WorldWideScience

Sample records for reaches operating temperature

  1. Operational Reach: Is Current Army Doctrine Adequate?

    National Research Council Canada - National Science Library

    Heintzelman, Scott

    2003-01-01

    The term operational reach, an element of operational design, is new to U.S. Army doctrine. Operational reach is not found in the previous edition of the Army's basic operational doctrine, Field Manual...

  2. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    Science.gov (United States)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  3. Enhancing US Operational Reach in Southeast Asia

    National Research Council Canada - National Science Library

    Hitchcock, David

    2003-01-01

    .... While this treat continues to exist, the US Pacific Command (PACOM) must also pursue a neat term methodology to expand its operational reach and ability to respond to contingencies throughout the East Asian littoral, especially within Southeast Asia...

  4. Telerobotic operation of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; Hwang, D.H.; Babcock, S.M.

    1994-01-01

    As a part of the Department of Energy's Environmental Restoration and Waste Management Program, long-reach manipulators are being considered for the retrieval of waste from large storage tanks. Long-reach manipulators may have characteristics significantly different from those of typical industrial robots because of the flexibility of long links needed to cover the large workspace. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A new approach that uses embedded simulation was developed and compared with others. In the new approach, generation of joint trajectories considering link flexibility was also investigated

  5. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-09-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics at the previous energy of 900 GeV. This has allowed us to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which has taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, our new satellite refrigerator controls system is capable of the expansion necessary to reach our goal. New features are being added to the control system which will allow for more intelligent control and better diagnostics for component monitoring and trending

  6. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-01-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation of the Fermilab superconducting Tevatron accelerator is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics run at the previous energy of 900 GeV. This has allowed the author to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which have taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, the new satellite refrigerator controls system is capable of the expansion necessary to reach this goal. New features are being added to the controls systems which will allow for more intelligent control and better diagnostics for component monitoring and trending

  7. REACH MUSC: A Telemedicine Facilitated Network for Stroke: Initial Operational Experience

    Science.gov (United States)

    Adams, Robert J.; Debenham, Ellen; Chalela, Julio; Chimowitz, Marc; Hays, Angela; Hill, Cody; Holmstedt, Christine; Jauch, Edward; Kitch, Alec; Lazaridis, Christos; Turan, Tanya N.

    2012-01-01

    REACH Medical University of South Carolina (MUSC) provides stroke consults via the internet in South Carolina. From May 2008 to April 2011 231 patients were treated with intravenous (IV) thrombolysis and 369 were transferred to MUSC including 42 for intra-arterial revascularization [with or without IV tissue plasminogen activator (tPA)]. Medical outcomes and hemorrhage rates, reported elsewhere, were good (Lazaridis et al., 2011). Here we report operational features of REACH MUSC which covers 15 sites with 2,482 beds and 471,875 Emergency Department (ED) visits per year. Eight Academic Faculty from MUSC worked with 165 different physicians and 325 different nurses in the conduct of 1085 consults. For the 231 who received tPA, time milestones (in minutes) were: Onset to Door: 62 (mean), 50 (median); Door to REACH Consult: 43 and 33, Consult Request to Consult Start: was 9 and 7, Consult Start to tPA Decision: 31 and 25; Decision to Infusion: 20 and 14, and total Door to Needle: 98 and 87. The comparable times for the 854 not receiving tPA were: Onset to Door: 140 and 75; Door to REACH Consult: 61 and 41; Consult Request to Consult Start: 9 and 7, Consult Start to tPA Decision: 27 and 23. While the consultants respond to consult requests in <10, there is a long delay between arrival and Consult request. Tracking of operations indicates if we target shortening Door to Call time and time from tPA decision to start of drug infusion we may be able to improve Door to Needle times to target of <60. The large number of individuals involved in the care of these patients, most of whom had no training in REACH usage, will require novel approaches to staff education in ED based operations where turnover is high. Despite these challenges, this robust system delivered tPA safely and in a high fraction of patients evaluated using the REACH MUSC system. PMID:22435064

  8. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  9. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  10. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    Science.gov (United States)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  11. Can coronal hole spicules reach coronal temperatures?

    Science.gov (United States)

    Madjarska, M. S.; Vanninathan, K.; Doyle, J. G.

    2011-08-01

    Aims: The present study aims to provide observational evidence of whether coronal hole spicules reach coronal temperatures. Methods: We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. Results: The analysed three large spicules were found to be comprised of numerous thin spicules that rise, rotate, and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 kms-1. We clearly associated the red- and blue-shifted emissions in transition region lines not only with rotating but also with rising and descending plasmas. Our main result is that these spicules although very large and dynamic, are not present in the spectral lines formed at temperatures above 300 000 K. Conclusions: In this paper we present the analysis of three Ca ii H large spicules that are composed of numerous dynamic thin spicules but appear as macrospicules in lower resolution EUV images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena that have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He ii emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 Å and 211 Å channels probably comes from the existence of transition region emission there. Movie is available in electronic form at http://www.aanda.org

  12. Input shaping methods for telerobotic operation of flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.

    1994-01-01

    Among the Environmental Restoration and Waste Management Program of the U.S. Department of Energy, the remediation of radioactive waste from the underground storage tank challenges the state-of-the-art equipment and methods. Long-reach manipulators are being considered to be one of the most advantageous approaches for the retrieval of waste from large storage tanks. Because of long-reach manipulator's high payload capacity and high length-to-cross-section ratios, such manipulator system exhibits significant structural flexibility. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A robust notch filtering method and an impulse shaping method were evaluated. In addition to that, a new approach that uses imbedded simulation was developed and compared with others. In the new approach, joint trajectories have been generated considering the flexible link dynamics

  13. Variations of Hydrological Regime in the Jingjiang Reach of the Yangtze River after Operation of the Three Gorges Project

    Science.gov (United States)

    Zhu, Y.-H.; Guo, X.-H.; Hu, W.; Qu, G.; He, G.-S.

    2012-04-01

    The Three Gorges Project (TGP) of China has been in operation since 2003. In October 2010 the water level at the Three Gorges Dam (TGD) rose to the normal storage water level of 175 m, indicting the realization of the integrated targets of the TGP in terms of flood protection, electricity generation, navigation, etc. The operation of the TGP has changed the flow and sediment conditions (i.e. the hydrological regime) of the river channel downstream. The 347.2 km Jingjiang Reach, part of the middle reach of the Yangtze River, is very closely dowstream of the TGD and is affected relatively earlier and significant by the project operation. Based on the measured prototype hydrological data from 1950 to 2010, variations of the hydrological regime in the Jingjiang Reach after operation of the TGP are analyzed. The results showing that the runoff of the river is of no clear variation tendency during the last 60 years. However, after the operation of the TGP, the sediment concentration of the flow in the Jingjiang Reach decreased by 75%; coarsening of the suspended load and bed load in the river is evident; the water level at the same flow rate has a tendency to decline, with the margin of decline of the upper Jingjiang Reach being larger than that of the lower Reach, and that at smaller flow rate being larger than at larger flow rate. The flow and sediment diversion from the Yangtze River to the Dongting Lake via the three outlets also has a tendency to decrease; the degree of dcrease of the sediment diversion is much larger than that of the flow diversion. After the operation of the TGP, except the 2006 is a special low flow year, in which the decrease of the ratios of flow and sediment diversion are relatively large, the ratios are of no clear unidirectional variation tendency in the other years. Due to the operation of the TGP, within one year, the flow diversion in October is decreased comparing with that before the operation. Keywords: The Three Gorges Project, the

  14. Analysis of Operating Temperature of the Polycrystalline Solar Cell

    Directory of Open Access Journals (Sweden)

    Vladimír GÁLL

    2017-12-01

    Full Text Available This work deals with the solar cells with orientation on the calculation of operating temperature of the polycrystalline solar cell, which is under actual load. Operating conditions have a significant effect on the efficiency of solar cells. In the summer with increasing temperature, the efficiency decreases. In the winter, efficiency and output voltage are rising. The operating temperature is determined by intensity of solar radiation, the types of materials used by construction and operating condition. The aim of this work was simplify of the calculation of operating temperature of solar cells. The result of this work is a derived equation that allows a more accurate and faster calculation this temperature with using Matlab software.

  15. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  16. Operating temperatures for an LMFBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1993-01-01

    The scope of the present paper is limited to structural mechanics aspects that are associated with this technology. However, for the purpose of comprehensive presentation, all the other related issues are also highlighted. For this study, a Prototype Fast Breeder Reactor (PFBR) with 500 MWe capacity is taken as the reference design. Accordingly, some critical high temperature components of PFBR are analysed in- detail for elastic, inelastic and viscoplastic behaviour towards life prediction as per the requirement of design codes (RCC-MR 87) which form basis for justifying the possibility of higher operating temperatures for LMFBRs. Since operation with higher primary sodium outlet temperature in association with higher ΔT across the core is one of the efficient techniques towards making LMFBRs cost effective, operating Temperature limits are determined for a typical pool type FBR of 500 MWe capacity. Analysis indicates that control plug in the hot pool is the most critical component which limits the operating temperature to 820 K with a ΔT across the core of 160 K. By improving the thermal hydraulic design in conjunction with the structural design optimisation at the plate-shell junctions of control plug, possibility exists to go up to 840-850 K for primary outlet sodium with a T of 160 K across the core. This will result in producing steam of about 790-800 K (520 deg. C). Apart from improving the thermal hydraulic design to mitigate the transient thermal stresses, following are also needed to demonstrate higher safety margins in the design. Reduction of thermal transients, for an example, the temperature drop in the primary sodium outlet can be reduced by decreasing the sodium flow rate to the core, during a reactor scram. Welds should be avoided at the plate-shell junctions of control plug. A complete ring with necessary fillet radius may be forged as a single piece. In case of reactor vessel, a pullout option is better for redan-stand pipe junction

  17. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  18. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  19. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  20. Thermal operator representation of finite temperature graphs

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana

    2005-01-01

    Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed

  1. Day-night variation in operationally retrieved TOVS temperature biases

    Science.gov (United States)

    Kidder, Stanley Q.; Achtemeier, Gary L.

    1986-01-01

    Several authors have reported that operationally retrieved TOVS (TIROS Operational Vertical Sounder) temperatures are biased with respect to rawinsonde temperatures or temperature analyses. This note reports a case study from which it is concluded that, at least for the time period Mar. 26 through Apr. 8, 1979, there was a significant day-night variation in TOVS mean layer virtual temperature biases with respect to objective analyses of rawinsonde data over the U.S.

  2. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  3. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  4. High Cooling Water Temperature Effects on Design and Operational Safety of NPPs in the Gulf Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo [Khalifa Univ., Abu Dhabi (United Arab Emirates); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-12-15

    The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4Χ1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  5. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  6. Electron density and temperature in NIO1 RF source operated in oxygen and argon

    Science.gov (United States)

    Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.; Serianni, G.; Zanini, M.

    2017-08-01

    The NIO1 experiment, built and operated at Consorzio RFX, hosts an RF negative ion source, from which it is possible to produce a beam of maximum 130 mA in H- ions, accelerated up to 60 kV. For the preliminary tests of the extraction system the source has been operated in oxygen, whose high electronegativity allows to reach useful levels of extracted beam current. The efficiency of negative ions extraction is strongly influenced by the electron density and temperature close to the Plasma Grid, i.e. the grid of the acceleration system which faces the source. To support the tests, these parameters have been measured by means of the Optical Emission Spectroscopy diagnostic. This technique has involved the use of an oxygen-argon mixture to produce the plasma in the source. The intensities of specific Ar I and Ar II lines have been measured along lines of sight close to the Plasma Grid, and have been interpreted with the ADAS package to get the desired information. This work will describe the diagnostic hardware, the analysis method and the measured values of electron density and temperature, as function of the main source parameters (RF power, pressure, bias voltage and magnetic filter field). The main results show that not only electron density but also electron temperature increase with RF power; both decrease with increasing magnetic filter field. Variations of source pressure and plasma grid bias voltage appear to affect only electron temperature and electron density, respectively.

  7. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    Science.gov (United States)

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  8. Reliability studies of high operating temperature MCT photoconductor detectors

    Science.gov (United States)

    Wang, Wei; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2010-10-01

    This paper concerns HgCdTe (MCT) infrared photoconductor detectors with high operating temperature. The near room temperature operation of detectors have advantages of light weight, less cost and convenient usage. Their performances are modest and they suffer from reliable problems. These detectors face with stability of the package, chip bonding area and passivation layers. It's important to evaluate and improve the reliability of such detectors. Defective detectors were studied with SEM(Scanning electron microscope) and microscopy. Statistically significant differences were observed between the influence of operating temperature and the influence of humidity. It was also found that humility has statistically significant influence upon the stability of the chip bonding and passivation layers, and the amount of humility isn't strongly correlated to the damage on the surface. Considering about the commonly found failures modes in detectors, special test structures were designed to improve the reliability of detectors. An accelerated life test was also implemented to estimate the lifetime of the high operating temperature MCT photoconductor detectors.

  9. Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R ampersand D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved

  10. Room-temperature continuous operation of InAsSb quantum-dot lasers near 2 mu m based on (100) InP substrate

    Science.gov (United States)

    Qui, Y.; Uhl, D.; Keo, S.

    2003-01-01

    Single-stack InAsSb self-assembled quantum-dot lasers based on (001) InP substrate have been grown by metalorganic vapor-phase epitaxy. The narrow ridge waveguide lasers lased at wavelengths near 2 mu m up to 25 degrees C in continuous-wave operation. At room temperature, a differential quantum efficiency of 13 percent is obtained and the maximum output optical power reaches 3 mW per facet with a threshold current density of 730 A/cm(sup 2). With increasing temperature the emission wavelength is extremely temperature stable, and a very low wavelength temperature sensitivity of 0.05 nm/degrees C is measured, which is even lower than that caused by the refractive index change.

  11. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    Science.gov (United States)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  12. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  13. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  14. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin [KAIST, Daejeon (Korea, Republic of); Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm{sup 3}. Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  15. The legal character and operational relevance of the Paris Agreement's temperature goal

    Science.gov (United States)

    Rajamani, Lavanya; Werksman, Jacob

    2018-05-01

    This article assesses the legal character and operational relevance of the Paris Agreement's 1.5°C temperature goal. This article begins with a textual analysis of the 1.5°C goal. It considers whether the goal creates individual or collective obligations for Parties, and whether it is sufficiently specific to enable the tracking of individual or collective performance. Next, it assesses the operational relevance of the 1.5°C temperature goal, by considering the role it will play in the Paris Agreement's institutions and procedures. To the extent that the goal plays a role, and implies global limits on greenhouse gas emissions, this article observes that it could have implications for the sharing of the effort between Parties. Thus, this article considers the relevance of equity and the principle of common but differentiated responsibilities and respective capabilities, in the light of different national circumstances, to understanding how the 1.5°C goal could be reached. In this context, this article explores whether the 1.5°C goal could play a role in the Paris Agreement's `ambition cycle'. Finally, this article asks whether there are any legal or political implications, individually or collectively under the Paris Agreement, should the Parties fail to achieve the 1.5°C goal. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  16. Effects of operating temperature on the performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Zhang, C.; Zhao, T.S.; Xu, Q.; An, L.; Zhao, G.

    2015-01-01

    Highlights: • The effect of the operating temperature on the VRFB’s performance is studied. • The voltage efficiency and peak power density increases with temperature. • High temperatures aggravate the coulombic efficiency drop and the capacity decay. • The outcomes suggest that thermal management of operating VRFBs is essential. - Abstract: For an operating flow battery system, how the battery’s performance varies with ambient temperatures is of practical interest. To gain an understanding of the general thermal behavior of vanadium redox flow batteries (VRFBs), we devised and tested a laboratory-scale single VRFB by varying the operating temperature. The voltage efficiency of the VRFB is found to increase from 86.5% to 90.5% at 40 mA/cm 2 when the operating temperature is increased from 15 °C to 55 °C. The peak discharge power density is also observed to increase from 259.5 mW/cm 2 to 349.8 mW/cm 2 at the same temperature increment. The temperature increase, however, leads to a slight decrease in the coulombic efficiency from 96.2% to 93.7% at the same temperature increments. In addition, the capacity degradation rate is found to be higher at higher temperatures

  17. Charge collection efficiency and resolution of an irradiated double-sided silicon microstrip detector operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Borer, K.; Janos, S.; Palmieri, V.G.; Buytaert, J.; Chabaud, V.; Chochula, P.; Collins, P.; Dijkstra, H.; Niinikoski, T.O.; Lourenco, C.; Parkes, C.; Saladino, S.; Ruf, T.; Granata, V.; Pagano, S.; Vitobello, F.; Bell, W.; Bartalini, P.; Dormond, O.; Frei, R.; Casagrande, L.; Bowcock, T.; Barnett, I.B.M.; Da Via, C.; Konorov, I.; Paul, S.; Schmitt, L.; Ruggiero, G.; Stavitski, I.; Esposito, A.

    2000-01-01

    This paper presents results on the measurement of the cluster shapes, resolution and charge collection efficiency of a double-sided silicon microstrip detector after irradiation with 24 GeV protons to a fluence of 3.5x10 14 p/cm 2 and operated at cryogenic temperatures. An empirical model is presented which describes the expected cluster shapes as a function of depletion depth, and is shown to agree with the data. It is observed that the clusters on the p-side broaden if the detector is under-depleted, leading to a degradation of resolution and efficiency. The model is used to make predictions for detector types envisaged for the LHC experiments. The results also show that at cryogenic temperature the charge collection efficiency varies depending on the operating conditions of the detector and can reach values of 100% at unexpectedly low bias voltage. By analysing the cluster shapes it is shown that these variations are due to changes in depletion depth. This phenomenon, known as the 'Lazarus effect', can be related to similar recent observations on diode behaviour

  18. A nonintrusive method for measuring the operating temperature of a solenoid-operated valve

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1990-01-01

    Experimental data are presented to show that the in-service operating temperature of a solenoid-operated valve (SOV) can be interred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include (a) there is no need for an add-on temperature sensor, (b) the true temperature of a critical --- and likely the hottest --- part of the SOV (namely, the electrical coil) is measured directly, (c) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (d) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (e) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 degree C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system. 5 refs., 7 figs

  19. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Science.gov (United States)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  20. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Casagrande, L.; Barnett, B.M.; Bartalina, P.

    1999-01-01

    In this work, the authors show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of ∼4 x 10 14 p/cm 2 , no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T < 120 K. Besides confirming the previously observed Lazarus effect in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments

  1. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  2. High temperature continuous operation in the HTTR (HP-11). Summary of the test results in the high temperature operation mode

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Ueta, Shohei; Sumita, Junya; Goto, Minoru; Nakagawa, Shigeaki; Hamamoto, Shimpei; Tochio, Daisuke

    2010-11-01

    A high temperature (950 degrees C) continuous operation has been performed for 50 days on the HTTR from January to March in 2010, and the potential to supply stable heat of high temperature for hydrogen production for a long time was demonstrated for the first time in the world. JAEA has evaluated the experimental data obtained by this operation and past rated continuous one, and built the database necessary for commercial HTGRs. According to the results, the concentration of FP released from the fuels in the HTTR was a single through triple-digit lower than that in the foreign HTGRs. It became apparent that the fuels used in the HTTR are the best quality in the world. This successful operation could establish technological basis of HTGRs and show potential of nuclear energy as heat source for innovative thermo-chemical-based hydrogen production, emitting greenhouse gases on a 'low-carbon path' for the first time in the world. We have a plan to progress R and D for practical use of hydrogen production system with HTGRs in the future. (author)

  3. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  4. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  5. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    Science.gov (United States)

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  6. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    Science.gov (United States)

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  7. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array.

    Science.gov (United States)

    Ren, Xiaochen; Pei, Ke; Peng, Boyu; Zhang, Zhichao; Wang, Zongrong; Wang, Xinyu; Chan, Paddy K L

    2016-06-01

    An organic flexible temperature-sensor array exhibits great potential in health monitoring and other biomedical applications. The actively addressed 16 × 16 temperature sensor array reaches 100% yield rate and provides 2D temperature information of the objects placed in contact, even if the object has an irregular shape. The current device allows defect predictions of electronic devices, remote sensing of harsh environments, and e-skin applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  9. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  10. Evaluation of temperature distribution in a containment vessel during operation

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Murase, Michio; Yanagi, Chihiro; Masui, Akihiro; Inomata, Ryo; Kamiya, Yuji

    2012-01-01

    For safety analysis of the containment vessel (CV) in a nuclear power plant, the average temperature of the gas phase in the CV during operation is used as an initial condition. An actual CV, however, has a temperature distribution, which makes the estimation of the average temperature difficult. Numerical simulation seems to be useful for the average temperature estimation, but it has several difficulties such as predictions of temperature distribution in a large and closed space that has several compartments, and modeling the heat generating components and the convection-diffusion of heat by ventilation air-conditioning systems. The main purpose of this study was to simulate the temperature distribution and evaluate the average temperature in the CV of a three-loop pressurized water reactor (PWR) during the reactor operation. The simulation considered the heat generation of equipment, flow due to the ventilation and air conditioning systems, heat loss to the CV exterior, and the solar heat. The predicted temperature distribution was significantly affected by the flow. Particularly, openings, which became flow paths, affected the temperature distribution. The temperature increased with a rise in height within the CV and the flow field seemed to transform from forced convection to natural convection. The volume-averaged temperature was different between gas and solid (concrete, CV wall) phases as well as between heights. The total volume-averaged temperature of the CV was nearly equal to the average gas phase temperature. It was found to be easy to evaluate the effect of openings on the temperature distribution and estimate the average temperature in CV by numerical simulation. (author)

  11. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  12. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  13. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  14. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  15. The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Pereiale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, P.; Picchi, P.; Pietropaolo, F.; Tokanai, F.

    2004-01-01

    We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same capillary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.

  16. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    Directory of Open Access Journals (Sweden)

    Caroline Schultealbert

    2018-03-01

    Full Text Available Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR. For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude for four different reducing gases (CO, H2, ammonia and benzene using randomized gas exposures.

