reactor systems process development of NITE-process has been continued. Followed to the brief introduction of recently developed DEMO-NITE process, baseline properties and hydrogen and helium gas leak tightness is presented. SiC/SiC claddings with 10 mm in diameter and 1 mm in wall thickness are tested by gas leak tightness system developed. The leak tightness measurements are done room temperature to 400 °C. Excellent gas leak tightness equivalent or superior to Zircaloy claddings for light water fission reactors is confirmed. The excellent gas leak tightness suggests nearly perfect suppression of large gas leak path in DEMO-NITE SiC/SiC.

  20. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

    OpenAIRE

    W. Hufenbach; M. Gude; A. Czulak; J. Śleziona; A. Dolata-Grosz; M. Dyzia

    2009-01-01

    Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress.Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden.Findings: The gas pressure infiltration technology e...

  1. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  2. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3 (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Baquero-Ruiz, M.; Chapman, S.; Little, A.; Povilus, A.; So, C.; Turner, M. [Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Bertsche, W. [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom and The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Charlton, M.; Eriksson, S.; Isaac, C. A.; Madsen, N.; Napoli, S. C. [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2013-06-15

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  3. Separation of gases through gas enrichment membrane composites

    Science.gov (United States)

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  4. Composite polyaniline/calixarene Langmuir - Blodgett films for gas sensing

    Science.gov (United States)

    Lavrik, N. V.; DeRossi, D.; Kazantseva, Z. I.; Nabok, A. V.; Nesterenko, B. A.; Piletsky, S. A.; Kalchenko, V. I.; Shivaniuk, A. N.; Markovskiy, L. N.

    1996-12-01

    Mixtures of the polyaniline (emeraldine base) and phosphorylated calix[4]resorcinolarene derivative (CA) are proposed to prepare LB films for conductometric gas sensors. They are quite stable at the air - water interface and give LB films of high quality. The average thickness of the mixed monolayers is found to be 1.6 nm. The as-deposited films are insulating. Doping with HCl increases the conductivity up to between 0957-4484/7/4/002/img12 and 0957-4484/7/4/002/img13 which depends on the component ratio. The films containing more than 20 wt% of CA are doped reversibly in part. Thus, the films which are highly sensitive to either 0957-4484/7/4/002/img14 or HCl films are prepared by choosing the component ratio. Detection of 0957-4484/7/4/002/img14 and HCl in the ppm range is demonstrated.

  5. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  6. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    Science.gov (United States)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  7. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  8. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    Science.gov (United States)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  9. Fabrication of AlN-TiC/Al composites by gas injection processing

    Institute of Scientific and Technical Information of China (English)

    YU Huashun; CHEN Hongmei; MA Rendian; MIN Guanghui

    2006-01-01

    The fabrication of AlN-TiC/Al composites by carbon-and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2+C2H2+NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time.It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction.

  10. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  11. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  12. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  13. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  14. Effect of Reactant Concentration on the Microstructure of SiC Nano wires Grown In Situ within SiC Fiber Preforms

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Kang, Seok Min; Park, Ji Yeon; Ryu, Woo Seog

    2006-01-01

    Silicon carbide fiber-reinforced silicon carbide matrix (SiC f /SiC) composites are considered as advanced materials for control rods and other in-core components of high-temperature gas cooled reactors. Although the carbon fiber-reinforced carbon matrix (C f /C) composites are more mature and have advantages in cost, manufacturability and some thermomechanical properties, the SiC f /SiC composites have a clear advantage in irradiation stability, specifically a lower level of swelling and retention of mechanical properties. This offers a lifetime component for control rod application to HTGRs while the Cf/C composites would require 2-3 replacements over the reactor lifetime. In general, the chemical vapor infiltration (CVI) technique has been used most widely to produce SiC f /SiC composites. Although the technique produces a highly pure SiC matrix, it requires a long processing time and inevitably contains large interbundle pores. The present authors have recently developed 'whisker growing-assisted process,' in which one-dimensional SiC nano structures with high aspect ratios such as whiskers, nano wires and nano rods are introduced into the fiber preform before the matrix infiltration step. This novel method can produce SiC f /SiC composites with a lower porosity and an uniform distribution of pores when compared with the conventional CVI. This would be expected to increase mechanical and thermal properties of the SiC f /SiC composites. In order to take full advantage of the whisker growing strategy, however, a homogeneous growth of long whiskers is required. In this study, we applied the atmospheric pressure CVI process without metallic catalysts for the growth of SiC nano wires within stacked SiC fiber fabrics. We focused on the effect of the concentration of a reactant gas on the growth behavior and microstructures of the SiC nano wires and discussed a controlling condition for the homogenous growth of long SiC nano wires

  15. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  16. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  17. Rio Blanco gas composition: preproduction testing of the RBE-01 wellhead

    International Nuclear Information System (INIS)

    Smith, C.F.; Fontanilla, J.E.

    1976-01-01

    The chemical composition and radionuclide concentration of Rio Blanco gas samples collected prior to the production testing of the RBE-01 well and analyzed at LLL are presented. The analytical procedures and their uncertainties are briefly summarized. Information that associates the analytical data with the field operations is included

  18. Fluidized bed gasification of sugar cane bagasse. Influence on gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, E.; Aleman, Y. [Univ. of las Villas, Santa Clara (Cuba). Biomass Thermoconversion group/CETA; Arauzo, J.; Gea, G. [Univ. of Zaragoza (Spain). Chemical and Environmental Engineering Dept.

    1999-07-01

    Air and steam gasification of biomass has been studied at different temperatures. The experiments have been carried out in a bench scale plant. It consists of an atmospheric bubbling fluidized bed gasifier heated by an electric furnace. The gasification process have been carried out at high heating rates and low residence time of the gases. The biomass used has been Cuban sugar cane bagasse. Three operating parameters have been evaluated to improve the gas composition: Equivalence Ratio (E.R.) in the range of 0.15 to 0.55; the bed temperature from 780 to 920 deg C; and steam/biomass ratio (S/B) from 0.1 g/g to 0.5 g/g. The results obtained show the effect of these operating parameters in gas composition and the conditions to obtain higher yield to gas and else the maximum energy.

  19. Production of ammonia from plasma-catalytic decomposition of urea: Effects of carrier gas composition.

    Science.gov (United States)

    Fan, Xing; Li, Jian; Qiu, Danqi; Zhu, Tianle

    2018-04-01

    Effects of carrier gas composition (N 2 /air) on NH 3 production, energy efficiency regarding NH 3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al 2 O 3 -packed dielectric barrier discharge (DBD) reactor at room temperature. Results show that the presence of O 2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH 3 . The final yield of NH 3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23kV, respectively when air was used as the carrier gas instead of N 2 . From the viewpoint of energy savings, however, air carrier gas is better than N 2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al 2 O 3 catalyst to give NH 3 and CO 2 as the main products. Compared to a small amount of N 2 O formed with N 2 as the carrier gas, however, more byproducts including N 2 O and NO 2 in the gas phase and NH 4 NO 3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH 3 , the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma. Copyright © 2017. Published by Elsevier B.V.

  20. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  1. Systematic study of RPC performances in polluted or varying gas mixtures compositions: an online monitor system for the RPC gas mixture at LHC

    CERN Document Server

    Capeans, M; Mandelli, B

    2012-01-01

    The importance of the correct gas mixture for the Resistive Plate Chamber (RPC) detector systems is fundamental for their correct and safe operation. A small change in the percentages of the gas mixture components can alter the RPC performance and this will rebound on the data quality in the ALICE, ATLAS and CMS experiments at CERN. A constant monitoring of the gas mixture injected in the RPCs would avoid such kind of problems. A systematic study has been performed to understand RPC performances with several gas mixture compositions and in the presence of common gas impurities. The systematic analysis of several RPC performance parameters in different gas mixtures allows the rapid identification of any variation in the RPC gas mixture. A set-up for the online monitoring of the RPC gas mixture in the LHC gas systems is also proposed.

  2. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  3. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  4. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    Science.gov (United States)

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due

  5. Ceramic membrane reactor with two reactant gases at different pressures

    Science.gov (United States)

    Balachandran, Uthamalingam; Mieville, Rodney L.

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  6. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu, Xiangfeng; Hu, Tao; Gao, Feng; Dong, Yongping; Sun, Wenqi; Bai, Linshan

    2015-01-01

    Graphical abstract: - Highlights: • The amount of graphene had an effect on the morphology of graphene–WO 3 composites. • The optimum temperature of 0.1 wt% graphene–WO 3 sensor to acetaldehyde was 100 °C. • 0.1 wt% graphene–WO 3 sensor exhibited good selectivity to acetaldehyde at 100 °C. - Abstract: Graphene–WO 3 composites mixed with different amounts of graphene (0, 0.1, 0.5, 1 and 3 wt%) were prepared by hydrothermal method at 180 °C for 24 h. The as-prepared graphite oxide, graphene and graphene–WO 3 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and Raman spectroscopy, respectively. The effect of the amount of graphene in the composites on the gas-sensing responses and the gas-sensing selectivity of the materials was investigated. The experimental results revealed that the sensor based on 0.1 wt% graphene–WO 3 composite exhibited high response and good selectivity to acetaldehyde vapor at 100 °C, the optimum operating temperature of this sensor to 1000 ppm acetaldehyde vapor decreased from 180 °C to 100 °C comparing with that of pure WO 3 . The response time and the recovery time for 100 ppm acetaldehyde vapor were 250 s and 225 s, respectively

  7. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  8. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange.

    Science.gov (United States)

    Matharoo, Harpreet; Dabaghi, Mohammadhossein; Rochow, Niels; Fusch, Gerhard; Saraei, Neda; Tauhiduzzaman, Mohammed; Veldhuis, Stephen; Brash, John; Fusch, Christoph; Selvaganapathy, P Ravi

    2018-01-01

    Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood to evaluate gas exchange properties. Among all tested SOUs, the flat design SOU with composite membrane has the highest oxygen exchange of 40.32 ml/min m 2 . The superior performance of the new device with composite membrane was demonstrated by constructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD was achieved by the oxygen uptake of 0.48-0.90 ml/min and the CO 2 release of 1.05-2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shown to increase the

  9. Estimating the composition of gas hydrate using 3D seismic data from Penghu Canyon, offshore Taiwan

    Directory of Open Access Journals (Sweden)

    Sourav Kumar Sahoo

    2018-01-01

    Full Text Available Direct measurements of gas composition by drilling at a few hundred meters below seafloor can be costly, and a remote sensing method may be preferable. The hydrate occurrence is seismically shown by a bottom-simulating reflection (BSR which is generally indicative of the base of the hydrate stability zone. With a good temperature profile from the seafloor to the depth of the BSR, a near-correct hydrate phase diagram can be calculated, which can be directly related to the hydrate composition. However, in the areas with high topographic anomalies of seafloor, the temperature profile is usually poorly defined, with scattered data. Here we used a remote method to reduce such scattering. We derived gas composition of hydrate in stability zone and reduced the scattering by considering depth-dependent geothermal conductivity and topographic corrections. Using 3D seismic data at the Penghu canyon, offshore SW Taiwan, we corrected for topographic focusing through 3D numerical thermal modeling. A temperature profile was fitted with a depth-dependent geothermal gradient, considering the increasing thermal conductivity with depth. Using a pore-water salinity of 2%, we constructed a gas hydrate phase model composed of 99% methane and 1% ethane to derive a temperature depth profile consistent with the seafloor temperature from in-situ measurements, and geochemical analyses of the pore fluids. The high methane content suggests predominantly biogenic source. The derived regional geothermal gradient is 40°C km-1. This method can be applied to other comparable marine environment to better constrain the composition of gas hydrate from BSR in a seismic data, in absence of direct sampling.

  10. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    Science.gov (United States)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  11. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    Science.gov (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  12. Thermodynamic analysis of oil and gas platforms over various production profiles and feed compositions

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Junior, Silvio de Oliveira

    2017-01-01

    Oil and gas platforms present similar structural designs but process fluids with different thermo-physical and chemical properties. In addition, the field properties, such as the gas-to-oil and water-to-oil ratios, change significantly over time. It is therefore not possible to suggest a standard...... of energy and exergy. Feed compositions and production profiles, which correspond to data from actual fields, are used for calibrating the simulations. In a second step, the minimum energy and exergy losses of the platform are assessed by performing thermodynamic analyses, assuming an ideal scenario...... in which all processes are run at their design points. This approach proves to be useful for evaluating consistently different options for oil and gas production, and for determining, in a further step, the most promising solutions for minimising the energy use over a field lifetime....

  13. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  14. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  15. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  16. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  17. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  18. Thermodynamic properties calculation of the flue gas based on its composition estimation for coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Liang; Yuan, Jingqi

    2015-01-01

    Thermodynamic properties of the working fluid and the flue gas play an important role in the thermodynamic calculation for the boiler design and the operational optimization in power plants. In this study, a generic approach to online calculate the thermodynamic properties of the flue gas is proposed based on its composition estimation. It covers the full operation scope of the flue gas, including the two-phase state when the temperature becomes lower than the dew point. The composition of the flue gas is online estimated based on the routinely offline assays of the coal samples and the online measured oxygen mole fraction in the flue gas. The relative error of the proposed approach is found less than 1% when the standard data set of the dry and humid air and the typical flue gas is used for validation. Also, the sensitivity analysis of the individual component and the influence of the measurement error of the oxygen mole fraction on the thermodynamic properties of the flue gas are presented. - Highlights: • Flue gas thermodynamic properties in coal-fired power plants are online calculated. • Flue gas composition is online estimated using the measured oxygen mole fraction. • The proposed approach covers full operation scope, including two-phase flue gas. • Component sensitivity to the thermodynamic properties of flue gas is presented.

  19. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  20. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor.

    Science.gov (United States)

    Gaikwad, Namrata; Bhanoth, Sreenu; More, Priyesh V; Jain, G H; Khanna, P K

    2014-03-07

    Simultaneous in situ reduction of hexachloroplatinic acid by the amine group in the pyrrole monomer and oxidation of pyrrole to form polypyrrole (PPy) was examined. The reactions were performed at various temperatures to understand the degree of reduction of platinum precursor as well as doping of polypyrrole with Pt(II) chloro-complex. Spectroscopic images revealed different morphologies for the Pt/PPy nano-composite prepared at various temperatures. The as-prepared Pt/PPy nano-composite samples were tested for their ability to sense liquefied petroleum gas (LPG) which resulted in excellent sensing at relatively low temperature. The porous nature and ohmic contact between the PPy and platinum nanoparticles makes the as-prepared Pt/PPy nano-composite highly useful for sensors as well as electronic applications.

  1. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  2. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  3. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  4. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Rout, Satyabrata

    2001-01-01

    Application of pulsed electrical discharges for gas cleaning is gaining prominence, mainly from the energy consideration point of view. This present paper presents recent work on applying the electrical discharge plasma technology for treating gaseous pollutants, in general, and nitric oxide, in particular, as this is one of the major contributors to air pollution. The present work focuses attention on pulsed electrical discharge technique for nitric oxide removal from simulated gas compositions and study of effect of packed dielectric pellets, with and without a coating of catalyst, on the removal process. Experiments were conducted in a cylindrical corona reactor energized by repetitive high voltage pulses. The effects of various parameters, viz. pulse voltage magnitude, pulse frequency, initial nitric oxide concentration and gas mixture composition on nitric oxide removal efficiency, are discussed. When the reactors were filled with different dielectric pellets like, barium titanate, alumina, and alumina coated with palladium catalyst, the improvement in nitric oxide removal efficiency is studied and discussed. The power dissipated in the reactor and the energy consumed per nitric oxide molecule removed was calculated. Further results and comparative study of various cases are presented in the paper

  5. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  6. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Science.gov (United States)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  7. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  8. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    Science.gov (United States)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the

  9. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing

    International Nuclear Information System (INIS)

    Tran, Quang Trung; Huynh, Tran My Hoa; Tong, Duc Tai; Tran, Van Tam; Nguyen, Nang Dinh

    2013-01-01

    Graphene, consisting of a single carbon layer in a two-dimensional (2D) lattice, has been a promising material for application to nanoelectrical devices in recent years. In this study we report the development of a useful ammonia (NH 3 ) gas sensor based on graphene–silver nanowires ‘composite’ with planar electrode structure. The basic strategy involves three steps: (i) preparation of graphene oxide (GO) by modified Hummers method; (ii) synthesis of silver nanowires by polyol method; and (iii) preparation of graphene and silver nanowires on two electrodes using spin and spray-coating of precursor solutions, respectively. Exposure of this sensor to NH 3 induces a reversible resistance change at room temperature that is as large as ΔR/R 0 ∼ 28% and this sensitivity is eight times larger than the sensitivity of the ‘intrinsic’ graphene based NH 3 gas sensor (ΔR/R 0 ∼ 3,5%). Their responses and the recovery times go down to ∼200 and ∼60 s, respectively. Because graphene synthesized by chemical methods has many defects and small sheets, it cannot be perfectly used for gas sensor or for nanoelectrical devices. The silver nanowires are applied to play the role of small bridges connecting many graphene islands together to improve electrical properties of graphene/silver nanowires composite and result in higher NH 3 gas sensitivity. (paper)

  10. FORAGE YIELD, CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION OF YELLOW HYBRID MAIZE GROWN IN MEXICO

    Directory of Open Access Journals (Sweden)

    Lizbeth Esmeralda Roblez Jimenez

    2017-12-01

    Full Text Available Maize is the most important forage in feed cattle, due to its higher energy content, however, it is characterized by its wide range of varieties and the possibility of generating a large quantity of final products. The objective of the present study was to evaluate and compare the forage yield, chemical composition and in vitro gas production as fresh and hay of a local yellow criollo maize and six varieties of yellow hybrid maize (HIT13, CML460, PIONER, COPPER, CDMO80001 and CLO80902. Fresh and dry yield did not show differences between treatments (P>0.05, their chemical composition (g / kg DM showed differences (P ˂ 0.05 for the protein content by various storage methods ranging from 59.87 to 59.61 g kg-1 DM per conservation method, NDF ranged from 591 to 686 g kg-1 DM by variety and by the method ranged from 619 to 639 g kg -1 DM, ADF ranged from 298 to 345 g kg-1 DM by variety and 317 to 340 g kg-1 DM by conservation method; ADL ranged from 58 to 41 g kg-1 DM by variety and 41 to 57 g kg-1 DM by conservation method, in vitro gas production  there were no differences (P>0.05 between varieties and conservation method. It is concluded that according to the results obtained, the varieties studied show the same forage yields in both hay and fresh, chemical composition, and in vitro gas production.

  11. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan

    International Nuclear Information System (INIS)

    Walia, Vivek; Yang, Tsanyao Frank; Lin, Shih-Jung; Kumar, Arvind; Fu, Ching-Chou; Chiu, Jun-Ming; Chang, Hsaio-Hsien; Wen, Kuo-Liang; Chen, Cheng-Hong

    2013-01-01

    The present study is proposed to investigate temporal variations of soil–gas composition in the vicinity of different fault zones in Taiwan. To carry out the investigations, variations of soil–gases compositions were measured at continuous earthquake monitoring stations along Hsincheng and Hsinhua faults in Hsinchu and Tainan areas, respectively. Before selecting a monitoring site, the occurrence of deeper gas emanation was investigated by the soil–gas surveys and followed by continuous monitoring of some selected sites with respect to tectonic activity to check the sensitivity of the sites. Based on the results of long term geochemical monitoring at the established monitoring stations we can divide the studied area in two different tectonic zones. We proposed tectonic based model for earthquake forecasting in Taiwan and tested it for some big earthquakes occurred during observation period i.e. 2009–2010. Based on the anomalous signatures from particular monitoring stations we are in a state to identify the area for impending earthquakes of magnitude ≥5 and we have tested it for some earthquakes which rocked the country during that period. It can be concluded from above results that the stress/strain transmission for a particular earthquake is hindered by different tectonic settings of the region under study. - Highlights: ► Variations of soil–gases composition is studied at two different faults of Taiwan. ► Tectonic based model for earthquake forecasting in Taiwan was proposed and tested. ► Selection criteria to identify threshold earthquakes have been defined. ► Stress/strain transmission for earthquake may be hindered by tectonic settings

  12. Effects of gas composition on the growth of multi-walled carbon nanotube

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lu, D.-M.; Lien, W.-C.

    2007-01-01

    This paper studies the effects of different gas compositions on the growth of multi-walled carbon nanotube (MWCNT) films by using an electron cyclotron resonance chemical vapor deposition (ECR-CVD) method. The Raman spectrum was employed to explore the composition of the MWCNT films grown under different mixtures of C 3 H 8 and H 2 . The results showed that the optimum relative intensity ratio of the D band to G band (i.e., I D /I G ) is 2 for the cases considered in this study. In addition, the morphology and microstructure of the MWCNTs were examined by field emission scanning electron microscopy (FE-SEM) and field emission gun transmission electron microscopy (FEG-TEM). Furthermore, atomic force microscopy (AFM) and scanning thermal microscopy (SThM) were used to study the surface topography and thermal properties of the MWCNTs

  13. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  14. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    Science.gov (United States)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents ( δ13C ethane (C2) gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  15. Gas chromatographic/mass spectrometric determination of carbon isotope composition in unpurified samples: methamphetamine example.

    Science.gov (United States)

    Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L

    1986-10-01

    A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.

  16. Influence of Aerogel Morphology and Reinforcement Architecture on Gas Convection in Aerogel Composites

    Science.gov (United States)

    Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley

    2016-01-01

    A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.

  17. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  18. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  19. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  20. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  1. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  2. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    International Nuclear Information System (INIS)

    Sun Jie; Qiu Yiping

    2015-01-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O 2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O 2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O 2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O 2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of −COO than the comparable He/O 2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O 2 plasma treated ones with other conditions unchanged. (paper)

  3. Commissioning of the KATRIN Raman system for monitoring of the WGTS gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian; Bornschein, Beate; James, Timothy M.; Off, Andreas; Rupp, Simone; Seitz-Moskaliuk, Hendrik; Sturm, Michael; Wecker, Matthias [Karlsruhe Institute of Technology (Germany); Schloesser, Magnus [Universidad Complutense de Madrid (Spain); Karlsruhe Institute of Technology (Germany); Telle, Helmut H. [Universidad Complutense de Madrid (Spain)

    2015-07-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment aims at determining the neutrino mass by the investigation of the endpoint energy-region of the tritium β-spectrum. Tritium in its molecular form ({sup 3}H{sub 2}) is injected into the Windowless Gaseous Tritium Source (WGTS) of KATRIN, and thus molecular effects, e.g. ro-vibrational excitations levels, have to be considered in the neutrino mass analysis in order to reach the design sensitivity of 200 meV/c{sup 2} (90% C.L.). As the source gas also contains impurities of the other hydrogen isotopes protium and deuterium - giving rise to different molecular excitation levels - continuous and precise monitoring of the source gas composition is required. Raman spectroscopy is the method of choice for this task as it is an inline and non-contact analysis method. In this talk, results from the recently performed commissioning phase of the KATRIN Raman system are presented: over the course of more than 50 days, consecutive Raman spectra (recorded with acquisition times of 60 s) of circulating tritium gas were acquired and analysed in real-time. In addition, valuable information on the system performance during long-term operation was gained.