  17. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Atsushi, E-mail: shimizu.atsushi35@jaea.go.jp [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Kawamoto, Taiki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Tochio, Daisuke [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Takada, Shoji [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Shinozaki, Masayuki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2014-05-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established.

  18. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    International Nuclear Information System (INIS)

    Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio; Takada, Shoji; Shinozaki, Masayuki

    2014-01-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established

  19. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  20. High-Operating Temperature HgCdTe: A Vision for the Near Future

    Science.gov (United States)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the

  1. High operating temperature interband cascade focal plane arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  2. High operating temperature interband cascade focal plane arrays

    International Nuclear Information System (INIS)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-01-01

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10 −7 A/cm 2 at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications

  3. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  4. Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K

    Science.gov (United States)

    Qiu, L. M.; Cao, Q.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Yu, Y. B.; Liu, Y.; Zhang, X. J.; Pfotenhauer, J. M.

    2012-07-01

    A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1-2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.

  5. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G., E-mail: sequega@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2014-10-15

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  6. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    International Nuclear Information System (INIS)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G.

    2014-10-01

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  7. High-Performing, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants

    Science.gov (United States)

    Joshi, Prakash

    2015-01-01

    Long-duration space exploration will require spacecraft systems that can operate effectively over several years with minimal or no maintenance. Aerospace lubricants are key components of spacecraft systems. Physical Sciences Inc., has synthesized and characterized novel ionic liquids for use in aerospace lubricants that contribute to decreased viscosity, friction, and wear in aerospace systems. The resulting formulations offer low vapor pressure and outgassing properties and thermal stability up to 250 C. They are effective for use at temperatures as low as -70 C and provide long-term operational stability in aerospace systems. In Phase II, the company scaled several new ionic liquids and evaluated a novel formulation in a NASA testbed. The resulting lubricant compounds will offer lower volatility, decreased corrosion, and better tribological characteristics than standard liquid lubricants, particularly at lower temperatures.

  8. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  9. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  10. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  11. Areva - 2013 annual results: breakeven free operating cash flow objective reached despite a difficult environment

    International Nuclear Information System (INIS)

    Duperray, Julien; Grange, Aurelie; Rosso, Jerome; Thebault, Alexandre; Scorbiac, Marie de; Repaire, Philippine du

    2014-01-01

    The Areva group reached a major milestone in 2013 in turning performance around by meeting a key objective of its Action 2016 plan: the return to breakeven of free operating cash flow. For the first time since 2005, cash generated by the Group's operations allowed it to fully fund strategic capital expenditures essential to the group's profitable growth. To achieve this result, Areva built on robust growth in nuclear operations, on contributions from its cost reduction plan and on strict management of capital spending. However, two projects launched in the previous decade (OL3 and a power plant modernization) and the Renewable Energies business impacted negatively the group's 2013 net income. On the Renewable Energies market, in a situation marked by a reduction of capital spending by customers, AREVA anticipated the consolidation required in the sector by implementing industrial partnerships such as the joint venture project with Gamesa, which aims to create a European champion in offshore wind. Similar initiatives were undertaken in solar energy and energy storage. The Group continues to implement the Action 2016 plan to pursue its recovery. While the economic environment remains uncertain and projects launched in the previous decade remain a burden, the Group forecasts further performance improvement and significant growth in cash flow generation by the end of the plan

  12. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  13. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  14. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  15. The effects of ionizing radiation on commercial power MOSFETs operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Johnson, G.H.; Kemp, W.T.; Ackermann, M.R.; Pugh, R.D.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    This is the first report of commercial n- and p-channel power MOSFETs exposed to ionizing radiation while operating in a cryogenic environment. The transistors were exposed to low energy x-rays while placed in a liquid nitrogen-cooled dewar. Results demonstrate significant performance and survivability advantages for space-borne power MOSFETs operated at cryogenic temperatures. The key advantages for low-temperature operation of power MOSFET's in an ionizing radiation environment are: (1) steeper subthreshold current slope before and after irradiation; (2) lower off-state leakage currents before and after irradiation; and (3) larger prerad threshold voltage for n-channel devices. The first two points are also beneficial for devices that are not irradiated, but the advantages are more significant in radiation environments. The third point is only an advantage for commercial devices operated in radiation environments. Results also demonstrate that commercial off-the-shelf power MOSFETs can be used for low-temperature operations in a limited total dose environment (i.e., many space applications)

  16. Processing Interband Cascade Laser for High Temperature CW Operation

    National Research Council Canada - National Science Library

    Tober, Richard

    2004-01-01

    A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSh heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K...

  17. Effect of operating microscope light on brain temperature during craniotomy.

    Science.gov (United States)

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R

    2013-07-01

    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  18. SY-101 Rapid Transfer Project Low Temperature Operations Review and Recommendations to Support Lower Temperature Limits

    International Nuclear Information System (INIS)

    HICKMAN, G.L.

    2000-01-01

    The lower temperature limit for the 241 SY-101 RAPID transfer project is currently set at 20 F Based on the analysis and recommendations in this document this limit can be lowered to 0 F. Analysis of all structures systems and components (SSCs) indicate that a reduction in operating temperature may be achieved with minor modifications to field-installed equipment. Following implementation of these changes it is recommended that the system requirements be amended to specify a temperature range for transfer or back dilute evolutions of 0 F to 100 F

  19. Method for the determination of technical specifications limiting temperature in EBR-II operation

    International Nuclear Information System (INIS)

    Chang, L.K.; Hill, D.J.; Ku, J.Y.

    2004-01-01

    The methodology and analysis procedure to qualify the Mark-V and Mark-VA fuels for the Experimental Breeder Reactor II are summarized in this paper. Fuel performance data and design safety criteria are essential for thermal-hydraulic analyses and safety evaluations. Normal and off-normal operation duty cycles and transient classifications are required for the safety assessment of the fuels. Design safety criteria for steady-state normal and transient off-normal operations were developed to ensure structural integrity of the fuel pin. The maximum allowable coolant outlet temperatures and powers of subassemblies for steady-state normal operation conditions were first determined in a row-by-row basis by a thermal-hydraulic and fuel damage analysis, in which a trial-and-error approach was used to predict the maximum subassembly coolant outlet temperatures and powers that satisfy the design safety criteria for steady-state normal operation conditions. The limiting steady-state temperature and power were then used as the initial subassembly thermal conditions for the off-normal transient analysis to assess the safety performance of the fuel pin for anticipated, unlikely and extremely unlikely events. If the design safety criteria for the off-normal events are not satisfied, then the initial steady-state subassembly temperatures and/or powers are reduced and an iterative procedure is employed until the design safety criteria for off-normal conditions are satisfied, and the initial subassembly outlet coolant temperature and power are the technical specification limits for reactor operation. (author)

  20. Above Room Temperature Lead Salt VECSELs

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Chappuis, D.; Zogg, H.

    2010-01-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSEL) were developed for the wavelength range 4 to 5 μm. The devices are based on lead salt materials grown by MBE on BaF2 or Si substrate. The VECSELs are optically pumped with a 1.55 μm wavelength laser. They are operating up to above room temperature. An output power 6 mWp was reached at a temperature of +27°C. The VECSELs are temperature tunable and lasing is observed from ˜4.8 μm at -60°C down to ˜4.2 μm at +40°C heat sink temperature.

  1. Worst-case prediction of normal operating containment temperatures for environmentally qualified equipment

    International Nuclear Information System (INIS)

    Krasnopoler, M.J.; Sundergill, J.E.

    1991-01-01

    Due to issues raised in NRC Information Notice No. 87-65, a southern US nuclear plant was concerned about thermal aging of environmentally qualified (EQ) equipment located in areas of elevated containment temperatures. A method to predict the worst-case monthly temperatures at various zones in the containment and calculate the qualified life using this monthly temperature was developed. Temperatures were predicted for twenty locations inside the containment. Concern about the qualified life of EQ equipment resulted from normal operating temperatures above 120F in several areas of the containment, especially during the summer. At a few locations, the temperature exceeded 140F. Also, NRC Information Notice No. 89-30 reported high containment temperatures at three other nuclear power plants. The predicted temperatures were based on a one-year containment temperature monitoring program. The monitors included permanent temperature monitors required by the Technical Specifications and temporary monitors installed specifically for this program. The temporary monitors were installed near EQ equipment in the expected worst-case areas based on design and operating experience. A semi-empirical model that combined physical and statistical models was developed. The physical model was an overall energy balance for the containment. The statistical model consists of several linear regressions that conservatively relate the monitor temperatures to the bulk containment temperature. The resulting semi-empirical model predicts the worst-case monthly service temperatures at the location of each of the containment temperature monitors. The monthly temperatures are the maximum expected because they are based on the historically worst-case atmospheric data

  2. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  3. Present state of Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab continues to work on raising the particle energy of the Tevatron by lowering magnet temperatures using cold vapor compressors. In 1995, another two rounds of power tests were completed. These power tests, although showing significant improvement over the initial tests of 1993-94, have led to the conclusion that 1000 GeV operation cannot be attained without replacing/rearranging magnets with lower quench currents before the next Collider Run in 1999. Development of more cold compressor control strategies also continues

  4. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  5. Thermal aging effects of VVER-1000 weld metal under operation temperature

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Kuleshova, E.A.; Gurovich, B.A.; Erak, D.Y.; Zabusov, O.O.; Maltsev, D.A.; Zhurko, D.A.; Papina, V.B.; Skundin, M.A.

    2015-01-01

    The VVER-1000 thermal aging surveillance specimen sets are located in the reactor pressure vessel (RPV) under real operation conditions. Thermal aging surveillance specimens data are the most reliable source of the information about changing of VVER-1000 RPV materials properties because of long-term (hundred thousand hours) exposure at operation temperature. A revision of database of VVER-1000 weld metal thermal aging surveillance specimens has been done. The reassessment of transition temperature (T t ) for all tested groups of specimens has been performed. The duration of thermal exposure and phosphorus contents have been defined more precisely. The analysis of thermal aging effects has been done. The yield strength data, study of carbides evolution show absence of hardening effects due to thermal aging under 310-320 C degrees. Measurements of phosphorus content in grain boundaries segregation in different states have been performed. The correlation between intergranular fracture mode in Charpy specimens and transition temperature shift under thermal aging at temperature 310-320 C degrees has been revealed. All these data allow developing the model of thermal aging. (authors)

  6. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  7. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  8. Coal-tar pitch high temperature (CTPHT), transitional arrangements and way forward under REACH. REACH-SEA report of scoping study

    NARCIS (Netherlands)

    Beekman M; Boersma AHR; Sijm DTHM; SEC

    2009-01-01

    Een beperking of autorisatie binnen de Europese wetgeving REACH is niet de meest geeigende manier om de risico's aan te pakken van PAK-emissies. Deze emissies, die vooral vrijkomen tijdens productie- of verbrandingsprocessen, worden namelijk niet goed ondervangen in deze wetgeving. Dit

  9. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  10. Effect of temperature on the multi-gap resistive plate chamber operation

    International Nuclear Information System (INIS)

    Zhao, Y.E.; Wang, X.L.; Liu, H.D.; Chen, H.F.; Li, C.; Wu, J.; Xu, Z.Z.; Shao, M.; Zeng, H.; Zhou, Y.

    2005-01-01

    In order to obtain a quantitative understanding of the influence of temperature on the multi-gap resistive plate chamber (MRPC) operation, we tested the performance of a 6-gap, 6.1x20 cm 2 active area MRPC with cosmic rays at different temperatures. Results of measurements of noise rate, dark current and detection efficiency are presented

  11. The Effective Lifetime of ACSR Full Tension Splice Connector Operated at Higher Temperature

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J.; Graziano, Joe; Chan, John; Goodwin, Tip

    2009-01-01

    This paper is to address the issues related to integrity of ACSR full tension splice connectors operated at high temperatures. A protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature was developed. Based on the developed protocol the effective lifetime evaluation was demonstrated with ACSR Drake conductor SSC systems. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime

  12. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY2003

    International Nuclear Information System (INIS)

    2005-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research Establishment of The Japan Atomic Energy Research Institute (JAERI) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power. Coolant of helium-gas circulates under the pressure of about 4Mpa, and the reactor inlet and outlet temperature are 395degC and 950degC (maximum), respectively coated particle fuel is used as fuel, and the HTTR core is composed of graphite prismatic blocks. The full power operation of 30MW was attained in December, 2001, and then JAERI received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2003 before the high temperature test operation of 950degC. (author)

  13. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures

  14. Using the quantum yields of photosystem II and the rate of net photosynthesis to moniter high irradiance and temperature stress in chrysanthemum (Dendrantherma grandiflora)

    DEFF Research Database (Denmark)

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII operating efficiency may be used to optimise dynamic greenhouse control regimes by detecting plant stress caused by extreme microclimatic conditions.......Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...

  15. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  16. Automatic Control of Reactor Temperature and Power Distribution for a Daily Load following Operation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [Korea Hydro and Nuclear Power Institute, Daejeon (Korea, Republic of)

    2010-10-15

    An automatic control method of reactor power and power distribution was developed for a daily load following operation of APR1400. This method used a model predictive control (MPC) methodology having second-order plant data. And it utilized a reactor power ratio and axial shape index as control variables. However, the reactor regulating system of APR1400 is operated by the difference between the average temperature of the reactor core and the reference temperature, which is proportional to the turbine load. Thus, this paper reports on the model predictive control methodology using fourth-order plant data and a reactor temperature instead of the reactor power shape. The purpose of this study is to develop a revised automatic controller and analyze the behavior of the nuclear reactor temperature (Tavg) and the axial shape index (ASI) using the MPC method during a daily load following operation

  17. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  18. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  19. Temperature buffer test. Dismantling operation

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias [Clay Technology AB, Lund (Sweden)

    2010-12-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  20. Temperature buffer test. Dismantling operation

    International Nuclear Information System (INIS)

    Aakesson, Mattias

    2010-12-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  1. Operating experiences since rise-to-power test in high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Shuji; Motegi, Toshihiro; Kawano, Shuichi; Kameyama, Yasuhiko; Sekita, Kenji; Kawasaki, Kozo

    2007-03-01

    The rise-to-power test of the High Temperature Engineering Test Reactor (HTTR) was actually started in April 2000. The rated thermal power of 30MW and the rated reactor outlet coolant temperature of 850degC were achieved in the middle of Dec. 2001. After that, the reactor thermal power of 30MW and the reactor outlet coolant temperature of 950degC were achieved in the final rise-to-power test in April 2004. After receiving the operation licensing at 850degC, the safety demonstration tests have conducted to demonstrate inherent safety features of the HTGRs as well as to obtain the core and plant transient data for validation of safety analysis codes and for establishment of safety design and evaluation technologies. This paper summarizes the HTTR operating experiences for six years from start of the rise-to-power test that are categorized into (1) Operating experiences related to advanced gas-cooled reactor design, (2) Operating experiences for improvement of the performance, (3) Operating experiences due to fail of system and components. (author)

  2. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  3. Impact of compost amendments and operating temperature on diesel fuel bioremediation

    International Nuclear Information System (INIS)

    Hesnawi, R.M.; McCartney, D.M.

    2006-01-01

    The optimal conditions for compost bioremediation of unweathered diesel-contaminated soil were examined in this laboratory study. A sandy soil from the Assiniboine Delta Aquifer in Manitoba was spiked with diesel fuel and radio-labeled phenanthrene to yield a contaminant load of 20,000 mg per kg of dry soil. Two amendment materials were used, consisting of municipal biosolids, leaves and wood shavings. Since temperature plays a significant role, this study observed the effect of the operating temperature and the amendment material on the fate of phenanthrene and extractable diesel range hydrocarbons during the composting bioremediation of diesel-contaminated soil. The material was amended with fresh feedstock material or finished compost and incubated at thermophilic or mesophilic temperatures for 126 days. No mineralization of carbon 14 phenanthrene was detected in the controls that were not amended with compost. However, 25 to 42 per cent phenanthrene mineralization was detected in treatments that received compost. The lowest extractable diesel range organic residual was observed in the treatment receiving fresh compost amendment and incubated at thermophilic temperatures. The highest residual was noted in the control without any amendment. All treatments that received amendments outperformed the control reactors. However, there were large differences among the treatment performances, indicating that amendment type and operating temperature are significant factors that affect the performance of bioremediation. 22 refs., 2 tabs., 5 figs

  4. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2014

    International Nuclear Information System (INIS)

    2016-02-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30 MW in December 2001 and achieved the 950degC of coolant outlet temperature at outside of the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2014, we started to apply the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 by the Pacific coast of Tohoku Earthquake. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2014. (author)

  5. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  6. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Däumling, Manfred; Jensen, Kim Høj

    2004-01-01

    of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current......A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim...

  7. Safe and efficient operation of multistage cold compressor systems

    International Nuclear Information System (INIS)

    Kauschke, M.; Haberstroh, C.; Quack, H.

    1996-01-01

    Large refrigeration rates in the temperature range of super fluid helium can only be obtained with the help of centrifugal cold compressors. For the large 2 K systems, four compression stages are necessary to reach atmospheric pressure. Centrifugal cold compressors are quite sensitive to mass flow and suction temperature variations; but these have to be expected in a real system. The first step in the systems design is to find safe and efficient quasi-stationary modes of operation. The system which is being proposed for the TESLA refrigerators relies on two features. The first is to allow the room temperature screw compressor, downstream of the cold compressors to work occasionally with a subatmospheric suction pressure. The second is to stabilize the suction temperature of the third stage of compression at about 10 K. With these features it is possible, that in all modes of operation all four compressor stages operate exactly at their design point

  8. The reliability of structural systems operating at high temperature: Replacing engineering judgement with operational experience

    International Nuclear Information System (INIS)

    Chevalier, M.J.; Smith, D.J.; Dean, D.W.

    2012-01-01

    Deterministic assessments are used to assess the integrity of structural systems operating at high temperature by providing a lower bound lifetime prediction, requiring considerable engineering judgement. However such a result may not satisfy the structural integrity assessment purpose if the results are overly conservative or conversely plant observations (such as failures) could undermine the assessment result if observed before the lower bound lifetime. This paper develops a reliability methodology for high temperature assessments and illustrates the impact and importance of managing the uncertainties within such an analysis. This is done by separating uncertainties into three classifications; aleatory uncertainty, quantifiable epistemic uncertainty and unquantifiable epistemic uncertainty. The result is a reliability model that can predict the behaviour of a structural system based upon plant observations, including failure and survival data. This can be used to reduce the over reliance upon engineering judgement which is prevalent in deterministic assessments. Highlights: ► Deterministic assessments are shown to be heavily reliant upon engineering judgment. ► Based upon the R5 procedure, a reliability model for a structural system is developed. ► Variables must be classified as either aleatory or epistemic to model their impact on reliability. ► Operation experience is then used to reduce reliance upon engineering judgment. ► This results in a model which can predict system behaviour and learn from operational experience.

  9. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  10. Experimental study on the temperature conditions for rod and plane irradiators with 60Co source

    International Nuclear Information System (INIS)

    Stepanov, G.D.; Osipov, V.B.; Sarapkin, I.I.; Chizhikov, V.A.

    1977-01-01

    The formation of a temperature field of rod and flat 60 Co irradiators has been studied. The experiments are carried out on a gamma installation. It has been shown that for a stationary operating mode the maximum cassette temperature (when the cassette contains a 60 Co source) is 148 deg C at maximum permissible temperature of 250 deg C. When ampoules containing the sources with maximum activity (640 Ci) are loaded into cassettes they have the temperature of 184 deg C. The reciprocal screening influence of rod irradiators gives the temperature rise of 8-10 deg in each element. The irradiators under study reach a stationary thermal operating mode in 150 min after the sources are elevated to the operating position

  11. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  12. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  13. Net-Centric Sustainment and Operational Reach on the Modern Battlefield

    Science.gov (United States)

    2012-05-17

    Halliday, Marc L. Robbins , and Kenneth J. Girardini. "Sustainment of Army Forces in Operation Iraqi Freedom: Battlefield Logistics and Effects on Operations... Robbins , Kenneth J. Girardini, Rick Eden, John M. Halliday, and Jeffrey Angers. "Operation Iraqi Freedom: Major Findings and Recommendations...Timothy P. Williams, Tony R. Sherrill, Amy R. McGrath, Morris G. Hayes, Antoniette C. McGrady, and John M. Sheckler. "Logistics Command and Control

  14. Reaching Hard-to-Reach Individuals: Nonselective Versus Targeted Outbreak Response Vaccination for Measles

    Science.gov (United States)

    Minetti, Andrea; Hurtado, Northan; Grais, Rebecca F.; Ferrari, Matthew

    2014-01-01

    Current mass vaccination campaigns in measles outbreak response are nonselective with respect to the immune status of individuals. However, the heterogeneity in immunity, due to previous vaccination coverage or infection, may lead to potential bias of such campaigns toward those with previous high access to vaccination and may result in a lower-than-expected effective impact. During the 2010 measles outbreak in Malawi, only 3 of the 8 districts where vaccination occurred achieved a measureable effective campaign impact (i.e., a reduction in measles cases in the targeted age groups greater than that observed in nonvaccinated districts). Simulation models suggest that selective campaigns targeting hard-to-reach individuals are of greater benefit, particularly in highly vaccinated populations, even for low target coverage and with late implementation. However, the choice between targeted and nonselective campaigns should be context specific, achieving a reasonable balance of feasibility, cost, and expected impact. In addition, it is critical to develop operational strategies to identify and target hard-to-reach individuals. PMID:24131555

  15. Elevated temperature wear of Al6061 and Al6061-20%Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Alpas, A.T. [Univ. of Windsor, Ontario (Canada)

    1995-04-01

    Both current and potential applications of particulate reinforced aluminum alloys involve components which are required to operate under sliding contact conditions at elevated temperatures. Examples include brake rotors, piston and cylinder liners in automotive engines where operating temperatures can reach 0.5--0.8 of the melting temperature of the matrix alloy. For this reason, study of the high temperature wear resistance of aluminum alloys reinforced by Al{sub 2}O{sub 3} or SiC particles is important. These studies are also of interest for the problem of die wear during hot extrusion of aluminum matrix composites and to rationalize the process of frictional welding involved in joining of the composites. Although the room temperature tribological and mechanical behaviors of aluminum matrix composites have received considerable attention, their high temperature properties have only recently started being considered. It has been shown that Al-Si-Mg (A356) alloys with or without SiC particles show a transition from mild to severe wear when a critical temperature (at about 0.4 T{sub m}, where T{sub m} is the melting temperature of aluminum) is reached as a result of frictional heating under dry sliding conditions. In this work, high temperature wear of A16061 and A16061-20%Al{sub 2}O{sub 3} was studied at temperatures between 25--500 C. The microstructural changes that occurred during wear have been delineated in order to understand the wear mechanisms that operate at high temperatures.

  16. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2016-12-01

    Full Text Available This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC, polyethylene oxide (PEO, and polyvinylpyrrolidone (PVP. Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC testing.

  17. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2013

    International Nuclear Information System (INIS)

    2014-12-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30MW in December 2001 and achieved the 950degC of outlet coolant temperature at the outside the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2013, we started to prepare the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 when the Pacific coast of Tohoku Earthquake (2011.3.11) occurred. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2013. (author)

  18. Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River

    Science.gov (United States)

    Xia, Junqiang; Deng, Shanshan; Lu, Jinyou; Xu, Quanxi; Zong, Quanli; Tan, Guangming

    2016-03-01

    Significant channel adjustments have occurred in the Jingjiang Reach of the Middle Yangtze River, because of the operation of the Three Gorges Project (TGP). The Jingjiang Reach is selected as the study area, covering the Upper Jingjiang Reach (UJR) and Lower Jingjiang Reach (LJR). The reach-scale bankfull channel dimensions in the study reach were calculated annually from 2002 to 2013 by means of a reach-averaged approach and surveyed post-flood profiles at 171 sections. We find from the calculated results that: the reach-scale bankfull widths changed slightly in the UJR and LJR, with the corresponding depths increasing by 1.6 m and 1.0 m the channel adjustments occurred mainly with respect to bankfull depth because of the construction of large-scale bank revetment works, although there were significant bank erosion processes in local regions without the bank protection engineering. The reach-scale bankfull dimensions in the UJR and LJR generally responded to the previous five-year average fluvial erosion intensity during flood seasons, with higher correlations being obtained for the depth and cross-sectional area. It is concluded that these dynamic adjustments of the channel geometry are a direct result of recent human activities such as the TGP operation.

  19. Why and how to make a REACH registration of combustion ash; Moejligheter vid REACH-registrering av energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Linnea; Wik, Ola

    2009-10-15

    will have the possibility to leave the waste legislation and be covered by the chemical legislation in becoming a product or an article. It is not know in detail how far the chemical legislation will reach for material having end-of-waste criteria. Currently, end-of-waste criteria have not yet been initiated for ashes. The Swedish Environmental Protection Agency (Naturvaardsverket) is currently elaborating end-of-waste criteria for the use of material in construction works. Recovering waste is according to REACH identical with manufacturing. A chemical substance, preparation/mixture or article manufactured from waste, i.e. via a recovering operation will have to follow chemical legislation. The enterprise responsible for the recovering operation is the legal entity responsible to follow REACH for the manufactured material. One example of recovering ash into a chemical substance is the manufacturing of cement when ash is the raw material. It is the responsibility of the cement plant to have its substance or product REACH-registered before manufactured and provided to a third party. The waste legislation, instead of the chemical legislation, applies when the waste recovering operation does not results in manufacturing of a substance, preparation or article provided to a third party and the waste has a use at the end of its life cycle. This is identified as late recovery. The waste legislation applies during the life cycle of the waste in such cases. Examples in Sweden are ashes used in landfill sealing and covering layers and in roads or soil stabilization. Use of ashes in constructions is covered by the Constructions Product Directive (2008/98/EC), CPD, irrespective if it is identified as a waste or a chemical product. The CPD harmonizes only testing and CE-marking of construction products. Chemical safety requirements originate from national legislation which in many cases is based on chemical regulation. Standardized testing methods to measure emitted hazardous

  20. Method for the determination of technical specifications limiting temperature in EBR-II operation

    International Nuclear Information System (INIS)

    Chang, L.K.; Hill, D.J.; Ku, J.Y.

    1994-01-01

    The methodology and analysis procedure to qualify the Mark-V and Mark-VA fuels for the Experimental Breeder Reactor II are summarized in this paper. Fuel performance data and design safety criteria are essential for thermal-hydraulic analysis and safety evaluations. Normal and off-normal operation duty cycles and transient classifications are required for the safety assessment of the fuels. The temperature limits of subassemblies were first determined by a steady-state thermal-structural and fuel damage analysis, in which a trial-and-error approach was used to predict the maximum allowable fuel pin temperature that satisfies the design criteria for steady-state normal operation. The steady-state temperature limits were used as the basis of the off-normal transient analysis to assess the safety performance of the fuel for anticipated, unlikely and extremely unlikely events. If the design criteria for the off-normal events are not satisfied, then the subassembly temperature limit is reduced and an iterative procedure is employed until all design criteria are met

  1. Multiplexing milli-volt transmitter for operation in high ambient temperatures

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1980-01-01

    A high integrity method of multiplexing up to two hundred and fifty millivolt level signals and transmitting the data to a remote measuring station via a 12 core flexible cable is described. The system was designed for operation in the normally hazardous and therefore inaccessible areas where high ambient temperatures are experienced. Additionally, because one potential application is in nuclear reactor systems, the design is tolerant to high levels of gamma background. The system's high reliability, high integrity and relatively small and conventional cable installation, makes it applicable to situations which depend upon temperature measurement for plant or personnel safety. (author)

  2. A Study of the Operation of Especially Designed Photosensitive Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Periale, L; Lund-Jensen, B; Pavlopoulos, P; Peskov, Vladimir; Picchi, P; Pietropaolo, F

    2006-01-01

    In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseous detectors able to operate at cryogenic temperatures. Such detectors are much cheaper PMs and are almost insensitive to magnetic fields. Results of systematic measurements of their quantum efficiencies, the maximum achievable gains and long-term stabilities will be presented. The successful operation of these detectors open realistic possibilities in replacing PMs by photosensitive gaseous detectors in some applications dealing with cryogenic liquids; for example in experiments using noble liquid TPCs or noble liquid scintillating calorimeters.

  3. Dream aim reached: 1300 operational district heating supply connections

    Energy Technology Data Exchange (ETDEWEB)

    Handl, K H

    1988-11-01

    Only four years after the beginning of operation of the first consumer station at Klingnau on October 19, 1984, the Regional District Heating Supply in the Lower Aare Valley (Refuna) can already show 1295 operational district heating connections. There are almost 300 more than one year ago and about 20% more than originally foreseen during this short construction time. As in recent years, the number of consumers has significantly increased during a 'connection boom' in the first autumn weeks. The total heat supply power amounts to 51500 kilowatts. This is 70% of the power foreseen in the final stage. 3 figs., 1 tab.

  4. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators

  5. Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions

    International Nuclear Information System (INIS)

    He, Zhonglu; Zhang, Yufeng; Dong, Shengming; Ma, Hongting; Yu, Xiaohui; Zhang, Yan; Ma, Xuelian; Deng, Na; Sheng, Ying

    2017-01-01

    Highlights: • An ORC power plant driven by low grade heat source is set up. • Energy and exergy analysis at off-design conditions is conducted. • The twin screw expander performance is characterized. • An empirical model to predict the net power output and thermal efficiency. - Abstract: This paper deals with an experimental study on a 50-kW Organic Rankine cycle (ORC) power generation plant driven by low-grade heat source. Hot water boiler and solar-thermal system were used as the low-grade heat source providing hot water at temperature ranging from 65 to 95 °C. A twin screw compressor has been modified as the expansion machine in the ORC module and its expansion efficiency under variable operating conditions was tested in the experiments. This work was purposed to assess the ORC system and get the performance map at off-design operating conditions in a typical year from the view of the first and the second law of thermodynamics. The maximum electricity production and thermal efficiency were 46.5 kW and 6.52% respectively at the optimal operating condition. The highest exergetic efficiency reached 36.3% and the exergy analysis showed that evaporation pressure and condensation pressure were the key parameters to influence the exergy flow and exergetic efficiency. Furthermore, by fitting the actual plant data obtained in different months, an empirical model has been developed to predict the net power output and thermal efficiency with acceptable accuracy. Lastly, as an illustration, the empirical model is used to analyze the performance of the solar-driven ORC system.

  6. Benefits of Considering More than Temperature Acceleration for GaN HEMT Life Testing

    Directory of Open Access Journals (Sweden)

    Ronald A. Coutu

    2016-06-01

    Full Text Available The purpose of this work was to investigate the validity of Arrhenius accelerated-life testing when applied to gallium nitride (GaN high electron mobility transistors (HEMT lifetime assessments, where the standard assumption is that only critical stressor is temperature, which is derived from operating power, device channel-case, thermal resistance, and baseplate temperature. We found that power or temperature alone could not explain difference in observed degradation, and that accelerated life tests employed by industry can benefit by considering the impact of accelerating factors besides temperature. Specifically, we found that the voltage used to reach a desired power dissipation is important, and also that temperature acceleration alone or voltage alone (without much power dissipation is insufficient to assess lifetime at operating conditions.

  7. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  8. Effects of Flaming Gorge Dam hydropower operations on sediment transport in the Browns Park reach of the Green River, Utah and Colorado

    International Nuclear Information System (INIS)

    Williams, G.P.; Tomasko, D.; Cho, H.E.; Yin, S.C.L.

    1995-05-01

    Three methods for comparing sediment transport were applied to four proposed hydropower operational scenarios under study for Flaming Gorge Dam on the Green River in Utah. These methods were effective discharge, equilibrium potential, and cumulative sediment load with flow exceedance plots. Sediment loads transported by the Green River in the Browns Park reach were calculated with the Engelund-Hansen equation for three historical water years and four hydropower operational scenarios. A model based on the Engelund-Hansen equation was developed using site-specific information and validated by comparing predictions for a moderate water year with measured historical values. The three methods were used to assess the impacts of hydropower operational scenarios on sediment resources. The cumulative sediment load method provided the most useful information for impact evaluation. Effective discharge was not a useful tool because of the limited number of discrete flows associated with synthetic hydrographs for the hydropower operational scenarios. The equilibrium potential method was relatively insensitive to the variations in operating conditions, rendering it comparatively ineffective for impact evaluation

  9. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2018-05-01

    Full Text Available To improve the reactor efficiency, this study investigated the influence of temperature on the biological hydrogen methanation (BHM in trickle-bed reactors (TBR. Rising temperatures increase the metabolic activity of methanogenic microorganisms, thus leading to higher reactor specific methane formation rates (MFR. In order to quantify the potential for improved performance, experiments with four different operating temperatures ranging from 40 to 55 °C were carried out. Methane content increased from 88.29 ± 2.12 vol % at 40 °C to 94.99 ± 0.81 vol % at 55 °C with a stable biological process. Furthermore, a reactor specific methane formation rate (MFR of up to 8.85 ± 0.45 m3 m−3 d−1 was achieved. It could be shown that the microorganisms were able to adapt to higher temperatures within hours. The tests showed that TBR performance with regard to BHM can be significantly increased by increasing the operating temperature.

  10. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  11. Operation, test, research and development of the high temperature engineering test reactor (HTTR). (FY2005)

    International Nuclear Information System (INIS)

    2007-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power. The full power operation of 30 MW was attained in December, 2001, and then JAERI (JAEA) received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. In fiscal 2005 year, periodical inspection and overhaul of reactivity control system were conducted, and safety demonstration tests were promoted. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2005. (author)

  12. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  13. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  14. Hot stuff : ultra-high temperature ESP system installed in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-10-15

    Ultra-temperature electrical submersible pumping (ESP) systems have been installed in steam-assisted gravity drainage (SAGD) wells for the first time at a thermal project in Christina Lake, Alberta. The Centrilift XP ESP production system that is being field tested can operate at fluid temperatures reaching 250 degrees C, higher than conventional systems, which is expected to result in an increase in production with a larger steam chamber and less viscous oil at higher steaming temperatures. The more robust system is expected to extend run life and lower operating costs. Years of research and development at specialized testing facilities went into creating the system. The unique testing facilities simulated the horizontal orientation and temperature cycling characteristics of SAGD wells and permitted the system to be tested at temperatures up to 300 degrees C. The new system is expected to lower infrastructure costs for SAGD wells that require high temperatures. 1 fig.

  15. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  16. Enhancement of Power Efficiency and Stability of P3HT-Based Organic Solar Cells under Elevated Operating-Temperatures by Using a Nanocomposite Photoactive Layer

    Directory of Open Access Journals (Sweden)

    Tran Thi Thao

    2015-01-01

    Full Text Available With the aim to find out an enhanced operating-temperature range for photovoltaic device parameters, two types of the photoactive layer were prepared: poly(3-hexylthiophene (P3HT and P3HT+nc-TiO2 (PTC thin films. The enhancement obtained for the photoelectrical conversion efficiency of the composite based OSCs is attributed to the presence of nanoheterojunctions of TiO2/P3HT. For the temperature range of 30–70°C, the decrease of the open-circuit potential was compensated by an increase of the fill factor; and the increase in the short-circuit current resulted in an overall increase of the energy conversion efficiency. At elevated temperatures of 60–80°C the efficiency of the P3HT- and PTC-based cells reached a maximum value of 1.6% and 2.1%, respectively. Over this temperature range the efficiency of P3HT-based OSC decreased strongly to zero, whereas for the PTC cells it maintained a value as large as 1.2% at the temperature range of 110–140°C. The improved thermal stability of the composite-based device was attributed to the lowered thermal expansion coefficient of the nanocomposite photoactive layer.

  17. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    Science.gov (United States)

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  18. Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs

    International Nuclear Information System (INIS)

    Kim, Young-Taek; Song, Min-Kyu; Kim, Ki-Hyun; Park, Seung-Bae; Min, Sung-Kyu; Rhee, Hee-Woo

    2004-01-01

    Nafion/zirconium sulphophenyl phosphate (ZrSPP) composite membranes were prepared to maintain proton conductivity at elevated temperatures. ZrSPP was precipitated by the reaction of Zr 4+ ion and m-sulphophenyl phosphonic (SPP) acid with a stoichiometric ratio P/Zr = 2. The synthesis of ZrSPP was confirmed by phosphonate (P-O) stretching band, assigned at 900-1300 cm -1 in FTIR spectra. The sharp diffraction pattern at 2θ = 5 deg. indicated crystalline α-layered structure of ZrSPP. The proton conductivity of Nafion/ZrSPP (12.5 wt.%) composite membrane reached ca. 0.07 S/cm at 140 deg. C without extra humidification

  19. Reaching the hard-to-reach.

    Science.gov (United States)

    Valdes, C

    1992-01-01

    Guatemala's family planning (FP) programs are innovative but contraceptive use is only 23%. Total fertility is 5.3 children/woman, and the 9.5 million population will double in 23 years. The problem is poverty and illiteracy among rural residents removed from health services. 80% live in poverty and 80% are illiterate. Government effort is devoted to combating diseases such as diarrhea so there are few funds for implementing a comprehensive population policy. There is support within the national government but FP lacks priority status. APROFAM's goals are to use innovative marketing methods to inform the rural population who lack access to and knowledge about FP. Service delivery is constrained by the difficulty in reaching remote areas where 4 out of 10 indigenous Guatemalans live. Infant mortality can reach as high as 200/1000 live births. Population growth has slowed, and APROFAM plans to reach 16,000 more in the future. Promotions are conducted in several languages and aired on radio, television, and in the print media. It has been found that market research is the most effective strategy in reaching indigenous families. APROFAM has also been effective in upgrading service facilities through training, client surveys, and setting improved clinic standards. Breastfeeding, training, and voluntary sterilization programs contribute to the primary care effort. The example is given of Paulina Lebron from a very poor area who has learned how to space her children and thus improve the standard of living for her family. Eventually, she convinced herself and her family that sterilization was necessary, and now the couple enjoy the bliss of newlyweds without fear of pregnancy.

  20. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  2. Design and operation results of nitrogen gas baking system for KSTAR plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Tae [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Young-Jin, E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Joung, Nam-Yong; Im, Dong-Seok; Kim, Kang-Pyo; Kim, Kyung-Min; Bang, Eun-Nam; Kim, Yaung-Soo [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Yoo, Seong-Yeon [Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-11-15

    Highlights: • Vacuum pressure in a vacuum vessel arrived at 7.24 × 10{sup −8} mbar. • PFC temperature was reached maximum 250 °C by gas temperature at 300 °C. • PFC inlet gas temperature was changed 5 °C per hour during rising and falling. • PFC gas balancing was made temperature difference among them below 8.3 °C. • System has a pre-cooler and a three-way valve to save operation energy. -- Abstract: A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10{sup −7} mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10{sup −8} mbar was achieved inside the vacuum vessel.

  3. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  4. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions

    KAUST Repository

    Alpatova, Alla; Alsaadi, Ahmad Salem; Ghaffour, NorEddine

    2018-01-01

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO scaling on the membrane surface.

  5. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions

    KAUST Repository

    Alpatova, Alla

    2018-03-26

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO scaling on the membrane surface.

  6. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    Science.gov (United States)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  7. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  8. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    Science.gov (United States)

    Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.

    1943-01-01

    A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  9. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    Science.gov (United States)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  10. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  11. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  12. The mechanism of specific capacitance improvement of supercapacitors based on MnO{sub 2} at an elevated operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juliang; Li Zhao; Han Dong; Deng Bo; Li Jin; Jiang Yiming, E-mail: corrosion@fudan.edu.cn

    2012-07-01

    Amorphous nanostructured MnO{sub 2} film was anodically deposited onto economical duplex stainless steel substrate. The obtained MnO{sub 2} film was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy for microstructural, morphological, and compositional studies. The capacitive behavior was systematically investigated by cyclic voltammetry, charge-discharge cycling and electrochemical impedance spectroscopy (EIS) in 1 M Na{sub 2}SO{sub 4} electrolyte at different operating temperatures ranging from 20 to 60 Degree-Sign C. The specific capacitance (SC) was improved with an increase of operating temperature, and the highest SC of 398 F/g was achieved at a scan rate of 10 mV/s and operating temperature of 60 Degree-Sign C. The mechanism of SC improvement at elevated operating temperature was investigated using EIS. With an increase of operating temperature, the conductivity of electrolyte was improved, and the charge-transfer resistance (R{sub ct}) was decreased. The temperature dependence of 1/R{sub ct} follows an Arrhenius equation. The MnO{sub 2} film was electrochemically activated at 60 Degree-Sign C due to the formation of Na{sub y}MnO{sub 2} after discharging. - Highlights: Black-Right-Pointing-Pointer MnO{sub 2} was anodically deposited onto duplex stainless steel substrate. Black-Right-Pointing-Pointer The effect of operating temperature on the performance of MnO{sub 2} was studied. Black-Right-Pointing-Pointer The mechanism of specific capacitance improvement was investigated.

  13. Electricity generation of single-chamber microbial fuel cells at low temperatures

    KAUST Repository

    Cheng, Shaoan

    2011-01-01

    Practical applications of microbial fuel cells (MFCs) for wastewater treatment will require operation of these systems over a wide range of wastewater temperatures. MFCs at room or higher temperatures (20-35°C) are relatively well studied compared those at lower temperatures. MFC performance was examined here over a temperature range of 4-30°C in terms of startup time needed for reproducible power cycles, and performance. MFCs initially operated at 15°C or higher all attained a reproducible cycles of power generation, but the startup time to reach stable operation increased from 50h at 30°C to 210h at 15°C. At temperatures below 15°C, MFCs did not produce appreciable power even after one month of operation. If an MFC was first started up at temperature of 30°C, however, reproducible cycles of power generation could then be achieved at even the two lowest temperatures of 4°C and 10°C. Power production increased linearly with temperature at a rate of 33±4mW°C-1, from 425±2mWm-2 at 4°C to 1260±10mWm-2 at 30°C. Coulombic efficiency decreased by 45% over this same temperature range, or from CE=31% at 4°C to CE=17% at 30°C. These results demonstrate that MFCs can effectively be operated over a wide range of temperatures, but our findings have important implications for the startup of larger scale reactors where low wastewater temperatures could delay or prevent adequate startup of the system. © 2010 Elsevier B.V.

  14. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia

  15. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  16. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions.

    Science.gov (United States)

    Alpatova, A; Alsaadi, A; Ghaffour, N

    2018-06-05

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO 3 scaling on the membrane surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  18. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    International Nuclear Information System (INIS)

    Toennesen, Ole; Daeumling, Manfred; Jensen, Kim H; Kvorning, Svend; Olsen, Soeren K; Traeholt, Chresten; Veje, Erling; Willen, Dag; Oestergaard, Jacob

    2004-01-01

    A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current of 1157 A. The operation experiences include over-currents of 6 kA due to faults on peripheral lines, commissioning, servicing and failure responses on the cooling system, continuous 24 h, 7 day per week monitoring and performance of the alarm system. The implications of these experiences for the future applications of HTS cable systems are analysed

  19. Preliminary design of high temperature ultrasonic transducers for liquid sodium environments

    Science.gov (United States)

    Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.

    2018-04-01

    Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.

  20. Low temperature irradiation facility at Kyoto University Reactor (KUR)

    International Nuclear Information System (INIS)

    Atobe, Kozo; Okada, Moritami; Yoshida, Hiroyuki; Kodaka, Hisao; Miyata, Kiyomi.

    1977-01-01

    A new refrigeration system has been substituted to the low temperature irradiation facility at KUR instead of the previous one, since April in 1975. The model 1204 CTi He liquifier was designed to be modified for the refrigerator with the capacity of 30 watts at 10 K. The refrigeration capacity of 38 watts at 10 K was defined using a special cryostat and transfer-tubes, and the lowest temperature of about 18 K was measured using the irradiation loop without reactor operation. The reconstructed facility enables us to hold the many specimens simultaneously in the sample chamber of the irradiation loop at about 25 K during reactor operation of 5 MW. The irradiation dose has been reached about 6.6 x 10 16 n sub(f)/cm 2 and 6.1 x 10 17 n sub(th)/cm 2 with the normal reactor operation cycle of up to 77 hours. The stable operation condition of the machine and the special safety system for the refrigeration system enable us to maintain easily the facility with a constant operation condition for such a long time irradiation. Many kinds of low temperature neutron irradiation experiments are carried out using the facility, which techniques are partially reported. (auth.)