  4. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    Science.gov (United States)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  5. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  6. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    Science.gov (United States)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  7. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components

  8. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  9. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  10. A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties

    International Nuclear Information System (INIS)

    Venditti, Iole; Fratoddi, Ilaria; Russo, Maria Vittoria; Bearzotti, Andrea

    2013-01-01

    Nanostructured composite materials based on polyaniline (PANI) and gold nanoparticles have been prepared by means of an osmosis based method. Several morphologies have been obtained for the pristine nanoPANI and for nanoPANI–Au composite, ranging from amorphous to sponge-like and spherical shapes. On the basis of this morphological investigation, different materials with high surface area have been selected and tested as chemical interactive materials for room temperature gas and vapor sensing. The resistive sensor devices have been exposed to different vapor organic compounds (VOCs) of interest in the fields of environmental monitoring and biomedical applications, such as toluene, acetic acid, ethanol, methanol, acetonitrile, water, ammonia and nitrogen dioxide. The effect of doping with H 2 SO 4 has been studied for both nanoPANI and nanoPANI–Au samples. In particular, nanoPANI–Au showed sensitivity to ammonia (up to 10 ppm) higher than that to other VOCs or interfering analytes. The facile preparation method and the improved properties achieved for the polyaniline–gold composite materials are significant in the nanomaterials field and have promise for applications in ammonia vapor monitoring. (paper)

  11. The effects of combined therapy of rheumatoid arthritis on the acute phase reactants.

    Science.gov (United States)

    Rexhepi, Sylejman; Rexhepi, Mjellma; Sahatçiu-Meka, Vjollca; Pllana, Ejup; Dragusha, Gani; Gashi, Masar; Rexhepi, Blerta

    2009-01-01

    The paper presents the results of studies of acute phase reactants in the 60 treated patients with rheumatoid arthritis. Patients were divided into two groups, depending on the applied treatment: group I (n = 30) was treated with methotrexate, sulfasalazine and hydroxychloroquine, and group II (n = 30) with methotrexate. The results of our study shows that there is a statistically significant reduction in the value of acute phase reactants and clinical parameters after treatment in both investigated groups of patients, and also a significant statistical difference between the first and second group of treated patients.

  12. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    Science.gov (United States)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  13. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2015-01-01

    Highlights: • We study how angle and height of trapezoid baffle affect PEMFC net power. • The jet-type, trapping, and blockage effects augment non-isothermal transport in flow channel. • Greater angles and heights of trapezoid baffles provide more reactant to the catalyst layer. • Baffles of 1.5 mm and 90° fully block flow channel to show bad heat transfer and large pressure drop. • Maximum enhancement of cell net power is 90% with baffles of 60° angle and 1.125 mm height. - Abstract: The present study performed a three-dimensional numerical simulation to observe how trapezoid baffles affect non-isothermal reactant transports and cell net power in the proton exchange membrane fuel cell (PEMFC) by the SIMPLE-C method. The geometric parameters of trapezoid baffles installed in the gas channel employed in this study include the angle and height with the same gas diffusion and catalyst layers to realize the cell net power considering the effect of liquid water formation on the fluid flow field. The cell net power is adopted to evaluate the real enhancement of cell performance due to the additional pumping power induced by the pressure loss through the PEMFC. The results illustrated that compared with traditional gas channel without baffles, the novel gas channel with trapezoid baffles, whose angle is 60° and height is 1.125 mm, enhances the cell net power best by approximately 90% among all trapezoid baffle designs

  14. Determination of the vertical distribution and areal of the composition in volatile oil and/or gas condensate reservoirs

    International Nuclear Information System (INIS)

    Santos Santos, Nicolas; Ortiz Cancino, Olga Patricia; Barrios Ortiz, Wilson

    2005-01-01

    The compositional variation in vertical and areal direction due to gravitational and thermal effects plays an important role in the determination of the original reserves in-situ and in the selection of the operation scheme for volatile oil and/or gas condensate reservoirs. In this work we presented the mathematical formulation of the thermodynamic behavior experienced by compositional fluids, such as volatile oil and/or gas condensate, under the influence of the mentioned effects (gravitational and thermal), which was implemented in a software tool, this tool determine the compositional variation in vertical direction and, in addition, it allows to know the saturation pressure variation in the hydrocarbon column and the location of the gas-oil contact. With the obtained results, product of the use of this tool, was developed a methodology to obtain one first approach of the compositional variation in areal direction to obtain compositional spatial distribution (iso composition maps) in the reservoir, for components like the methane, which experiences the greater variations. These iso composition maps allow to determine the location of the hydrocarbon deposits, in such a way that the production strategies can be selected and be applied to maximize the recovery, such as in fill wells, perforation of new zones, EOR processes, etc

  15. CHEMICAL COMPOSITION AND in vitro GAS PRODUCTION OF SOME LEGUME BROWSE SPECIES IN SUBTROPICAL AREAS OF MEXICO

    Directory of Open Access Journals (Sweden)

    Carlos A Garcia Montes de Oca

    2011-03-01

    Full Text Available The objective of the present study was to determine the chemical composition and in vitro gas production of different legume and wild arboreal pods. Seven seeds of legume browse species, Mexican calabash (Crescentia alata, esculent leadtree (Leucaena esculenta, guamuchil (Phitecellobium dulce, bastard cedar (Guazuma ulmifolia, needle bush (Acacia farnesiana, mimosa (Mimosa sp. and elephant ear tree (Enterolobium cyclocarpum. Were evaluated for their chemical composition (g/kg DM and in vitro gas production pattern. Crude Protein was higher for L. esculenta (220 and lower for G. ulmifolia (70. Neutral and acid detergent fiber were higher for G. ulmifolia (687 and 554 and lower for A. farnesiana (267 and 176. Lignin was higher for Mimosa sp. (219 and lower for P. dulce (81. Total gas production (ml gas/g DM of P. dulce (187 and E. cyclocarpum (164 were higher (P

  16. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  17. Composition of the C6+ Fraction of Natural Gas by Multiple Porous Layer Open Tubular Capillaries Maintained at Low Temperatures.

    Science.gov (United States)

    Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J

    2016-03-17

    As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.

  18. Predictive Model to determine the composition of the gas generated in a downdraft gasifier

    International Nuclear Information System (INIS)

    D'Espaux Shelton, Elbis; Copa Rey, José Ramón; Brito Sauvanel, Angel Luis

    2017-01-01

    There is currently a trend of using gasification modeling to describe the process without the need to develop experiments, which can be costly. This work presented the necessary tools to analyze the development of a mathematical model with the objective of predicting the chemical composition of the gas generated in a fixed bed downdraft gasifier, with parallel flows and air as a gasification agent as a function of kind of biomass used and the operating parameters of the equipment. This model allows the calculation of thermochemical processes that occur inside a downdraft gasifier and also the determination of temperature profiles. The model developed was based on the energy balance and species equations approach and the control volumes method was used. (author)

  19. Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

    International Nuclear Information System (INIS)

    RA Wolf

    2006-01-01

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed

  20. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  1. Teachers' Misconceptions about the Effects of Addition of More Reactants or Products on Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek; Ma, Hong-jia; Yang, Jie

    2009-01-01

    The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…

  2. Catalytic membrane in denitrification of water: a means to facilitate intraporous diffusion of reactants

    NARCIS (Netherlands)

    Ilinich, O.M.; Cuperus, F.P.; Gemert, van R.W.; Gribov, E.N.; Nosova, L.V.

    2000-01-01

    The series of mono- and bi-metallic catalysts with Pd and/or Cu supported over γ-Al 2O 3 was investigated with respect to reduction of nitrate and nitrite ions in water by hydrogen. Pronounced limitations of catalytic performance due to intraporous diffusion of the reactants were observed in the

  3. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Nedenskov, Jonas

    2011-01-01

    AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission from....... The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH4 mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH4 generated in cell 1.3 and 2.2.2 was emitted through...

  4. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production.

    Science.gov (United States)

    Getachew, Girma; Laca, Emilio A; Putnam, Daniel H; Witte, Dave; McCaslin, Mark; Ortega, Kara P; DePeters, Edward J

    2018-02-06

    Lignin is a complex, phenolic polymer found in plant cell walls that is essential for mechanical support, water and mineral transport, and defense in vascular plants. Over ten different enzymes play a role in the synthesis of lignin in plants. Suppression of any one enzyme or combinations of these enzymes may change the concentration and composition of lignin in the genetically transformed plants. Two lines of alfalfa that were downregulated for caffeoyl coenzyme A O-methyltransferase were used to assess the impact of lignin downregulation on chemical composition and fermentation rate and extent using an in vitro gas production technique. A total of 64 samples consisting of two reduced lignin (RL) and two controls (CL), four field replicates, two cutting intervals (CIs; 28 and 35 days), and two cuts (Cut-1 and Cut-3) were used. No differences were detected in yield, crude protein, neutral detergent fiber (aNDF), and acid detergent fiber between the lines when harvested at the 28-day CI. The acid detergent lignin (ADL) concentration in RL alfalfa lines was significantly (P gas production and metabolizable energy content were greater in RL than in CL alfalfa. RL lines had 3.8% indigestible aNDF per unit ADL, whereas CL had 3.4% (P < 0.01). The positive effect of lignin downregulation was more pronounced when intervals between harvests were longer (35-day CI compared with the 28-day CI). Lignin downregulation in alfalfa offers an opportunity to extend harvesting time (CI) for higher yield without compromising the nutritional quality of the alfalfa forage for dairy and livestock feeding. However, the in vitro results reported here warrant further study using in vivo methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  6. Plasma cleaning of beamline optical components: Contamination and gas composition effects

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Smith, J.A.; Wallace, D.J.

    1992-01-01

    We have initiated a program to study the impact of gas composition on the carbon removal rate during plasma cleaning of optical components, and of possible contamination due to the plasma processing. The measurements were performed in a test chamber designed to simulate the geometry of the grating/Codling mirror section of a Grasshopper monochromator. Removal rates were determined for a direct-current (dc) (Al electrode) discharge using a quartz crystal microbalance coated with polymethylmethacrylate, located at the position of the grating. Auger electron spectroscopy analysis of strateg- ically located, gold-coated stainless steel samples was employed to determine contamination. The relative removal rates of the gases studied were 3% C 2 F 6 /O 2 much-gt O 2 +H 2 O>O 2 ∼N 2 O>H 2 >N 2 . Although the C 2 F 6 /O 2 gas mixture showed a 20 times greater removal rate than its nearest competitor, it also caused significant contamination to occur. Contamination studies were performed for both dc and radio-frequency (rf) discharges. For the dc discharge we found that great care must be taken in order to avoid Al contamination; for the rf discharge, significant Fe contamination was observed

  7. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  8. Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy.

    Science.gov (United States)

    Lindberg, Sven; Lewander, Märta; Svensson, Tomas; Siemund, Roger; Svanberg, Katarina; Svanberg, Sune

    2012-04-01

    We evaluated a method for gas monitoring in the mastoid cavity using tunable diode laser spectroscopy by comparing it to simultaneously obtained computed tomographic (CT) scans. The presented optical technique measures free gases, oxygen (O2), and water vapor (H2O) within human tissue by use of low-power diode lasers. Laser light was sent into the tip of the mastoid process, and the emerging light at the level of the antrum was captured with a detector placed on the skin. The absorption of H2O was used to monitor the probed gas volume of the mastoid cavity, and it was compared to the CT scan-measured volume. The ratio between O2 absorption and H2O absorption estimated the O2 content in the mastoid cavity and thus the ventilation. The parameters were compared to the grading of mastoid cavities based on the CT scans (n = 31). The reproducibility of the technique was investigated by measuring each mastoid cavity 4 times. Both O2 and H2O were detected with good reproducibility. The H2O absorption and the CT volume correlated (r = 0.69). The average ratio between the normalized O2 absorption and the H2O absorption signals was 0.7, indicating a lower O2 content than in surrounding air (expected ratio, 1.0), which is consistent with previous findings made by invasive techniques. All mastoid cavities with radiologic signs of disease were detected. Laser spectroscopy monitoring appears to be a usable tool for noninvasive investigations of gas composition in the mastoid cavity, providing important clinical information regarding size and ventilation.

  9. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  10. Influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Minkler, W [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-04-01

    On the basis of a number of graphs and data on theoretical combustion temperatures and the difference between the heating value of the fuel and the waste gas in respect of 1 m/sup 3/ of waste gas, the author demonstrates the influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere derived from five different fuels. A rotary-hearth furnace is described for the non-oxidizing heating of pressings from plain carbon and alloy steel.

  11. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  12. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    Science.gov (United States)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  13. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  14. Assessment of undiscovered oil and gas resources of the Cretaceous-Tertiary Composite Total Petroleum System, Taranaki Basin Assessment Unit, New Zealand

    Science.gov (United States)

    Wandrey, Craig J.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2013-01-01

    The Cretaceous-Tertiary Composite Total Petroleum System coincident Taranaki Basin Assessment Unit was recently assessed for undiscovered technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey (USGS) World Energy Resources Project, World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 487 million barrels of oil, 9.8 trillion cubic feet of gas, and 408 million barrels of natural gas liquids.

  15. Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid R 5218 selective layer

    Czech Academy of Sciences Publication Activity Database

    Peter, Jakub; Peinemann, K.; V.

    2009-01-01

    Roč. 340, 1-2 (2009), s. 62-72 ISSN 0376-7388 Grant - others:Marie Curie fellowship(XE) HPMT-CT-2001-00220 Institutional research plan: CEZ:AV0Z40500505 Keywords : composite membrane * gas separation * PTMSP * Matrimid Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.203, year: 2009

  16. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  17. Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials

    Science.gov (United States)

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in a Matrimid polymer matrix with different weight ratios (0–100 wt %) and drop-casted on planar capacitive transducer devices. These coated devices were electrically analyzed using impedance spectroscopy and investigated for their sensing properties toward the detection of a series of alcohols and water in the gas phase. The measurements indicated a reversible and reproducible response in all devices. Sensor devices containing 40 wt % NH2-MIL-53(Al) in Matrimid showed a maximum response for methanol and water. The sensor response time slowed down with increasing MOF concentration until 40 wt %. The half time of saturation response (τ0.5) increased by ∼1.75 times for the 40 wt % composition compared to devices coated with Matrimid only. This is attributed to polymer rigidification near the MOF/polymer interface. Higher MOF loadings (≥50 wt %) resulted in brittle coatings with a response similar to the 100 wt % MOF coating. Cross-sensitivity studies showed the ability to kinetically distinguish between the different alcohols with a faster response for methanol and water compared to ethanol and 2-propanol. The observed higher affinity of the pure Matrimid polymer toward methanol compared to water allows also for a higher uptake of methanol in the composite matrices. Also, as indicated by the sensing studies with a mixture of water and methanol, the methanol uptake is independent of the presence of water up to 6000 ppm of water. The NH2-MIL-53(Al) MOFs dispersed in the Matrimid matrix show a sensitive and reversible capacitive response, even in the presence of water. By tuning the precise compositions, the affinity kinetics and overall affinity can be tuned, showing

  18. On the mechanism of effective chemical reactions with turbulent mixing of reactants and finite rate of molecular reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.

  19. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  20. Atomic layer deposition of Ru thin film using N{sub 2}/H{sub 2} plasma as a reactant

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Eun [Busan Center, Korea Basic Science Institute, 1275 Jisadong, Gangseogu, Busan, 618-230 (Korea, Republic of); Mun, Ki-Yeung; Choi, Sang-Kyung; Park, Ji-Yoon [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Cheon, Taehoon [Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu (Korea, Republic of); Kim, Woo Kyoung [School of Chemical Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Lim, Byoung-Yong; Kim, Sunjung [School of Materials Science and Engineering, University of Ulsan, Mugeo-dong, Nam-go, Ulsan, 680-749 (Korea, Republic of)

    2012-07-31

    Ruthenium (Ru) thin films were grown by atomic layer deposition using IMBCHRu [({eta}6-1-Isopropyl-4-MethylBenzene)({eta}4-CycloHexa-1,3-diene)Ruthenium(0)] as a precursor and a nitrogen-hydrogen mixture (N{sub 2}/H{sub 2}) plasma as a reactant, at the substrate temperature of 270 Degree-Sign C. In the wide range of the ratios of N{sub 2} and total gas flow rates (fN{sub 2}/N{sub 2} + H{sub 2}) from 0.12 to 0.70, pure Ru films with negligible nitrogen incorporation of 0.5 at.% were obtained, with resistivities ranging from {approx} 20 to {approx} 30 {mu} Ohm-Sign cm. A growth rate of 0.057 nm/cycle and negligible incubation cycle for the growth on SiO{sub 2} was observed, indicating the fast nucleation of Ru. The Ru films formed polycrystalline and columnar grain structures with a hexagonal-close-packed phase. Its resistivity was dependent on the crystallinity, which could be controlled by varying the deposition parameters such as plasma power and pulsing time. Cu was electroplated on a 10-nm-thick Ru film. Interestingly, it was found that the nitrogen could be incorporated into Ru at a higher reactant gas ratio of 0.86. The N-incorporated Ru film ({approx} 20 at.% of N) formed a nanocrystalline and non-columnar grain structure with the resistivity of {approx} 340 {mu} Ohm-Sign cm. - Highlights: Black-Right-Pointing-Pointer Atomic layer deposition (ALD) of Ru and N-incorporated Ru film using N{sub 2}/H{sub 2} plasma. Black-Right-Pointing-Pointer The growth rate of 0.057 nm/cycle and negligible incubation cycle. Black-Right-Pointing-Pointer A low resistivity of Ru ({approx} 16.5 {mu} Ohm-Sign cm) at the deposition temperature of 270 Degree-Sign C. Black-Right-Pointing-Pointer Electroplating of Cu on a 10-nm-thick ALD-Ru film.

  1. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  2. Volcanic gas composition changes during the gradual decrease of the gigantic degassing activity of Miyakejima volcano, Japan, 2000-2015

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Matsushima, Nobuo; Saito, Genji; Kazahaya, Ryunosuke

    2017-02-01

    The composition of volcanic gases discharged from Miyakejima volcano has been monitored during the intensive degassing activity that began after the eruption in 2000. During the 15 years from 2000 to 2015, Miyakejima volcano discharged 25.5 Mt of SO2, which required degassing of 3 km3 of basaltic magma. The SO2 emission rate peaked at 50 kt/day at the end of 2000 and quickly decreased to 5 kt/day by 2003. During the early degassing period, the volcanic gas composition was constant with the CO2/SO2 = 0.8 (mol ratio), H2O/SO2 = 35, HCl/SO2 = 0.08, and SO2/H2S = 15. The SO2 emission rate decreased gradually to 0.5 kt/day by 2012, and the gas composition also changed gradually to CO2/SO2 = 1.5, H2O/SO2 = 150, HCl/SO2 = 0.15, and SO2/H2S = 6. The compositional changes are not likely caused by changes in degassing pressure or volatile heterogeneity of a magma chamber but are likely attributed to an increase of hydrothermal scrubbing caused by large decrease of the volcanic gas emission rate, suggesting a supply of gases with constant composition during the 15 years. The intensive degassing was modeled based on degassing of a convecting magma conduit. The gradual SO2 emission rate that decrease without changes in volcanic gas composition is attributed to a reduction of diameter of the convecting magma conduit.

  3. Acute-phase reactants in periodontal disease: current concepts and future implications.

    Science.gov (United States)

    Archana, Vilasan; Ambili, Ranjith; Nisha, Krishnavilasam Jayakumary; Seba, Abraham; Preeja, Chandran

    2015-05-01

    Periodontal disease has been linked to adverse cardiovascular events by unknown mechanisms. C-reactive protein is a systemic marker released during the acute phase of an inflammatory response and is a prognostic marker for cardiovascular disease, with elevated serum levels being reported during periodontal disease. Studies also reported elevated levels of various other acute-phase reactants in periodontal disease. It has been reported extensively in the literature that treatment of periodontal infections can significantly lower serum levels of C-reactive protein. Therefore, an understanding of the relationship between acute-phase response and the progression of periodontal disease and other systemic health complications would have a profound effect on the periodontal treatment strategies. In view of this fact, the present review highlights an overview of acute-phase reactants and their role in periodontal disease. © 2014 Wiley Publishing Asia Pty Ltd.

  4. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  5. Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack

    Science.gov (United States)

    Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed

    2017-12-01

    In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.

  6. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  7. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  8. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    Science.gov (United States)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  9. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  10. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  11. Influence of Carrier Gas Composition on the Stress of Al₂O₃ Coatings Prepared by the Aerosol Deposition Method.

    Science.gov (United States)

    Schubert, Michael; Exner, Jörg; Moos, Ralf

    2014-08-05

    Al₂O₃ films were prepared by the aerosol deposition method at room temperature using different carrier gas compositions. The layers were deposited on alumina substrates and the film stress of the layer was calculated by measuring the deformation of the substrate. It was shown that the film stress can be halved by using oxygen instead of nitrogen or helium as the carrier gas. The substrates were annealed at different temperature steps to gain information about the temperature dependence of the reduction of the implemented stress. Total relaxation of the stress can already be achieved at 300 °C. The XRD pattern shows crystallite growth and reduction of microstrain while annealing.

  12. Stabilization of the composition of the gas medium of a repetitively pulsed CO2 laser by means of hopcalite

    Science.gov (United States)

    Baranov, V. Iu.; Drokov, G. F.; Kuzmenko, V. A.; Mezhevov, V. S.; Pigulskaia, V. V.

    1986-05-01

    Results of experiments in which hopcalite was used to stabilize the composition of the gas medium of repetitively pulsed and monopulse CO2 lasers are reported. In particular, the mechanisms of the decrease in the catalyst activity with time under conditions for catalyst regeneration are determined. It is shown that the use of hopcalite has made it possible to achieve long-term operation of a high-power repetitively pulsed CO2 laser without changing the gas mixture in a closed circuit. Some details related to the use of hopcalite are discussed.

  13. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  14. Chemical composition, in vitro gas production and astringency in the foliage of Samanea saman (Jacq.) Merrill

    International Nuclear Information System (INIS)

    Ojeda, A.; Barroso, J.A.; Obispo, N.; Gil, J.L.; Cegarra, R.

    2012-01-01

    In order to determine the chemical composition, astringency, in vitro gas production and ruminal degradability of the edible fraction of Samanea saman, during 2009, five samplings (February, April, May, June and October) were conducted on plants located in a semideciduous tropical forest in Venezuela. In each sampling 10 different plants were considered, each as a replicate evaluated in a completely randomized design. OM (94,1 ± 1,5%), CP (20,1 ± 1,5%), hemicellulose (17,5 ± 3,7%), cellulose (10,5 ± 2,5%), lignin (11,1 ± 1,8%), and total phenols (2,8 ± 1,1%) did not show variations (P<0,05). From May to October, the highest values (P<0,05) of EE (5,3 ± 0,8%), NDF (44,8 ± 3,3%), ADF (16,7 ± 1,9%), and Ca (1,3 ± 0,2%) were observed; while total (P<0,05) and condensed tannins (P<0,01) increased in October (3,75% and 0,99%, respectively). Astringency was not detected from February to May, and had limited values from June to October (0,4 ± 0,2 g Eta/100 g DM). No differences were observed in b (0,04 ± 0,01 mL/h), To (1,2 ± 0,2 h) and T½ (21,3 ± 3,3 h) with the highest gas potential production in February (63,3 mL/g DM). The OM and NDF degradability was reduced (P<0,05) in April (44,7% and 24,7%, respectively), without differences during the remaining months (51,2 ± 3,4% and 37,7 ± 3,3%, respectively). The edible biomass of S. saman could be used as a nutrient source in silvopastoral systems, with a low condensed tannin content of low biological activity, which causes a positive impact on the non-ammonia nitrogen flow from the rumen. (author)

  15. Polyvinylpyrrolidone/ Poly aniline Composite Based 36 degree YX LiTaO3 Surface Acoustic Wave H2 Gas Sensor

    International Nuclear Information System (INIS)

    Amir Sidek; Rashidah Arsat; Xiuli, He; Kalantar-zadeh, K.; Wlodarski, W.