  1. Method of reactor operation

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1982-01-01

    Purpose: To prevent stress corrosion cracks in stainless steels caused from hydrogen peroxide in reactor operation in which the density of hydrogen peroxide in the reactor water is controlled upon reactor start-up. Method: A heat exchanger equipped with a heat source for applying external heat is disposed into the recycling system for reactor coolants. Upon reactor start-up, the coolants are heated by the heat exchanger till arriving at a temperature at which the dissolving rate is faster than the forming rate of hydrogen peroxide in the coolants, and nuclear heating is started after reaching the above temperature. The temperature of the reactor water is increased in such a manner and, when it arrives at 140 0 C, extraction of control elements is started and the heat source for the heat exchanger is interrupted simultaneously. In this way spikes in the density of hydrogen peroxide are suppressed upon reactor start-up to thereby decrease the stress corrosion cracks in stainless steels. (Horiuchi, T.)

  2. Constraints of using thermostatic expansion valves to operate air-cooled chillers at lower condensing temperatures

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.; Chu, H.Y.

    2006-01-01

    Thermostatic expansion valves (TXVs) have long been used in air-cooled chillers to implement head pressure control under which the condensing temperature is kept high at around 50 o C by staging condenser fans as few as possible. This paper considers how TXVs prevent the chillers from operating with an increased COP at lower condensing temperatures when the chiller load or outdoor temperature drops. An analysis on an existing air-cooled reciprocating chiller showed that the range of differential pressures across TXVs restricts the maximum heat rejection airflow required to increase the chiller COP, though the set point of condensing temperature is reduced to 22 o C from a high level of 45 o C. It is possible to use electronic expansion valves to meet the differential pressure requirements for maximum chiller COP. There is a maximum of 28.7% increase in the chiller COP when the heat rejection airflow is able to be maximized in various operating conditions. The results of this paper emphasize criteria for lowering the condensing temperature to enhance the performance of air-cooled chillers

  3. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  4. PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120 oC

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Tang, Yanghua; Song, Chaojie; Cheng, Xuan; Zhang, Jiujun; Wang, Haijiang

    2007-01-01

    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 o C, in particular in a high temperature PEM fuel cell operation range of 80-120 o C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (registered) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure

  5. Requirements on the mechanical design of reactor systems operating at elevated temperature

    International Nuclear Information System (INIS)

    Schulz, H.; Glahn, M.

    1979-01-01

    The paper presents the contemporary status of the requirements on the mechanical design and analysis developed during the licensing procedure of reactor systems operating at elevated temperature. General requirements for the design at elevated temperature are reviewed. The main proposal is to point out some limit strain criteria which are not included in present design guidelines and codes. The developed strain criteria are used to limit the component deformations in case of power excursions like the Bethe-Tait accident. It is also applicable for loads arising from other faulted conditions. (orig.)

  6. REACH MUSC: A telemedicine facilitated network for urgent stroke: initial experience

    Directory of Open Access Journals (Sweden)

    Robert J. Adams

    2012-03-01

    Full Text Available REACH MUSC provides stroke consults via the internet in South Carolina. From May 2008 to April 2011 231 patients were treated with intravenous (IV thrombolysis and 369 were transferred to Medical University of South Carolina (MUSC including 42 for intra-arterial revascularization (with or without IV tPA. Medical outcomes and hemorrhage rates, reported elsewhere, were good (Lazaridis et al. 2011, in press. Here we report operational features of REACH MUSC which covers 15 sites with 2,482 beds and 471,875 Emergency Department (ED visits per year. Eight Academic Faculty from MUSC worked with 165 different physicians and 325 different nurses in the conduct of 1085 consults. For the 231 who received tissue plasminogen activator (tPA, time milestones were: Onset to Door: 62 min (mean, 50 (median; Door to REACH Consult: 43 and 33, Consult Request to Consult Start: was 9 and 7 minutes, Consult Start to tPA Decision: 31 and 25 minutes; Decision to Infusion: 20 and 14 minutes, and total Door to Needle: 98 and 87 minutes. The comparable times for the 854 not receiving tPA were: Onset to Door: 140 and 75 minutes; Door to REACH Consult: 61 and 41 minutes; Consult Request to Consult Start 9 and 7 minutes, Consult Start to tPA Decision 27 and 23 minutes. While the consultants respond to consult requests in < 10 minutes, there is a long delay between arrival and Consult request. Tracking of operations indicates if we target shortening Door to Call time and time from tPA decision to start of drug infusion we may be able to improve Door to Needle times to target of < 60 minutes. The large number of individuals involved in the care of these patients, most of whom had no training in REACH usage,will require novel approaches to staff education in ED based operations where turnover is high. Despite these challenges this robust system delivered tPA safely and in a high fraction of patients evaluated using the REACH MUSC system.

  7. Helium-filled proportional counter and its operation mechanism at low temperatures

    CERN Document Server

    Isozumi, Y; Kishimoto, S

    2002-01-01

    The operation mechanism of helium-filled proportional counter (HFPC) at about 4.2 K is explained. Unstable behavior of HFPC is caused by releasing secondary-electron from the cathode by four kinds of active particles such as He sub n sup + , non-resonance photon from excited helium atom, non-resonance photon from He sub 2 sup * (A sup 1 Su sup +) and He sub 2 sup m (a sup 3 Su sup +). On experiments of HFPC behavior at low temperature, the following facts were observed; 1) main charge formation process in the electron avalanche is direct ionization by electron without Hornbeck-Molnar process. Accordingly, the gas amplification factor becomes small at low temperature. 2) Stable helium cation is He sub 2 sup + at room temperature, but cluster at low temperature. Large after-pulse is observed in output signal depends on cluster ion. The probability of secondary-electron emission decreased. The gas gain increased with increasing anode voltage. 3) By decreasing reaction rate of atom and molecule collision at low t...

  8. Technical operations procedure for assembly and emplacement of the soil temperature test--test assembly

    International Nuclear Information System (INIS)

    Weber, A.P.

    1978-01-01

    A description is given of the plan for assembly, instrumentation, emplacement, and operational checkout of the soil temperature test assembly and dry well liner. The activities described cover all operations necessary to accomplish the receiving inspection, instrumentation and pre-construction handling of the dry well liner, plus all operations performed with the test article. Actual details of construction work are not covered by this procedure. Each part and/or section of this procedure is a separate function to be accomplished as required by the nature of the operation. The organization of the procedure is not intended to imply a special operational sequence or schedular requirement. Specific procedure operational sections include: receiving inspection; liner assembly operations; construction operations (by others); prepare shield plug; test article assembly and installation; and operational checkout

  9. RESIDUAL OPERATIONAL RESOURCE ASSESSMENT OF HIGH TEMPERATURE ELEMENTS OF POWER ENGINEERING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. E. Khoroshilov

    2014-01-01

    Full Text Available The paper proposes a specific assessment of heat resistant steel residual resource which  is  based  on  time determination of pore output on grain boundary with due account of an operational temperature, chemical composition and structure of the investigated steel.

  10. Improved operation of graded-channel SOI nMOSFETs down to liquid helium temperature

    Science.gov (United States)

    Pavanello, Marcelo Antonio; de Souza, Michelly; Ribeiro, Thales Augusto; Martino, João Antonio; Flandre, Denis

    2016-11-01

    This paper presents the operation of Graded-Channel (GC) Silicon-On-Insulator (SOI) nMOSFETs at low temperatures down to liquid helium temperature in comparison to standard uniformly doped transistors. Devices from two different technologies have been measured and show that the mobility increase rate with temperature for GC SOI transistors is similar to uniformly doped devices for temperatures down to 90 K. However, at liquid helium temperature the rate of mobility increase is larger in GC SOI than in standard devices because of the different mobility scattering mechanisms. The analog properties of GC SOI devices have been investigated down to 4.16 K and show that because of its better transconductance and output conductance, an intrinsic voltage gain improvement with temperature is also obtained for devices in the whole studied temperature range. GC devices are also capable of reducing the impact ionization due to the high electric field in the drain region, increasing the drain breakdown voltage of fully-depleted SOI MOSFETs at any studied temperature and the kink voltage at 4.16 K.

  11. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  12. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jie; Lee, Seung Jae [Energy Lab, Samsung Advanced Institute of Technology, Mt. 14-1 Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2006-11-22

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T>=393K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (author)

  13. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  14. Reaching the end of the line: Operational issues with implementing phone-based unannounced pill counts in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Yael Hirsch-Moverman

    Full Text Available Accurate measurement of adherence is necessary to ensure that therapeutic outcomes can be attributed to the recommended treatment. Phone-based unannounced pill counts were shown to be feasible and reliable measures of adherence in developed settings; and have been further used as part of medication adherence interventions. However, it is not clear whether this method can be implemented successfully in resource-limited settings, where cellular network and mobile phone coverage may be low. Our objective is to describe operational issues surrounding the use of phone-based unannounced pill counts in Lesotho and Ethiopia.Phone-based monthly unannounced pill counts, using an adaptation of a standardized protocol from previous US-based studies, were utilized to measure anti-TB and antiretroviral medication adherence in two implementation science studies in resource-limited settings, START (Lesotho and ENRICH (Ethiopia.In START, 19.6% of calls were completed, with 71.9% of participants reached at least once; majority of failed call attempts were due to phones not being available (54.8% or because participants were away from the pills (32.7%. In ENRICH, 33.5% of calls were completed, with 86.7% of participants reached at least once; the main reasons for failed call attempts were phones being switched off (31.5%, participants not answering (27.3%, participants' discomfort speaking on the phone (15.4%, and network problems (13.2%. Structural, facility-level, participant-level, and data collection challenges were encountered in these settings.Phone-based unannounced pill counts were found to be challenging, and response rates suboptimal. While some of these challenges were specific to local contexts, most of them are generalizable to resource-limited settings. In a research study context, a possible solution to ease operational challenges may be to focus phone-based unannounced pill count efforts on a randomly selected sample from participants who are

  15. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  16. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  17. Operation feedback of hydrogen filling station

    International Nuclear Information System (INIS)

    Pregassame, S.; Barral, K.; Allidieres, L.; Charbonneau, T.; Lacombe, Y.

    2004-01-01

    One of the technical challenges of hydrogen technology is the development of hydrogen infrastructures which satisfy either safety requirements and reliability of filling processes. AIR LIQUIDE realized an hydrogen filling station in Sassenage (France) operational since September 2003. This station is able to fill 3 buses a day up to 350bar by equilibrium with high pressure buffers. In parallel with commercial stations, the group wanted to create a testing ground in real conditions running with several objectives: validate on a full scale bench a simulation tool able to predict the temperature of both gas and cylinder's materials during filling processes; define the best filling procedures in order to reach mass, temperature and filling time targets; analyse the temperature distribution and evolution inside the cylinder; get a general knowledge about hydrogen stations from safety and reliability point of view; operate the first full scale refuelling station in France. The station is also up-graded for 700bar filling from either a liquid hydrogen source or a gas booster, with cold filling possibility. This paper presents the results concerning 350bar filling : thermal effects, optimal filling procedures and influence of parameters such as climatic conditions are discussed. (author)

  18. Spectral correlations of the massive QCD Dirac operator at finite temperature

    International Nuclear Information System (INIS)

    Seif, Burkhard; Wettig, Tilo; Guhr, Thomas

    1999-01-01

    We use the graded eigenvalue method, a variant of the supersymmetry technique, to compute the universal spectral correlations of the QCD Dirac operator in the presence of massive dynamical quarks. The calculation is done for the chiral Gaussian unitary ensemble of random matrix theory with an arbitrary Hermitian matrix added to the Dirac matrix. This case is of interest for schematic models of OCD at finite temperature

  19. The effective potential for composite operator in the scalar model at finite temperature

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Svaiter, N.F.

    2000-10-01

    We discuss the φ 4 and φ 6 theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature β -1 . To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  20. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    Science.gov (United States)

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  1. Changes in river channel pattern as a result of the construction, operation and decommissioning of watermills – the case of the middle reach of the River Liswarta near Krzepice, Poland

    OpenAIRE

    Fajer Maria

    2018-01-01

    Changes in river channel pattern in the middle reach of the River Liswarta and in the lower reaches of its tributaries near Krzepice were analysed, and were related to the construction, operation and decommissioning of watermills. For this purpose, old maps which covered the period from the beginning of the 18th century until the 20th century were used alongside written historical sources. Maps from the first half of the 19th century provided valuable source material. Traces of old mill water...

  2. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  3. Performance reach in the LHC for 2012

    International Nuclear Information System (INIS)

    Arduini, G.

    2012-01-01

    Based on the 2011 experience and Machine Development study results, the performance reach of the LHC with 25 and 50 ns beams will be addressed for operation at 3.5 and 4 TeV. The possible scrubbing scenarios and potential intensity limitations resulting from vacuum, heating will be taken into account wherever possible. The paper mainly covers the performance of the two high luminosity regions in IR1 and IR5. (author)

  4. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  5. Design of stirling engine operating at low temperature difference

    Directory of Open Access Journals (Sweden)

    Sedlák Josef

    2018-01-01

    Full Text Available There are many sources of free energy available in the form of heat that is often simply wasted. The aim of this paper is to design and build a low temperature differential Stirling engine that would be powered exclusively from heat sources such as waste hot water or focused solar rays. A prototype is limited to a low temperature differential modification because of a choice of ABSplus plastic as a construction material for its key parts. The paper is divided into two parts. The first part covers a brief history of Stirling engine and its applications nowadays. Moreover, it describes basic principles of its operation that are supplemented by thermodynamic relations. Furthermore, an analysis of applied Fused Deposition Modelling has been done since the parts with more complex geometry had been manufactured using this additive technology. The second (experimental part covers 4 essential steps of a rapid prototyping method - Computer Aided Design of the 3D model of Stirling engine using parametric modeller Autodesk Inventor, production of its components using 3D printer uPrint, assembly and final testing. Special attention was devoted to last two steps of the process since the surfaces of the printed parts were sandpapered and sprayed. Parts, where an ABS plus plastic would have impeded the correct function, had been manufactured from aluminium and brass by cutting operations. Remaining parts had been bought in a hardware store as it would be uneconomical and unreasonable to manufacture them. Last two chapters of the paper describe final testing, mention the problems that appeared during its production and propose new approaches that could be used in the future to improve the project.

  6. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  7. The effective potential for composite operator in the scalar model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ananos, G.N.J.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: nfuxsvai@lafex.cbpf.br; gino@lafex.cbpf.br

    2000-10-01

    We discuss the {phi}{sup 4} and {phi}{sup 6} theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature {beta}{sup -1}. To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  8. Transient heat transfer analysis of superconducting magnetic levitating flywheel rotor operating in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, A.; Kudo, K.; Higasa, H.

    1999-07-01

    In the present study, transient temperature rise is analyzed in a flywheel type power storage system operated in vacuum environment. The flywheel rotor is levitated by high-temperature-superconducting magnetic bearing to reduce the bearing loss. Though the superconductor is cooled by liquid nitrogen, the temperature of the whole system rises due to Joule heating in the coils of the bearings and the motor during the operation. If the temperature should reach the critical temperature of the permanent magnet used for the magnetic bearings after long time operation, the magnetic bearings lose their effect. The heat generated in the levitated rotor diffuses within it by heat conduction and finally emitted to its surrounding solid materials by thermal radiation from the rotor surfaces across vacuum layer. Numerical simulation is carried out calculating the transient radiative-conductive heat transfer and time-dependent profiles of temperature within the rotor are obtained. The results are compared with the experimentally obtained temperatures by measured a test model of 1kWh power storage and the measured profiles of the temperature rise of the rotor fit very well with the calculated ones. Using this simulation tool, the effects of the surface emissivity of the materials of the rotor and the stator, the temperature of the surrounding casings and the thermal conductivity of the materials on the temperature profiles in the system are estimated.

  9. High-operating temperature MWIR photon detectors based on type II InAs/GaSb superlattice

    Science.gov (United States)

    Razeghi, Manijeh; Nguyen, Binh-Minh; Delaunay, Pierre-Yves; Abdollahi Pour, Siamak; Huang, Edward Kwei-wei; Manukar, Paritosh; Bogdanov, Simeon; Chen, Guanxi

    2010-01-01

    Recent efforts have been paid to elevate the operating temperature of Type II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300K-background BLIP operation temperature to 166K. At 77K, the ~4.2 μm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ohm.cm2) and a detectivity of 3x1013cm.Hz1/2/W. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10mK at 77K. Uncooled camera is capable to capture hot objects such as soldering iron.

  10. The Benefit of Variable-Speed Turbine Operation for Low Temperature Thermal Energy Power Recovery

    OpenAIRE

    Brasz, Joost J.

    2014-01-01

    This paper analyzes, given the large variation in turbine discharge pressure with changing ambient temperatures, whether variable-speed radial-inflow turbine operation has a similar benefit for Organic Rankine Cycle (ORC) power recovery systems as variable-speed centrifugal compression has for chiller applications. The benefit of variable-speed centrifugal compression over fixed-speed operation is a reduction in annual electricity consumption of almost 40 %. Air-conditioning systems are by ne...

  11. On the significance of a subsequent ageing after cold working of Incoloy 800 at operational temperatures

    International Nuclear Information System (INIS)

    Ullrich, G.; Krompholz, K.

    1993-01-01

    The influence of cold working and subsequent ageing at operational temperatures on the long-term and short-term mechanical properties of components made from the iron-nickel-chromium base alloy Incoloy 800 are discussed. Long-term properties are time-to-rupture strengths, which are included in the design code, over a lifetime of 300,000 hours. For LWR operating temperatures of 350 o C, this is of minor importance. An operating temperature of 550 o C is possible for Incoloy 800 with up to 25% cold working and a subsequent solution annealing at 950 o C, without loss of time-to-rupture strength compared with the 'as received' state. The short-term mechanical properties are strongly influenced by cold working, in the form of increasing yield strength and rupture strength, and decreasing ductility and consequently loss in impact energies. A subsequent ageing at 550 o C leads to a decrease of the yield strength and rupture strength, and an increase of ductility as well as the impact energies. The environmental influence are discussed. (author) 3 figs., 1 tab., 8 refs

  12. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities

    Science.gov (United States)

    Zhou, Meirong; Xia, Junqiang; Lu, Jinyou; Deng, Shanshan; Lin, Fenfen

    2017-05-01

    In the past 50 years, the Shishou reach in the middle Yangtze River underwent significant channel evolution owing to the implementation of an artificial cutoff, the construction of bank revetment works and the operation of the Three Gorges Project (TGP). Based on the measured hydrological data and topographic data, the processes of channel evolution in this reach were investigated mainly from the adjustments in planform and cross-sectional geometries. The variation in planform geometry obtained in this study indicates that (i) the artificial cutoff at Zhongzhouzi caused the river regime to adjust drastically, with the mean rate of thalweg migration at reach scale of 42.0 m/a over the period 1966-1975; (ii) then the effect of this artificial cutoff reduced gradually, with the mean migration rate decreasing to 40 m/a owing to the occurrence of high water levels in 1993-1998; and (iii) the average annual rate of thalweg migration decreased to 29.3 m/a because of the impacts of various bank protection engineering and the TGP operation during the period 2002-2015. However, remarkable thalweg migration processes still occurred in local regions after the TGP operation, which resulted in significant bankline migration in local reaches of Beimenkou, Shijiatai, and Tiaoxiankou. In addition, the adjustments of bankfull channel geometry were investigated at section and reach scales after the TGP operation. Calculated results show that lateral channel migration in this reach was restricted by various river regulation works and that channel evolution was mainly characterized by an increase in bankfull depth and cross-sectional area. Empirical relationships were developed between the reach-scale bankfull dimensions (depth and area), the bankfull widths at specified sections, and the previous 5-year average fluvial erosion intensity during flood seasons, with high correlation degrees between them being obtained.

  13. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  14. Anode-supported SOFC operated under single-chamber conditions at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.; Roa, J.J.; Segarra, M. [Department of Materials Science and Metallurgical Engineering, University of Barcelona, E-08028, Barcelona (Spain); Capdevila, X.G. [Center of Design and Optimization in Avanced Materials, Parc Cientific of Barcelona, E-08028, Barcelona (Spain); Pinol, S. [Institute of Materials Science of Barcelona (CSIC), Campus of the UAB, Bellaterra E-08193, Barcelona (Spain)

    2011-02-15

    Anode-supported SOFC was fabricated using gadolinia doped ceria (GDC) as the electrolyte (15 {mu}m of thickness), Ni-GDC as the anode and La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}-GDC as the cathode. Catalytic activities of the electrodes and electrical properties of the cell were determined, using mixtures of methane + air, under single-chamber conditions. This work assessed with special and wide emphasis the effect of temperature, gas composition and total flow rate on the cell performance. As a result, operational temperature range of the fuel cell was approximately between 700 and 800 C, which agrees with the results corresponding to the catalytic activities of electrodes. While Ni-GDC anode was enough active towards methane partial oxidation at cell temperatures higher than 700 C, the LSC-GDC cathode was enough inactive towards partial and total oxidation of methane at cell temperatures lower than 800 C. Under optimised gas compositions (CH{sub 4}/O{sub 2}) ratio (1) and total flow rate (530 mL min {sup -1}), power densities of 145 and 235 mW cm {sup -2} were obtained at 705 and 764 C, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law

  16. Influence of temperature measurement accuracy and reliability on WWER-440 reactor operation

    International Nuclear Information System (INIS)

    Petenyi, V.; Ricany, J.

    2001-01-01

    The WWER-440 reactor power is controlled by coolant heat-up measurements installed on hot and cold circulation loops (enthalpy rise). For power distribution determination the thermocouples installed in reactor vessel above the fuel assemblies are mainly utilised. The paper shortly presents some interesting observations of temperature measurements influencing the reactor power operation of revealed changes in reactor core behaviour. (Authors)

  17. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, Carlos; Ruiz de Larramendi, I.

    2013-01-01

    -priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination......For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low...... (∼600°C) and electrode sintering (∼800°C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10Ωcm2 at 800°C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range...

  18. A temperature and mass dependence of the linear Boltzmann collision operator from group theory point of view

    International Nuclear Information System (INIS)

    Saveliev, V.

    1996-01-01

    The Lie group of the transformations affecting the parameters of the linear Boltzmann collision operator such as temperature of background gas and ratio of masses of colliding particles and molecules is discovered. The group also describes the conservation laws for collisions and main symmetries of the collision operator. New algebraic properties of the collision operator are derived. Transformations acting on the variables and parameters and leaving the linear Boltzmann kinetic equation invariant are found. For the constant collision frequency the integral representation of solutions for nonuniform case in terms of the distribution function of particles drifting in a gas with zero temperature is deduced. The new exact relaxation solutions are obtained too. copyright 1996 American Institute of Physics

  19. Structural transformations and temperature state of rotating blades of E1893 alloy under operation

    Energy Technology Data Exchange (ETDEWEB)

    Pigrova, G D; Rybnikov, A I; Kryukov, I I [Polzunov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1999-12-31

    The composition and quantity of different phase component of EI893 alloy after long term operation as base metal for rotating blades of gas turbines GT-6, GTN-9, GTK-10 and GT-100 types were studied. The obtained date were analysed with regard to the chemical composition of alloys and of initial condition of heat treatment. Data of metal phase analysis owned alter operation can provide the basis for evaluation of tempera field of rotating blades in the course of operation since structural condition of phase components and redistribution of alloying elements are being specified by temperature and in-service time. (orig.)

  20. Structural transformations and temperature state of rotating blades of E1893 alloy under operation

    Energy Technology Data Exchange (ETDEWEB)

    Pigrova, G.D.; Rybnikov, A.I.; Kryukov, I.I. [Polzunov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The composition and quantity of different phase component of EI893 alloy after long term operation as base metal for rotating blades of gas turbines GT-6, GTN-9, GTK-10 and GT-100 types were studied. The obtained date were analysed with regard to the chemical composition of alloys and of initial condition of heat treatment. Data of metal phase analysis owned alter operation can provide the basis for evaluation of tempera field of rotating blades in the course of operation since structural condition of phase components and redistribution of alloying elements are being specified by temperature and in-service time. (orig.)

  1. Human subjects’ perception of indoor environment and their office work performance during exposures to moderate operative temperature ramps

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2008-01-01

    The objective of the presented research work was to study the effects of moderate operative temperature drifts on human thermal comfort, perceived air quality, intensity of SBS symptoms and office work performance. Experimental subjects (52, 50% female) were seated in a climatic chamber and exposed....... A linear relation between perceived air quality and temperature (enthalpy) was found. No significant consistent effect of individual temperature ramps on office work performance was found. Increasing operative temperature appeared to slightly decrease speed of addition and text typing regardless the slope...... sensation was also included. Subjects filled out questionnaires regarding perception of the environment and intensity of SBS symptoms. Subjects performed simulated office tasks (addition, text typing, proof reading, comprehension and reasoning). Results showed that all tested ramps were recognized...

  2. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  3. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  4. Evaluation of waste temperatures in AWF tanks for bypass mode operation of the 702-AZ ventilation system (Project W-030)

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1997-01-01

    This report describes the results of thermal hydraulic analysis performed to provide data in support of Project W-030 to startup new 702-AZ Primary Ventilation System. During the startup of W-030 system, the ventilation system will be operating in bypass mode. In bypass made of operation, the system is capable of supplying 1000 cfm total flow for all four AWF doubleshell tanks. The design of the W-030 system is based on the assumption that both the recirculation loop of the primary ventilation system and the secondary ventilation which provides cooling would be operating. However, during the startup neither the recirculation system nor the secondary ventilation system will be operating. A minimum flow of 100 cfm is required to prevent any flammable gas associated risk. The remaining 600 cfm flow can be divided among the four tanks as necessary to keep the peak sludge temperatures below the operating temperature limit. For the purpose of determining the minimum flow required for cooling each tank, the thermal hydraulic analysis is performed to predict the peak sludge temperatures in AY/AZ tanks under different ventilation flows. The heat load for AZ farm tanks is taken from characterization reports and for the AY farm tanks, the heat load was estimated by thermal analysis using the measured waste temperatures and the waste liquid evaporation rates. The tank 241-AZ-101 and the tank 241-AZ-102 have heat loads of 241,600 and 199,500 Btu/hr respectively. The tank 241-AY-101 and tank 241-AY-102 have heat loads of 41,000 and 33,000 Btu/hr respectively. Using the ambient meteorological conditions of temperature and relative humidity for the air and tank, some soil surface and the sludge levels reported in recent documents, the peak sludge and supernatant temperatures were predicted for various primary ventilation flows ranging from 100 to 400 cfm for AZ tanks and 100 and 150 cfm for AY tanks. The results of these thermal hydraulic analyses are presented. Based on the

  5. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    Science.gov (United States)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  6. What is felt temperature? Air conditioning with felt temperature in buildings and vehicles?; Was ist gefuehlte Temperatur? Klimaregelung mit gefuehlter Temperatur in Gebaeuden und Fahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Eigel, Franz [Technology Marketing Support, St. Georgen (Germany); Rengshausen, Detlef [Vereta GmbH, Einbeck (Germany)

    2010-11-15

    The term 'felt temperature' reaches back to a long series of medical, empirical-sociological and meteorological studies accomplished world-wide for human temperature feeling. The consideration of the felt temperature at the regulation of refrigerators meets not only the comfort feeling of humans, but also saves cash money at the same time.

  7. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Graziano, Joe; Chan, John

    2011-01-01

    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  8. Continuous-Wave Operation of GaN Based Multi-Quantum-Well Laser Diode at Room Temperature

    International Nuclear Information System (INIS)

    Li-Qun, Zhang; Shu-Ming, Zhang; Hui, Yang; Lian, Ji; Jian-Jun, Zhu; Zong-Shun, Liu; De-Gang, Zhao; De-Sheng, Jiang; Li-Hong, Duan; Hai, Wang; Yong-Sheng, Shi; Su-Ying, Liu; Jun-Wu, Liang; Qing, Cao; Liang-Hui, Chen

    2008-01-01

    Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5μm × 800μm ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110 mA and 10.5 V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12° and 32°, respectively

  9. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  10. Numerical Simulation and Experimental Study on Temperature Distribution of Self-Lubricating Packing Rings in Reciprocating Compressors

    Directory of Open Access Journals (Sweden)

    Jia Xiaohan

    2016-01-01

    Full Text Available The nonuniform abrasion failure and high-temperature thermal failure of packing rings have a significant influence on compressor reliability, particularly that of oil-free compressors. In this study, a test rig was constructed to measure the dynamic temperature of packing rings under different operational conditions in an oil-free reciprocating compressor. The dynamic axial and radial temperature distributions of the packing rings were obtained using an innovative internal temperature testing device that kept the thermocouples and packing box relatively static during compressor operation. A three-dimensional heat transfer model was also developed to analyze the temperature distribution of the packing boxes, piston rod, and cylinder during such operation. Good agreement was observed between the simulation results and experimental data, which showed an average relative error of less than 2.35%. The results indicate that the pressure ratio exerts a significant effect on the axial temperature distribution and determines which packing ring reaches the maximum temperature. They also show the average temperature to rise with an increase in the rotational speed and to fall with an improvement in the external cooling conditions. Finally, the material of the packing rings was found to affect the temperature gradient from their inner to outer surface.

  11. Crustal temperature structure derived from a ground temperature gradient chart of Hokkaido; Hokkaido no chion kobaizu kara motometa chikakunai ondo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Y. [Geological Survey of Japan, Tsukuba (Japan); Akita, F. [Hokkaido Geological Survey, Sapporo (Japan); Nagumo, S. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    The Hokkaido Underground Resources Investigation Institute has prepared in 1995 a detailed temperature gradient chart that shows local anomalies around volcanoes. This paper describes an attempt to derive crustal temperature structure of Hokkaido from the above data. The model was hypothesized as a primary model in which no thermal convection exists. In volcanic and geothermal areas which show a temperature gradient of more than 100 {degree}C km {sup -1}, a solidus temperature is reached at a depth shallower than 10 km. Below the volcanic chain forming the Chishima arc, a partially melted region exists in a width of about 100 km. Most of the areas in the southern Hokkaido have the temperature reached the solidus temperature in the crust. On the other hand, in most of the areas of the forefront side, no solidus temperature is reached in the crust. In the temperature structure of a cross section crossing almost orthogonally with the volcanic front passing through Mt. Daisetsu, a high temperature area reaches to a shallow portion beneath Mt. Daisetsu, where the depth at which the solidus temperature is reached is 10 km or shallower. The range of area where the solidus depth is shallower than 10 km has a south-west width of about 40 km. This means that a partially melted area with a size of 40 km in the horizontal direction exists at a depth of several kilometers. 20 refs., 3 figs.

  12. Learning to control a brain-machine interface for reaching and grasping by primates.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2003-11-01

    Full Text Available Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

  13. From reaching every district to reaching every community: analysis and response to the challenge of equity in immunization in Cambodia

    Science.gov (United States)

    Chan Soeung, Sann; Grundy, John; Duncan, Richard; Thor, Rasoka; Bilous, Julian B

    2013-01-01

    Background An international review of the Cambodian Expanded Programme on Immunization (EPI) in 2010 and other data show that despite immunization coverage increases and vaccine preventable diseases incidence reductions, inequities in access to immunization services exist. Utilizing immunization and health systems literature, analysis of global health databases and the EPI review findings, this paper examines the characteristics of immunization access and outcome inequities, and describes proposed longer-term strategic and operational responses to these problems. Findings The national programme has evolved from earlier central and provincial level planning to strengthening routine immunization coverage through the District level ‘Reaching Every District Strategy’. However, despite remarkable improvements, the review found over 20% of children surveyed were not fully immunized, primarily from communities where inequities of both access and impact persist. These inequities relate mainly to socio-economic exposures including wealth and education level, population mobility and ethnicity. To address these problems, a shift in strategic and operational response is proposed that will include (a) a re-focus of planning on facility level to detect disadvantaged communities, (b) establishment of monitoring systems to provide detailed information on community access and utilization, (c) development of communication strategies and health networks that enable providers to adjust service delivery according to the needs of vulnerable populations, and (d) securing financial, management and political commitment for ‘reaching every community’. Conclusions For Cambodia to achieve its immunization equity objectives and disease reduction goals, a shift of emphasis to health centre and community is needed. This approach will maximize the benefits of new vaccine introduction in the coming ‘Decade of Vaccines’, plus potentially extend the reach of other life-saving maternal

  14. Water temperature effects from simulated changes to dam operations and structures in the Middle and South Santiam Rivers, Oregon

    Science.gov (United States)

    Buccola, Norman L.

    2017-05-31

    Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.

  15. Thermal evolution of the Schwinger model with matrix product operators

    International Nuclear Information System (INIS)

    Banuls, M.C.; Cirac, J.I.; Cichy, K.; Jansen, K.; Saito, H.

    2015-10-01

    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.

  16. The Role of Surface Protection for High-Temperature Performance of TiAl Alloys

    Science.gov (United States)

    Schütze, Michael

    2017-12-01

    In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.

  17. Power Generation by Zinc Antimonide Thin Film under Various Load Resistances at its Critical Operating Temperature

    DEFF Research Database (Denmark)

    Mir Hosseini, Seyed Mojtaba; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    slightly reduces during unload conditions, although it is expected that by eliminating load in each step, the initial amount of voltage exactly repeats. Similar behavior is observed for Seebeck coefficient distribution versus time of working particularly in lower load resistances. Based on variation...... thin films operating under different load resistances at around its critical operating temperature, 400 ᵒC. The thermoelement is subjected to constant hot side temperature and to room temperature at the cold junction in order to measure the thin film TEG’s sample performance. The nominal loads equal...... to 10, 15, 20, 25, 30, 35, 40, 45… 175, and also 200 Ohms were applied. The results show that the value of the Seebeck coefficient is 0.0002 [V/K] for the specimen, which is in agreement with quantities of other zinc antimonide bulks materials in literature. The results also show that the voltage...

  18. Assessment of the Operating Temperature of Crystalline PV Modules Based on Real Use Conditions

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2014-01-01

    Full Text Available Determining the operating temperature Tc of photovoltaic panels PV is important in evaluating the actual performance of these systems. In the literature, different correlations exist, in either explicit or implicit forms, which often do not account for the electrical behaviour of panels; in this way, estimating Tc is based only on the passive behaviour of the PV. In this paper, the authors propose a new implicit correlation that takes into account the standard weather variables and the electricity production regimes of a PV panel in terms of the proximity to the maximum power points. To validate its reliability, the new correlation was tested on two different PV panels (Sanyo and Kyocera panels and the results were compared with values obtained from other common correlations already available in the literature. The data show that the quality of the new correlation drastically improves the estimation of the photovoltaic operating temperature.

  19. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  20. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zampetti, E., E-mail: emiliano.zampetti@artov.imm.cnr.it; Macagnano, A.; Bearzotti, A. [Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR IMM) (Italy)

    2013-04-15

    An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were {approx}2.8 and 1.5 %, respectively.

  1. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  2. Environmental stressors afflicting tailwater stream reaches across the United States

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2014-01-01

    The tailwater is the reach of a stream immediately below an impoundment that is hydrologically, physicochemically and biologically altered by the presence and operation of a dam. The overall goal of this study was to gain a nationwide awareness of the issues afflicting tailwater reaches in the United States. Specific objectives included the following: (i) estimate the percentage of reservoirs that support tailwater reaches with environmental conditions suitable for fish assemblages throughout the year, (ii) identify and quantify major sources of environmental stress in those tailwaters that do support fish assemblages and (iii) identify environmental features of tailwater reaches that determine prevalence of key fish taxa. Data were collected through an online survey of fishery managers. Relative to objective 1, 42% of the 1306 reservoirs included in this study had tailwater reaches with sufficient flow to support a fish assemblage throughout the year. The surface area of the reservoir and catchment most strongly delineated reservoirs maintaining tailwater reaches with or without sufficient flow to support a fish assemblage throughout the year. Relative to objective 2, major sources of environmental stress generally reflected flow variables, followed by water quality variables. Relative to objective 3, zoogeography was the primary factor discriminating fish taxa in tailwaters, followed by a wide range of flow and water quality variables. Results for objectives 1–3 varied greatly among nine geographic regions distributed throughout the continental United States. Our results provide a large-scale view of the effects of reservoirs on tailwater reaches and may help guide research and management needs.

  3. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  4. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  5. Production of biogas from organic waste in microreactors operated at two temperatures

    International Nuclear Information System (INIS)

    Murillo Roos, Mariana

    2014-01-01

    The process and the product of anaerobic digestion are evaluated for different proportions of organic substrates, in microreactors operated at thermophilic and mesophilic temperatures with interest to find alternatives that will generate energy from biomass. Small-scale tests are conducted to ensure the proper functioning of biodigesters and optimize operating conditions. The anaerobic digestion process is characterized in three manure mixing ratios: mix of leftovers (100:0,90:10 and 80:20) and two temperatures of work (35 degrees Celsius and 50 degrees Celsius), using a factorial arrangement with 2 replicates per treatment. The mixture is composed of manure, cow dung and scraps of fresh food (fruits and vegetables) and prepared food. The proportions were diluted to 5% total solids. Bottles are the experimental unit used consisting culture medium bottles of 1 liter with 500 mL of mixture. The test has run for 5 hydraulic retention times (HRT) of twenty days each. At this time the pH was evaluated, the daily production of biogas, biogas composition, total solids, volatile and fixed and the content of volatile fatty acids. The values obtained biogas productivity and CH 4 content have been similar to those reported in the literature and indicate that the systems have been successful [es

  6. HTCAP: a FORTRAN IV program for calculating coated-particle operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.

    1976-05-01

    A description is presented of HTCAP, a computer code that calculates in-reactor operating temperatures of loose coated ThO 2 particles in the HFIR target series of irradiation tests. Three computational models are employed to determine the following: (1) fission heat generation rates, (2) capsule heat transfer analysis, and (3) maximum particle surface temperature within the design of an HT capsule. Maximum particle operating temperatures are calculated at daily intervals during each irradiation cycle. The application of HTCAP to sleeve CP-62 of HT-15 is discussed, and the results are compared with those obtained in an earlier thermal analysis on the same capsule. Agreement is generally within +-5 percent, while decreasing the computational time by more than an order of magnitude. A complete FORTRAN listing and summary of required input data are presented in appendices. Included is a listing of the input data and a tabular output from the thermal analysis of sleeve CP-62 of HT-15

  7. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  8. Changes of NSSS control system setpoint for operation at reduced temperature at YGN 3 and 4

    International Nuclear Information System (INIS)

    Song, I. H.; Son, S. H.; Lee, K. C.; Son, J. J.; Seo, J. T.; Lee, S. H.; Park, W. K.; Hwang, H. C.; Lee, J. H.

    2003-01-01

    The differences of the design operational conditions and best estimate operational conditions, which were expected to be conditions during the plant operation, during the application of operation at reduced temperature at YGN 3 and 4 are larger than those during the construction period. Therefore, each sets of NSSS control system setpoints were generated for ORT design operational condition and for ORT best estimate operational condition. The analytical results shows that the plant performance requirements are satisfied by changing the NSSS control system setpoints for each operational conditions. The NSSS control system setpoints were changed after power operation after application of the ORT due to unexpected mismatch of plant conditions from the best estimate operational conditions. The plant conditions are needed to be monitored cycle by cycle for the detection of such conditions which requires the changing of the NSSS control system

  9. Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2015-01-01

    This paper proposes an accurate method to estimate the junction temperature using the on-state collector-emitter voltage at high current. By means of the proposed method, the estimation error which comes from the different temperatures of the interconnection materials in the module is compensated....... Finally, it leads to satisfactory estimated results. The proposed method has been verified by means of an IR (Infra-Red) camera during power converter operations when the loading current is sinusoidal....

  10. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  11. Absorption solar cooling systems using optimal driving temperatures

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Ventas, Rubén; Vereda, Ciro; López, Ricardo

    2015-01-01

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH 3 /LiNO 3 , either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H 2 O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH 3 /LiNO 3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H 2 O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature t g,op for solar cooling in Madrid. • 3 absorption cycles tested: H 2 O/LiBr and NH 3 /LiNO 3 single effect and hybrid. • The t g,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than t g,op

  12. Dynamic modeling of nutrient removal by a MBR operated at elevated temperatures.

    Science.gov (United States)

    Sarioglu, M; Sayi-Ucar, N; Cokgor, E; Orhon, D; van Loosdrecht, M C M; Insel, G

    2017-10-15

    The process performance of a MBR operated on municipal sewage at elevated temperatures was evaluated by dynamic modeling. The enhanced biological phosphorus removal (EBPR) performance varied from 40% to 95% with process temperature ranging from 24 to 38 °C. The respective maximum substrate uptake rate (q PHA ) was estimated at 1.5 gCOD S /gCOD X .day -1 for Glycogen Accumulating Organisms (GAO) and 4.7 gCOD S /gCOD X .day -1 for Phosphate Accumulating Organisms (PAO) with Arrhenius coefficients (θ) for GAOs and PAOs of 1.06 and 1.04 respectively. With these parameters the effluent PO 4 levels of the MBR operated for 450 days could be well described. In addition, the impact of mesophilic conditions and low influent P/VFA levels on GAO proliferation was evaluated under dynamic process conditions. Nitrification process was temporarily impaired at high temperatures around 38 °C. Simulations revealed that the contribution of the anoxic reactor to the total overall denitrification was limited to 40%The contribution of simultaneous nitrification and denitrification (SNdN) process to the denitrification was around 40-50% depending upon dissolved oxygen levels in aerobic and MBR tanks. The large contribution of SNdN was due to gas/liquid mass transfer limitation conditions mediated by high mixed liquor viscosities (20-35 mPa.S) in MBR system. The membrane flux was 43 L/m 2 /h corresponding to the specific permeability (K) of 413 L/m 2 /h/bar at 38 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    International Nuclear Information System (INIS)

    Aïssa, B.; Nedil, M.; Kroeger, J.; Haddad, T.; Rosei, F.

    2015-01-01

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10 4 and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10 4  s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices

  14. Sensors based on mesoporous SnO{sub 2}-CuWO{sub 4} with high selective sensitivity to H{sub 2}S at low operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stanoiu, Adelina; Simion, Cristian E. [National Institute of Materials Physics, Atomistilor 405A, P.O. Box MG-7, 077125 Bucharest, Măgurele (Romania); Calderon-Moreno, Jose Maria; Osiceanu, Petre [“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Surface Chemistry and Catalysis Laboratory, Spl. Independentei 202, 060021, Bucharest (Romania); Florea, Mihaela [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, Bucharest (Romania); National Institute of Materials Physics, Atomistilor 405A, P.O. Box MG-7, 077125 Bucharest, Măgurele (Romania); Teodorescu, Valentin S. [National Institute of Materials Physics, Atomistilor 405A, P.O. Box MG-7, 077125 Bucharest, Măgurele (Romania); Somacescu, Simona, E-mail: somacescu.simona@gmail.com [“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Surface Chemistry and Catalysis Laboratory, Spl. Independentei 202, 060021, Bucharest (Romania)

    2017-06-05

    Highlights: • Mesoporous SnO{sub 2}-CuWO{sub 4} obtained by an inexpensive synthesis route. • Powders characterization performed by a variety of complementary techniques. • SnO{sub 2}-CuWO{sub 4} layers with high selective sensitivity to H{sub 2}S. • Low operating temperature and relative humidity influences. - Abstract: Development of new sensitive materials by different synthesis routes in order to emphasize the sensing properties for hazardous H{sub 2}S detection is one of a nowadays challenge in the field of gas sensors. In this study we obtained mesoporous SnO{sub 2}-CuWO{sub 4} with selective sensitivity to H{sub 2}S by an inexpensive synthesis route with low environmental pollution level, using tripropylamine (TPA) as template and polyvinylpyrrolidone (PVP) as dispersant/stabilizer. In order to bring insights about the intrinsic properties, the powders were characterized by means of a variety of complementary techniques such as: X-Ray Diffraction, XRD; Transmission Electron Microscopy, TEM; High Resolution TEM, HRTEM; Raman Spectroscopy, RS; Porosity Analysis by N{sub 2} adsorption/desorption, BET; Scanning Electron Microscopy, SEM and X-ray Photoelectron Spectroscopy, XPS. The sensors were fabricated by powders deposition via screen-printing technique onto planar commercial Al{sub 2}O{sub 3} substrates. The sensor signals towards H{sub 2}S exposure at low operating temperature (100 °C) reaches values from 10{sup 5} (for SnWCu600) to 10{sup 6} (for SnWCu800) over the full range of concentrations (5–30 ppm). The recovery processes were induced by a short temperature trigger of 500 °C. The selective sensitivity was underlined with respect to the H{sub 2}S, relative to other potential pollutants and relative humidity (10–70% RH).