    2013-01-01

    Poly-vinyl-pyrrolidone (PVP)/ poly aniline based surface acoustic wave (SAW) sensors were fabricated and characterized and their performances towards hydrogen gas were investigated. The PVP/ poly aniline fibers composite were prepared by electro spinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nano structure material was observed. From the dynamic response, frequency shifts of 6.243 kHz (1% H 2 ) and 8.051 kHz (1% H 2 ) were recorded for the sensors deposited with PVP/ ES and PVP/ EB, respectively. (author)

  16. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    Science.gov (United States)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  17. Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting.

    Science.gov (United States)

    Nigussie, Abebe; Bruun, Sander; de Neergaard, Andreas; Kuyper, Thomas W

    2017-04-01

    Dissolved organic carbon (DOC) has recently been proposed as an indicator of compost stability. We assessed the earthworms' effect on DOC content and composition during composting, and linked compost stability to greenhouse gas emissions and feeding ratio. Earthworms reduced total DOC content, indicating larger stability of vermicompost than of thermophilic compost. The concentrations of humic acid and fulvic acid were reduced by earthworms, whereas there was no significant effect on hydrophobic neutrals and hydrophilics. The humic acid fraction was depleted more quickly than the other compounds, indicating humic acid degradation during composting. The optimum feeding ratio decreased DOC content compared to the high feeding ratio. The lowest N 2 O emissions were also observed at the optimum feeding ratio. Our study confirmed the use of DOC content and composition as an indicator of compost stability and suggested that feeding ratio should be considered when assessing the earthworms' effect on stabilisation and greenhouse gas emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Integrated experimental and modeling assessment of potential effects of gas leakages on groundwater composition

    Science.gov (United States)

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk

    2017-04-01

    Storing renewably produced energy is one of the major challenges for the energy systems of the upcoming decades. Power-to-gas technologies coupled to geological storage of compressed air, methane, and hydrogen offer a comparatively safe and cost-efficient way for large-scale energy storage. However, the stored gases can potentially escape from their geological reservoir and may thus affect protected natural goods such as groundwater. The geochemical reactions responsible for these composition changes are usually investigated separately in experiments and numerical models. Here we present the outcomes of an integrated experimental and modeling approach through the example of a compressed air leakage scenario. A main consequence of the presence of oxygen to be assessed in an aquifer is pyrite oxidation, well known from acid mine drainage sites. However, in contrast to acid mine drainage sites exhibiting unsaturated sediments and fed by meteoric low-carbonate water, aquifers such as in Northern Germany contain a considerable amount of solid and dissolved inorganic carbon species potentially buffering pH changes. High pressure flow-through column experiments representing an intrusion of compressed air into an aquifer were carried out to quantify pyrite oxidation kinetics and to incorporate the observations into a descriptive reaction model. Surface passivation was found to decrease the reactivity of pyrite by more than 90% after a few months of experimental run time. We propose that the carbonate buffer system enables the precipitation of a passivating mineral layer on the pyrite surface reducing the overall reaction rate significantly. Consequently, an established rate law from the literature was extended by a reactive surface passivation term[1]. This improved reaction rate equation was incorporated into a 3D numerical model using OpenGeoSys with parameters representing similarly typical aquifer conditions the experiments had characterized. These boundaries include

  19. THE CHEMICAL COMPOSITION AND VARIOUS SAMPLES PREPARATION METHODS FOR In Vitro GAS TEST OF TWO TROPICAL FEEDS

    Directory of Open Access Journals (Sweden)

    J. Daryatmo

    2015-04-01

    Full Text Available A 3x2 factorial experimental design was conducted to evaluate the chemical composition ofSesbania grandiflora (SG and Manihot esculenta Crantz (MEC leaves and to measure the effects ofpreparation and drying methods on the in vitro gas production in the presence and absence of PEG. Thecollected samples were divided into three groups: One group was fresh samples (F. The second groupwas oven-dried at 55°C for 48h (OD and the last group was freeze-dried at –40°C for 72h (FD. Resultsshowed that the mean value of gas production from fresh SG and MEC samples were not significantlyhigher (P<0.05 than from FD and OD samples. In SG and MEC, the mean value of gas production ofFD was not significant compared to OD samples (P>0.05. Gas production from samples added withPEG were higher (P<0.05 than without PEG. In conclusion, the preparation and drying methods of feedsamples could affect the volume of gas production. The addition of PEG in SG and MEC resulted inhigher gas production volumes.

  20. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  1. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    Science.gov (United States)

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  2. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition.

    Directory of Open Access Journals (Sweden)

    Irene Piccini

    Full Text Available Cattle farming is a major source of greenhouse gases (GHGs. Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species, we ran six experimental treatments (four monospecific and two mixed and two controls (one with dung but without beetles, and one with neither dung nor beetles. In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux-an effect potentially traceable to the species' nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%. As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.

  3. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant

    OpenAIRE

    Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Filimonenko, Ekaterina Anatolievna; Samokhina, Nataljya Pavlovna; Shakhova, Tatiana Sergeevna; Parygina, Irina Alekseevna

    2016-01-01

    Local heating plants are the main pollution source of rural areas. Currently, there are few studies on the composition of local heating plants emissions. The article deals with the research results of air pollution level with solid airborne particles in the vicinity of local gas-fired heating plants of some districts of Tomsk region. The snow sampling was conducted for the purpose of solid airborne particles extraction from snow cover. The content of 28 chemical elements (heavy metals, rare e...

  4. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  5. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    OpenAIRE

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-01-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the co...

  6. 210Pb content in natural gas pipeline residues ('black-powder') and its correlation with the chemical composition

    International Nuclear Information System (INIS)

    Godoy, Jose Marcus; Carvalho, Franciane; Cordilha, Aloisio; Matta, Luiz Ernesto; Godoy, Maria Luiza

    2005-01-01

    The present work was carried out to assess the 210 Pb content in 'black-powder' found in pigging operations on gas pipelines in Brazil, in particular, on the Campos Basin gas pipeline. Additionally, the chemical composition of such deposits was determined and an eventual correlation with 210 Pb concentration evaluated. Typical 'black-powder' generated in the natural gas pipeline from Campos Basin oilfield contains mainly iron oxide (∼81%) and residual organic matter (∼9%). The 210 Pb content ranges from 4.9 to 0.04 kBq kg -1 and seems to be inversely correlated with the distance to the platforms. On the other hand, 226 Ra concentration is higher on the pipeline branch between the platform and the onshore installations. 228 Ra was only observed in few samples, in particular, in the samples with the highest 226 Ra content

  7. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  8. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  9. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2016-12-01

    Full Text Available This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC, polyethylene oxide (PEO, and polyvinylpyrrolidone (PVP. Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC testing.

  10. Effects of silica composition on gas permeability of ENR/PVC ...

    African Journals Online (AJOL)

    At higher SiO2 loadings, the mechanical strength of the membrane decreased due to the agglomeration of SiO2 particles. Gas permeation test was done on ENR/PVC/SiO2 membranes using NO2 gas and CO2 gas. The permeability of both gasses increased with the amount of SiO2 added to the membrane, which attributed ...

  11. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    OpenAIRE

    Schiro Fabio; Stoppato Anna; Benato Alberto

    2017-01-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will ...

  12. Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices

    International Nuclear Information System (INIS)

    Tallo, Indrek; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2013-01-01

    Micro- and mesoporous carbide-derived carbons were synthesized from titanium carbide (TiC) powder via gas phase reaction by using different reactants (Cl 2 and HCl) within the temperature range from 700 to 1100 °C. Analysis of XRD results show that TiC-derived carbons (TiC-CDC) consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ∼1577 cm 1 and the disorder-induced peaks at ∼1338 cm- 1 . The energy-related properties of supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 in acetonitrile and carbide-derived carbons (TiC-CDC (Cl 2 ) and TiC-CDC (HCl)) as electrode materials were also investigated using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The Ragone plots for carbide-derived carbons prepared by using different reactants (Cl 2 , HCl) are quite similar and at high power loads TiC-CDC (Cl 2 ) material synthesized at 900 °C, i.e. materials with optimal porous structure, deliver higher power at constant energy

  13. Preliminary study on application of Pd composite membrane in helium purification system of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cai Jianhua; Yang Xiaoyong; Wang Jie; Yu Suyuan

    2008-01-01

    Helium purification system (HPS) is the main part of the helium auxiliary system of high-temperature gas-cooled reactors (HTGR), also in fusion reactors. Some exploratory work was carried out on the application of Pd composite membrane in the separation of He and H 2 . A typical single stripper permeator with recycle (SSP) system was designed, based on the design parameters of a small scale He purification test system CIGNE in CADARACHE, CEA, France, and finite element analysis method was used to solve the model. The total length of membrane module is fixed to 0.5 m. The results show that the concentration of H 2 is found to reduce from 1 000 μL/L in feed gas to 5 μL/L in the product He (the upper limitation of HPS in HTGR). And the molar ratio of product He to feed gas is 96.18% with the optimized ratio of sweep gas to retentive gas 0. 3970. It's an exponential distribution of H 2 concentration along the membrane module. The results were also compared with the other two popular designs, two stripper in series permeator (TSSP) and continuous membrane column (CMC). (authors)

  14. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  15. Effect of diamond blend on the gas-separation properties of composite membranes

    Science.gov (United States)

    Kryuchkova, S. V.; Kostina, Yu. V.; Yablokova, M. Yu.; Gasanova, L. G.; Kepman, A. V.

    2017-10-01

    The morphological structure and gas transport properties of polyimide- and polyamide-imidebased rigid-chain polymers containing a fine carbon filler (a diamond blend) are studied. Gas transport properties are measured, and the effect exerted on these properties by intermolecular interaction between the functional groups of polymer chains and the fine filler is analyzed.

  16. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF 4 is used as the sensitizer to absorb energy from a pulsed CO 2 laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF 6 is the reactant, CF 3 Cl is used as reagent to trap atomic fluorine reaction product, forming CF 4 as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF 6 unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF 6 as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs

  17. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  18. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.

    Science.gov (United States)

    Sonoda, T; Ona, T; Yokoi, H; Ishida, Y; Ohtani, H; Tsuge, S

    2001-11-15

    Detailed quantitative analysis of lignin monomer composition comprising p-coumaryl, coniferyl, and sinapyl alcohol and p-coumaraldehyde, coniferaldehyde, and sinapaldehyde in plant has not been studied from every point mainly because of artifact formation during the lignin isolation procedure, partial loss of the lignin components inherent in the chemical degradative methods, and difficulty in the explanation of the complex spectra generally observed for the lignin components. Here we propose a new method to quantify lignin monomer composition in detail by pyrolysis-gas chromatography (Py-GC) using acetylated lignin samples. The lignin acetylation procedure would contribute to prevent secondary formation of cinnamaldehydes from the corresponding alcohol forms during pyrolysis, which are otherwise unavoidable in conventional Py-GC process to some extent. On the basis of the characteristic peaks on the pyrograms of the acetylated sample, lignin monomer compositions in various dehydrogenative polymers (DHP) as lignin model compounds were determined, taking even minor components such as cinnamaldehydes into consideration. The observed compositions by Py-GC were in good agreement with the supplied lignin monomer contents on DHP synthesis. The new Py-GC method combined with sample preacetylation allowed us an accurate quantitative analysis of detailed lignin monomer composition using a microgram order of extractive-free plant samples.

  19. Composition and activity variations in bulk gas of drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Zs.; Futo, I.; Ormai, P.

    2001-01-01

    To obtain reliable estimates of the quantities and rates of the gas production a series of measurements was carried out in drum waste packages generated and temporarily stored at the site of Paks Nuclear Power Plant (Paks NPP). Ten drum waste packages were equipped with sampling valves for repeated sampling. Nine times between 04/02/2000 and 19/07/2001 qualitative gas component analyses of bulk gases of drums were executed. Gas samples were delivered to the laboratory of the ATOMKI for tritium and radiocarbon content measurements.(author)

  20. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  1. Effect of small glass composition changes on flue gas emissions of glass furnaces

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Kersbergen, M.J. van

    2008-01-01

    Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of

  2. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  3. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  4. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  5. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.

    2017-01-01

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  6. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  7. Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method

    Directory of Open Access Journals (Sweden)

    Michael Schubert

    2014-08-01

    Full Text Available Al2O3 films were prepared by the aerosol deposition method at room temperature using different carrier gas compositions. The layers were deposited on alumina substrates and the film stress of the layer was calculated by measuring the deformation of the substrate. It was shown that the film stress can be halved by using oxygen instead of nitrogen or helium as the carrier gas. The substrates were annealed at different temperature steps to gain information about the temperature dependence of the reduction of the implemented stress. Total relaxation of the stress can already be achieved at 300 °C. The XRD pattern shows crystallite growth and reduction of microstrain while annealing.

  8. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  9. Computational Modelling of Thermal Stability in a Reactive Slab with Reactant Consumption

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2012-01-01

    Full Text Available This paper investigates both the transient and the steady state of a one-step nth-order oxidation exothermic reaction in a slab of combustible material with an insulated lower surface and an isothermal upper surface, taking into consideration reactant consumption. The nonlinear partial differential equation governing the transient reaction-diffusion problem is solved numerically using a semidiscretization finite difference technique. The steady-state problem is solved using a perturbation technique together with a special type of the Hermite-Padé approximants. Graphical results are presented and discussed quantitatively with respect to various embedded parameters controlling the systems. The crucial roles played by the boundary conditions in determining the thermal ignition criticality are demonstrated.

  10. The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland

    Directory of Open Access Journals (Sweden)

    Vivian Zufferey

    2017-04-01

    Full Text Available Aims : The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality. Methods and results : Grapevines of the variety Vitis vinifera L. cv. Pinot Noir (clone 9-18, grafted onto 5BB were subjected to different water regimes (irrigation treatments over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d13C in must sugars. Leaf gas exchange (net photosynthesis A and transpiration E, leaf stomatal conductance (gs, specific hydraulic conductivity in petioles (Kpetiole, yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E and gs in non-irrigated vines. The intrinsic water use efficiency (WUEi, A/gs increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines. This rise in WUEi was correlated with an increase in d13C in must sugars at harvest. Drought led to decreases in Kpetiole, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN. Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic

  11. Influence of the oxidiser gas composition on the overtone generation efficiency of a supersonic cw chemical HF laser

    International Nuclear Information System (INIS)

    Konkin, S V; Fedorov, Igor' A; Rebone, Vitalii K; Rotinyan, Mikhail A; Tret'yakov, Nikolai E; Galaev, I I; Moroz, M V; Tomashevich, N N

    1998-01-01

    An experimental investigation was made of the influence of the chemical composition of the oxidiser gas in an atomic-fluorine generator on the efficiency of generation of radiation representing the first overtone of the HF molecule in a self-contained supersonic cw chemical HF laser with the active medium 70 cm long. The optimal chemical composition was different for the fundamental and overtone transitions. A specific output energy of 84 J g -1 at a specific mass flow rate of 0.13 g s -1 cm -2 through the nozzle array was achieved by optimisation of a linear three-mirror optical cavity at the 1.33 - 1.35 μm wavelengths. The overtone radiation power generated in the whole of the active medium was 7.5 kW, corresponding to a 41% efficiency of energy conversion to an overtone. (lasers, active media)

  12. Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting

    DEFF Research Database (Denmark)

    Nigatu, Abebe Nigussie; Bruun, Sander; de Neergaard, Andreas

    2017-01-01

    Dissolved organic carbon (DOC) has recently been proposed as an indicator of compost stability. We assessed the earthworms' effect on DOC content and composition during composting, and linked compost stability to greenhouse gas emissions and feeding ratio. Earthworms reduced total DOC content......, indicating larger stability of vermicompost than of thermophilic compost. The concentrations of humic acid and fulvic acid were reduced by earthworms, whereas there was no significant effect on hydrophobic neutrals and hydrophilics. The humic acid fraction was depleted more quickly than the other compounds......, indicating humic acid degradation during composting. The optimum feeding ratio decreased DOC content compared to the high feeding ratio. The lowest N2O emissions were also observed at the optimum feeding ratio. Our study confirmed the use of DOC content and composition as an indicator of compost stability...

  13. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  14. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  15. Composite beryllium-ceramics breeder pin elements for a gas cooled solid blanket

    International Nuclear Information System (INIS)

    Carre, F.; Chevreau, G.; Gervaise, F.; Proust, E.

    1986-06-01

    Helium coolant have main advantages compared to water for solid blankets. But limitations exist too and the development of attractive helium cooled blankets based on breeder pin assemblies has been essentially made possible by the derivation from recent CEA neutronic studies of an optimized composite beryllium/ceramics breeder arrangement. Description of the proposed toroidal blanket layout for Net is made together with the analysis of its main performance. Merits of the considered composite Be/ceramics breeder elements are discussed

  16. Metal/glass composites for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Nicolae, Constantin Adrian; Sisu, Claudia; Stefanescu, Doina; Stanciu, Vasile

    1999-01-01

    The separation process of hydrogen isotopes by cryogenic distillation or thermal diffusion is a key technology for tritium separation from heavy water in CANDU reactor and for tritium fuel cycle in thermonuclear fusion reactor. In each process, analytical techniques for analyzing the hydrogen isotope mixture are required. An extensive experimental research has been carried out in order to produce the most suitable adsorbents and to establish the best operating conditions for selective separation and analysis of hydrogen isotopes by gas-chromatography. This paper describes the preparation of adsorbent materials used as stationary phases in the gas-chromatographic column for hydrogen isotope separation and the treatment (activation) of stationary phases. Modified thermoresisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and Cr 2 O 3 respectively have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are reported and discussed. The gas-chromatographic apparatus used in this study is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector. The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes, H 2 , HD, D 2 , and their mixture have been obtained in our laboratories. The best operating conditions and parameters of the Fe 3+ /glass adsorbent column , i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate and sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  17. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  18. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  19. Standard practice for examination of Gas-Filled filament-wound composite pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examination of filament-wound composite pressure vessels, for example, the type used for fuel tanks in vehicles which use natural gas fuel. 1.2 This practice requires pressurization to a level equal to or greater than what is encountered in normal use. The tanks' pressurization history must be known in order to use this practice. Pressurization medium may be gas or liquid. 1.3 This practice is limited to vessels designed for less than 690 bar [10,000 psi] maximum allowable working pressure and water volume less than 1 m3 or 1000 L [35.4 ft3]. 1.4 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to gain additional insight into the emission source. Procedures for other NDE methods are beyond the scope of this practice. 1.5 This practice applies to examination of new and in-service filament-wound composite pressure vessels. 1.6 This practice applies to examinations conducted at amb...

  20. Component-based control of oil-gas-water mixture composition in pipelines

    Science.gov (United States)

    Voytyuk, I. N.

    2018-03-01

    The article theoretically proves the method for measuring the changes in content of oil, gas and water in pipelines; also the measurement system design for implementation thereof is discussed. An assessment is presented in connection with random and systemic errors for the future system, and recommendations for optimization thereof are presented.

  1. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    Science.gov (United States)

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  2. Impact of meteorological parameters on extracted landfill gas composition and flow

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2018-01-01

    The objective of this study was to investigate the impact of four pre-selected meteorological parameters (barometric pressure, wind speed, ambient temperature and solar radiation) on recovered landfill gas (LFG) flow, methane (CH4) content of the LFG and the recovered CH4 flow by performing...

  3. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  4. Transesterification of castor oil usingMgO/SiO2 catalyst and coconutoilas co-reactant

    OpenAIRE

    Kamisah D. Pandiangan; Novesar Jamarun; Syukri Arief; Wasinton Simanjuntak

    2016-01-01

    This paper describes the transesterification of castor oil with the use of coconut oil as co-reactant and MgO/SiO2as heterogeneous base catalyst. The catalyst was preparedfrom rice husk silica and magnesium nitrate by sol-gel method, with MgO load of 20% relative to silica, and then subjected to sintering treatment at 600 oC for 6 hours. A series of experiments was carried out, indicating that the use of coconut oil as co-reactant significantly promoted the conversion of castor oil into b...

  5. Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection

    KAUST Repository

    Yoon, Bora

    2016-08-05

    A platform for chemiresistive gas detectors based upon single-walled carbon nanotube (SWCNT) dispersions stabilized by poly(4-vinylpyridine) (P4VP) covalently immobilized onto a glass substrate was developed. To fabricate these devices, a glass substrate with gold electrodes is treated with 3-bromopropyltrichlorosilane. The resulting alkyl bromide coating presents groups that can react with the P4VP to covalently bond (anchor) the polymer–SWCNT composite to the substrate. Residual pyridyl groups in P4VP not consumed in this quaternization reaction are available to coordinate metal nanoparticles or ions chosen to confer selectivity and sensitivity to target gas analytes. Generation of P4VP coordinated to silver nanoparticles produces an enhanced response to ammonia gas. The incorporation of soft Lewis acidic Pd2+ cations by binding PdCl2 to P4VP yields a selective and highly sensitive device that changes resistance upon exposure to vapors of thioethers. The latter materials have utility for odorized fuel leak detection, microbial activity, and breath diagnostics. A third demonstration makes use of permanganate incorporation to produce devices with large responses to vapors of volatile organic compounds that are susceptible to oxidation.

  6. Radiation Fog in the US Mid-Atlantic Region: Chemical Composition, Trends, and Gas-Liquid Partitioning

    Science.gov (United States)

    Straub, D.

    2016-12-01

    The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.

  7. Investigation on Nano composite Membrane of Multi walled Carbon Nano tube Reinforced Polycarbonate Blend for Gas Separation

    International Nuclear Information System (INIS)

    Kausar, A.

    2016-01-01

    Carbon nano tube has been explored as a nano filler in high performance polymeric membrane for gas separation. In this regard, nano composite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multi walled carbon nano tube (MWCNT) was fabricated via phase inversion technique. Poly (ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nano filler. Scanning and transmission electron micrographs have shown fine nano tube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young s modulus of PC/PVFHFP/PEG/MWCNT-A 1-5 were found to be in the range of 63.6-72.5 MPa and 110.6-122.1 MPa, respectively. The nano composite revealed 51% increase in Young s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the perm selectivity αCO 2 /N 2 (31.2-39.9) of nano composite membrane relative to the blend membrane (21.6). The permeability ρCO 2 of blend was 125.6 barrer; however, the functional series had enhancedρCO 2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1-5; however, filler content did not significantly influence the CO 2 and N 2 solubility.

  8. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  9. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  10. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  11. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  12. Inverse magnetostrictive characteristics of Fe-Co composite materials using gas-nitriding process

    Science.gov (United States)

    Nakajima, Kenya; Yang, Zhenjun; Narita, Fumio

    2018-03-01

    The inverse magnetostrictive response, known as the Villari effect, of magnetostrictive materials is a change in magnetization due to an applied stress. It is commonly used for sensor applications. This work deals with the inverse magnetostrictive characteristics of Fe-Co bimetal plates that were subjected gas-nitriding process. Gas-nitriding was performed on bimetal plates for 30 min at 853 K as a surface heat treatment process. The specimens were cooled to room temperature after completing the nitriding treatment. Three-point bending tests were performed on the plates under a magnetic field. The changes on the magnetic induction of the plates due to the applied load are discussed. The effect of the nitriding treatment on the inverse magnetostrictive characteristics, magnetostrictive susceptibility, and magnetic hysteresis loop was examined. Our work represents an important step forward in the development of magnetostrictive sensor materials.

  13. Study of influence of gas mixture composition on the multistep avalanche chambers characteristics

    International Nuclear Information System (INIS)

    Abdushukurov, D.A.; Zanevskij, Yu.V.; Peshekhonov, V.D.

    1987-01-01

    The influence of the concentration of organic quenchers on the operation of multistep avalanche chambers /MSAC/ has been studied. An empirical dependence of the gas amplification factor of MSAC on the quencher concentration has been derived. Measures are considered to increase the stability of the MSAC operation. To improve the MSAC operation argon + n-heptane, neon + methane and neon + argon + methane mixtures are suggested

  14. Influence of the gas phase composition on nanocrystalline diamond films prepared by MWCVD

    Czech Academy of Sciences Publication Activity Database

    Popov, C.; Jelínek, Miroslav; Boycheva, S.; Vorlíček, Vladimír; Kulisch, W.

    2005-01-01

    Roč. 23, - (2005), s. 31-34 ISSN 1422-6375 R&D Projects: GA AV ČR(CZ) IAA1010110 Grant - others:European Community Marie Curie Fellowship(XE) HPMF-CT-2002-01713 Institutional research plan: CEZ:AV0Z1010914 Keywords : microwave plasma CVD * nanocrystalline diamond films * characterization Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-11-01

    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  16. Seasonal variations in body composition, maximal oxygen uptake, and gas exchange threshold in cross-country skiers.

    Science.gov (United States)

    Polat, Metin; Korkmaz Eryılmaz, Selcen; Aydoğan, Sami

    2018-01-01

    In order to ensure that athletes achieve their highest performance levels during competitive seasons, monitoring their long-term performance data is crucial for understanding the impact of ongoing training programs and evaluating training strategies. The present study was thus designed to investigate the variations in body composition, maximal oxygen uptake (VO 2max ), and gas exchange threshold values of cross-country skiers across training phases throughout a season. In total, 15 athletes who participate in international cross-country ski competitions voluntarily took part in this study. The athletes underwent incremental treadmill running tests at 3 different time points over a period of 1 year. The first measurements were obtained in July, during the first preparation period; the second measurements were obtained in October, during the second preparation period; and the third measurements were obtained in February, during the competition period. Body weight, body mass index (BMI), body fat (%), as well as VO 2max values and gas exchange threshold, measured using V-slope method during the incremental running tests, were assessed at all 3 time points. The collected data were analyzed using SPSS 20 package software. Significant differences between the measurements were assessed using Friedman's twoway variance analysis with a post hoc option. The athletes' body weights and BMI measurements at the third point were significantly lower compared with the results of the second measurement ( p exchange threshold, running speed at the gas exchange threshold, VO 2max , amount of oxygen consumed at gas exchange threshold level (VO 2GET ), maximal heart rate (HR max ), and heart rate at gas exchange threshold level (HR GET ) values did not significantly differ between the measurement time points ( p >0.05). VO 2max and gas exchange threshold values recorded during the third measurements, the timing of which coincided with the competitive season of the cross-country skiers

  17. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    KAUST Repository

    Blinova, Natalia V.

    2012-04-21

    Composite membranes combining polyaniline as an active layer with a polypropylene support have been prepared using an in situ deposition technique. The protonated polyaniline layer with a thickness in the range of 90-200 nm was prepared using precipitation, dispersion, or emulsion polymerization of aniline with simultaneous deposition on top of the porous polypropylene support, which was immersed in the reaction mixture. Variables such as temperature, concentration of reagents, presence of steric stabilizers, surfactants, and heteropolyacid were found to control both the formation and the quality of the polyaniline layers. Both morphology and thickness of the layers were characterized using scanning electron microscopy. Selective separation of carbon dioxide from its mixture with methane is used to illustrate potential application of these composite membranes. © 2012 Wiley Periodicals, Inc.

  18. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants.

    Science.gov (United States)

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L

    2011-04-01

    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  19. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Mehmet A., E-mail: mehmet.sen@mathworks.com [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Kowalski, Gregory J., E-mail: gkowal@coe.neu.edu [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Fiering, Jason, E-mail: jfiering@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States); Larson, Dale, E-mail: dlarson@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States)

    2015-03-10

    Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.

  20. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons.

    Science.gov (United States)

    Merino-Díez, Néstor; Lobo-Checa, Jorge; Nita, Pawel; Garcia-Lekue, Aran; Basagni, Andrea; Vasseur, Guillaume; Tiso, Federica; Sedona, Francesco; Das, Pranab K; Fujii, Jun; Vobornik, Ivana; Sambi, Mauro; Pascual, José Ignacio; Ortega, J Enrique; de Oteyza, Dimas G

    2018-04-27

    The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

  1. Modification of the liquid cooling channel of PEMFCs for their operation with dry reactant gases

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Hsueh, Kan-Lin; Tsau, Fanghei; Chen, Fa-Lin

    2011-01-01

    In order to tackle both water and thermal problems, a modified PEMFC is proposed in the present study for its operation with dry reactant gases via the modification of liquid cooling channel with circulating liquid electrolyte. Fuel cell with both circulating liquid electrolyte and solid polymer membrane operated with either dry or humidified H 2 /O 2 is compared in the present study at temperatures of 40, 50, 65, and 80 o C, respectively. The measured E-I data show that such single cell can be operated at 80 o C without humidification. Besides, a semi-empirical equation to predict the current/voltage relationship, and the electrochemical impedance method are also employed in the present study for cell resistance analysis. The analysis results show that the high interfacial resistance should be one of the major reasons for the inferior performance of the present cell. Based on the discovery, an improvement of the present fuel cell is further proposed by Nafion ionomer spreading on the electrode before the assembly of membrane and electrode. The maximum power density of the cell after electrode treatment reaches 75 mW/cm 2 for dry H 2 /O 2 operation at 0.4 V, which is almost threefold improvement compared with that without electrode treatment.

  2. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    International Nuclear Information System (INIS)

    Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale

    2015-01-01

    Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction

  3. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  4. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  5. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    Science.gov (United States)

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  6. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    Science.gov (United States)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  7. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  8. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    OpenAIRE

    C. Warneke; F. Geiger; P. M. Edwards; W. Dube; G. Pétron; J. Kofler; A. Zahn; S. S. Brown; M. Graus; J. Gilman; B. Lerner; J. Peischl; T. B. Ryerson; J. A. de Gouw; J. M. Roberts

    2014-01-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aroma...

  9. Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons

    International Nuclear Information System (INIS)

    Hinnenkamp, J.A.; Walatka, V.V.

    1987-01-01

    A method for the conversion of synthesis gas is described comprising: contacting synthesis gas which comprises hydrogen and carbon monoxide with a catalytically effective amount of a crystalline ferroborosilicate composition, under conversion conditions effective to provide ethane selectivity of at least 40%. The borosilicate composition is represented in terms of mole ratios as follows: (0.2 to 15) M/sub 2/m/O:(0.2 to 10) Z/sub 2/ O /sub 3/: (5 to 1000) SiO/sub 2/: Fe/sub 2/n/O: (0 to 2000) H/sub 2/O wherein M comprises a cation of a quaternary ammonium, metal, ammonium, hydrogen and mixtures thereof, m is the valence of the cation, n is the valence of the iron cation, and Z is boron. The composition contains ion-exchanged palladium or palladium impregnated onto the composition

  10. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  11. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  12. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  13. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  14. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    International Nuclear Information System (INIS)

    Jee, Hyun Sup; Lee, Jong O; Ju, No Hoe; So, Cheal Ho; Lee, Jong Kyu

    2013-01-01

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  15. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  16. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  17. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  18. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    International Nuclear Information System (INIS)

    Li, Guoliang; Shen, Boxiong; Li, Yongwang; Zhao, Bin; Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min

    2015-01-01

    Highlights: • Both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg 0 removal by M6WN5. • The effect of NO, H 2 O, SO 2 and O 2 on Hg 0 removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg 0 sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH 4 Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH 4 Cl loading, and exothermic chemisorption process was a dominant route for Hg 0 removal. Microwave activation improved pore properties and NH 4 Cl impregnation introduced good active sites for biochars. The presence of NO and O 2 increased Hg 0 adsorption whereas H 2 O inhibited Hg 0 adsorption greatly. A converse effect of SO 2 was observed on Hg 0 removal, namely, low concentration of SO 2 promoted Hg 0 removal obviously whereas high concentration of SO 2 suppressed Hg 0 removal. The Hg 0 removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg 0 to form HgCl 2 , and the active state of C−Cl * groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg 0 sorbent in flue gas when compared with other sorbents

  19. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  20. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf Borelli, Samuel Jose [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil)], E-mail: sborelli@terra.com.br; Oliveira Junior, Silvio de [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)], E-mail: silvio.oliveira@poli.usp.br

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.

  1. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel Jose Sarraf [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil); De Oliveira Junior, Silvio [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (author)

  2. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    International Nuclear Information System (INIS)

    Sarraf Borelli, Samuel Jose; Oliveira Junior, Silvio de

    2008-01-01

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters

  3. Effects of balneotherapy on the reactants of acute inflammation phase in Ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Stamenković Bojana

    2009-01-01

    Full Text Available Introduction. Ankylosing spondylitis (AS is a chronic inflammatory disease that affects sacroiliac joints, spinal column and peripheral joints. Beside medication therapy, physical and balneotherapy play an important role in its complex treatment. Objective. The aim of the research was to establish serum concentrations of C-reactive protein (CRP, α 1-acid glycoprotein (α 1-AGP, ceruloplasmine (CP and erythrocyte sedimentation rate (SE before and after the balneotherapy in ankylosing spondylitis. Methods. The research included 50 AS patients according to the revised New York criteria, of mean age 43 years, who were treated for 14 days on the average at the Clinic for Rheumatology of the Institute 'Niška Banja'. All the patients received medications and balneotherapy (radioactive oligomineral baths, peloid, massage, kinesitherapy; the serum concentrations of CRP, α1-AGP, CP and SE were measured before and after balneotherapy. Serum proteins were determined using original Nor Partigen plates Boehringer. Erythrocyte sedimentation rate was measured by Westergreen method. Balneotherapy was applied individually, intensively or mildly, depending on the AS stage and activity phase. Results. After dosed balneotherapy, a significant decrease in the concentrations of CP (p<0.05, α1-AGP (p<0.01 and CRP (p<0.05 was registered in the serums of AS patients. ESR was not significantly reduced. Conclusion. The research proved that α 1-acid glycoprotein, ceruloplasmine and C-reactive protein represent more sensitive inflammation markers as compared to erythrocyte sedimentation rate. The identification of acute phase reactants is important in the evaluation of dosed balneotherapy efficiency in the treatment of ankylosing spondylitis.

  4. Cord Blood Acute Phase Reactants Predict Early Onset Neonatal Sepsis in Preterm Infants.

    Directory of Open Access Journals (Sweden)

    Leena B Mithal

    Full Text Available Early onset sepsis (EOS is a major cause of morbidity and mortality in preterm infants, yet diagnosis remains inadequate resulting in missed cases or prolonged empiric antibiotics with adverse consequences. Evaluation of acute phase reactant (APR biomarkers in umbilical cord blood at birth may improve EOS detection in preterm infants with intrauterine infection.In this nested case-control study, infants (29.7 weeks gestation, IQR: 27.7-32.2 were identified from a longitudinal cohort with archived cord blood and placental histopathology. Patients were categorized using culture, laboratory, clinical, and antibiotic treatment data into sepsis groups: confirmed sepsis (cEOS, n = 12; presumed sepsis (PS, n = 30; and no sepsis (controls, n = 30. Nine APRs were measured in duplicate from cord blood using commercially available multiplex immunoassays (Bio-Plex Pro™. In addition, placental histopathologic data were linked to biomarker results.cEOS organisms were Escherichia coli, Streptococcus agalactiae, Proteus mirabilis, Haemophilus influenzae and Listeria monocytogenes. C-reactive protein (CRP, serum amyloid A (SAA, haptoglobin (Hp, serum amyloid P and ferritin were significantly elevated in cEOS compared to controls (p<0.01. SAA, CRP, and Hp were elevated in cEOS but not in PS (p<0.01 and had AUCs of 99%, 96%, and 95% respectively in predicting cEOS. Regression analysis revealed robust associations of SAA, CRP, and Hp with EOS after adjustment for covariates. Procalcitonin, fibrinogen, α-2-macroglobulin and tissue plasminogen activator were not significantly different across groups. Placental acute inflammation was associated with APR elevation and was present in all cEOS, 9 PS, and 17 control infants.This study shows that certain APRs are elevated in cord blood of premature infants with EOS of intrauterine origin. SAA, CRP, and Hp at birth have potential diagnostic utility for risk stratification and identification of infants with EOS.

  5. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    Science.gov (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  6. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  7. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Shen, Boxiong, E-mail: shenbx@nankai.edu.cn [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Li, Yongwang [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhao, Bin [School of Chemical Engineering, Hebei University of Technology, Tianjin 300401 (China); Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2015-11-15

    Highlights: • Both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg{sup 0} removal by M6WN5. • The effect of NO, H{sub 2}O, SO{sub 2} and O{sub 2} on Hg{sup 0} removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg{sup 0} sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH{sub 4}Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH{sub 4}Cl loading, and exothermic chemisorption process was a dominant route for Hg{sup 0} removal. Microwave activation improved pore properties and NH{sub 4}Cl impregnation introduced good active sites for biochars. The presence of NO and O{sub 2} increased Hg{sup 0} adsorption whereas H{sub 2}O inhibited Hg{sup 0} adsorption greatly. A converse effect of SO{sub 2} was observed on Hg{sup 0} removal, namely, low concentration of SO{sub 2} promoted Hg{sup 0} removal obviously whereas high concentration of SO{sub 2} suppressed Hg{sup 0} removal. The Hg{sup 0} removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg{sup 0} to form HgCl{sub 2}, and the active state of C−Cl{sup *} groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg{sup 0} sorbent in flue gas when compared with other sorbents.

  8. Chemical composition effects of methylene containing polymers on gas emission under γ-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Dannoux-Papin, A. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Dély, N. [CEA, DSM, IRAMIS, LIDYL, PCR, F-91191 Gif-sur-Yvette (France); Legand, S.; Durand, D.; Roujou, J.L.; Lamouroux, C.; Dauvois, V. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Coignet, P.; Cochin, F. [AREVA NC DOR/RDP, 1 place Jean Millier, 92084 La Défense (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); CEA, DSM, IRAMIS, LIDYL, PCR, F-91191 Gif-sur-Yvette (France)

    2014-09-01

    The presence of different chemical groups in methylene containing polymers can lead to very different behaviors under ionizing radiation. To better understand the effect of these groups on gas production under γ-irradiation, especially on hydrogen formation, and to study the efficiency of energy transfer between chemical groups, several methylene containing polymers with different controlled group concentrations were studied in inert atmosphere. We analyzed the influence of the nature and position of the chemical group using methylene containing copolymers with aliphatic side-chains (different lengths), ester groups in the side-chains (different concentrations) and ester groups in the polymer backbone (different concentrations). Radiation chemical yields of H{sub 2}, CO, CO{sub 2} and CH{sub 4} were determined at room temperature by high resolution mass spectrometry. On the basis of these results, we attempt to obtain a better understanding of the mechanisms involved. It can be observed that crystallinity and aliphatic side-chain have no effect on hydrogen formation. On contrary, esters on side-chain and in the backbone have an important influence on hydrogen formation, with the most important effect when esters groups are in the backbone. In these two kind of materials, energy fraction transferred from methylene to ester groups has been quantified and only 10 wt% (or less) of ester groups are sufficient to protect effectively the aliphatic moiety.

  9. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite

    International Nuclear Information System (INIS)

    Sarfraz, J.; Ihalainen, P.; Määttänen, A.; Peltonen, J.; Lindén, M.

    2013-01-01

    The fabrication of a hydrogen sulfide (H 2 S) sensor based on polyaniline (PANI)-metal salt (CuCl 2 ) composite is demonstrated. The sensing film was produced by screen printing and spray coating of the sensing material on interdigitated silver electrodes inkjet-printed on a paper substrate. The H 2 S sensing functionality with respect to pH and metal salt concentration was optimized. In addition, the long term stability and humidity effects on the sensor performance were investigated. The printed chemiresistors showed more than five orders of magnitude change in resistance within 20 min of exposure of 15 ppm H 2 S at room temperature. The relatively fast kinetics and large response of the sensor can be explained by the formation of Cu 2 S and subsequent protonation of PANI. In addition, the relatively large roughness and porosity of the paper substrate offers an increased surface sensing area. - Highlights: • pH, salt concentration, film thickness, cross sensitivity • Printed sensor on paper substrate • Commercial polyaniline against special morphologies

  11. Final Report - Composite Fermion Approach to Strongly Interacting Quasi Two Dimensional Electron Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John

    2009-11-30

    Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.

  12. Analysis of the fatty acid composition of taraxicuum officinale flowers oil by gas chromatography mass spectrometer

    International Nuclear Information System (INIS)

    Hussain, I.; Ullah, R.

    2013-01-01

    Taraxicum officinale, is a highly valuable medicinal plant. The roots is an important herbal drug, having long been used on the continent as a remedy for liver complaints. Keeping in view the importance and wide applications in the pharmaceutical industries, the present study was therefore aimed to analyze the chemical constituents of the flowers of T. officinale. The T. officinale flowers oil constituents of methyl ester derivatives of fatty acids were analyzed applying gas chromatography coupled to mass spectrometer. The results obtained showed the presence of both containing the saturated as well as unsaturated fatty acids in T. officinale flower oils. A total of 19 different components were identified and quantified. The concentration level of Methyl ester of Lenolenic acid was found very effective in concentration 3.33%, among the identified analytes of interest. In addition, the level of other chemical constituents of methyl ester of palmitic acid 3.11%, myristic acid 1.87, linolenic acids 1.67%, stearic acid 0.97 were found. The concentration level of the rest of identified fatty acids analytes were below 1%. Thus the results obtained from the current initiative is very promising due to the presence of high percentage of valuable analytes concentrations recorded in the fatty acid of T. officinale flower oil. Thus due to the presence of highly important analytes which have increased their importance for consumption in the pharmaceuticals as well as its applications in the new formulations for different skin, cosmetics and health purposes and for use by local practioners. The study will also provide a scientific database line. (author)

  13. Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Long-Yan; Chen, Yan-Xiao; Guo, Xiao-Dong; Zhong, Ben-He; Zhong, Yan-Jun

    2014-01-01

    A porous carbon with multiple pore size distribution was synthesized, and regarded as a carrier to obtain the sulfur/carbon (S/C) composite via a gas-phase loading method. We proposed this novel gas-phase loading method by using a specially designed fluid-bed reactor to encapsulate and sequester gas-phase sulfur molecules into the porous carbon in current study. The nitrogen Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) characterizations were investigated on both the porous carbon and the sulfur/carbon composite. The results show that the gas-phase loading method contributes to the combination of sulfur molecules and matrix porous carbon. Furthermore, the sulfur/multiple pore size distribution carbon composite based on the gas-phase loading method demonstrate an excellent electrochemical property. The initial specific discharge capacity is 795.0 mAh g −1 at 800 mA g −1 , with a capacity retention of 86.3% after 100 cycles

  14. Removal of 14C-contaminated CO2 from simulated LWR fuel reprocessing off-gas by utilizing the reaction between CO2 and alkaline hydroxides in either slurry or solid form

    International Nuclear Information System (INIS)

    Holladay, D.W.; Haag, G.L.

    1979-01-01

    An important consideration in the design of a LWR fuel reprocessing plant is the removal of 14 C-contaminated CO 2 from the process off-gas. The separation and fixation of essentially all the CO 2 from the simulated off-gas can be accomplished by reaction with alkaline slurries in agitated tank-type contactors. Based on efficacy for CO 2 removal, consideration of reactant cost, and stability of the carbonate product as related to long-term storage requirements, the two most promising slurry reactants for CO 2 removal from low CO 2 -content feed gases are Ca(OH) 2 and Ba(OH) 2 . The removal of 14 C-contaminated CO 2 from simulated LWR off-gases was studied as a function of both operating conditions and varying sizes of bench-scale design. Parametrically, the effects on the CO 2 removal rate of feed composition (330 ppM - 4.47% CO 2 ), impeller speed (325 to 650 rpm), superficial velocity (5 to 80 cm/min), reactants [Mg(OH) 2 , NaOH], contactor size (20.3 cm and 27.3 cm ID), and type of operation (semibatch or continuous slurry) were deterined

  15. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  16. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  17. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  18. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    Science.gov (United States)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-05-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  19. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    Science.gov (United States)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  20. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiyi, E-mail: zhangweiyi@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Hu, Ming [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Xing; Wei, Yulong; Li, Na [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    In the present work, the tungsten oxide (WO{sub 3}) nanowires functionalized silicon nanowires (SiNWs) with cactus-like structure has been successfully synthesized for room-temperature NO{sub 2} detection. The novel nanocomposite was fabricated by metal-assisted chemical etching (MACE) and thermal annealing of tungsten film. The WO{sub 3} nanowires were evenly distributed from the upper to the lower part of the SiNWs, indicating excellent uniformity which is conducive to adsorption and desorption of gas molecules. The gas-sensing properties have been examined by measuring the resistance change towards 0.25–5 ppm NO{sub 2} gas. At room temperature, which is the optimum working temperature, the SiNWs/WO{sub 3} nanowires composite showed two-times higher NO{sub 2} response than that of the bare SiNWs at 2 ppm NO{sub 2}. On the contrary, the responses of composite sensors to high concentrations of other reducing gases were very low, indicating excellent selectivity. Simultaneously, the composite sensors exhibited good sensing repeatability and stability. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junctions under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and WO{sub 3} nanowires. - Highlights: • SiNWs/WO{sub 3} nanowires composite with cactus-like structure is synthesized. • The morphology of WO{sub 3} nanowires depends on the thermal annealing temperature. • The nanocomposite sensor exhibit better gas response than that of bare SiNWs. • The gas sensing mechanism is discussed using p-n heterojunction theory.

  1. Synthesis of nanoparticles from malleable and ductile metals using powder-free, reactant-assisted mechanical attrition.

    Science.gov (United States)

    McMahon, Brandon W; Perez, Jesus Paulo L; Yu, Jiang; Boatz, Jerry A; Anderson, Scott L

    2014-11-26

    A reactant-assisted mechanochemical method was used to produce copious nanoparticles from malleable/ductile metals, demonstrated here for aluminum, iron, and copper. The milling media is intentionally degraded via a reactant-accelerated wear process, where the reactant aids particle production by binding to the metal surfaces, enhancing particle production, and reducing the tendency toward mechanochemical (cold) welding. The mechanism is explored by comparing the effects of different types of solvents and solvent mixtures on the amount and type of particles produced. Particles were functionalized with oleic acid to aid in particle size separation, enhance dispersion in hydrocarbon solvents, and protect the particles from oxidation. For aluminum and iron, the result is air-stable particles, but for copper, the suspended particles are found to dissolve when exposed to air. Characterization was performed using electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Density functional theory was used to examine the nature of carboxylic acid binding to the aluminum surface, confirming the dominance of bridging bidentate binding.

  2. The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver

    Energy Technology Data Exchange (ETDEWEB)

    Golrokhi, Zahra; Marshall, Paul A.; Romani, Simon [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Rushworth, Simon [EpiValence, The Wilton Centre, Redcar, Cleveland, TS10 4RF (United Kingdom); Chalker, Paul R. [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Potter, Richard J., E-mail: rjpott@liverpool.ac.uk [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2017-03-31

    Highlights: • We demonstrate metallic silver growth by direct liquid injection thermal ALD. • A substituted hydrazine is used as a powerful reducing agent for the first time. • The hydrazine extends the ALD temperature window compared with alcohol. • Hydrazine promotes a more planar growth mode compared to alcohol. • Film adhesion is improved using hydrazine compared with alcohol. - Abstract: Ultra-thin conformal silver films are the focus of development for applications such as anti-microbial surfaces, optical components and electronic devices. In this study, metallic silver films have been deposited using direct liquid injection thermal atomic layer deposition (ALD) using (hfac)Ag(1,5-COD) ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) as the metal source and tertiary butyl hydrazine (TBH) as a co-reactant. The process provides a 23 °C wide ‘self-limiting’ ALD temperature window between 105 and 128 °C, which is significantly wider than is achievable using alcohol as a co-reactant. A mass deposition rate of ∼20 ng/cm{sup 2}/cycle (∼0.18 Å/cycle) is observed under self-limiting growth conditions. The resulting films are crystalline metallic silver with a near planar film-like morphology which are electrically conductive. By extending the temperature range of the ALD window by the use of TBH as a co-reactant, it is envisaged that the process will be exploitable in a range of new low temperature applications.