  15. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    Razak, Abdu

    1986-01-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  16. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Razak, Abdu [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia)

    1986-07-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  17. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  18. The paradox of characteristics of silicon detectors operated at temperature close to liquid helium

    Science.gov (United States)

    Eremin, V.; Shepelev, A.; Verbitskaya, E.; Zamantzas, C.; Galkin, A.

    2018-05-01

    The aim of this study is to give characterization of silicon p+/n/n+ detectors for the monitoring systems of the Large Hadron Collider machine at CERN with the focus on justifying the choice of silicon resistivity for the detector operation at the temperature of 1.9-10 K. The detectors from n-type silicon with the resistivity of 10, 4.5, and 0.5 kΩ cm were investigated at the temperature from 293 up to 7 K by the Transient Current Technique with a 660 nm pulse laser and alpha-particles. The shapes of the detector current pulse response allowed revealing a paradox in the properties of shallow donors of phosphorus, i.e., native dopants in the n-type Si. There was no carrier freeze-out on the phosphorus energy levels in the space charge region (SCR), and they remained positively charged irrespective of temperature, thus limiting the depleted region depth. As for the base region of a partially depleted detector, the levels became neutral at T < 28 K, which transformed silicon to an insulator. The reduction of the activation energy for carrier emission in the detector SCR estimated in the scope of the Poole-Frenkel effect failed to account for the impact of the electric field on the properties of phosphorus levels. The absence of carrier freeze-out in the SCR justifies the choice of high resistivity silicon as the only proper material for detector operation in a fully depleted mode at extremely low temperature.

  19. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  20. Solid Oxide Fuel Cell Based Upon Colloidal Deposition of Thin Films for Lower Temperature Operation (Preprint)

    National Research Council Canada - National Science Library

    Reitz, T. L; Xiao, H

    2006-01-01

    In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), anode-supported cells incorporating thin film electrolytes in conjunction with anode/electrolyte and cathode/electrolyte interlayers were studied...

  1. Fundamental investigation of high temperature operation of field effect transistor devices

    Science.gov (United States)

    Chern, Jehn-Huar

    , JFET, pseudomorphic-HEMT, and modulation doped FET (MODFET) devices for high-temperature applications were investigated and addressed in terms of device performance such as transconductance, leakage current density, and current gain. Wide gap materials such as GaN have low carrier generation rate at high temperatures and, hence, high operation temperature capabilities and potential.

  2. Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm

    Science.gov (United States)

    Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.

    2018-02-01

    Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.

  3. Analysis of a large-break LOCA at lower operational modes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y.; Jun, H.Y.; Lee, K. [Korea Electric Power Corporation, Taejon (Korea)

    2000-10-01

    To improve Technical Specifications and Emergency Operating Guidelines (EOGs) applicable at lower operational modes it is required to perform the safety analysis reflecting the operational characteristics in those modes. Because the component availability and system configurations at lower modes are different from those of power mode, the plant safety at lower modes should be confirmed through independent analyses. In the present study, a large-break loss-of-coolant accident is analyzed to evaluate the containment pressure and temperature control function for the preparation of EOGs applicable at lower modes. To reach the required shutdown condition, the plant cool-down is controlled by the secondary steam flow and auxiliary feedwater. The mass and energy releases from primary system are obtained from RELAP5/MOD3.1 calculation and the containment pressure and temperature are evaluated with CONTEMPT-LT code. The reference plant is Korean Next Generation Reactor having 4,000 MW thermal power. Two cases of cold leg LOCA initiated at Mode 3 with and without SIT operation are calculated. At the given plant conditions, all safety injection pumps are still available. The calculation at the condition of maximum mass and energy release shows that the containment pressure and temperature can be controlled within acceptable criteria, which means the operations of 2 or 4 fan coolers are the possible success paths to achieve the containment P/T control safety function. The peak cladding temperature with minimum safety injection flow does not show remarkable excursion, which implies the lower mode LOCA at Mode 3 can be bounded by the results obtained at full power from the viewpoint of ECCS performance. (author)

  4. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Muñoz-Palazon, Barbara; Maza-Márquez, Paula; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Vahala, Riku

    2018-05-01

    The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. BROOKHAVEN: Proton goal reached

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10 13 protons per pulse (ppp), by accelerating 6.3 x 10 13 ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10 13 ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10 13 ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10 13 ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10 13 ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found

  6. BROOKHAVEN: Proton goal reached

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10{sup 13} protons per pulse (ppp), by accelerating 6.3 x 10{sup 13} ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10{sup 13} ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10{sup 13} ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10{sup 13} ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10{sup 13} ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found.

  7. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production

    International Nuclear Information System (INIS)

    Hong, Hui; Liu, Qibin; Jin, Hongguang

    2012-01-01

    Highlights: ► A 15 kW solar chemical receiver/reactor for hydrogen production was developed. ► The solar thermochemical efficiency of the receiver/reactor was in the range of 20–28%. ► Hydrogen production exceeding 80% was achieved. ► The research results extend the application of mid-temperature solar thermal energy. -- Abstract: In this paper, we report the operational performance and energy conversion efficiency of a developed 15 kW solar chemical receiver/reactor for hydrogen production. A concentrated solar heat of around 200–300 °C was utilized to provide process heat to drive methanol steam reforming. A modified 15 kW direct-irradiation solar reactor coupled with a linear receiver positioned along the focal line of a one-axis parabolic trough concentrator was used. The experiments were conducted from 200 to 300 °C under a mean solar flux of 300–800 W/m 2 and a reactant feeding rate of 6 kg/h. Reactants were continuously fed, and the attained conversion rate of methanol was more than 70% at 700 W/m 2 . The typical solar thermochemical efficiency of solar thermal energy converted into chemical energy was in the 20–28% range. The overall energy efficiency of input solar power conversion into chemical energy reached up to 17% and may be further increased by improving solar field efficiency. Hydrogen production exceeding 80% was achieved. In addition, preliminary economic evaluation was performed, and methods for further improvement were proposed. This paper proves that solar hydrogen production is feasible by combining solar thermal energy with alternative fuel at around 200–300 °C, which is much lower than the temperature of other solar thermochemical processes. This may offer an economic approach to solar fuel production and extend the application of mid-temperature solar thermal energy.

  8. Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Kannan, A.; Kaczerowski, J.; Kabza, A.

    2018-01-01

    This paper is aimed to develop operation strategies or high temperature polymer electrolyte fuel cells (HT-PEMFCs) stacks in order to enhance the endurance by mitigating carbon oxidation reaction. The testing protocols are carefully designed to suit the operating cycle for the realistic application...

  9. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  10. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    Science.gov (United States)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  11. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  12. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  13. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  14. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  15. METHODS OF EVALUATION AND INDICATORS OF OPTIMAL TEMPERATURE OF INTERNAL COMBUSTION ENGINES AND VEHICLES IN OPERATION

    Directory of Open Access Journals (Sweden)

    V. Volkov

    2015-12-01

    Full Text Available The results of forming methods of determination and system, as a part of the computer-integrated technology of transport operation, estimation of indecies of the optimal temperature state of the ICE and the vehicle under operation conditions, which is provided with the help of analysis of possible schemes and processes of the complex system of combined heating, using the technology of heat accumulation are described.

  16. Problems of the Starting and Operating of Hydraulic Components and Systems in Low Ambient Temperature (Part IV

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2017-09-01

    Full Text Available Designers of hydraulically driven machines and devices are obliged to ensure during design process their high service life with taking into account their operational conditions. Some of the machines may be started in low ambient temperature and even in thermal shock conditions (due to delivering hot working medium to cold components. In order to put such devices into operation appropriate investigations, including experimental ones - usually very expensive and time-consuming, are carried out. For this reason numerical calculations can be used to determine serviceability of a hydraulic component or system operating in thermal shock conditions. Application of numerical calculation methods is much less expensive in comparison to experimental ones. This paper presents a numerical calculation method which makes it possible to solve issues of heat exchange in elements of investigated hydraulic components by using finite elements method. For performing the simulations the following data are necessary: ambient temperature, oil temperature, heat transfer coefficient between oil and surfaces of elements, as well as areas of surfaces being in contact with oil. By means of computer simulation method values of clearance between cooperating elements as well as ranges of parameters of correct and incorrect operation of hydraulic components have been determined. In this paper results of computer simulation of some experimentally tested hydraulic components such as axial piston pump and proportional spool valve, are presented. The computer simulation results were compared with the experimental ones and high conformity was obtained.

  17. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Javier Burgués

    2018-01-01

    Full Text Available Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA sensors were exposed to low concentrations of carbon monoxide (0–9 ppm with environmental conditions, such as ambient humidity (15–75% relative humidity and temperature (21–27 °C, varying within the indicated ranges. Partial Least Squares (PLS models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm. Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm. The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate

  18. Impact of climate change on the operation of ski slopes in South Korea

    Science.gov (United States)

    Kim, S.; Park, J. H.; Lee, D. K.

    2017-12-01

    The purpose of this study is to predict changes in the operation of ski slopes due to climate change and offer meaningful implications that the ski industry can refer to when preparing to address climate change. All 17 ski resorts in South Korea were selected as study sites. To determine the weather and managerial conditions for the operation of ski slopes, interviews with operators and a review of past weather and operational conditions were conducted. To project future changes in the season of operation for ski slopes, future weather data for the 2030s, 2060s, and 2090s from RCP scenarios were adapted to the conditions for the operation of ski slopes.The study found that the artificial snowmaking begins when the temperature reaches -2 °C, the slope is opened 9 days after artificial snowmaking starts, and the slope is closed when the temperature reaches 0 °C. By applying future weather data to these conditions, it is estimated that the ski season will decrease in the future as follows: from around 130 days at present to around 120 days based on RCP 2.0 and RCP 6.0, around 130 days based on RCP 4.5, and 90 days based on RCP 8.5 in the areas where the average temperature of the ski season is below -2 °C; from around 120 days at present to around 120 days based on RCP 2.0 and 4.5, around 100-days based on RCP 6.0, and 60 days based on RCP 8.5 in the areas where the average temperature of the ski season is below 0 °C; from around 90 days at present to around 80 days based on RCP 2.0, around 90 days based on RCP 4.5, around 50 days based on RCP 6.0, and 10 days based on RCP 8.5 in the areas where the average temperature of the ski season is above 0 °C. In addition, it is also estimated that in the 2090s, 16 of 17 ski resorts can survive based on RCP 2.6 and RCP 4.5, 13 ski resorts can survive based on RCP 6.0, and none of the resorts can survive based on RCP 8.5, according to the 100-days rule, which is the minimum required duration of the operation of ski resorts

  19. Temperature effect on hydrocarbon deposition on molybdenum mirrors under ITER-relevant long-term plasma operation

    NARCIS (Netherlands)

    Rapp, J.; van Rooij, G. J.; Litnovsky, A.; Marot, L.; De Temmerman, G.; Westerhout, J.; Zoethout, E.

    2009-01-01

    Optical diagnostics in ITER will rely on mirrors near the plasma and the deterioration of the reflectivity is a concern. The effect of temperature on the deposition efficiency of hydrocarbons under long-term operation conditions similar to ITER was investigated in the linear plasma generator

  20. Experimental Investigation of Zinc Antimonide Thin Film Thermoelectric Element over Wide Range of Operating Conditions

    DEFF Research Database (Denmark)

    Mirhosseini, Mojtaba; Rezania, Alireza; Blichfeld, Anders B.

    2017-01-01

    flows in plane with the thin film. At first, the effect of applying different temperatures at the hot side of the specimen is investigated to reach steady state in an open circuit analysis. Then, the study focuses on performance and stability analysis of the thermoelectric element operating under......Zinc antimonide compounds are among the most efficient thermoelectric (TE) materials with exceptional low thermal conductivity at moderate temperatures up to 350 °C. This study aims to evaluate the performance of a zinc antimonide thin film TE deposited on an insulating substrate, while the heat...

  1. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  2. Influence of Temperature on AA6014 Alloy Tribological Behaviour in Stamping Operations

    International Nuclear Information System (INIS)

    Sgarabotto, F.; Ghiotti, A.; Bruschi, S.

    2011-01-01

    The evaluation of the tribological characteristics at the metal blank-tool interface during sheet metal working operations is usually carried out by accurately reproducing the mechanical and kinematical parameters occurring during the real process. The high rate production characterizing the industrial processes can induce significant temperature increase in both the blank and the dies during deformation. With respect to this aspect, among the other process conditions, an accurate tribological characterization should take into account the influence of the temperature variations at the blank and the dies. In the present paper, a novel apparatus to investigate the tribological conditions during sheet metal working processes is presented. In addition to the control of mechanical (i.e. normal pressure) and kinematic parameters (i.e. sliding speed, sliding length), the developed testing machine permits to reproduce the thermal fields and monitor the thermal conditions of the sheet and tool materials. Experiments were carried out on aluminium alloy sheets between 20 deg. and 200thinsp; deg. C by using both coated and uncoated dies. It is proved that the temperature influences the tribological behaviour, especially when coated dies are utilized.

  3. Occupant Responses and Office Work Performance in Environments with Moderately Drifting Operative Temperatures (RP-1269)

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2009-01-01

    of 21.4°C (70.5°F) (for 6 h) were examined. Subjects assessed their thermal sensation, acceptability of the thermal environment, perceived air quality, and intensity of sick building syndrome (SBS) symptoms. Subjects’ performance was measured by simulated office work, including tasks such as addition...... found, while intensity of headache, concentration ability, and general well-being were significantly affected in most of the ramps. Linear dependence of perceived air quality on operative temperature was noted. No significantly consistent effects of individual temperature ramps on office work...... performance were found....

  4. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  5. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  6. Can eHealth tools enable health organizations to reach their target audience?

    Science.gov (United States)

    Zbib, Ahmad; Hodgson, Corinne; Calderwood, Sarah

    2011-01-01

    Data from the health risk assessment operated by the Heart and Stroke Foundation found users were more likely to be female; married; have completed post secondary education; and report hypertension, stroke, or being overweight or obese. In developing and operating eHealth tools for health promotion, organizations should compare users to their target population(s). eHealth tools may not be optimal for reaching some higher-risk sub-groups, and a range of social marketing approaches may be required.

  7. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1ère Avenue, Val d' Or, Quebec J9P 1Y3 (Canada); Kroeger, J. [NanoIntegris & Raymor Nanotech, Raymor Industries Inc., 3765 La Vérendrye, Boisbriand, Quebec J7H 1R8 (Canada); Haddad, T. [Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0B8 (Canada); Rosei, F. [Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada)

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  8. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    Science.gov (United States)

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  9. An Overview of Corrosion Issues for the Design and Operation of High-Temperature Lead- and Lead-Bismuth-Cooled Reactor Systems

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.; Lim, Jeongyoun

    2004-01-01

    The viability of advanced Pb- or Pb-Bi-cooled fast reactor systems will depend on the development of classes of materials that can operate over the temperature range 650-1200 deg. C. We briefly review the current state of the technology concerning the interaction of Pb and Pb-Bi alloys with structural materials. We then identify the key challenges to successful use of materials in these systems and suggest a path forward to the development of new materials and operating methods to allow higher-temperature operation. Our focus is on the necessary trade-offs that must be considered and how these trade-offs influence R and D choices. Our analysis suggests that three classes of materials will be needed for successful deployment of a lead-alloy-cooled reactor system. A lower-temperature qualified material will be necessary for the pressure boundary. The structural and cladding materials will require 1000 deg. C- and 1200 deg. C-class materials. The 1000 deg. C-class material will be exposed to the 1000 deg. C coolant. The 1200 deg. C-class material will be required for the cladding and structural materials in the core region. The higher-temperature material will be required to accommodate anticipated temperature transients from potential accident scenarios, such as a loss of flow

  10. The German REACH Congress 2016: a workshop report.

    Science.gov (United States)

    Reihlen, Antonia; Jepsen, Dirk; Broschinski, Lutz; Luch, Andreas; Schulte, Agnes

    2018-03-01

    In October 2016, the German REACH Congress was held at the German Federal Institute for Risk Assessment (BfR) in Berlin. Here, the associated improvement made in the fields of consumer protection and the progress in and experiences gained from the implementation of the authorisation procedure were discussed. Several speakers from EU institutions, German authorities, industry, and civil society organisations were invited to present their views. There was a shared consensus that REACH contributes to the advancement of consumer protection against chemical risks, mainly because more and higher quality information on substance-related hazards and potential exposures becomes available. In addition, risk management measures, particularly regarding restrictions on uses, scale down consumer exposures to chemicals. Opportunities for improvements identified at the congress include the quality of registration dossiers and the management of and communication on substances of very high concern (SVHC) that may be present in consumer articles. Although regarded as being in an early implementation phase, the authorisation process was generally found to be operational and progressing well. Criticism was expressed with regard to the consistency of authorisation decisions and the costs and uncertainties related to authorisation applications. Consumer protection legislation consists of several legal provisions which are interlinked. The congress participants agreed that REACH is an important element of this legal framework as it enhances and complements other legal provisions.

  11. Hydrogen production by high temperature electrolysis of water vapour and nuclear reactors

    International Nuclear Information System (INIS)

    Jean-Pierre Py; Alain Capitaine

    2006-01-01

    This paper presents hydrogen production by a nuclear reactor (High Temperature Reactor, HTR or Pressurized Water Reactor, PWR) coupled to a High Temperature Electrolyser (HTE) plant. With respect to the coupling of a HTR with a HTE plant, EDF and AREVA NP had previously selected a combined cycle HTR scheme to convert the reactor heat into electricity. In that case, the steam required for the electrolyser plant is provided either directly from the steam turbine cycle or from a heat exchanger connected with such cycle. Hydrogen efficiency production is valued using high temperature electrolysis. Electrolysis production of hydrogen can be performed with significantly higher thermal efficiencies by operating in the steam phase than in the water phase. The electrolysis performance is assessed with solid oxide and solid proton electrolysis cells. The efficiency from the three operating conditions (endo-thermal, auto-thermal and thermo-neutral) of a high temperature electrolysis process is evaluated. The technical difficulties to use the gases enthalpy to heat the water are analyzed, taking into account efficiency and technological challenges. EDF and AREVA NP have performed an analysis to select an optimized process giving consideration to plant efficiency, plant operation, investment and production costs. The paper provides pathways and identifies R and D actions to reach hydrogen production costs competitive with those of other hydrogen production processes. (authors)

  12. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  13. The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems

    Science.gov (United States)

    Martyniuk, Piotr; Gawron, Waldemar; Mikołajczyk, Janusz

    2017-10-01

    There are many room temperature applications to include free space optics (FSO) communication system combining quantum cascade lasers sources where HgCdTe long-wave (8-12 micrometer) infrared radiation (LWIR) detector reaching ultrafast response time 109 cmHz1/2/W. Since commercially available FSO could operate separately in SWIR, MWIR and LWIR range - the dual band detectors should be implemented into FSO. This paper shows theoretical performance of the dual band back-to-back MWIR and LWIR HgCdTe detector operating at 300 K pointing out the MWIR active layer influence on LWIR operating regime.

  14. When Does the Warmest Water Reach Greenland?

    Science.gov (United States)

    Grist, J. P.; Josey, S. A.; Boehme, L.; Meredith, M. P.; Laidre, K. L.; Heide-Jørgensen, M. P.; Kovacs, K. M.; Lydersen, C.; Davidson, F. J. M.; Stenson, G. B.; Hammill, M. O.; Marsh, R.; Coward, A.

    2016-02-01

    The warmest water reaching the east and west coast of Greenland is found between 200 and 600 m, in the warm Atlantic Water Layer (WL). Temperature changes within the WL have been highlighted as a possible cause of accelerated melting of tidewater glaciers and therefore are an important consideration for understanding global sea level rise. However, a limited number of winter observations of the WL have prohibited determining its seasonal variability. To address this, temperature data from Argo profiling floats, a range of sources within the World Ocean Database, and unprecedented coverage from marine-mammal borne sensors have been analyzed for the period 2002-2011. A significant seasonal range in temperature ( 1-2°C) is found in the warm layer, in contrast to most of the surrounding ocean. The magnitude of the seasonal cycle is thus comparable with the 1990s warming that was associated with an increased melt rate in a marine terminating glacier of West Greenland. The phase of the seasonal cycle exhibits considerable spatial variability; with high-resolution ocean model trajectory analysis suggesting it is determined by the time taken for waters to be advected from the subduction site in the Irminger Basin. For western Greenland, the annual temperature maximum occurs near or after the turn of the calendar year. This is significant because a recent study suggested that it is in the non-summer months when fjord-shelf exchanges allow the WL to most strongly influence glacier melt rate. However this is also the time of the year when the WL is least well observed. It is therefore clear that year-round subsurface temperature measurements are still required for a complete description of the WL seasonality, and in particular to ensure that the ice-melting potential of the WL is not underestimated.

  15. ALMA Telescope Reaches New Heights

    Science.gov (United States)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory took another step forward and upward, as one of its state-of-the-art antennas was carried for the first time to Chile's 16,500-foot-high plateau of Chajnantor on the back of a giant, custom-built transporter. The 40-foot-diameter antenna, weighing about 100 tons, was moved to ALMA's high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for observing the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only about half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 9,500-foot altitude of the ALMA Operations Support Facility (OSF). It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "The successful transport of the first ALMA Antenna to the high site marks the start of the next phase of the project. Now that we are starting to move the ALMA antennas to the high site, the real work begins and the exciting part is just beginning," said Adrian Russell, North American ALMA Project Manager. The antenna's trip began when one of the two ALMA transporters lifted the antenna onto its back, carrying its heavy load along the 17-mile road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 8 miles per hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas use state-of-the-art technology, and are the most advanced submillimeter-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site, to survive strong winds and extreme temperatures, to point precisely enough that they could pick out a golf

  16. An automated thermal relaxation calorimeter for operation at low temperature (0.5K

    International Nuclear Information System (INIS)

    Banerjee, S.; Prins, M.W.J.; Rajeev, K.P.; Raychaudhuri, A.K.

    1992-01-01

    An automated calorimeter for measurement of specific heat in the temperature range 10K>T>0.5K. It uses sample of moderate size (100-1000 mg), has a moderate precision and accuracy (2%-5%) is easy to operate and the measurements can be done quickly with 3 He economy is described. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature. (author). 12 refs., 11 figs

  17. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  18. Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

    International Nuclear Information System (INIS)

    Stork, J.M.C.; Harame, D.L.; Meyerson, B.S.; Nguyen, T.N.

    1989-01-01

    The base profile requirements of Si bipolar junction transistors (BJT's) high-performance operation at liquid-nitrogen temperature are examined. Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 Κ, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10 19 cm -3 , the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 Κ. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured dc characteristics, circuit delay calculations are made to estimate the performance of an ECL ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10 19 cm -3 while keeping the base thickness constant, the minimum delay at liquid nitrogen can approach the delay of optimized devices at room temperature

  19. EDF - 2015 full-year results: all targets reached, Strong operating performance in adverse market conditions, 2018 ambition reiterated

    International Nuclear Information System (INIS)

    2016-01-01

    A key player in energy transition, the EDF Group is an integrated electricity company, active in all areas of the business: generation, transmission, distribution, energy supply and trading, energy services. A global leader in low-carbon energies, the Group has developed a diversified generation mix based on nuclear power, hydropower, new renewable energies and thermal energy. The Group is involved in supplying energy and services to approximately 37.6 million customers, of which 27.8 million in France. The Group generated consolidated sales of Euro 75 billion in 2015, of which 47.2% outside of France. EDF is listed on the Paris Stock exchange. EDF achieved all its targets in 2015. The year was marked by strong operational performance, reflecting the significant efforts the teams made. With the end of the regulated Yellow and Green Tariffs, most clients turned to EDF. Nuclear output reached its highest level, since 2011 in France, and since 2005 in the United Kingdom. EDF is also continuing its significant development in renewable energy, with an additional 1 GW of net installed capacity. The transformation of EDF Group is essential in the unfavourable market conditions. EDF has embarked on this transformation, and is accelerating innovation to serve the energy transition

  20. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  1. Second RPA dynamics at finite temperature: time-evolutions of dynamical operators

    International Nuclear Information System (INIS)

    Jang, S.

    1989-01-01

    Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation

  2. Control issues related to bilateral teleoperation of long-reach, flexible manipulators

    International Nuclear Information System (INIS)

    Love, L.J.

    1997-01-01

    A challenging problem presently being addressed by the Department of Energy (DOE) is the extraction of large volumes of hazardous waste from underground waste storage facilities. The nature of the material requires the use of robotic and teleoperated systems. Furthermore, the constraints of the storage tanks require the use of long reach manipulators. These robots are characterized by their large workspace and reduced mass. Unfortunately, this reduction in mass increases structural compliance, making these robots susceptible to vibration. Until recently, no attempt has been made to provide the operator any type of force reflection due to the compliance of the slave robot. This paper addresses the control of bilateral teleoperation systems that use long-reach, flexible manipulators. Analysis and experiments show that the compliance of the slave robot directly affects the stability of the teleoperation system. This study suggests that this may be controlled by increasing the damping on the master robot. However, this increase in target damping increases the energy an operator must exert during the execution of a task. A new teleoperation strategy adapts the target impedance of the master robot to variations in the identified impedance of the remote environment coupled to the slave robot. Experiments show increased performance due to a decrease in the energy the operator must provide during task execution

  3. Olefins and chemical regulation in Europe: REACH.

    Science.gov (United States)

    Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus

    2015-11-05

    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for

  4. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  5. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  6. Ion Exchange Temperature Testing with SRF Resin - 12088

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  7. Operationalizing safe operating space for regional social-ecological systems.

    Science.gov (United States)

    Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako

    2017-04-15

    This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however

  9. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  10. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  11. Noise and optimum filtering in spectrometers with semiconductor detectors operating at elevated temperature

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1983-01-01

    The importance of the excess noise in the semiconductor detectors operating at the elevated temperature is discussed. Under the assumption of a conventional CR-RC type filtration the variancy of the noise output is determined. The new term ''second noise-corner time constant'' was proposed. The expression for relative signal-to-noise ratio as the dependence on the noise as well as circuits time constants was derived. It was also presented in a graphical form. 12 refs., 6 figs. (author)

  12. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  13. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  14. Complex hydro- and sediment dynamics survey of two critical reaches on the Hungarian part of river Danube

    International Nuclear Information System (INIS)

    Baranya, Sandor; Jozsa, Janos; Goda, Laszlo; Rakoczi, Laszlo

    2008-01-01

    Detailed hydrodynamic survey of two critical river reaches has been performed from hydro- and sediment dynamics points of view, in order to explore the main features, moreover, provide calibration and verification data to related 3D flow and sediment transport modelling. Special attention has been paid to compare moving and fix boat measurement modes for estimating various flow and large-scale bed form features, resulting in recommendations e.g. on the time period needed in stationary mode operation to obtain sufficiently stabilized average velocity profiles and related parameter estimations. As to the study reaches, the first comprises a 5 km long sandy-gravel bed reach of river Danube located in Central-Hungary, presenting problems for navigation. As a conventional remedy, groyne fields have been implemented to make and maintain the reach sufficiently deep, navigable even in low flow periods. As is usually the case, these works resulted in rather complex flow characteristics and related bed topography at places. The second site is another 5 km long reach of river Danube, close to the southern border to Serbia. There the river presents navigational problems similar to the previously mentioned reach, however, having entirely sand bed conditions, abundant in a variety of dunes, especially in the shallower parts. In both study reaches ADCP measurements were done with around 2.5 Hz sampling frequency both in moving boat operation mode providing overall, though locally moderately representative picture, and in fixed boat mode at a considerable number of selected verticals with 10 minutes long measuring time.

  15. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    Science.gov (United States)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office

  16. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  17. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    OpenAIRE

    Caroline Schultealbert; Tobias Baur; Andreas Schütze; Tilman Sauerwald

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can ...

  18. Functional reach and lateral reach tests adapted for aquatic physical therapy

    Directory of Open Access Journals (Sweden)

    Ana Angélica Ribeiro de Lima

    Full Text Available Abstract Introduction: Functional reach (FR and lateral reach (LR tests are widely used in scientific research and clinical practice. Assessment tools are useful in assessing subjects with greater accuracy and are usually adapted according to the limitations of each condition. Objective: To adapt FR and LR tests for use in an aquatic environment and assess the performance of healthy young adults. Methods: We collected anthropometric data and information on whether the participant exercised regularly or not. The FR and LR tests were adapted for use in an aquatic environment and administered to 47 healthy subjects aged 20-30 years. Each test was repeated three times. Results: Forty-one females and six males were assessed. The mean FR test score for men was 24.06 cm, whereas the mean value for right lateral reach (RLR was 10.94 cm and for left lateral reach (LLR was 9.78 cm. For females, the mean FR score was 17.57 cm, while the mean values for RLR was 8.84cm and for LLR was 7.76 cm. Men performed better in the FR (p < 0.001 and RLR tests than women (p = 0.037. Individuals who exercised regularly showed no differences in performance level when compared with their counterparts. Conclusion: The FR and LR tests were adapted for use in an aquatic environment. Males performed better on the FR and RLR tests, when compared to females. There was no correlation between the FR and LR tests and weight, height, Body Mass Index (BMI, foot length or length of the dominant upper limb.

  19. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    Science.gov (United States)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  20. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    Science.gov (United States)

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  1. Plant operation state monitoring system

    International Nuclear Information System (INIS)

    Sakai, Masanori; Babuchi, Katsumi; Arato, Toshiaki

    1994-01-01

    The system of the present invention accurately monitors a plant operation state of a plant, such as a nuclear power plant and a thermal power plant by using high temperature water, based on water quality informations. That is, water quality informations for the objective portion by using an electrochemical water quality sensor disposed in the objective portion to be monitored in the plant are continuously extracted for a predetermined period of time. Water quality is evaluated based on the extracted information. Obtained results for water quality evaluation and predetermined reference values of the plant operation handling are compared. Necessary part among the results of the measurement is displayed or recorded. The predetermined period of time described above is a period that the water quality information reaches at least a predetermined value or a period that the predetermined value is estimated by the water quality information, and it is defined as a period capable of measuring the information for three months continuously. The measurement is preferably conducted continuously in a period up to each periodical inspection on about every one year. (I.S.)

  2. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  3. CdHgTe heterostructures for new-generation IR photodetectors operating at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Varavin, V. S.; Vasilyev, V. V.; Guzev, A. A.; Dvoretsky, S. A.; Kovchavtsev, A. P.; Marin, D. V.; Sabinina, I. V.; Sidorov, Yu. G.; Sidorov, G. Yu.; Tsarenko, A. V.; Yakushev, M. V., E-mail: yakushev@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2016-12-15

    The parameters of multilayer Cd{sub x}Hg{sub 1–x}Te heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p{sup +}–n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 10{sup 15} cm{sup –3}. The temperature dependences of the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n{sup +}–p-type diodes.

  4. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  5. Radionuclide concentrations in white sturgeons from the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Dauble, D.D.; Poston, T.M.

    1994-01-01

    We summarized radionuclide concentrations in white sturgeons Acipenser transmontanus from the Columbia River during a period when several plutonium-production reactors were operating at the Hanford Site in Washington State and compared these values to those measured several years after reactor shutdown. Studies conducted in the Hanford Reach of the Columbia River during 1953-1955 indicated that high concentrations of radionuclides (as total beta) were present in some internal organs on the external surface of white sturgeons. Average concentrations were about 1,480 Bq/kg for liver and kidney and exceeded 2,200 Bq/kg for fins and scutes. The principal radionuclides in the tissues of white sturgeons from the Hanford Reach during 1963-1967, the peak reactor operation interval, were 32 P, 65 Zn, and 51 Cr. Average concentrations of 32 P in muscle ranged from 925 to 2,109 Bq/kg and were typically two to seven times greater than 65 Zn. Average concentrations of radionuclides were usually in the order of gut contents much-gt carcass > muscle. Studies from 1989 to 1990 showed that radionuclide concentrations had decreased dramatically in white sturgeon tissue since the time of reactor operation. Maximum concentrations for artificial radionuclides ( 90 Sr, 60 Co, 137 Cs) in muscle and cartilage of white sturgeons in the Columbia River had declined to less than 4 Bq/kg. Formerly abundant radionuclides, including 32 P, 65 Zn, and 51 Cr, could not be detected in recent tissue samples. Further, radionuclide tissue burden in populations of sturgeons from the Hanford Reach and the upstream or downstream reference locations did not differ significantly. 34 refs., 3 figs., 4 tabs

  6. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    Science.gov (United States)

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  7. Durability of bends in high-temperature steam lines under the conditions of long-term operation

    Science.gov (United States)

    Katanakha, N. A.; Semenov, A. S.; Getsov, L. B.

    2015-04-01

    The article presents the results of stress-strain state computations and durability of bent and steeply curved branches of high-temperature steam lines carried out on the basis of the finite element method using the modified Soderberg formula for describing unsteady creep processes with taking the accumulation of damage into account. The computations were carried out for bends made of steel grades that are most widely used for manufacturing steam lines (12Kh1MF, 15Kh1M1F, and 10Kh9MFB) and operating at different levels of inner pressure and temperature. The solutions obtained using the developed creep model are compared with those obtained using the models widely used in practice.

  8. Operation of ADITYA Thomson scattering system: measurement of temperature and density

    International Nuclear Information System (INIS)

    Thomas, Jinto; Pillai, Vishal; Singh, Neha; Patel, Kiran; Lingeshwari, G.; Hingrajiya, Zalak; Kumar, Ajai

    2015-01-01

    ADITYA Thomson scattering (TS) system is a single point measurement system operated using a 10 J ruby laser and a 1 meter grating spectrometer. Multi-slit optical fibers are arranged at the image plane of the spectrometer so that each fiber slit collects 2 nm band of scattered spectrum. Each slit of the fiber bundle is coupled to high gain Photomultiplier tubes (PMT). Standard white light source is used to calibrate the optical fiber transmission and the laser light itself is used to calibrate the relative gain of the PMT. Rayleigh scattering has been performed for the absolute calibration of the TS system. The temperature of ADITYA plasma has been calculated using the conventional method of estimation (calculated using the slope of logarithmic intensity vs the square of delta lambda). It has been observed that the core temperature of ADITYA Tokamak plasma is in the range of 300 to 600 eV for different plasma shots and the density 2-3 X 10 13 /cc. The time evolution of the plasma discharge has been studied by firing the laser at different times of the discharge assuming the shots are identical. In some of the discharges, the velocity distribution appears to be non Maxwellian. (author)

  9. Simulation of Columbia River Floods in the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Serkowski, John A.; Perkins, William A.; Richmond, Marshall C.

    2017-01-30

    Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in the Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for

  10. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  11. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  12. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  13. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    Science.gov (United States)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  14. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    Energy Technology Data Exchange (ETDEWEB)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Instrumentation System and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Jalan Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java (Indonesia)

    2016-03-11

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  15. An investigation of the neural circuits underlying reaching and reach-to-grasp movements: from planning to execution.

    Directory of Open Access Journals (Sweden)

    Chiara eBegliomini

    2014-09-01

    Full Text Available Experimental evidence suggests the existence of a sophisticated brain circuit specifically dedicated to reach-to-grasp planning and execution, both in human and non human primates (Castiello, 2005. Studies accomplished by means of neuroimaging techniques suggest the hypothesis of a dichotomy between a reach-to-grasp circuit, involving the intraparietal area (AIP, the dorsal and ventral premotor cortices (PMd and PMv - Castiello and Begliomini, 2008; Filimon, 2010 and a reaching circuit involving the medial intraparietal area (mIP and the Superior Parieto-Occipital Cortex (SPOC (Culham et al., 2006. However, the time course characterizing the involvement of these regions during the planning and execution of these two types of movements has yet to be delineated. A functional magnetic resonance imaging (fMRI study has been conducted, including reach-to grasp and reaching only movements, performed towards either a small or a large stimulus, and Finite Impulse Response model (FIR - Henson, 2003 was adopted to monitor activation patterns from stimulus onset for a time window of 10 seconds duration. Data analysis focused on brain regions belonging either to the reaching or to the grasping network, as suggested by Castiello & Begliomini (2008.Results suggest that reaching and grasping movements planning and execution might share a common brain network, providing further confirmation to the idea that the neural underpinnings of reaching and grasping may overlap in both spatial and temporal terms (Verhagen et al., 2013.

  16. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

    Directory of Open Access Journals (Sweden)

    Dan Sui

    2018-04-01

    Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

  17. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  18. Apparatus Would Measure Temperatures Of Ball Bearings

    Science.gov (United States)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  19. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  20. An online Vce measurement and temperature estimation method for high power IGBT module in normal PWM operation

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    An on-state collector-emitter voltage (Vce) measurement and thereby an estimation of average temperature in space for high power IGBT module is presented while power converter is in operation. The proposed measurement circuit is able to measure both high and low side IGBT and anti parallel diode...

  1. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  2. A model for the operation of helium-filled proportional counter at low temperatures near 4.2 K

    International Nuclear Information System (INIS)

    Masaoka, Sei; Katano, Rintaro; Kishimoto, Shunji; Isozumi, Yasuhito

    2000-01-01

    In order to understand the operation of helium-filled proportional counter (HFPC) from the standpoint of fundamental atomic and molecular processes, we have surveyed previous works on collision processes in discharged helium gas. By analyzing gas gain curve, after-pulses and discharge current experimentally observed at 4.2 K, the electron avalanche and the secondary electron emission from cathode have been related to the collision processes in helium. A simplified model for the HFPC operation at low temperatures near 4.2 K has been constructed with the related processes

  3. REACH: impact on the US cosmetics industry?

    Science.gov (United States)

    Pouillot, Anne; Polla, Barbara; Polla, Ada

    2009-03-01

    The Registration, Evaluation, Authorization and restriction of Chemicals (REACH) is a recent European regulation on chemical substances meant to protect human health and the environment. REACH imposes the "precautionary principle" where additional data and definitive action are required when uncertainty is identified. The cosmetics industry is only partially concerned by REACH: while the stages of registration and evaluation apply to cosmetics, those of authorization and restriction most likely will not, as cosmetic ingredients are already subject to regulation by various agencies and directives. REACH has potential benefits to the industry including the possibility of reassuring consumers and improving their image of chemicals and cosmetics. However, REACH also has potential disadvantages, mainly with regard to impeding innovation. The American cosmetics industry will be affected by REACH, because all US manufacturers who export substances to Europe will have to fully comply with REACH.

  4. Optical fiber reach extended FMCW radar for remote respiratory tracking

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2017-01-01

    Wireless monitoring of human vital signs such as breathing rate is a nonintrusive alternative to contemporary solutions relying on physical contact. To ease the installment, fiber optical transmission is used to extend the reach from the transmitter and receiver circuitry to the antenna subsystem....... In this paper, a frequency modulated carrier wave radar, operating at 25.7–26.6 GHz and utilizing optical fiber extension, was experimentally demonstrated to accurately recover the breathing rate of a human placed 1 m away from the radar antennas....

  5. Data on test results of vessel cooling system of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Saikusa, Akio; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2003-02-01

    High Temperature Engineering Test Reactor (HTTR) is the first graphite-moderated helium gas cooled reactor in Japan. The rise-to-power test of the HTTR started on September 28, 1999 and thermal power of the HTTR reached its full power of 30 MW on December 7, 2001. Vessel Cooling System (VCS) of the HTTR is the first Reactor Cavity Cooling System (RCCS) applied for High Temperature Gas Cooled Reactors. The VCS cools the core indirectly through the reactor pressure vessel to keep core integrity during the loss of core flow accidents such as depressurization accident. Minimum heat removal of the VCS to satisfy its safety requirement is 0.3MW at 30 MW power operation. Through the performance test of the VCS in the rise-to-power test of the HTTR, it was confirmed that the VCS heat removal at 30 MW power operation was higher than 0.3 MW. This paper shows outline of the VCS and test results on the VCS performance. (author)

  6. Study of operational parameters on the performance of micro PEMFCs with different flow fields

    International Nuclear Information System (INIS)

    Hsieh, S.-S.; Yang, S.-H.; Kuo, J.-K.; Huang, C.-F.; Tsai, H.-H.

    2006-01-01

    The effects of different operating parameters on micro PEMFC performances were experimentally studied for three different flow field configurations (interdigitated, mesh, and serpentine). Experiments with different cell operating temperatures and different backpressures on the H 2 flow channels, as well as various combinations of these parameters, have been conducted for three different flow geometries. The micro PEMFCs were designed and fabricated inhouse through a deep UV lithography technique and the SU-8 photoresist was used as microstructure material for the fuel cell flow field plates. Results are presented in the form of polarization VI curves and PI curves under different operating conditions. The possible transport mechanisms associated with the parametric effects were discussed. In addition, it was found that among the three flow patterns considered, significant improvements can be reached with a specified flow geometry

  7. Low-temperature operating regime of the tokamak evacuating limiter

    International Nuclear Information System (INIS)

    Tokar', M.Z.

    1987-01-01

    The conditions for realizing the regime of strong recycling of a cold dense plasma of an evacuating limiter were determined based on a previously proposed model for describing the limiter layer of a tokamak. The scaling for the dependence of the gas pressure in the evacuation system on the average plasma density in the limiter layer was found, and agreed quantitatively with the results of measurements on the Alcator and ISX-B tokamaks. For the tokamak reactor of the INTOR scale the calculations show that the low-temperature operating regime of the evacuating limiter can be realized with a quite low pumping rate. It has the advantages of reduced erosion of the limiter and small fluxes of impurities into the working volume of the reactor. In addition, the relative concentration of the helium ash in the limiter layer does not exceed 2-3%, but the density of the main plasma is comparable to the proposed average density in the reactor. The concept of a stochastic limiter is of interest for lowering the plasma density in the limiter layer and lowering the thermal loads on the limiter

  8. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  9. Regarding the perturbed operating process of DB propellant rocket motor at extreme initial grain temperatures

    Directory of Open Access Journals (Sweden)

    Ioan ION

    2012-03-01

    Full Text Available Despite many decades of study, the combustion instability of several DB propellants is still of particular concern, especially at extreme grain temperature conditions of rocket motor operating. The purpose of the first part of the paper is to give an overview of our main experimental results on combustion instabilities and pressure oscillations in DB propellant segmented grain rocket motors (SPRM-01, large L/D ratio, working at extreme initial grain temperatures. Thus, we recorded some particular pressure-time traces with significant perturbed pressure signal that was FFT analysed. An updated mathematical model incorporating transient frequency-dependent combustion response, in conjunction with pressure-dependent burning, is applied to investigate and predict the DB propellant combustion instability phenomenon. The susceptibility of the tested motor SPRM-01 with DB propellant to get a perturbed working and to go unstable with pressure was evidenced and this risk has to be evaluated. In the last part of our paper we evaluated the influence of recorded perturbed thrust on the rocket behaviour on the trajectory. The study revealed that at firing-table initial conditions, this kind of perturbed motor operating may not lead to an unstable rocket flight, but the ballistic parameters would be influenced in an unacceptable manner.