  3. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation

    Directory of Open Access Journals (Sweden)

    Riccardo Rea

    2018-01-01

    Full Text Available We fabricated novel composite (mixed matrix membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide (PPO, and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a “stabilizer” for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.

  4. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-01-01

    layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA

  5. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers

    International Nuclear Information System (INIS)

    Xu, Shuang; Kan, Kan; Yang, Ying; Jiang, Chao; Gao, Jun; Jing, Liqiang; Shen, Peikang; Li, Li

    2015-01-01

    Highlights: • The small-sized SnO 2 (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO 2 nanofibers showed uniform nanotubes structure (Sr/SnO 2 ). • Sr/SnO 2 showed an excellent sensing performance to NH 3 at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO 2 (Ae/SnO 2 ) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO 2 was 5–7 nm, which was smaller than the pristine SnO 2 nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO 2 nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO 2 nanotubes exhibited an excellent sensing response toward NH 3 gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO 2 nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO 2 . Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO 2 nanotubes was 3 fold of that pristine SnO 2

  6. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  7. Characterization of five typical agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography.

    Science.gov (United States)

    Martínez-Aguilar, Juan Fco; Peña-Alvarez, Araceli

    2009-03-11

    Five agave plants typically used in Mexico for making mezcal in places included in the Denomination of Origin (Mexican federal law that establishes the territory within which mezcal can be produced) of this spirit were analyzed: Agave salmiana ssp. crassispina, A. salmiana var. salmiana, Agave angustifolia, Agave cupreata, and Agave karwinskii. Fatty acid and total simple lipid profiles of the mature heads of each plant were determined by means of a modified Bligh-Dyer extraction and gas chromatography. Sixteen fatty acids were identified, from capric to lignoceric, ranging from 0.40 to 459 microg/g of agave. Identified lipids include free fatty acids, beta-sitosterol, and groups of mono-, di-, and triacylglycerols, their total concentration ranging from 459 to 992 microg/g of agave. Multivariate analyses performed on the fatty acid profiles showed a close similarity between A. cupreata and A. angustifolia. This fact can be ascribed to the taxa themselves or differences in growing conditions, an issue that is still to be explored. These results help to characterize the agaves chemically and can serve to relate the composition of mezcals from various states of Mexico with the corresponding raw material.

  8. Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    David, M., E-mail: marjorie.david@univ-tln.fr [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Arab, M.; Martino, C. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Delmas, L. [SENSeOR, Sophia Antipolis, 06250 Mougins (France); Guinneton, F.; Gavarri, J.-R. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France)

    2012-05-01

    Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO{sub 2}) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO{sub 2} nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C{sub 3}H{sub 5}OH) and ethanol (C{sub 2}H{sub 5}OH) gases. The output signal was done by S{sub 11} parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO{sub 2} presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.

  9. Liquefied Natural Gas Storage of Variable Composition / Magazynowanie Skroplonego Gazu Ziemnego O Zmiennym Składzie

    Science.gov (United States)

    Łaciak, Mariusz

    2015-03-01

    Thanks to the increasing diversification of LNG supply sources, being a result of the growing number of LNG liquefaction installations over the World, increase of short-term trade contracts and general trend to globally liberalize gas markets, reception terminals have to cope with the broad range of qualitatively diversified LNG deliveries from various sources. Different LNG deliveries potentially have different density caused by different gas composition. Although the LNG composition depends on LNG source, it mainly consists of methane, ethane, propane, butane and trace nitrogen. When a new supply of LNG is transported to the tank, the LNG composition and temperature in the tank can be different from LNG as delivered. This may lead to the liquid stratification in the tank, and consequently the rollover. As a result, LNG rapidly evaporates and the pressure in the tank increases. More and more restrictive safety regulations require fuller understanding of the formation and evolution of layers. The paper is focused on the analysis of liquid stratification in the tank which may take place when storing LNG, and which process leads to the rapid evaporation of considerable quantities of LNG. The aim was to attempt modeling of the process of liquid stratification in an LNG tank. The paper is closed with the results of modelling. Dzięki rosnącej dywersyfikacji źródeł dostaw LNG, spowodowanej zwiększającą się liczbą instalacji skraplania gazu na całym świecie, wzrostem ilości kontraktów krótkoterminowych w handlu i ogólnej tendencji do globalnej liberalizacja rynków gazu, terminale do odbioru muszą radzić sobie z coraz większą gamą różnych jakościowo dostaw LNG z różnych źródeł. Różne dostawy LNG mają potencjalnie inną gęstość dzięki różnym składom gazu. Chociaż kompozycja LNG zależy od źródła, to przede wszystkim składa się z metanu, etanu, propanu, butanu i w śladowych ilościach z azotu. Gdy nowa dostawa LNG jest

  10. Gas composition generated by Eucalyptus firewood gasification in different dimensions; Composicao dos gases gerados pela gasificacao de lenha de Eucalipto em diferentes dimensoes

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio L.; Silva, Jadir Nogueira da; Galvarro, Svetlana S.F.; Laureano, Juliane [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], email: fabio.zanatta@ufv.br; Martin, Samuel [Universidade de Brasilia (UNB), DF (Brazil). Dept. de Engenharia Rural

    2011-07-01

    Gasification is a technology that yields an energetic gas from the partial oxidation of organic wastes at high temperatures, by an air factor of 20 to 40% of the stoichiometric amount. The gas generated by gasifier can be used to generate electricity or heat as needed. The gas quality is very dependent of the combustible gases present such as CO, CH{sub 4} and H{sub 2}. On this basis, we investigated the composition of gases generated by an updraft gasifier operating with eucalyptus firewood in four different dimensions to determinate the heating value of gas and evaluate which dimension provides the best results. The experiment was conducted at the Post-Harvest and Renewable Energy Experimental Area of the Agricultural Engineering Department at UFV. It had been used logs of eucalyptus firewood in standard diameter and length of 15, 50 and 100 cm. In addition, chips made of eucalyptus firewood were used with approximate dimensions of 2,5x2,0x0,3 cm. According to conditions under which the experiment was set, the results indicated that chips of eucalyptus firewood have provided more homogeneous conditions in gas composition, thus facilitating use. (author)

  11. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  12. Stabilization of the composition of the gas medium of a repetitively pulsed CO/sub 2/ laser by means of hopcalite

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V.IU.; Drokov, G.F.; Kuzmenko, V.A.; Mezhevov, V.S.; Pigulskaia, V.V.

    1986-05-01

    Results of experiments in which hopcalite was used to stabilize the composition of the gas medium of repetitively pulsed and monopulse CO/sub 2/ lasers are reported. In particular, the mechanisms of the decrease in the catalyst activity with time under conditions for catalyst regeneration are determined. It is shown that the use of hopcalite has made it possible to achieve long-term operation of a high-power repetitively pulsed CO/sub 2/ laser without changing the gas mixture in a closed circuit. Some details related to the use of hopcalite are discussed. 11 references.

  13. Gas-liquid reactor / separator: dynamics and operability characteristics

    NARCIS (Netherlands)

    Ranade, V.; Kuipers, J.A.M.; Versteeg, Geert

    1999-01-01

    A comprehensive mathematical model is developed to simulate gas¿liquid reactor in which both, reactants as well as products enter or leave the reactor in gas phase while the reactions take place in liquid phase. A case of first-order reaction (isothermal) was investigated in detail using the dynamic

  14. Estimation of soil respiration rates and soil gas isotopic composition for the different land use of Ultisols from Calhoun CZO.

    Science.gov (United States)

    Cherkinsky, A.; Brecheisen, Z.; Richter, D. D., Jr.; Sheng, H.

    2017-12-01

    CO2 flux from soil is significant in most ecosystems and can account for more than 2/3 of total ecosystem respiration. In many cases CO2 fluxes from soil are estimated using eddy covariance techniques or the classical chamber method with measures of bulk concentrations and isotope composition of CO2. Whereas most of these studies estimate flux from the soil surface, we analyzed its concentration and isotope composition directly in soil profiles down to 8.5m depth. This experiment was conducted in Sumter National Forest in summer of 2016. The samples were collected from 3 different land use history sites: a) reference hardwood stands, mainly of oak and hickory that are taken to be never cultivated; b) cultivated plots, which were also used growing cotton prior to the 1950's but for the last 50 years for growing corn, wheat, legume, sorghum, and sunflowers; c) pine stands, which had been used for growing cotton from beginning of the 19th century and then was abandoned in 1920s and planted with loblolly pine. We have analyzed 3 replicates of each land use. There were measured in the field CO2 and O2 concentration and collected gas samples were analyzed for Δ14C, δ13C and δ18O. CO2 concentration in all types of land use has a maximum about 3m depth, approximately the same depth as the minimum of O2 concentration. Isotope analyses revealed that carbon isotopic composition tend to become lighter with the depth for all three types of land use: in cultivated site it changes from -18%o at 0.5m to -21%o at 5m; in pine site from -22%o to -25%o and in hardwood from-21.5 -24.5%o correspondently, the O2 isotopic composition does not change significantly. Based on analysis of Δ14C the turnover rate of CO2 is getting slower as depth increases. At the first 50 cm the exchange rate is the fastest on cultivated site, likely due to annual tilling, and concentration of 14C is actually equal to atmospheric. However, the turnover rate of Δ14C in soil CO2 slows down significantly as

  15. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    Science.gov (United States)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  16. Laboratory Constraints on the Stability of Petroleum at Elevated Temperatures: Implications for the Origin of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Seewald, Jeffrey, S.

    2011-03-14

    Results of prior DOE supported research conducted at the Woods Hole Oceanographic Institution have demonstrated the participation of sedimentary minerals and water as reactants and catalysts in chemical transformations associated with the degradation of oil and the formation of low molecular weight organic compounds. The occurrence of such processes in natural environments can be difficult to recognize because the composition of organic alteration products may not be substantially different than those produced by thermal cracking. The goals of this study were the development of diagnostic tools based on hydrogen and carbon isotopes that can be used to identify geochemical processes responsible for the formation of thermogenic natural gas. In addition, our activities were expanded to include experimental investigation of CO2 reduction in aqueous systems at elevated temperature and pressures and an assessment of microbial activity in relatively low temperature (<70°C) natural gas reservoirs in southeastern Oklahoma. Specific objectives included: A laboratory investigation of geochemical processes that regulate the hydrogen isotope composition of low molecular weight hydrocarbons in natural gas at elevated temperatures and pressures. A laboratory investigation of factors that regulate the carbon isotope composition of organic acids in basinal brines. A laboratory assessment of the role of methanol during reduction of CO2 to CH4 under hydrothermal conditions. Characterization of microbial ecosystems in coproduced fluids from the Potato Hills gas field to assess the role of microbes in the generation of natural gas.

  17. The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas

    Directory of Open Access Journals (Sweden)

    Zajemska Monika

    2017-01-01

    The calculations showed that the most important influence on the composition of the flue gas from the co-firing process of coal with sunflower husk has a composition of biomass. It should be emphasized that the results of computer simulations obtained by the authors have an useful aspect and can be applied in practice, especially to the analysis of the mechanism of chloride corrosion which is possible to occur due to the chlorine content in the biomass. They may also be useful for evaluating the unburned hydrocarbons produced by combustion of rich mixtures (λ < 1.0.

  18. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO3 Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    International Nuclear Information System (INIS)

    Chee, Pei Song; Arsat, Rashidah; He Xiuli; Arsat, Mahyuddin; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2011-01-01

    Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H 2 ) and 11.322 kHz (0.25%H 2 ) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  19. Characterization of a composite membrane for the conditioning of refined and natural gas; Charakterisierung einer Kompositmembran fuer die Konditionierung von Raffinerie- und Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Schonert, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Chemie

    1999-07-01

    The present diploma investigates the permeation behaviour of gas through a composite membrane. The selective layer of polyoctylmethylsiloxan is coated on porous support polyacrylnitrile layer. As this membrane should be used for the conditioning of refined and natural gas, (hydrocarbon-dew-pointing), the interest is focussed upon the permeation behaviour of methane and higher hydrocarbon. The permeability of single gas will be determined using the pressure increase method. The description of the permeability will be done through the free volume model. This model is a medium to describe the permeation behaviour of gas mixtures mathematically taking into account the real gas behaviour. The maximum feed pressure is 60 bar. It will be shown that the permeability of a multi component mixtures can be calculated satisfactorily with reduced mutual influence of the gas molecules. (orig.) [German] In der vorliegenden Arbeit wird das Permeationsverhalten von Gasen durch eine Kompositmembran untersucht. Die selektive Schicht aus Polyoctylmethylsiloxan ist auf einer poroesen Polyacrylnitril-Traegerschicht aufgebracht. Da die Membran fuer die Konditionierung von Raffinerie- und Erdgas (KW-Taupunkteinstellung) eingesetzt werden soll, liegt das Interesse in dem Permeationsverhalten von Methan und den hoeheren Kohlenwasserstoffen. Es wird die Permeabilitaet von Reingas mit Hilfe der Druckanstiegsmethode bestimmt. Die Beschreibung der Permeabilitaet geschieht durch das Modell des Freien Volumens. Hiermit wird versucht, das Permeationsverhalten von Gasgemischen unter Beruecksichtigung des Realgasverhaltens rechnerisch zu beschreiben. Der maximale Feeddruck betraegt 60 bar. Es wird gezeigt, dass sich die Permeabilitaet fuer ein Mehrkomponentengemisch mit reduzierter gegenseitiger Beeinflussung der Gasmolekuele zufriedenstellend berechnen laesst. (orig.)

  20. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  1. Serum levels of chicken mannan-binding lectin (MBL) during virus infections; indication that chicken MBL is an acute phase reactant

    DEFF Research Database (Denmark)

    Nielsen, O.L.; Jensenius, J. C.; Jørgensen, Poul Henrik

    1999-01-01

    Mannan-binding lectin (MBL) is a serum collectin which is believed to be an opsonin of the innate immune defence against various microorganisms. MBL is a minor acute phase reactant in man. We investigated the concentration of serum MBL in chickens infected with infectious bronchitis virus (IBV...... levels returned to normal values 6-10 days after infection. The results indicated that MBL is a minor acute phase reactant in chickens....

  2. Manure gas

    Energy Technology Data Exchange (ETDEWEB)

    Carre, I

    1947-05-01

    A short description of the process is given, with gas yields from various feedstocks, and the composition of the gas. Short descriptions of several batch digester designs are given: Algerian, Salubra, Betur, Baudot-Hardoll and Ofta, and Somagaz. The utilization and the economics of the process are discussed. Two diagrams of Ducellier and Isman designs are included.

  3. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor

    Science.gov (United States)

    Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong

    2018-04-01

    Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.

  4. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  5. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  6. A fishery-dependent based study of fish species composition and associated catch rates around oil and gas structures off Louisiana

    International Nuclear Information System (INIS)

    Stanley, D.R.; Wilson, C.A.

    1990-01-01

    The impact of oil and gas development on fish populations off Louisiana is presumed significant but poorly understood. This study was undertaken to determine the applicability of a logbook program in developing a long-term database of species composition and relative abundance of fish associated with oil and gas structures. A pilot logbook program involving 120 private vessel owners and 25 charterboat operators was conducted between March 1987 and December 1988. Participants recorded date, fishing time, fishing method, number of anglers, and catch composition at each structure fished. Logbooks from a total of 55 private vessel owners and 10 charterboat operators were used in the analysis. Data collected included 15,780 angler hours of fishing effort and 61,227 fish caught over the study period. A total of 1,719 trips were made to 589 different oil and gas structures with at least 46 different species of fish caught. Red snapper and spotted seatrout were the most commonly caught species and had the highest catch rates. Results differed from past logbook programs and creel surveys, possibly indicating a change in the community of fish associated with oil and gas structures

  7. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔C↔B + B

    Energy Technology Data Exchange (ETDEWEB)

    Kipriyanov, Alexey A.; Kipriyanov, Alexander A.; Doktorov, Alexander B. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-04-14

    Specific two-stage reversible reaction A + A↔C↔B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  8. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A ↔ C ↔ B + B.

    Science.gov (United States)

    Kipriyanov, Alexey A; Kipriyanov, Alexander A; Doktorov, Alexander B

    2016-04-14

    Specific two-stage reversible reaction A + A ↔ C ↔ B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  9. Composition and quantities of retained gas measured in Hanford waste tanks 241-AW-101 A-101, AN-105, AN-104, and AN-103

    International Nuclear Information System (INIS)

    Shekarriz, A.; Rector, D.R.; Mahoney, L.A.

    1997-03-01

    This report provides the results obtained for the first five tanks sampled with the Retained Gas Sampler (RGS): Tanks 241-AW-101, A-101, AN-105, AN-104, and AN-103. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically, in concert with the gas extraction equipment in the hot cell, to capture and extrude a gas-containing waste sample in a hermetically sealed system. The retained gases are then extracted and stored in small gas canisters. The composition of the gases contained in the canisters was measured by mass spectroscopy. The total gas volume was obtained from analysis of the extraction process, as discussed in detail throughout this report. The following are the findings of this research: (1) The RGS is a viable approach for measuring retained gases in double- and single-shell waste tanks at Hanford. (2) Local measurements of void fraction with the RGS agree with the results obtained with the void fraction instrument (VFI) in most cases. (3) In the tanks sampled, more than 16% of the retained gas in the nonconvective layer was nitrogen (N 2 ). The fraction of nitrogen gas was approximately 60% in Tank 241-AW-101. This finding shows that not all the retained gas mixtures are flammable. (4) In the tanks sampled, the ratios of hydrogen to oxidizers were observed to be significantly higher than 1; i.e., these tanks are fuel-rich. Based on these observations, the RGS will be used to sample for retained gases in several single-shell tanks at Hanford. The remaining sections of this summary describe the RGS-findings for the first five tanks tested. The results are described in the order in which the tanks were sampled, to reflect the increasing experience on which RGS methods were based

  10. PMR Polyimide prepreg with improved tack characteristics. [Polymerization of Monomer Reactants applications to fiber reinforced plastics

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.

    1978-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.

  11. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    Science.gov (United States)

    Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-01

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  12. Development of C/C composite for the core component of the high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H

    2005-01-15

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite.

  13. Development of C/C composite for the core component of the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H.

    2005-01-01

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite

  14. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)

    2000-04-01

    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  15. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  16. Verification of the correlation between the 210 Pb and the chemical composition of the incrustations found on gas pipelines and the implication on radiological protection

    International Nuclear Information System (INIS)

    Gomes, Franciane Martins de Carvalho

    2004-01-01

    In the last decades, the occurrence of solid residual deposits, known as black powder, in natural-gas pipelines, gathering systems and compression equipment from gas industries has raised increasing regulatory concerns in terms of radiological protection. Concerns are also raised about the waste disposal and management of the radioactive residues eventually produced. Recent projections indicate a significant increase in the production of natural-gas and its products, due to a growing commercial demand, which leads to the production of huge amounts of residues. Thus, more information is needed in order to allow a preliminary evaluation of the radiological profile of this type of industry. In black powder residues, the most prevalent radioisotope is 210 Pb. The present work aimed to investigate the correlation between the chemical composition of the residue and the concentration of 210 Pb, in black powder samples collected at Bacia de Campos, in the State of Rio de Janeiro, Brazil. The main objective was to generate information to regulatory authorities, to the National Commission of Nuclear Energy (CNEN) and to companies that produce natural-gas, such as PETROBRAS. Based on the information, the gas producing companies could elaborate radiological protection guidelines, and also decide about the need for implementation of a waste management program at the installation. The samples of black powder analyzed at the present work have confirmed the existence of such correlation between the concentration of 210 Pb and chemical parameters. In principle, the present results make the use of such correlation feasible for preliminary evaluations of the 210 Pb levels in natural-gas installations. On the other hand, given the geographic limitations, a broader study is recommended, in order to evaluate the investigated correlation, which could be used as a guiding tool for the Brazilian industry of production and processing of natural-gas.(author)

  17. Fabrication of Cubic p-n Heterojunction-Like NiO/In2O3 Composite Microparticles and Their Enhanced Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Hou Xuemei

    2016-01-01

    Full Text Available Oxide semiconductor In2O3 has been extensively used as a gas sensing material for the detection of various toxic gases. However, the pure In2O3 sensor is always suffering from its low sensitivity. In the present study, a dramatic enhancement of sensing characteristic of cubic In2O3 was achieved by deliberately fabricating p-n heterojunction-like NiO/In2O3 composite microparticles as sensor material. The NiO-decorated In2O3 p-n heterojunction-like sensors were prepared through the hydrothermal transformation method. The as-synthesized products were characterized using SEM-EDS, XRD, and FT-IR, and their gas sensing characteristics were investigated by detecting the gas response. The experimental results showed that the response of the NiO/In2O3 sensors to 600 ppm methanal was 85.5 at 260°C, revealing a dramatic enhancement over the pure In2O3 cubes (21.1 at 260°C. Further, a selective detection of methanol with inappreciable cross-response to other gases, like formaldehyde, benzene, methylbenzene, trichloromethane, ethanol, and ammonia, was achieved. The cause for the enhanced gas response was discussed in detailed. In view of the facile method of fabrication of such composite sensors and the superior gas response performance of samples, the cubic p-n heterojunction-like NiO/In2O3 sensors present to be a promising and viable strategy for the detection of indoor air pollution.

  18. Heavy-atom isotope effects on binding of reactants to lactate dehydrogenase and pyruvate kinase

    International Nuclear Information System (INIS)

    Gawlita, E.

    1993-04-01

    18 O and 13 C kinetic isotope effects have been measured on the reaction of pyruvate kinase with phospho-enol-pyruvate and ADP using a remote label technique. The magnitude of both investigated isotope effects showed a dependence on the concentration of ADP. However, while the carbon effect was simply 'washed out' to unity at high ATP concentration, the oxygen effect becomes inverse and reached 0.9928 at the highest used concentration of ADP. Such a result testifies that the assumption of the negligible effect of isotopic substitution on enzyme-substrate associations remains correct only for carbon effects. An equilibrium 18 O isotope effect on association of oxalate with lactate dehydrogenase in the presence of NADHP has been evaluated by both experimental and theoretical means. Experimental methods, which involved equilibrium dialysis and gas chromatographic/mass spectrometric measurement of isotopic ration, yielded an inverse value of 0.9840. Semiempirical methods involved vibrational analysis of oxalate in two different environments. The comparison of calculated values with the experimentally determined isotope effect indicated that the AM 1 Hamiltonian proved superior to its PM 3 counterpart in this modelling. 160 refs, 8 figs, 18 tabs

  19. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  20. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  1. Influence of the Mixing Ways of Reactants on ZnO Morphology

    Directory of Open Access Journals (Sweden)

    Lining Yang

    2013-01-01

    Full Text Available ZnO particles with various morphologies were synthesized by mixing ZnSO4 and NaOH solutions at 25°C followed by aging of the suspensions at 40–80°C for 2.0 h, keeping the initial molar ratio of Zn2+ to OH− at 1 : 4. ZnO irregular plates were prepared by adding NaOH to ZnSO4 while ε-Zn(OH2 rhombic particles were produced using the opposite mixing way. After aging of the slurries at 80°C for 2.0 h, the ZnO plates were kept stable while the ε-Zn(OH2 rhombic particles were converted to ZnO whiskers with a length of 1.0–4.0 μm and a diameter of 0.03–0.3 μm. Thermodynamic analysis indicated that the formation of the Zn-bearing precipitates (ZnO or ε-Zn(OH2 at room temperature was connected closely with the solution composition.

  2. Ventilation distribution in rats: Part I - The effect of gas composition as measured with electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2012-09-01

    Full Text Available Abstract The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air. The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.

  3. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oks, Efim [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation)

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.

  4. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.

    Science.gov (United States)

    Quinn, R; Orenberg, J

    1993-10-01

    Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs to the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.

  5. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  6. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    Science.gov (United States)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  7. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502

    Science.gov (United States)

    Aslam, Tariq D.

    2017-07-01

    The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.

  8. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique

    Directory of Open Access Journals (Sweden)

    Paula Martins Olivo

    2017-07-01

    Full Text Available Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets.

  9. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and

  10. Electrogenerated chemiluminescence of tris(2,2' bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte.

    Science.gov (United States)

    Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F

    2015-11-07

    A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.

  11. Analysis of the chemical composition of the essential oils extracted from Lippia lacunosa Mart. and Schauer and Lippia rotundifolia Cham. (Verbenaceae) by gas chromatography and gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Leitao, Suzana G.; Barbosa, Ymira Galico; Viccini, Lyderson F.; Salimena, Fatima R.G.; Peixoto, Paulo H.P.

    2008-01-01

    Lippia lacunosa and L. rotundifolia (Verbenaceae) are two Brazilian species of complex taxonomic delimitation. The composition of the essential oils from leaves and flowers of these plants was investigated by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS) analysis. The major components of the essential oils of flowers and leaves of L. lacunosa were: myrcene (14.7% and 11.9%), myrcenone (45.2% and 64.2%), Z-ocimenone (5.7% and 5.2%), and E-ocimenone (14.7% and 4.1%), respectively; whereas in L. rotundifolia (flowers and leaves) were ..-pinene (8.7% and 1.8%), myrcene (5.1% and 3.6%), limonene (26.0% and 7.9 %), cis-pinocamphone (4.5% and 3.1%) and myrtenal (22.3% and 16.7%), respectively. The essential oils from L. lacunosa exhibited a strong and pleasant mango aroma, which was related to the presence of myrcene and myrcenone. The marked differences in the chemical composition of their essential oils may represent a powerful tool for the botanical classification. (author)

  12. Analysis of the chemical composition of the essential oils extracted from Lippia lacunosa Mart. and Schauer and Lippia rotundifolia Cham. (Verbenaceae) by gas chromatography and gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Suzana G.; Barbosa, Ymira Galico [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Fac. de Farmacia; Oliveira, Danilo R. de; Leitao, Gilda G. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Nucleo de Pesquisas de Produtos Naturais]. E-mail: sgleitao@pharma.ufrj.br; Suelsen, Valeria; Martino, Virginia [Universidad de Buenos Aires (Argentina). Facultad de Farmacia y Bioquimica; Bizzo, Humberto R.; Lopes, Daise [EMBRAPA Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil); Viccini, Lyderson F.; Salimena, Fatima R.G.; Peixoto, Paulo H.P. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Biolgicas

    2008-07-01

    Lippia lacunosa and L. rotundifolia (Verbenaceae) are two Brazilian species of complex taxonomic delimitation. The composition of the essential oils from leaves and flowers of these plants was investigated by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS) analysis. The major components of the essential oils of flowers and leaves of L. lacunosa were: myrcene (14.7% and 11.9%), myrcenone (45.2% and 64.2%), Z-ocimenone (5.7% and 5.2%), and E-ocimenone (14.7% and 4.1%), respectively; whereas in L. rotundifolia (flowers and leaves) were ..-pinene (8.7% and 1.8%), myrcene (5.1% and 3.6%), limonene (26.0% and 7.9 %), cis-pinocamphone (4.5% and 3.1%) and myrtenal (22.3% and 16.7%), respectively. The essential oils from L. lacunosa exhibited a strong and pleasant mango aroma, which was related to the presence of myrcene and myrcenone. The marked differences in the chemical composition of their essential oils may represent a powerful tool for the botanical classification. (author)

  13. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  14. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Joao, H.M.; Peketi, A.; Dewangan, P.; Kocherla, M.; Joshi, R.K.; Ramprasad, T.

    Pore water sulfate consumption in marine sediments is controlled by microbially driven sulfate reduction via organo-clastic and methane oxidation processes. In this work, we present sediment pore fluid compositions of 10 long sediment cores and high...

  15. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming.

    Science.gov (United States)

    Jing, Xin; Mi, Hao-Yang; Turng, Lih-Sheng

    2017-03-01

    In this work, three-dimensional poly(caprolactone) (PCL) tissue engineering scaffolds were prepared by co-extrusion and gas foaming. Biocompatible hydroxyapatite (HA) and halloysite nanotubes (HNT) were added to the polymer matrix to enhance the mechanical properties and bioactivity of the composite scaffolds. The effects of HA and HNT on the rheological behavior, microstructure, and mechanical properties of the composite scaffolds were systematically compared. It was found that the HNT improved viscosity more significantly than HA, and reduced the pore size of scaffolds, while the mechanical performance of PCL/HNT scaffolds was higher than PCL/HA scaffolds with the same filler content. Human mesenchymal stem cells (hMSCs) were used as the cell model to compare the biological properties of two composite scaffolds. The results demonstrated that cells could survive on all scaffolds, and showed a more flourishing living state on the composite scaffolds. The cell differentiation for 5% HA and 1% HNT scaffolds were significantly higher than other scaffolds, while the differentiation of 5% HNT scaffolds was lower than that of 1% HNT scaffolds mainly because of the reduced pore size and pore interconnectivity. Therefore, this study suggested that, with proper filler content and control of microstructure through processing, HNT could be a suitable substitute for HA for bone tissue engineering to reduce the cost and improve mechanical performance. Copyright © 2016. Published by Elsevier B.V.

  16. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    Ottesen, D.; Allendorf, S.; Ludowise, P.; Hardesty, D.; Miller, T.; Goldstein, D.; Smith, C.; Bonin, M.

    1999-01-01

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO 2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  18. [Conjunct changes in the resistance and engorgement of the cerebral vessels in shifts in the blood gas composition].

    Science.gov (United States)

    Krasil'nikov, V G; Artem'eva, A I

    1982-08-01

    In anesthetized cats, under perfusion and with constant volume of the hemodynamically isolated brain, hypercapnia and hypoxia led to a decrease of cerebral vessels resistance and to a reduction of the brain blood flow, whereas a decrease in the PCO2 and an increase in the PO2 in the blood exerted on opposite effect. The different responses of the vessels had some similar features in respect to threshold changes of the PCO2 and PO2, to potentiation of effects of both parts of the brain vascular system on increased shifts of the blood gas tension, to greater sensitivity of both parts to PCO2 changes, to effect of the blood gas tension on reactivity of both parts to noradrenaline. The authors suggest a possibility of alterations of the filter-absorption interrelationships in the brain due to different responses of arterial and venous vessels to changes of the blood gas tension.

  19. CO gas sensing properties of In_4Sn_3O_1_2 and TeO_2 composite nanoparticle sensors

    International Nuclear Information System (INIS)

    Mirzaei, Ali; Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Lee, Chongmu

    2016-01-01

    Highlights: • In4Sn3O12–TeO2 composite nanoparticles were synthesized via a facile hydrothermal route. • The response of the In4Sn3O12–TeO2 composite sensor to CO was stronger than the pristine In4Sn3O12 sensor. • The response of the In4Sn3O12–TeO2 composite sensor to CO was faster than the pristine In4Sn3O12 sensor. • The improved sensing performance of the In4Sn3O12–TeO2 nanocomposite sensor is discussed in detail. • The In4Sn3O12-based nanoparticle sensors showed selectivity to CO over NH3, HCHO and H2. - Abstract: A simple hydrothermal route was used to synthesize In_4Sn_3O_1_2 nanoparticles and In_4Sn_3O_1_2–TeO_2 composite nanoparticles, with In(C_2H_3O_2)_3, SnCl_4, and TeCl_4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5–100 ppm) of CO gas at different temperatures (100–300 °C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In_4Sn_3O_1_2–TeO_2 composite nanoparticles showed stronger response to CO than its pure In_4Sn_3O_1_2 counterpart. The response of the In_4Sn_3O_1_2–TeO_2 composite-nanoparticle sensor to 100 ppm of CO at 200 °C was 10.21, whereas the maximum response of the In_4Sn_3O_1_2 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73 s under these conditions, which is less than one-third of that of the In_4Sn_3O_1_2 sensor. The improved sensing performance of the In_4Sn_3O_1_2–TeO_2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In_4Sn_3O_1_2–TeO_2 interface, the stronger oxygen adsorption of p-type TeO_2, and the formation of preferential adsorption sites.

  20. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Guevara, Edgar H.; Hentz, Tucker F. [Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713 (United States); Hook, Robert W. [1301 Constant Springs Drive, Austin, TX 78746 (United States)

    2009-01-31

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (R{sub o}) values between about 0.4 and 0.8%. This range of R{sub o} values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar R{sub o} values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from {proportional_to} 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher R{sub o} values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank. (author)

  1. Use of periodic variations of reactant concentrations in time resolved ftir studies of CO oxidation on Pd/ZrO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ortelli, E; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Sine wave modulation of feed concentrations was used to induce dynamic variations in the concentrations of products, intermediates and reactants, which were monitored in a diffuse reflectance FTIR (DRIFT) cell. The phase shift {Delta}{phi} between the external perturbation of the feed and the signals of products, intermediates and reactants was examined in dependence on the modulation frequency {omega}. Reaction constants of a simplified model mechanism were estimated for a Pd{sub 25}Zr{sub 75} based catalyst for CO oxidation. (author) 1 fig., 2 refs.

  2. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  3. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  4. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    Full Text Available In order to improve the efficiency of intumescent flame retardants (IFRs, a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine (PETAT with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP in combination with ammonium polyphosphate (APP via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR, and 1H nuclear magnetic resonance (NMR spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR. The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI values before and after soaking, underwritten laboratory-94 (UL-94 vertical burning test, cone calorimetric test (CCT, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS, and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR, total heat release (THR, and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  5. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  6. Synthesis and Enhanced Ethanol Gas Sensing Properties of the g-C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-09-01

    Full Text Available Flower-like SnO2/g-C3N4 nanocomposites were synthesized via a facile hydrothermal method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized samples were characterized by using the X-ray powder diffraction (XRD, electron microscopy (FESEM and TEM, and Fourier transform infrared spectrometer (FT-IR techniques. SnO2 displays the unique 3D flower-like microstructure assembled with many uniform nanorods with the lengths and diameters of about 400–600 nm and 50–100 nm, respectively. For the SnO2/g-C3N4 composites, SnO2 flower-like nanorods were coupled by a lamellar structure 2D g-C3N4. Gas sensing performance test results indicated that the response of the sensor based on 7 wt. % 2D g-C3N4-decorated SnO2 composite to 500 ppm ethanol vapor was 150 at 340 °C, which was 3.5 times higher than that of the pure flower-like SnO2 nanorods-based sensor. The gas sensing mechanism of the g-C3N4nanosheets-decorated SnO2 flower-like nanorods was discussed in relation to the heterojunction structure between g-C3N4 and SnO2.

  7. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  8. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas.

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Knoester, A.; Lefferts, Leonardus

    2005-01-01

    Catalytic partial oxidation of methane to synthesis gas (CPOM) over yttrium-stabilized zirconia (YSZ) was studied within a wide temperature window (500¿1100 °C). The catalysts were characterized by X-ray fluorescence (XRF) and low-energy ion scattering (LEIS). The influence of calcination

  9. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  10. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  11. Experimental and numerical study of the chemical composition of WSex thin films obtained by pulsed laser deposition in vacuum and in a buffer gas atmosphere

    International Nuclear Information System (INIS)

    Grigoriev, S.N.; Fominski, V.Yu.; Gnedovets, A.G.; Romanov, R.I.

    2012-01-01

    WSe x thin films were obtained by pulsed laser deposition in vacuum and at various Ar gas pressures up to 10 Pa. Stoichiometry and chemical state of the WSe x films were studied by means of Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. In the case of pulsed laser deposition of WSe x films in vacuum the value of stoichiometric coefficient x was 1.3. During the deposition in argon at pressures of 2-10 Pa the value of x varied from 1.5 to 2.2. To explain the influence of the buffer gas, a model was used that takes into account the following processes: (1) congruent pulsed laser evaporation of the WSe 2.2 target; (2) scattering of laser-evaporated W and Se atoms in Ar; (3) sputtering of the deposited film by high-energy atoms from the laser plume. Experimentally, the velocity distributions of laser-evaporated W and Se atoms in vacuum were determined by the time-of-flight measurements. Collision Monte Carlo simulations were used to quantify the impact of the buffer gas on the energy and the incidence angle distributions of the deposited W and Se atoms. Model distributions were used to determine the chemical composition of the WSe x films, depending on the efficiency of the preferential sputtering of Se atoms.

  12. A preliminary interpretation of gas composition in the CP IV sector wells, Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor M; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Perez Hernandez, Alfredo; Rodriguez Rodriguez, Marco Helio; Leon Vivar, Jesus de [Comision Federal de Electricidad, Residencia General Cerro Prieto, B.C. (Mexico)

    2007-07-15

    To increase the electrical generation capacity of the Cerro Prieto geothermal field from 620 MW to 720 MW, the Cerro Prieto IV (CP IV) sector of the field was developed in the NE portion of the exploited field. Fourteen new wells have been drilled there since 2000. The wells in CP IV zone produce two-phase fluids at wellhead with heterogeneous steam fraction characteristics: at the central zone and towards the NW, the wells are liquid-dominated while those towards the E and S produce a relatively high steam fraction. This work studies the gas compositions of produced fluids to obtain reservoir parameters such as temperature and steam fraction and identify different sources of fluids in the wells. A method was used based on the Fischer Tropsch reaction and H{sub 2}S equilibria with pyrite-pyrrhotite as a mineral buffer (FT-HSH3). The results for the natural state showed the presence of fluids with reservoir temperatures from 275 to 310 degrees Celsius and excess steam values from -1 to 50%. Data are aligned in a FT-HSH3 trend, suggesting that the well discharges consist of a mixture in different proportions of the two end members. One seems to be a liquid with a temperature of over 300 degrees Celsius with negative or negligible excess steam. The other seems to be a two-phase fluid with a temperature of about 275 degrees Celsius and an excess steam fraction of about 0.5. According to the data for single wells and depending on the production conditions of the wells, reservoir fluid mixtures could occur in different proportions of liquid and steam. Data for 2005 that included wells drilled after 2000 suggest the presence of a steam phase in the reservoir. The steam could be generated with the boiling of deep reservoir fluid from a pressure drop. The mixing trend obtained for the natural state was also seen for 2005 data but lower temperatures (from 265 to 295 degrees Celsius) were obtained compared with those for natural conditions. The entry of lower

  13. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    temperatures in the range of 500–1150 °C in a laboratory-scale tube reactor and by performing mass balance calculations based on the weight measurements and chemical analyses of the wood fuels and the residual ash samples. Four wood fuels with different ash contents and inorganic compositions were investigated...... of the alkali metals K and Na was, however, strongly dependent on both the temperature and the fuel composition under the investigated conditions. The release of the heavy metals Zn and Pb started around 500 °C and increased sharply to more than 85% at 850 °C in the case of spruce, beech, and bark...

  14. Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions

    International Nuclear Information System (INIS)

    Xu, Xiongwen; Liu, Jinping; Cao, Le; Pang, Weiqiang

    2014-01-01

    The SMR (single mixed refrigerant) process is widely used in the small- and medium-scale liquefaction of NG (natural gas). Operating the MR (mixed-refrigerant) process outside of the design specifications is difficult but essential to save energy. Nevertheless, it is difficult to realize because the process needs to alter the working refrigerant composition. To address this challenge, this study investigated the performance diagnosis mechanism for SMR process. A control strategy was then proposed to control the changes in working refrigerant composition under different working conditions. This strategy separates the working refrigerant flow in the SMR process into three flows through two phase separators before it flows into the cold box. The first liquid flow is rich in the high-temperature component (isopentane). The second liquid flow is rich in the middle-temperature components (ethylene and propane), and the gas flow is rich in the low-temperature components (nitrogen and methane). By adjusting the flow rates, it is easy to decouple the control variables and automate the system. Finally, this approach was validated by process simulation and shown to be highly adaptive and exergy efficient in response to changing working conditions. - Highlights: • The performance diagnosis mechanism of SMR LNG process is studied. • A measure to automatically change the operation composition as per the working conditions is proposed for SMR process. • SMR process simulation is performed to verify the validity of the control solution. • The control solution notably improves the energy efficiency of SMR process at changing working condition

  15. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  16. The behaviour of CAGR moderator and sleeve graphites radiolytically oxidised to high weight loss in inhibited coolant gas compositions

    International Nuclear Information System (INIS)

    Schofield, P.; Fitzgerald, B.; Ketchen, J.

    1987-01-01

    Gilsocarbon graphites were irradiated to high weight losses in three different CO 2 based coolants. The experimental data is tested against a model which interprets the gas phase chemistry and pore geometry and allows weight loss and gas flow properties to be calculated. The observed changes of oxidation rate with dose were successfully predicted from the model. An empirical relationship was also derived which was shown to fit data for moderator, sleeve and special pore structure graphites. Changes in graphite permeability and diffusivity were predicted by the model, and also by other simplified, more approximate methods. The model based upon the measured transport pore spectrum was shown to be the best with other methods proving adequate to moderate doses. (author)

  17. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  18. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    Science.gov (United States)

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  19. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  20. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    Science.gov (United States)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  1. Entropy and chemical change. 1: Characterization of product (and reactant) energy distributions in reactive molecular collisions: Information and enthropy deficiency

    Science.gov (United States)

    Bernstein, R. B.; Levine, R. D.

    1972-01-01

    Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.

  2. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Science.gov (United States)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  3. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants

    NARCIS (Netherlands)

    Stoll, T.; Zafeiropoulos, G.; Tsampas, M. N.

    2016-01-01

    A novel photoelectrochemical (PEC) cell design is proposed and investigated for H-2 production with gaseous reactants. The core of the cell is a membrane electrode assembly (MEA) that consists of a TiO2 nanotube arrays photoanode, a Pt/C cathode, a Pt/C reference electrode and a proton conducting

  4. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  5. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    Science.gov (United States)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  6. Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model

    Science.gov (United States)

    Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck

    2016-07-01

    We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.

  7. Eddy-current testing of fatigue degradation upon contact fatigue loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.

    2017-12-01

    The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.

  8. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2009-12-01

    Full Text Available Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME and Reactive Halogens in the Marine Boundary Layer (RHAMBLE experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS and optical particle counter (OPC and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA.

    Good agreement between platforms in terms of the sea salt (ss and non sea salt (nss modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating that atmospheric halogen processing (and/or acid displacement for chloride had taken place. The time dependent ambient size distribution was synthesised using humidified DMPS and OPC data, corrected to ambient

  9. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  10. Influence of electric gas discharge to x-ray spectra on composite varistor based on ZnO-polymer

    International Nuclear Information System (INIS)

    Ahadzade, Sh.M.

    2016-01-01

    In work the X-ray spectrum of the composite resistors before and after being subjected to an electric discharge is carried out. It is found that the effect of electrical discharge on the samples greatly influences on the intensity of the diffraction reflexes. It was revealed that, the intensity of the reflections increases in dependence on the percentage of filler content in the case of samples exposed to electric discharge.

  11. Study of the composition and gas-phase release characteristics of salt material extracted from MSW ash particles using STA

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Koukios, E.G.

    2007-01-01

    material extracted from MSW ash particles using a six-stage leaching process is studied using simultaneous thermal analysis (STA). The produced results provide useful information regarding the composition of the salt material and its melting behavior that is considered to play an important role...... to deposition and corrosion problems at MSW incinerators. The results may be used to model the deposition process and to the better understanding of the corrosion process during MSW incineration....

  12. Trace gas composition in the free and upper troposphere over Asia: Examining the influence of long-range transport and convection of local pollution

    Science.gov (United States)

    Baker, A. K.; Traud, S.; Brenninkmeijer, C. A.; Hoor, P. M.; Neumaier, M.; Oram, D.; Rauthe-Schöch, A.; Schloegl, S.; Sprung, D.; Slemr, F.; van Velthoven, P.; Wernli, H.; Zahn, A.; Ziereis, H.

    2013-12-01

    Between May 2005 and March 2008 the CARIBIC observatory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) was deployed to make atmospheric observations during 21 round-trip flights between Frankfurt, Germany and Manila, the Philippines with a stopover in Guangzhou, China. This nearly 3 year flight series provides us with information about atmospheric composition in the free and upper troposphere over Asia during all seasons and was used to investigate seasonal and regional differences in trace gas distributions and the relative influences of long range transport and convected local air masses on composition. The flight route was separated into three different regions having unique characteristics in transport and composition; these were Western Asia (5°E to 70°E), Central Asia (70°E to 100°E) and East Asia (100°E to 125°E). The region over Western Asia was heavily influenced by long range transport of air masses from North America and had elevated levels of NOy and acetone, while the region over East Asia was mostly influenced by convected local (South East Asian) pollution, particularly from biomass/biofuel burning as indicated by high levels of acetonitrile and carbon monoxide. Air masses over Central Asia were found to be influenced by both recently convected air masses from the Indian subcontinent and mid-range transport from Eastern Europe and the Middle East. Elevated levels of propane and other non-methane hydrocarbons, both with and without concommitant elevations in other trace gases (i.e. carbon monoxide, acetonitrile) were a persisent feature of this region in all seasons except summer, and were particularly prominent in fall. Influences on composition over Central Asia were investigated more thoroughly in a case study from a series of flights in October 2006, and elevated levels of pollutants were found to be the result of convective transport of both biomass/biofuel burning and urban emissions from

  13. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    Science.gov (United States)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  14. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    Science.gov (United States)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  15. Simultaneous influence of gas mixture composition and process temperature on Fe2O3->FeO reduction kinetics: neural network modeling

    Directory of Open Access Journals (Sweden)

    K. Piotrowski

    2005-09-01

    Full Text Available The kinetics of Fe2O3->FeO reaction was investigated. The thermogravimetric (TGA data covered the reduction of hematite both by pure species (nitrogen diluted CO or H2 and by their mixture. The conventional analysis has indicated that initially the reduction of hematite is a complex, surface controlled process, however once a thin layer of lower oxidation state iron oxides (magnetite, wüstite is formed on the surface, it changes to diffusion control. Artificial Neural Network (ANN has proved to be a convenient tool for modeling of this complex, heterogeneous reaction runs within the both (kinetic and diffusion regions, correctly considering influence of temperature and gas composition effects and their complex interactions. ANN's model shows the capability to mimic some extreme (minimum of the reaction rate within the determined temperature window, while the Arrhenius dependency is of limited use.

  16. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    International Nuclear Information System (INIS)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan

    2016-01-01

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N 2 , O 2 and H 2 O. Without gas purification, protonated water cluster ions of the form H + (H 2 O) n are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N 2 mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  18. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 1 - Concepts and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.; Walters, C.C.; Kelemen, S.R.; Siskin, M.; Gorbaty, M.L.; Curry, D.J.; Bence, A.E. [ExxonMobil Research & Engineering Co., Annandale, NJ (United States)

    2007-07-01

    We have developed a method to calculate the amounts and composition of products resulting from the thermal decomposition of a solid complex carbonaceous material. This procedure provides a means of using laboratory measurements of complex carbonaceous solids to construct a representative model of its chemical structure (CS) that is then coupled with elementary reaction pathways to predict the chemical yield (CY) upon thermal decomposition. Data from elemental analysis, H, N, O, S, solid state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS), sulfur X-ray absorption structure spectroscopy (XANES), and pyrolysis-gas chromatography (GC) are used to constrain the construction of core molecular structures representative of the complex carbonaceous material. These core structures are expanded stochastically to describe large macromolecules ({gt} 10{sup 6} cores with similar to 10{sup 6} atoms) with bulk properties that match the experimental results. Gas, liquid and solid product yields, resulting from thermal decomposition, are calculated by identifying reactive functional groups within the CS stochastic ensemble and imposing a reaction network constrained by fundamental thermodynamics and kinetics. An expulsion model is added to the decomposition model to calculate the chemical products in open and closed systems. Product yields may then be predicted under a wide range of time-temperature conditions used in rapid laboratory pyrolysis experiments, refinery processes, or geologic maturation.

  19. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan [Ruhr-Universitaet Bochum, Institute for Experimental Physics II, Bochum (Germany)

    2016-12-15

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N{sub 2}, O{sub 2} and H{sub 2}O. Without gas purification, protonated water cluster ions of the form H{sup +}(H{sub 2}O){sub n} are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N{sub 2} mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  20. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  1. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Science.gov (United States)

    Al-Mansoori, Muntaser; Al-Shaibani, Sahar; Al-Jaeedi, Ahlam; Lee, Jisung; Choi, Daniel; Hasoon, Falah S.

    2017-12-01

    Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2). The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF)-sputtering system on the growth of intrinsic SnO2 (i-SnO2) layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  2. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Directory of Open Access Journals (Sweden)

    Muntaser Al-Mansoori

    2017-12-01

    Full Text Available Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2. The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF-sputtering system on the growth of intrinsic SnO2 (i-SnO2 layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  3. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  4. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    Science.gov (United States)

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  5. Organic trace gas composition of the marine boundary layer over the northwest Indian Ocean in April 2000

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, C.; Gouw, J.A. de [University of Utrecht (Netherlands). Institute for Marine and Atmospheric Research

    2001-07-01

    In April 2000 atmospheric trace gas measurements were performed on the western Indian Ocean on a cruise of the Dutch research vessel Pelagia from the Seychelles (5 {sup o}S, 55 {sup o}E) to Djibouti (12 {sup o}N, 43 {sup o}E). The measurements included analysis of dimethyl sulfide (DMS), acetone and acetonitrile every 40s using PTR-MS (proton-transfer-reaction mass spectrometry) and gas chromatographic analyses of C{sub 2}-C{sub 7} hydrocarbons in air samples taken during the cruise. The measurements took place at the end of the winter monsoon season and the sampled air masses came predominantly from the Southern Hemisphere, resulting in low concentrations of some long-lived hydrocarbons, halocarbons, acetone (350pptv) and acetonitrile (120pptv). On three consecutive days a diurnal cycle in DMS concentration was observed, which was used to estimate the emission of DMS (1.5 {+-} 0.7 x 10{sup 13}moleculesm{sup -2}s{sup -1}) and the 24h averaged concentration of hydroxyl (OH) radicals (1.4 {+-} 0.7 x 10{sup 6}moleculescm{sup -3}). A strongly increased DMS concentration was found at a location where upwelling of deeper ocean waters took place, coinciding with a marked decrease in acetone and acetonitrile. In the northwestern Indian Ocean a slight increase of some trace gases was noticed showing a small influence of pollution from Asia and from northeast Africa as indicated with back trajectory calculations. The air masses from Asia had elevated acetonitrile concentrations showing some influence of biomass burning as was also found during the 1999 Indian Ocean Experiment, whereas the air masses from northeast Africa seemed to have other sources of pollution. (Author)

  6. The dynamic response of carbon fiber-filled polymer composites

    Directory of Open Access Journals (Sweden)

    Patterson B.

    2012-08-01

    Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.

  7. MOCVD with gas phase composition control for the growth of high quality YBa2Cu3O7-x thin films for microwave applications

    International Nuclear Information System (INIS)

    Musolf, J.

    1997-01-01

    The MOCVD growth technique has demonstrated YBa 2 Cu 3 O 7-x thin films with adequate transport properties (T c >90 K, J c > x 10 6 A cm -2 , R s p /C v ) and the species concentrations. After determining the correlation between gas phase and solid phase composition this technique enables the reproducible growth of YBa 2 Cu 3 O 7-x thin films by MOCVD with composition very close to 123. Further refinement of growth temperature, total pressure, oxygen partial pressure and total flow rates has produced films with excellent properties. Smooth surface morphology with a low density of outgrowths ( 4 cm -2 ), narrow XRD rocking curve peaks FWHM c =92 K), low surface resistance (device R s <350 μΩ at 77 K, 10 GHz) have been demonstrated using this growth concept. Special focus was placed on optimization of the performance of a microwave test device which serves as a process control monitor of the suitability of these films for passive microwave applications. (orig.)

  8. Characterization of Chemical Composition of Pericarpium Citri Reticulatae Volatile Oil by Comprehensive Two-Dimensional Gas Chromatography with High-Resolution Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kunming Qin

    2013-01-01

    Full Text Available Pericarpium Citri Reticulatae (Chenpi in Chinese has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS. One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β-Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.

  9. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Pawlyta, M., E-mail: miroslawa.pawlyta@polsl.pl [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Tomiczek, B.; Dobrzański, L.A.; Kujawa, M. [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Bierska-Piech, B. [Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland)

    2016-04-15

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almost entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.

  10. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  11. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    Science.gov (United States)

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  12. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  13. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions.

    Science.gov (United States)

    Kim, Binna; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Jung, Heesoo; Choe, Wonho; Jo, Cheorun

    2011-02-01

    Atmospheric pressure plasma (APP) is an emerging non-thermal pasteurization method for the enhancement of food safety. In this study, the effect of APP on the inactivation of pathogens inoculated onto bacon was observed. Sliced bacon was inoculated with Listeria monocytogenes (KCTC 3596), Escherichia coli (KCTC 1682), and Salmonella Typhimurium (KCTC 1925). The samples were treated with APP at 75, 100, and 125 W of input power for 60 and 90 s. Two gases, helium (10 lpm) or a mixture of helium and oxygen, (10 lpm and 10 sccm, respectively) were used for the plasma generation. Plasma with helium could only reduce the number of inoculated pathogens by about 1-2 Log cycles. On the other hand, the helium/oxygen gas mixture was able to achieve microbial reduction of about 2-3 Log cycles. The number of total aerobic bacteria showed 1.89 and 4.58 decimal reductions after plasma treatment with helium and the helium/oxygen mixture, respectively. Microscopic observation of the bacon after plasma treatment did not find any significant changes, except that the L∗-value of the bacon surface was increased. These results clearly indicate that APP treatment is effective for the inactivation of the three pathogens used in this study, although further investigation is needed for elucidating quality changes after treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Effects of different level addition of zeolite ZSM-5 additive on quality and composition of the dry gas, LPG (Liquefied Petroleum Gas) and gasoline, produced in FCC (Fluid Catalytic Cracking); Efeito dos diferentes niveis de adicao de aditivos de ZSM-5 na qualidade e composicao do gas combustivel, GLP e gasolina produzidos em FCC

    Energy Technology Data Exchange (ETDEWEB)

    Bastiani, Raquel; Pimenta, Ricardo D.M.; Almeida, Marlon B.B.; Lau, Lam Y. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The effects of the addition of different level of ZSM-5 additives on different FCC catalysts formulations have been studied on laboratory scale FST (Fluidized Simulation Test). The main objective of the present work is to perform a qualitative identification of the main parameters of FCC catalyst which affect the ZSM-5 additives performance concerning quality and composition of Dry Gas, LPG and Gasoline. The product composition of each test was analyzed by PIANO groups separated by carbon number. The effect of ZSM-5 on products composition was evaluated. The results showed that the ZSM-5 additive cracks gasoline range olefins and isoparaffins into Dry Gas and LPG, favoring the formation of ethylene, propylene and butylenes, while the absolute yield of gasoline aromatics changes little. The aromatics fraction in gasoline, MON and RON numbers in gasoline increase. The ZSM-5 effectiveness is negatively affected by high levels of rare earth on FCC catalyst (RE-USY). Higher hydrogen transfer provides lower olefins (higher than C6) formation, which are the most reactive species for ZSM-5 cracking. (author)

  15. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  16. Aroma composition of red wines by different extraction methods and Gas Chromatography-SIM/MASS spectrometry analysis.

    Science.gov (United States)

    Genovese, Alessandro; Dimaggio, Rosa; Lisanti, Maria Tiziana; Piombino, Paola; Moio, Luigi

    2005-06-01

    One hundred and one volatile compounds, reported in literature as powerful odorants of wine, were quantified by Gas Chromatography-Selective Ion Monitoring/Mass Spectrometry (GC-SIM/MS) in Primitivo, Aglianico, Merlot and Cabernet Sauvignon red wines. Wine samples were extracted by 3 different extraction methods: 1) separation of the alcoholic fraction from the aqueous phase by salting-out and subsequent extraction by liquid-liquid micro-extraction with 1,1,2-trichlorotrifluoroethane (Freon 113); 2) extraction by liquid-liquid micro-extraction with dichloromethane; 3) solid phase extraction (SPE cartridge: 800 mg of LiChrolut EN resin) with pentane-dichloromethane (20:1) and dichloromethane. The selection of the ion fragments used for quantification was directly performed on a red wine sample. For each compound the area of the corresponding peak was normalized respect to the peak of the internal standard and then interpolated in a calibration curve obtained analysing a model wine solution (water, ethanol, tartaric acid and known amounts of analytes and of internal standard). The methods showed a good linearity: r2>0.990, except for farnesol (isomer a and c), octanal, decanal, furaneol and phenylacetic acid with 0.966 furaneol and sotolon. The Aglianico wines were characterised by the major fermentation compounds (esters, fatty acids and 2-phenylethanol), beta-damascenone, beta-ionone and linalool. The Primitivo wines were characterized by furaneol, methoxypyrazine, gamma-nonalactone and acetaldehyde, while Cabernet Sauvignon and Merlot wines principally by cask derivates (vanillin, (Z) 3-methyl-gamma-octalactone [(Z) wiskylactone], maltol and eugenol), some aldehydes and 3-isopropyl-2-methoxypyrazine.

  17. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  18. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-03-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  19. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  20. A New Multiphase Equation of State for Composition B

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Margevicius, Madeline Alma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-07-25

    We describe the construction of a complete equation of state for the high explosive Composition B in its unreacted (inert) form, as well as chemical equilibrium calculations of its detonation products. The multiphase reactant EOS is of SESAME type, and was calibrated to ambient thermal and mechanical data, the shock initiation experiments of Dattelbaum, et al., and the melt line of trinitrotoluene (TNT).

  1. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  2. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  3. ONLINE SINGLE-COLUMN CAPILLARY GAS-CHROMATOGRAPHIC ANALYSIS OF ALL REACTANTS AND PRODUCTS IN THE SYNTHESIS OF FUEL METHANOL FROM HYDROGEN AND OXIDES OF CARBON

    NARCIS (Netherlands)

    MARSMAN, JH; BREMAN, BB; BEENACKERS, AACM

    The main problems with complete analysis of the components of fuel methanol, or in Fischer-Tropsch studies, are the several classes of compound present in the sample (permanent gases, water, alcohols, hydrocarbons), its wide range of components, its boiling point range, and the wide range of

  4. Enhanced NH{sub 3} gas sensing performance based on electrospun alkaline-earth metals composited SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Daqing Branch, Heilongjiang Academy of Sciences, Daqing 163319 (China); Yang, Ying; Jiang, Chao [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Gao, Jun [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Department of Chemistry, Harbin Normal University, Harbin 150025 (China); Jing, Liqiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Shen, Peikang [Department of Physics and Engineering Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); and others

    2015-01-05

    Highlights: • The small-sized SnO{sub 2} (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO{sub 2} nanofibers showed uniform nanotubes structure (Sr/SnO{sub 2}). • Sr/SnO{sub 2} showed an excellent sensing performance to NH{sub 3} at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO{sub 2} (Ae/SnO{sub 2}) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO{sub 2} was 5–7 nm, which was smaller than the pristine SnO{sub 2} nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO{sub 2} nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO{sub 2} nanotubes exhibited an excellent sensing response toward NH{sub 3} gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO{sub 2} nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO{sub 2}. Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO{sub 2} nanotubes was 3 fold of that pristine SnO{sub 2}.

  5. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  6. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.

    Science.gov (United States)

    Colesie, Claudia; Green, T G Allan; Haferkamp, Ilka; Büdel, Burkhard

    2014-10-01

    Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using (14)CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.

  7. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    Science.gov (United States)

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  8. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.; Shanbhogue, S.J.; Ghoniem, A.F.

    2016-01-01

    for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model

  9. Effect of reactant concentration on the structural properties of hydrothermally-grown ZnO rods on seed-layer ZnO / polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. I.; Shin, C. M.; Heo, J. H.; Ryu, H. [Inje University, Gimhae (Korea, Republic of); Lee, W. J. [Dong-Eui University, Busan (Korea, Republic of); Son, C. S. [Silla University, Busan (Korea, Republic of); Choi, H. [Pukyong National University, Busan (Korea, Republic of)

    2011-09-15

    The morphology and the structural properties were studied for zinc-oxide (ZnO) rods hydrothermally grown on seed-layer ZnO/polyethylene terephthalate (PET) substrates at various reactant concentrations. Dissolved solutions with de-ionized water, zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, ZNH) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}, HMT) were employed as reactants for hydrothermal growth of ZnO. The transparency of the mixtures (ZNH+HMT) with increasing reactant concentration from 0.025 to 0.25 M changed from transparent to translucent to opaque (white colors) due to Zn(OH){sub 2} precipitates. When the concentration was increased, the density of the ZnO rods increased, and the morphology of the ZnO rods changed from a hexagonal flat-end shape to a sharp-end or flake-like structure. The sharp-end rods with increasing concentration from 0.1 to 0.15 M resulted from the etching process at a lower pH condition (less than pH 6) after the ZnO rod growth, and the flake-like structure was due to a high growth rate. The ZnO seed layer might have improved the alignment of ZnO rods and made a high density of ZnO rods. In addition, the structural properties were improved at lower concentrations by inserting a seed layer.

  10. Short communication. Effects of adding different protein and carbohydrates sources on chemical composition and in vitro gas production of corn stover silage

    Directory of Open Access Journals (Sweden)

    L. A. Mejía-Uribe

    2013-05-01

    Full Text Available The use of protein-rich by-products based in swine manure (SM, poultry waste (PW or chemicals compounds as urea (U, as well as energy products like molasses (M and bakery by-product (BB, is a viable method to produce good quality silage. In addition, the use of a bacterial additive can improve the fermentation characteristics of silage. The objective of this study was to determine chemical composition, in vitro gas production (GP and dry matter disappearance (DMd, using different sources of protein and energy in silage. The silages were made using SM, PW or U as protein sources and M or BB as energy source, with corn stover and with or without a bacterial additive. The organic matter (OM content was higher (p < 0.001 in silages with UBB, UM and SMBB compared with the rest of the treatments; meanwhile crude protein content was higher (p < 0.001 in silages with U. The addition of a bacterial additive increased (p < 0.05 OM content and decreased (p < 0.05 fiber content. Total GP was higher (p < 0.05 in silages containing BB, but DMd was higher (p < 0.05 in silages with U and SMBB. The inclusion of a bacterial additive decreased (p < 0.05 GP and DMd. The use of alternative sources of protein such as poultry and swine manure or urea, and of by-products of sugar industry and bakery is an alternative for silages based on corn stover. The results show that when properly formulated, the silages can provide more than 16% of crude protein and have DMd values above 60%.

  11. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn

    2016-12-15

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L{sup −1}) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  12. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    International Nuclear Information System (INIS)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao

    2016-01-01

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L"−"1) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  13. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    Science.gov (United States)

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  14. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H.

    Science.gov (United States)

    Cvitaš, Marko T; Althorpe, Stuart C

    2013-08-14

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  15. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  16. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    Science.gov (United States)

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an

  17. Explosive composition containing water

    Energy Technology Data Exchange (ETDEWEB)

    Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.

    1971-11-26

    This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.

  18. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Khazaee, I.; Sabadbafan, H.

    2016-01-01

    The performance of a PEM (proton exchange membrane) fuel cell depends on design and operating parameters such as relative humidity, operation pressure, and number of channels and direction of the flow of reactant gases. In this study, a three-dimensional, two-phase model has been established to investigate the water management and performance of PEM fuel cell with rectangular geometry and 1-serpentine and 4-serpentine with parallel flow, counter flow and cross flow for hydrogen and oxygen. The numerical simulation was realized with a PEM fuel cell model based on the FLUENT. The active area of each cell is 24.8 cm 2 that its weight is 1300 gr. The material of the gas diffusion layer is carbon clothes, the membrane is nafion117 and the catalyst layer is a plane with 0.004 g cm −2 platinum. Pure hydrogen is used on the anode side and oxygen on the cathode side. Simulation results are obtained for voltage as a function of current density at different humidity. The simulation results are compared with the experimental data, and the agreement is found to be good. The results show that the cell performance at lower voltages increases with increasing humidity in cell with 4-Serpentine flow channel and also in cell with 1-Serpentine flow channel, cell performance at all voltages increases with increasing humidity. In cell with 4-Serpentine and parallel flow channel cell performance is better than counter and cross flow in low voltage and in cell with 1-Serpentine and parallel flow, performance is better than counter and cross flow in high voltage. - Highlights: • Investigation new geometries of a fuel cell. • The effect of geometry on current density, oxygen and water distribution. • The effect of humidity on current density, oxygen and water distribution. • Seeing the interacting and complex electrochemical phenomena.

  19. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  20. Second generation PMR polyimide/fiber composites

    Science.gov (United States)

    Cavano, P. J.

    1979-01-01

    A second generation polymerization monomeric reactants (PMR) polyimdes matrix system (PMR 2) was characterized in both neat resin and composite form with two different graphite fiber reinforcements. Three different formulated molecular weight levels of laboratory prepared PMR 2 were examined, in addition to a purchased experimental fully formulated PMR 2 precurser solution. Isothermal aging of graphite fibers, neat resin samples and composite specimens in air at 316 C were investigated. Humidity exposures at 65 C and 97 percent relative humidity were conducted for both neat resin and composites for eight day periods. Anaerobic char of neat resin and fire testing of composites were conducted with PMR 15, PMR 2, and an epoxy system. Composites were fire tested on a burner rig developed for this program. Results indicate that neat PMR 2 resins exhibit excellent isothermal resistance and that PMR 2 composite properties appear to be influenced by the thermo-oxidative stability of the reinforcing fiber.

  1. The Ispra flue gas desulphurization process: research, development and marketing aspects

    Energy Technology Data Exchange (ETDEWEB)

    Velzen, D. van (JRC, Ispra (Italy))

    1993-01-01

    The most widely used method of reducing sulphur dioxide emission is flue gas desulphurisation (FGD). The combustion gases produced by large combustion units (for example power stations) are in contact with a liquid or a slurry containing a reactant for SO[sub 2]. This operation produces a waste gas which is essentially free of sulphur dioxide. This paper describes the steps involved in the research and development of the new Ispra FGD process. Details of market consideration are also given.

  2. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  3. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    Science.gov (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  4. Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang

    2017-12-31

    Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment

  5. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  6. Gas phase reactive collisions, experimental approach

    Directory of Open Access Journals (Sweden)

    Canosa A.

    2012-01-01

    Full Text Available Since 1937 when the first molecule in space has been identified, more than 150 molecules have been detected. Understanding the fate of these molecules requires having a perfect view of their photochemistry and reactivity with other partners. It is then crucial to identify the main processes that will produce and destroy them. In this chapter, a general view of experimental techniques able to deliver gas phase chemical kinetics data at low and very low temperatures will be presented. These techniques apply to the study of reactions between neutral reactants on the one hand and reactions involving charge species on the other hand.

  7. Influence of composition and substrate bias on structure and inert-gas content of sputter-deposited Ni-La alloys

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.

    1982-09-01

    X-ray diffraction patterns show that the disappearance of crystallinity in the deposit occurs gradually as the La content increases. At the same time, the deposit becomes saturated with Kr. Because there is no evidence of crystalline La metal or Ni-La intermetallic phase in the diffraction data, it may be concluded that each La atom creates a highly disordered (amorphous) region in the lattice, and that this region contains interstitial voids large enough to capture inert gas atoms. Saturation of the gas content with respect to La/Ni ratio might commence when these disordered regions begin to impinge upon one another. Finally, if inert gas atoms occupy interstitial voids within the deposit, then determination of the gas trapping characteristics of the material, using inert gas ions of different sizes, may be a means of studying the structure of glassy vapor-deposited materials. For example, the size distribution of the interstitial voids might be determined in this manner

  8. Antiphase dual-color correlation in a reactant-product pair imparts ultrasensitivity in reaction-linked double-photoswitching fluorescence imaging.

    Science.gov (United States)

    Wan, Wei; Zhu, Ming-Qiang; Tian, Zhiyuan; Li, Alexander D Q

    2015-04-08

    A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.

  9. Chiral Selectivity in Inter-reactant Recognition and Electron Transfer of the Oxidation of Horse Heart Cytochrome c by Trioxalatocobaltate(III)

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2016-01-01

    We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster r...... reacting. Investigations of the chirality using electron-transfer theory combined with quantum-chemical and statistical-mechanical calculations showed that chirality is solely in inter-reactant interaction and electronic overlap.......We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster...

  10. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants

    Directory of Open Access Journals (Sweden)

    Lapin Alexei

    2011-05-01

    Full Text Available Abstract Background In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules. Molecules can also unspecifically bind to membranes or the cytoskeleton affecting (i the fraction of unbound molecules in the cytosol and (ii furthermore reducing the mobility. Binding of molecules to intracellular structures or scaffolds can in turn lead to a microcompartmentalization of the cell. Especially the formation of enzyme complexes promoting metabolic channeling, e.g. in glycolysis, depends on the co-localization of the proteins. Results While the co-localization of enzymes leads to faster reaction rates, the reduced mobility decreases the collision rate of reactants, hence reducing the reaction rate, as expected. This effect is most prominent in diffusion limited reactions. Furthermore, anomalous diffusion can occur due to molecular crowding in the cell. In the context of diffusion controlled reactions, anomalous diffusion leads to fractal reaction kinetics. The simulation framework is used to quantify and separate the effects originating from molecular crowding or the reduced mobility of the reactants. We were able to define three factors which describe the effective reaction rate, namely f diff for the diffusion effect, f volume for the crowding, and f access for the reduced accessibility of the molecules. Conclusions Molecule distributions, reaction rate constants and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of a realistic cell environment. As such, the present simulation can help to bridge the gap between in vivo and in vitro

  11. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  12. High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al2O3 hydrodesulfurization catalyst

    NARCIS (Netherlands)

    van Haandel, L.; Hensen, E.J.M.; Weber, Th.

    2017-01-01

    An in situ characterization of heterogeneous catalysts under industrial operating conditions may involve high pressure and reactants in both the gas and the liquid phase. In this paper, we describe an in situ XAS flow reactor, which is suitable to operate under such conditions (pmax 20 bar, Tmax 350

  13. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data.

  14. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data

  15. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospheres

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kiamehr, Saeed; Montgomery, Melanie

    2017-01-01

    SO2. Scanning electron microscopy (SEM), energy dispersive X-rayspectroscopy (EDS) and X-ray diffraction (XRD) techniques werecomplimentarily applied to characterize the resulting corrosion products. Apartially molten K2SO4-layer formed on KCl coated specimens, and corrosionresulted in localized......In biomass fired power plants, the fast corrosion of superheaters is facilitatedby the presence of corrosive flue gas species, for example, SO2, which arereleased during combustion. To understand the role of the gas species on thecorrosion process, comparative laboratory exposures of deposit (KCl......)-coatedand deposit-free austenitic stainless steel (TP 347H FG) samples to gas mixturescontaining SO2 was carried out, under conditions relevant to biomass-firing.Exposures were conducted isothermally at 560 8C for 72 h, in oxidizingsulphidizing,and oxidizing-sulphidizing-chlorinating gas mixtures containing60 ppmv...

  16. Combustion synthesis of boride and other composites

    International Nuclear Information System (INIS)

    Halverson, D.C.; Lum, B.Y.; Munir, Z.A.

    1989-01-01

    This patent describes a self-sustaining combustion synthesis process for producing hard, tough, lightweight B 4 C/TiB 2 composites. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B 4 C and TiB 2 reactants. For lightweight products the composition must be relatively rich in the B 4 C component. B 4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.0:008360his patent describes a neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods

  17. Influence of an O2 background gas on the composition and kinetic energies of species in laser induced La0.4Ca0.6MnO3 plasmas

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La0.4Ca0.6MnO3 plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O2 background gas at different pressures. It has been observed that the O2 background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O2 background gas causes the generation of positive diatomic oxide species of LaO+, CaO+ and MnO+. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O2 background compared to vacuum, while the amount of O2- increases strongly.

  18. Influence of an O{sub 2} background gas on the composition and kinetic energies of species in laser induced La{sub 0.4}Ca{sub 0.6}MnO{sub 3} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W. [Paul Scherrer Institute, General Energy Research Department, CH-5232 Villigen PSI (Switzerland); Lippert, Thomas, E-mail: Thomas.lippert@psi.ch [Paul Scherrer Institute, General Energy Research Department, CH-5232 Villigen PSI (Switzerland); Wokaun, Alexander [Paul Scherrer Institute, General Energy Research Department, CH-5232 Villigen PSI (Switzerland)

    2013-08-01

    Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La{sub 0.4}Ca{sub 0.6}MnO{sub 3} plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O{sub 2} background gas at different pressures. It has been observed that the O{sub 2} background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O{sub 2} background gas causes the generation of positive diatomic oxide species of LaO{sup +}, CaO{sup +} and MnO{sup +}. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O{sub 2} background compared to vacuum, while the amount of O{sub 2}{sup −} increases strongly.

  19. Verification of the correlation between the {sup 210} Pb and the chemical composition of the incrustations found on gas pipelines and the implication on radiological protection; Verificacao da correlacao entre a atividade de {sup 210}Pb e a composicao quimica de incrustacoes encontradas em linhas de gas e a implicacao em protecao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Franciane Martins de Carvalho

    2004-07-01

    In the last decades, the occurrence of solid residual deposits, known as black powder, in natural-gas pipelines, gathering systems and compression equipment from gas industries has raised increasing regulatory concerns in terms of radiological protection. Concerns are also raised about the waste disposal and management of the radioactive residues eventually produced. Recent projections indicate a significant increase in the production of natural-gas and its products, due to a growing commercial demand, which leads to the production of huge amounts of residues. Thus, more information is needed in order to allow a preliminary evaluation of the radiological profile of this type of industry. In black powder residues, the most prevalent radioisotope is {sup 210}Pb. The present work aimed to investigate the correlation between the chemical composition of the residue and the concentration of {sup 210}Pb, in black powder samples collected at Bacia de Campos, in the State of Rio de Janeiro, Brazil. The main objective was to generate information to regulatory authorities, to the National Commission of Nuclear Energy (CNEN) and to companies that produce natural-gas, such as PETROBRAS. Based on the information, the gas producing companies could elaborate radiological protection guidelines, and also decide about the need for implementation of a waste management program at the installation. The samples of black powder analyzed at the present work have confirmed the existence of such correlation between the concentration of {sup 210}Pb and chemical parameters. In principle, the present results make the use of such correlation feasible for preliminary evaluations of the {sup 210}Pb levels in natural-gas installations. On the other hand, given the geographic limitations, a broader study is recommended, in order to evaluate the investigated correlation, which could be used as a guiding tool for the Brazilian industry of production and processing of natural-gas.(author)

  20. Impact of narasin on manure composition, microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets.

    Science.gov (United States)

    Kerr, Brian J; Trabue, Steven L; van Weelden, Mark B; Andersen, Daniel S; Pepple, Laura M

    2018-04-14

    An experiment was conducted to determine the effect of feeding finishing pigs a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30% dried distillers grains with solubles (DDGS), in combination with or without a growth-promoting ionophore (0 or 30 mg narasin/kg of diet), has on manure composition, microbial ecology, and gas emissions. Two separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates that allowed for total but separate collection of feces and urine during the 48-d collection period. After each of the twice-daily feedings, feces and urine from each crate was collected and added to its assigned enclosed manure storage tank. Each tank contained an individual fan system that pulled a constant stream of air over the manure surface for 2 wk prior to air (day 52) and manure sampling (day 53). After manure sampling, the manure in the tanks was dumped and the tanks cleaned for the second group of pigs. Except for total manure Ca and P output as a percent of intake and for manure methane product rate and biochemical methane potential (P ≤ 0.08), there were no interactions between diet composition and narasin supplementation. Narasin supplementation resulted in increased manure C (P = 0.05), increased manure DM, C, S, Ca, and phosphorus as a percent of animal intake (P ≤ 0.07), and increased manure volatile solids and foaming capacity (P ≤ 0.09). No effect of narasin supplementation was noted on manure VFA concentrations or any of the gas emission parameters measured (P ≥ 0.29). In contrast, feeding finishing pigs a diet containing DDGS dramatically affected manure composition as indicated by increased concentration of DM, C, ammonia, N, and total and volatile solids (P = 0.01), increased manure DM, N, and C as a percent of animal intake (P = 0.01), increased manure total VFA and phenols (P ≤ 0.05), decreased gas emissions of ammonia and volatile sulfur compounds (VSC; P = 0.01), increased

  1. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  2. Seismically induced variations in Mariánské Lázně fault gas composition in the NW Bohemian swarm quake region, Czech Republic — A continuous gas monitoring

    Czech Academy of Sciences Publication Activity Database

    Weinlich, F. H.; Faber, E.; Boušková, Alena; Horálek, Josef; Teschner, M.; Poggenburg, J.

    2006-01-01

    Roč. 421, č. 1-2 (2006), s. 89-110 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z30120515 Keywords : gas monitoring * earthquake swarm * coseismic anomalies Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.675, year: 2006

  3. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Babin, S.V.; Khripakov, E.V.

    2007-01-01

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details [ru

  4. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  5. Determination of any gas composition using high energy molecular beams. Application to the simultaneous concentration measurement of ten pollutants in air

    International Nuclear Information System (INIS)

    Devienne, F.M.; Laugier, Lucette; Roustan, J.-C.; Clapier, Robert.

    1975-01-01

    A high energy argon beam collides the gas to be abalyzed in a special box. The ions formed are extracted and collide a target gas (such as argon) filling a collision chamber, some of them are dissociated. The number of these ions is measured by means of an electrostatic analyzer and an electron multiplier as detector. By this way, it is possible to measure the concentrations of ten or more gaseous pollutants in air in a time shorter than a minute. The method was applied to study the effluents of a jet; the concentrations in CO, NO, NO 2 , CO 2 and SO 2 were measured [fr

  6. Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, A.V.P. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)]. E-mail: antoine.joubert@limos.uhp-nancy.fr; Lucas, L. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Garrido, F. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France)]. E-mail: f.garrido@brgm.fr; Joulian, C. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Jauzein, M. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)

    2007-08-15

    This study estimates the effect of environmental parameters on the mobility of four inorganic contaminants (As, Zn, Pb and Cd) in soils from three areas in the Ebro and Meuse River basins, within the context of global change. An experimental method, applicable to various soil systems, is used to measure the effect of four global-change-sensitive parameters (temperature, gas phase composition, pH and microbial activity). The aqueous phase of batch incubations was sampled regularly to monitor toxic element concentrations in water. Statistical processing enabled discrimination of the most relevant variations in dissolved concentrations measured at different incubation times and under different experimental conditions. Gas phase composition was identified as the most sensitive parameter for toxic element solubilization. This study confirms that total soil concentrations of inorganic pollutants are irrelevant when assessing the hazard for ecosystems or water resource quality. - An experimental method applicable for different soil systems enables the determination of the effect of environmental parameters, potentially affected by global change, on the mobilization of inorganic pollutants.

  7. Development of gas diffusion layer using water based carbon slurry for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.F.; Liu, X.; Adame, A.; Villacorta, R. [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States); Kannan, A.M., E-mail: amk@asu.ed [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2011-01-01

    The micro-porous layer of gas diffusion layers (GDLs) was fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS), by wire rod coating process. The aqueous carbon slurry with micelle-encapsulation was highly consistent and stable without losing any homogeneity even after adding polytetrafluoroethylene (PTFE) binder for hundreds of hours. The surface morphology, contact angle and pore size distribution of the GDLs were examined using SEM, Goniometer and Hg Porosimeter, respectively. GDLs fabricated with various SDS concentrations were assembled into MEAs and evaluated in a single cell PEMFC under diverse operating relative humidity (RH) conditions using H{sub 2}/O{sub 2} and H{sub 2}/air as reactants. The peak power density of the single cell using the GDLs with optimum SDS concentration was 1400 and 500 mW cm{sup -2} with H{sub 2}/O{sub 2} and H{sub 2}/air at 90% RH, respectively. GDLs were also fabricated with isopropyl alcohol (IPA) based carbon slurry for fuel cell performance comparison. It was found that the composition of the carbon slurry, specifically SDS concentration played a critical role in controlling the pore diameter as well as the corresponding pore volumes of the GDLs.

  8. Gas Sensing Studies of an n-n Hetero-Junction Array Based on SnO2 and ZnO Composites

    Directory of Open Access Journals (Sweden)

    Anupriya Naik

    2016-02-01

    Full Text Available A composite metal oxide semiconductor (MOS sensor array based on tin dioxide (SNO2 and zinc oxide (ZnO has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The array was evaluated against a number of environmentally important reducing and oxidizing gases across a range of operating temperatures (300–500 °C. The highest response achieved was against 100 ppm ethanol by the 50 wt% ZnO–50 wt% SnO2 device, which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart (which displayed a response of 24.4 and a 12.3-fold enhancement with respect to the pure ZnO counterpart (which was associated with a response of 8.9, towards the same concentration of the analyte. Cross sensitivity studies were also carried out against a variety of reducing gases at an operating temperature of 300 °C. The sensors array showed selectivity towards ethanol. The enhanced behaviour of the mixed oxide materials was influenced by junction effects, composition, the packing structure and the device microstructure. The results show that it is possible to tune the sensitivity and selectivity of a composite sensor, through a simple change in the composition of the composite.

  9. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already

  10. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wasterlain, S.; Hissel, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS Department, University of Franche-Comte, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); Candusso, D.; Harel, F. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); INRETS, The French National Institute for Transport and Safety Research, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); Bergman, P.; Menard, P.; Anwar, M. [University of Connecticut, Connecticut Global Fuel Cell Center Department of Electrical and Computer Engineering, 44 Weaver Road, Unit 5233, Storrs, CT 06269-5233 (United States)

    2010-02-15

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently. (author)

  11. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    Science.gov (United States)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  12. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  13. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  14. A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine Une étude numérique complète sur les effets de la composition du gaz naturel carburant sur le réglage d’un moteur HCCI

    Directory of Open Access Journals (Sweden)

    Jahanian O.

    2011-11-01

    Full Text Available Homogeneous Charge Compression Ignition (HCCI engine is a promising idea to reduce fuel consumption and engine emissions. Natural Gas (NG, usually referred as clean fuel, is an appropriate choice for HCCI engines due to its suitable capability of making homogenous mixture with air. However, varying composition of Natural Gas strongly affects the auto-ignition characteristics of in-cylinder mixture and the performance of the HCCI engine. This paper has focused on the influence of Natural Gas composition on engine operation in HCCI mode. Six different compositions of Natural Gas (including pure methane have been considered to study the engine performance via a thermo-kinetic zero-dimensional model. The simulation code covers the detailed chemical kinetics of Natural Gas combustion, which includes Zeldovich extended mechanism to evaluate NOx emission. Validations have been made using experimental data from other works to ensure the accuracy needed for comparison study. The equivalence ratio and the compression ratio are held constant but the engine speed and mixture initial temperature are changed for comparison study. Results show that the peak value of pressure/temperature of in-cylinder mixture is dependent of fuel Wobbe number. Furthermore, engine gross indicated power is linearly related to fuel Wobbe number. Gross indicated work, gross mean effective pressure, and NOx are the other parameters utilized to compare the performance of engine using different fuel compositions. Le moteur HCCI (Homogeneous Charge Compression Ignition, ou à allumage par compression d’une charge homogène est une idée prometteuse pour réduire la consommation de carburant et les émissions polluantes. Le gaz naturel, considéré généralement comme un carburant propre, est un choix approprié pour les moteurs HCCI en raison de sa capacité à former avec l’air un mélange homogène. Cependant, la composition du gaz naturel influe fortement sur les caract

  15. Gas dynamic lasers

    International Nuclear Information System (INIS)

    Hill, R.J.; Jewell, N.T.

    1975-01-01

    In a high powered laser system it is proposed that combustion gases be bled off from a gas turbine engine and their composition adjusted by burning extra fuel in the bleed gases or adding extra substances. Suitable aerodynamic expansion produces a population inversion resulting in laser action in the CO 2 species. Alternatively, bleed gases may be taken from the high pressure compressor of the gas turbine engine and an appropriate fuel burned therein. If required, other adjustments may also be made to the composition and the resulting gaseous mixture subjected to aerodynamic expansion to induce laser action as before. (auth)

  16. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  17. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  18. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    Energy Technology Data Exchange (ETDEWEB)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M. [German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany); Bonaldo, A. [Siemens Industrial Turbomachinery Ltd., Combustion Group, P. O. Box 1, Waterside South, Lincoln LN5 7FD (United Kingdom)

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  19. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  20. Analytical solutions for non-linear conversion of a porous solid particle in a gas : II. non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, G.; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  1. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    International Nuclear Information System (INIS)

    Ferrandis, J.; Leveque, G.; Villard, J.

    2006-01-01

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85 Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  2. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  3. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  4. The physical properties, lignin distribution, chemical composition of fibers and gas exchange rate of kenaf (Hibiscus cannabinus L.) varieties under prolonged water deficiency

    OpenAIRE

    Khalatbari, A.M; Jaafar, Z.E; Khalatbari, A. A; Hazandy, A.H; Mohd Ridzwan, A. H

    2016-01-01

    The fundamental characteristics and physical properties of kenaf (Hibiscus cannabinus L.) fibers cultivated and subjected to three different water frequencies in Universiti Putra Malaysia, were analyzed. For deep analysis, which includes micro-scale viewing for identification of kenaf cell wall structure, fibers were viewed in order to study the physical characteristics, anatomy, and lignin distribution. The chemical composition was determined considering Technical Association of Pulp and Pap...

  5. Features of Composition and Cement Type of the Lower Triassic Reservoirs in the North of the Timan-Pechora Oil and Gas Province

    Directory of Open Access Journals (Sweden)

    N.N. Timonina

    2017-03-01

    Full Text Available The work is devoted to the study of cement type and composition of the Lower Triassic deposits of the Timan-Pechora province, their influence on reservoir properties of rocks. The work was based on laboratory studies of core, generalization of published data. Morphological and genetic analysis of clay minerals was carried out using X-ray and electron-microscopic methods. As a result of the conducted studies it was established that the type, composition and distribution of the cement is influenced by the composition of demolition sources, sedimentation conditions, and post-sedimentation transformations. Kaolinite, chlorite, smectite and hydromica associations are distinguished according to the predominance of clay mineral in the sandstone cement. Kaolinite cement of sandstones is most typical for continental fluvial facies, especially channel beds. Smectite association is most characteristic of the floodplain, oxbow and lake facies of the zone. The revealed regularities will contribute to the improvement of accurate reconstruction of sedimentation conditions, construction of more adequate geological models of the reservoir, taking into account its reservoir heterogeneity both at the level of the reservoir and its constituent interlayers.

  6. Effect of Gas Pressure and Temperature on Stereometric Properties of Al+Al2O3 Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2014-10-01

    Full Text Available The paper deals with effect of working gas pressure and temperature on surface stereometry of coatings deposited by low-pressure cold spray method. Examinations were focused on aluminium coatings which are commonly used to protect substrate against corrosion. A commercial Al spherical feedstock powder with admixture of Al2O3 (Al + 60vol.-% Al2O3, granulation -50+10 µm, was used to coat steel, grade S235JR. Thedeposited coatings were studied to determine their stereometry, i.e. roughness, transverse and longitudinal waviness, topography of surface and thickness as the functions of gas pressure and temperature. A profilometer and focal microscope were used to evaluate the stereometric properties. In order to reduce the number of variables, the remaining process parameters, i.e. shape and size of de Laval nozzle, nozzle-to-substrate distance, powder mass flow rate, linear velocity of spraying gun, were kept unchanged. The investigation confirmed influence of temperature and pressure on coating thickness as well as on the surface seterometry.

  7. Synthesis of diamond-like carbon via PECD using a streaming neutral gas injection hollow cathode

    International Nuclear Information System (INIS)

    Pacho, A.; Pares, E.; Ramos, H.; Mendenilla, A.; Malapit, G.

    2009-01-01

    A streaming neutral gas injection hollow cathode system was used to deposit diamond-like carbon films via plasma enhanced chemical vapor deposition on silicon and nickel-coated silicon substrates with acetylene and hydrogen as reactant gases. Samples were characterized using SEM and Raman spectroscopy. The work presented here aims to demonstrate the capability of the system to synthesize carbonaceous films and is starting point towards work on formation of carbon nanostructures. (author)

  8. Effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex multi-doped composite coating produced through electrodeposition on oil and gas storage tap

    Directory of Open Access Journals (Sweden)

    P.A.L. Anawe

    2018-06-01

    Full Text Available The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas. Keywords: Zn-SnO2-SiO2, Nanocomposite, Electrodeposition, Coatings and corrosion resistance

  9. Effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex multi-doped composite coating produced through electrodeposition on oil and gas storage tap

    Science.gov (United States)

    Anawe, P. A. L.; Fayomi, O. S. I.; Ayoola, A. A.; Popoola, A. P. I.

    2018-06-01

    The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas.

  10. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone.

    Science.gov (United States)

    Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V

    2007-07-19

    The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.

  11. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  12. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  13. Geology and oil and gas assessment of the Mancos-Menefee Composite Total Petroleum System: Chapter 4 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    Ridgley, J.L.; Condon, S.M.; Hatch, J.R.

    2013-01-01

    The Mancos-Menefee Composite Total Petroleum System (TPS) includes all genetically related hydrocarbons generated from organic-rich shales in the Cretaceous Mancos Shale and from carbonaceous shale, coal beds, and humate in the Cretaceous Menefee Formation of the Mesaverde Group. The system is called a composite total petroleum system because the exact source of the hydrocarbons in some of the reservoirs is not known. Reservoir rocks that contain hydrocarbons generated in Mancos and Menefee source beds are found in the Cretaceous Dakota Sandstone, at the base of the composite TPS, through the lower part of the Cliff House Sandstone of the Mesaverde Group, at the top. Source rocks in both the Mancos Shale and Menefee Formation entered the oil generation window in the late Eocene and continued to generate oil or gas into the late Miocene. Near the end of the Miocene in the San Juan Basin, subsidence ceased, hydrocarbon generation ceased, and the basin was uplifted and differentially eroded. Reservoirs are now underpressured.

  14. Quantum dots as mediators in gas sensing: A case study of CdS sensitized WO{sub 3} sensing composites

    Energy Technology Data Exchange (ETDEWEB)

    Concina, Isabella, E-mail: concina@sensor.ing.unibs.it [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Comini, Elisabetta [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Kaciulis, Saulius [CNR-ISMN, Institute for the Study of Nanostructured Materials, Via dei Taurini, 19, 00185 Roma (Italy); Sberveglieri, Giorgio [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy)

    2014-01-30

    In this study the proof of principle of the use of naked semiconductor directly generated on metal oxide surface as mediators in gas sensing is provided. Successive ionic layer absorption and reaction (SILAR) technique has been applied to sensitize a WO{sub 3} thin film with CdS quantum dots. Response to gases of bare WO{sub 3} is deeply modified: quantum dots dramatically increase the metal oxide conductance, otherwise rather poor, and modify the capability of detecting environmental pollutants, such as CO and NO{sub 2}. A modified sensing mechanism is proposed to rationalize the mediation exerted by the semiconducting active layer on the interaction between gaseous species and WO{sub 3} surface.

  15. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    Science.gov (United States)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    We compare dissolution rates of pure, porous, compacted, and oil-contaminated sI methane hydrate and sII methane-ethane hydrate to rates measured previously on pure, compacted, sI methane hydrate and sI carbon dioxide hydrate (Rehder et al., Fall AGU 2001). Laboratory-synthesized test specimens were used in both studies, allowing characterization of test materials prior to their transport and exposure to seawater at 1030-meter depth on the Monterey Canyon seafloor, off coastal Moss Landing, CA. Although pressure and temperature (P-T) conditions at this site are within the nominal P-T equilibrium fields of all gas hydrates tested here, the seawater is undersaturated with respect to the hydrate-forming gas species. Hence, samples dissolve with time, at a rate dependent on water current flow. Four samples were deployed in this second experiment: (1) pure, 30% porous methane hydrate; (2) pure, compacted methane hydrate; (3) pure methane hydrate compacted and then contaminated with a low-T mineral oil; and (4) pure, compacted sII methane-ethane hydrate with methane:ethane molar ratio 0.72. Samples were transferred by pressure vessel at 0 ° C and 15 MPa to the seafloor observatory via the MBARI remotely operated vehicle Ventana. Samples were then exposed to the deep ocean environment and monitored by HDTV camera for several hours at the beginning and end of a 25-hour period. Local current speed and direction were also measured throughout the experiment. Those samples that did not undergo complete dissolution after 25 h were successfully recovered to the laboratory for subsequent analysis by scanning electron microscopy (SEM). Previously, video analysis showed dissolution rates corresponding to 4.0 +/- 0.5 mmole CO2/m2 s for compacted CO2 hydrate samples, and 0.37 +/- 0.03 mmole CH4/m2s for compacted methane hydrate samples (Rehder et al, AGU 2001). The ratio of dissolution rates fits a simple diffusive boundary layer model that incorporates relative gas solubilities

  16. Gas manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Fell, J W

    1915-05-03

    Retorts for the distillation of shale or coal for the production of oil or illuminating-gas are heated by gas from a generator or a gas-holder, and a portion of the gas from the flue leading to the heating-flues is forced by a steam jet through a by-pass and is injected into the bottom of the retorts. If the gas to be admitted to the retort is cold, it is first heated.

  17. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  18. Soil gas composition from the 2001-2002 fissure in the Lakki Plain (Nisyros Island, Greece): evidences for shallow hydrothermal fluid circulation

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Kanellopoulos, Christos; Vaselli, Orlando; Caponi, Chiara; Ricci, Andrea; Raspanti, Alessio; Gallorini, Andrea; Cabassi, Jacopo; Vougioukalakis, Georges

    2016-04-01

    Nisyros volcano (Aegean Sea, Greece) is currently classified in the "Very High Threat" category (Kinvig et al., 2010). Although the last volcanic activity, consisting of phreatic eruptions, occurred in the 19th century, Nisyros experienced an intense seismic activity during 1996-1998 accompanied by ground deformation and changes in the chemistry of fumarolic gases (Chiodini et al., 2002), pointing to