  10. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  11. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  12. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  13. Using the ferroelectric/ferroelastic effect at cryogenic temperatures for set-and-hold actuation

    Science.gov (United States)

    Steeves, J. B.; Golinveaux, F. S.; Lynch, C. S.

    2018-06-01

    The ferroelectric and ferroelastic properties of lead-zirconate-titanate (PZT) based stack actuators have been characterized at temperatures down to 25 K and under various levels of constant compressive stress. Experiments indicate that the coercive field and magnitude of strain at the coercive field display an inverse relationship with temperature. A factor of 5.5 increase in coercive field, and a factor of 4.3 increase in strain is observed at 25 K in comparison to the room-temperature conditions. This information was used to induce non-180° domain wall motion in the material through the application of electric fields at or near the coercive field. The change in remanent strain accompanying these effects was shown to increase in magnitude as temperature decreased, reaching values of 2000 ppm at 25 K. This behavior was also shown to be temporally stable even under compressive loads. Additionally, it was demonstrated that the material can be returned to its original strain state through a repolarizing electric field. This switchable behavior could be exploited for future set-and-hold type actuators operating at cryogenic temperatures.

  14. On the Far Bank: The Effects of Gap Crossing on Operational Reach

    Science.gov (United States)

    2015-05-25

    highway that led from the current Allied front line to the bridgehead at Arnhem. The plan called for the Guards Armoured Division to lead the charge...second in order of march to the Guards Armoured Division. Most of this capability, however, remained at the starting point of the operation at an...stave off disaster militarily, Egypt was saved by the luck and timing of superpower diplomacy, Sadat’s original goal. The Soviets worried about losing

  15. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  16. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  17. Strain rate dependent environmental cracking of ferritic steels in high temperature water

    International Nuclear Information System (INIS)

    Tice, D.R.

    1989-01-01

    Corrosion fatigue crack growth testing demonstrates that a pre-existing defect which might be inadvertently present in the wall of a thick walled component such as the main reactor pressure vessel would not grow in service under transient loading to reach a critical size which would threaten vessel integrity. Steady load stress corrosion has received renewed attention following publication of data showing that stress corrosion cracking can occur in high temperature aqueous environments. Evidence shows that stress corrosion cracking cannot occur in normal pressurized water reactor (PWR) operating conditions. Environmental cracking of ferritic steels in high temperature aqueous environments is influenced by a range of material and environmental variables, amongst the most important being dissolved oxygen (or other oxidants) in the water, water purity and the sulphur content of the steel

  18. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  19. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  20. Benchmark calculation for the steady-state temperature distribution of the HTR-10 under full-power operation

    International Nuclear Information System (INIS)

    Chen Fubing; Dong Yujie; Zheng Yanhua; Shi Lei; Zhang Zuoyi

    2009-01-01

    Within the framework of a Coordinated Research Project on Evaluation of High Temperature Gas-Cooled Reactor Performance (CRP-5) initiated by the International Atomic Energy Agency (IAEA), the calculation of steady-state temperature distribution of the 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) under its initial full power experimental operation has been defined as one of the benchmark problems. This paper gives the investigation results obtained by different countries who participate in solving this benchmark problem. The validation works of the THERMIX code used by the Institute of Nuclear and New Energy Technology (INET) are also presented. For the benchmark items defined in this CRP, various calculation results correspond well with each other and basically agree the experimental results. Discrepancies existing among various code results are preliminarily attributed to different methods, models, material properties, and so on used in the computations. Temperatures calculated by THERMIX for the measuring points in the reactor internals agree well with the experimental values. The maximum fuel center temperatures calculated by the participants are much lower than the limited value of 1,230degC. According to the comparison results of code-to-code as well as code-to-experiment, THERMIX is considered to reproduce relatively satisfactory results for the CRP-5 benchmark problem. (author)

  1. Analysis Of The Heat Exchanger Capability At One Line Cooling System Operation Mode Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto; Kuntoro, Iman

    2000-01-01

    In the frame of minimizing the operation lost of the RSG-GAS reactor, operation using one line cooling system at certain power range is being evaluated. Analysis the performance of cooling system for determining maximum power should be carried out. Analysis was carried out based on heat exchanger calculation using actual operation data. Constraints imposed to the analysis are that inlet cooling system to the reactor core shall be less than 42 o C. The result shows that by using one line of primary and secondary coolant flow of 1780 m exp. 3/hr and 2000 m 3 /hr and secondary coolant temperature from the cooling tower of 38 o C, the primary coolant to the core will be reach 42 o C if reactor operated at power of 16 MW

  2. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.

    Science.gov (United States)

    Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent

    2004-02-01

    The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of acetate at 55 degrees C was

  3. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  4. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  5. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Directory of Open Access Journals (Sweden)

    Kyle Z. Goodman

    2016-12-01

    Full Text Available Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  6. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Science.gov (United States)

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  7. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  8. Is applicable thermodynamics of negative temperature for living organisms?

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  9. Nanostructured ZrO2 Thick Film Resistors as H2-Gas Sensors Operable at Room Temperature

    Directory of Open Access Journals (Sweden)

    K. M. GARADKAR

    2009-11-01

    Full Text Available Nanostructured ZrO2 powder was synthesized by microwave assisted sol-gel method. The material was characterized by XRD and SEM techniques. X-Ray diffraction studies confirm that a combination of tetragonal and monoclinic zirconia nanoparticles is obtained by using microwave-assisted method. The nanopowder was calcined at an optimized temperature of 400 °C for 3 h. The prepared powder had crystalline size about 25 nm. Thick films of synthesized ZrO2 powder were prepared by screen printing technique. The gas sensing performances of these films for various gases were tested. Films showed highest response to H2 (50 ppm gas at room temperature with poor responses to others (1000 ppm. The quick response and fast recovery are the main features of this sensor. The effects of microstructure, operating temperature and gas concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of H2 gas and others were studied and discussed.

  10. Record reach : ExxonMobil extends its own world record

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2008-06-15

    Extended reach drilling (ERD) records are now regularly being broken by ExxonMobil Corporation's Sakhalin project on Russia's east coast. In 2008, an oil well on the coast established a new record by achieving a measured depth of 11,680 meters. The well was punched out by a Texas-based drilling company using the world's largest land-based drilling rig. The use of ERD has reduced the capital and operating costs of the project in addition to reducing its environmental impacts. ERD has been used to drill onshore beneath the seafloor and has eliminated the need for additional offshore structure and pipelines. The horizontal reach of the wells has improved productivity while also avoiding disturbing whale migrations in the region. The rig features a 1.5 million pound load capacity, 3000 horsepower draw-works. The top-drive drilling systems were used to transmit real time data to external locations for further evaluation. Oil and gas is also produced from a gravity-based offshore platform. It was concluded that longer wellbore are now being developed by the corporation in order to drill under the Beaufort Sea. 2 figs.

  11. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  12. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    Science.gov (United States)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  13. Analysis of Tendencies Towards Changes in Temperatures of Railway Vehicle Axle Boxes

    Directory of Open Access Journals (Sweden)

    Olegas Lunys

    2012-11-01

    Full Text Available The paper analyzes variations in the temperature of axle-box heating of railroad rolling stock considering two modes of the train - driving and parking position. Additionally, the article describes the influence of the axle load and season on the heat of the axle-box, forecasts intolerable residual resources and explains a possibility of detecting likely breakage at the very beginning of defects. The paper also deals with scientific literature related to axle-box heating and focuses on the conducted practical and theoretical experiments. The carried out research has established the rates of operating heating and critical heating. The application of numerical values for the algorithm of automatic control devices could help with detecting the breakdowns of the axle-box before they reach a critical state and assist in forecasting residual operating resources.

  14. Operative temperature drifts and occupant satisfaction with thermal environment in three office buildings using radiant heating/ cooling system

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2015-01-01

    , Madrid, Spain (16000 m2), TiFS, Padua, Italy (2200 m2). Continuous measurements of operative temperature were conducted at four workplaces in each building for one year. Occupants’ satisfaction was assessed by internet based questionnaire. Results showed that mostly exceeded limits were those for 4-hour...

  15. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  16. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes

    International Nuclear Information System (INIS)

    Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo

    2011-01-01

    Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.

  17. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  18. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.

    Science.gov (United States)

    Zhang, Zhiping; Zhang, Xu; Tan, Tianwei

    2014-04-01

    The capacity of lipid and carotenoid production by Rhodotorula glutinis was investigated under different irradiation conditions, temperatures and C/N ratios. The results showed that dark/low-temperature could enhance lipid content, while irradiation/high-temperature increased the yields of biomass and carotenoid. The optimum C/N ratio for production was between 80 and 100. A two-stage cultivation strategy was used for lipid and carotenoid production in a 5L fermenter. In the first stage, the maximum biomass reached 28.1g/L under irradiation/high-temperature. Then, the cultivation condition was changed to dark/low-temperature, and C/N ratio was adjusted to 90. After the second stage, the biomass, lipid content and carotenoid reached 86.2g/L, 26.7% and 4.2mg/L, respectively. More significantly, the yields of biomass and lipid were 43.1% and 11.5%, respectively. Lipids contained 79.7% 18C and 16.8% 16C fatty acids by GC analysis. HPLC quantified the main carotenoids were β-carotene (68.4%), torularhodin (21.5%) and torulene (10.1%). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Evaluating new methods for direct measurement of the moderator temperature coefficient in nuclear power plants during normal operation

    International Nuclear Information System (INIS)

    Makai, M.; Kalya, Z.; Nemes, I.; Pos, I.; Por, G.

    2007-01-01

    Moderator temperature coefficient of reactivity is not monitored during fuel cycles in WWER reactors, because it is not very easy or impossible to measure it without disturbing the normal operation. Two new methods were tested in our WWER type nuclear power plant to try methodologies, which enable to measure that important to safety parameter during the fuel cycle. One is based on small perturbances, and only small changes are requested in operation, the other is based on noise methods, which means it is without interference with reactor operation. Both method is new that aspects that they uses the plant computer data(VERONA) based signals calculated by C P ORCA diffusion code (Authors)

  20. Solid expandable systems put deepwater targets within reach

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Roca, Eduardo [Enventure Global Technology L.L.C., Houston, TX (United States). Latin America; Fristch, Jerry [Enventure Global Technology L.L.C., Houston, TX (United States)

    2008-07-01

    Enabling technologies that take drilling operations to deeper objectives have made a significant impact on the practicality of many projects, especially deep water offshore targets. Increasing vertical depth and lateral reach requires adequate hole size to attain the desired objectives of the well bore. Solid expandable technology can maintain and retain hole size to address both the physical limitations and the economic feasibility of deep water operations. With each and every casing point, the potential for adequate hole size at total depth (TD) decreases. Solid expandable open hole liners and single-diameter systems reduce and eliminate, respectively, the well bore tapering that dictates hole size at TD and subsequent completion size. Successful mitigation of this tapering, whether through the entire well bore or through select zones, enables operators to gain access to previously unreachable reserves. Solid expandable systems have proven to be reliable and effective with over 1,000 installations in a myriad of conditions and environments worldwide. To date, over 115 of those applications have been in deep water environments. The current operating envelope for solid expandable systems include the deepest installation at {approx}28,750 ft (8,763 m) and the longest at 6,867 ft (2,083 m) in water depth over 3,150 ft (960 m). This record-length application consisted of an open hole liner installed and expanded in a single run. This paper will discuss the effectiveness of solid expandable systems in deep water operations and how the technology brings value to offshore projects especially when planned into the initial design. Case histories will be used to further illustrate the features, advantages, and benefits of expandable technology. In addition, this paper will examine the state of the solid expandable technology and its continuing evolution to provide even more drilling solutions. (author)

  1. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  2. The database for reaching experiments and models.

    Directory of Open Access Journals (Sweden)

    Ben Walker

    Full Text Available Reaching is one of the central experimental paradigms in the field of motor control, and many computational models of reaching have been published. While most of these models try to explain subject data (such as movement kinematics, reaching performance, forces, etc. from only a single experiment, distinct experiments often share experimental conditions and record similar kinematics. This suggests that reaching models could be applied to (and falsified by multiple experiments. However, using multiple datasets is difficult because experimental data formats vary widely. Standardizing data formats promises to enable scientists to test model predictions against many experiments and to compare experimental results across labs. Here we report on the development of a new resource available to scientists: a database of reaching called the Database for Reaching Experiments And Models (DREAM. DREAM collects both experimental datasets and models and facilitates their comparison by standardizing formats. The DREAM project promises to be useful for experimentalists who want to understand how their data relates to models, for modelers who want to test their theories, and for educators who want to help students better understand reaching experiments, models, and data analysis.

  3. Pursuit of excellence in F/H operator performance

    International Nuclear Information System (INIS)

    Keelan, B.; Curle, B.

    1996-01-01

    Performance of any fuel handling system is heavily dependent on the performance of the system operators. Sadly, this topic often receives little attention until incidents occur. Darlington has taken a proactive approach designed to reach and maintain excellent operator performance. Expectations and Standards are generated and published. A detailed, goal-oriented, auditable training program, which includes hands-on training modules, ensures operators reach the standards before qualifications are granted. Refresher courses maintain current skills. A depersonalized, computerized reporting system ensures training and standards are updated to match current situations. (author). 1 fig

  4. Pursuit of excellence in F/H operator performance

    Energy Technology Data Exchange (ETDEWEB)

    Keelan, B; Curle, B [Ontario Hydro, Bowmanville (Canada). Darlington Nuclear Generating Station

    1997-12-31

    Performance of any fuel handling system is heavily dependent on the performance of the system operators. Sadly, this topic often receives little attention until incidents occur. Darlington has taken a proactive approach designed to reach and maintain excellent operator performance. Expectations and Standards are generated and published. A detailed, goal-oriented, auditable training program, which includes hands-on training modules, ensures operators reach the standards before qualifications are granted. Refresher courses maintain current skills. A depersonalized, computerized reporting system ensures training and standards are updated to match current situations. (author). 1 fig.

  5. Reach and get capability in a computing environment

    Science.gov (United States)

    Bouchard, Ann M [Albuquerque, NM; Osbourn, Gordon C [Albuquerque, NM

    2012-06-05

    A reach and get technique includes invoking a reach command from a reach location within a computing environment. A user can then navigate to an object within the computing environment and invoke a get command on the object. In response to invoking the get command, the computing environment is automatically navigated back to the reach location and the object copied into the reach location.

  6. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    Science.gov (United States)

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The simulation of stationary and non-stationary regime operation of heavy water production facilities

    International Nuclear Information System (INIS)

    Peculea, M.; Beca, T.; Constantinescu, D.M.; Dumitrescu, M.; Dimulescu, A.; Isbasescu, G.; Stefanescu, I.; Mihai, M.; Dogaru, C.; Marinescu, M.; Olariu, S.; Constantin, T.; Necula, A.

    1995-01-01

    This paper refers to testing procedures of the production capacity of heavy water production pilot, industrial scale plants and of heavy water reconcentration facilities. Simulation codes taking into account the mass and heat transfers inside the exchange columns were developed. These codes provided valuable insight about the isotope build-up of the installation which allowed estimating the time of reaching the stationary regime. Also transient regimes following perturbations in the operating parameters (i.e. temperature, pressure, fluid rates) of the installation were simulated and an optimal rate of routine inspections and adjustments was thus established

  8. Context Matters: Team and Organizational Factors Associated with Reach of Evidence-Based Psychotherapies for PTSD in the Veterans Health Administration.

    Science.gov (United States)

    Sayer, Nina A; Rosen, Craig S; Bernardy, Nancy C; Cook, Joan M; Orazem, Robert J; Chard, Kathleen M; Mohr, David C; Kehle-Forbes, Shannon M; Eftekhari, Afsoon; Crowley, Jill; Ruzek, Josef I; Smith, Brandy N; Schnurr, Paula P

    2017-11-01

    Evidence-based psychotherapies for PTSD are often underused. The objective of this mixed-method study was to identify organizational and clinic factors that promote high levels of reach of evidence-based psychotherapies for PTSD 10 years into their dissemination throughout the Veterans Health Administration. We conducted 96 individual interviews with staff from ten outpatient PTSD teams at nine sites that differed in reach of evidence-based psychotherapies for PTSD. Major themes associated with reach included clinic mission, clinic leader and staff engagement, clinic operations, staff perceptions, and the practice environment. Strategies to improve reach of evidence-based psychotherapies should attend to organizational and team-level factors.

  9. Temperature distribution in the Temelin NPP primary circuit piping

    International Nuclear Information System (INIS)

    Blaha, V.; Maca, K.; Kodl, P.; Kroj, L.

    2004-01-01

    Temperature non-homogeneity in the VVER 1000 reactor primary piping hot legs was detected during the commissioning of Temelin units 1 and 2. A quantification of temperature differences was carried out and explanation of its causes was presented. Mathematical analysis of the effect was carried out using the PHOENICS 3.4 code, and the results were processed graphically by means of a post processor PHOTON and by means of a user program allowing statistic evaluation of temperature profiles at the core outlet and in the area of the temperature-measurement pits. The coolant temperatures in the core area increased gradually following the given radial and axial distribution of output from the inlet temperature of 288.1 degC to 315-331 degC at the core outlet. The temperature profile was balanced and in the IO piping in the area of temperature-measurement pits the difference of the maximum and minimum temperature value was approx. 1 degC according to the calculation. The temperature field shape is mainly determined by the radial distribution of the core output. The mean outlet temperature from the core weighted through mass flow is determined by the flow through the core and by the total output. The calculated temperature span at the core outlet in the range of 315 - 331 degC corresponded well with the measured values during the operation. The values were in the range of 310-333 degC, however, the in-core thermocouple inaccuracy should also be taken into consideration. On the other hand, the temperature span in the area of temperature-measurement pits was actually about 4 times higher than the calculated temperature (observed: 4 degC as against the calculated 1 degC). A good agreement was reached between the analysis results and the actual condition of the nuclear unit in the area of the core outlet. (P.A.)

  10. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  11. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Li He

    2018-03-01

    Full Text Available The sediment regime in the Jingjiang river reach of the middle Yangtze River has been significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three Gorges Dam (TGD. Vertical profiles of suspended sediment concentration (SSC and sediment flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively. However, the connection between the vertical concentration profiles and the hydrologic conditions of the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli are collected. Analyses show that the near-bed concentration (within 10% of water depth from the riverbed may reach up to 15 times that of the vertical average concentration. By comparing the fractions of the suspended sediment and bed material before and after TGD operation, the geomorphic condition under which the distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed. In total, remarkable large near-bed concentrations may respond to the combination of wide grading suspended particles and bed material. Finally, several future challenges caused by the anomalous vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed measurements or new measuring technologies may help us to provide accurate measurements, while a fractional dispersion equation may help us in describing. The present study aims to gain new insights into regime change of sediment suspension in the river reaches downstream of a very large reservoir.

  12. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  13. Optimization of temperature differences in a utilizer in relation to the lowest sum of capital and operating cost

    International Nuclear Information System (INIS)

    Kustrin, I.; Tuma, M.

    1992-01-01

    Our environment and nature are currently overburdened with the emission of noxious substances. Steam boilers fired with coal are therefore not very popular. Wherever possible, they are being replaced by devices which are less harmful for the environment because they use different fuel. This paper discusses replacing a steam boiler with a gas turbine and an utilizer. A mathematical model for performing the optimization of capital and operating costs is presented. The model optimizes the degree of preheating of the flue gases i.e. the temperature of the entering flue gases. The smallest temperature difference (pinch point) was not estimated by the pinch technology because the presented example is relatively simple and the pinch point temperature difference was chosen according to the values reported in various literature sources. The optimization is supplemented with an analysis of the thermal and exergetical efficiencies of the utilizer under different conditions (average temperature difference between the hot gases and water or steam, exit temperature of the hot gases), which condition the choice of the type of utilizer

  14. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  15. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuh-Shiou, E-mail: ystai@cc.cma.edu.tw [Department of Civil Engineering, ROC Military Academy, Kaohsiung, Taiwan (China); Pan, Huang-Hsing; Kung, Ying-Nien [Department of Civil Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2011-07-15

    Highlights: > The stress-strain relation of reactive powder concrete after exposure to high temperatures are tested by using displacement control. > Develops regression formulae to estimate the mechanical properties of RPC. > Valuable experimental data have been obtained about RPC with various fiber contents. These data include compressive strength, peak strain and modulus of elasticity. - Abstract: This study investigates the stress-strain relation of RPC in quasi-static loading after an elevated temperature. The cylinder specimens of RPC with {phi} 50 mm x 100 mm are examined at the room temperature and after 200-800 deg. C. Experimental results indicate that the residual compressive strength of RPC after heating from 200-300 deg. C increases more than that at room temperature, but, significantly decreases when the temperature exceeds 300 deg. C. The residual peak strains of RPC also initially increase up to 400-500 deg. C, then decrease gradually beyond 500 deg. C. Meanwhile, Young's modulus diminishes with an increasing temperature. Based on the regression analysis results, this study also develops regression formulae to estimate the mechanical properties of RPC after an elevated temperature, thus providing a valuable reference for industrial applications and design.

  16. Artificial neural networks for dynamic monitoring of simulated-operating parameters of high temperature gas cooled engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak

    2003-01-01

    This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data

  17. Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

    Directory of Open Access Journals (Sweden)

    Filippo Giannazzo

    2017-01-01

    Full Text Available Molybdenum disulphide (MoS2 is currently regarded as a promising material for the next generation of electronic and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the main limiting factors for suitable device performance. Furthermore, to gain a deeper understanding of MoS2 FETs under practical operating conditions, it is necessary to investigate the temperature dependence of the main electrical parameters, such as the field effect mobility (μ and the threshold voltage (Vth. This paper reports a detailed electrical characterization of back-gated multilayer MoS2 transistors with Ni source/drain contacts at temperatures from T = 298 to 373 K, i.e., the expected range for transistor operation in circuits/systems, considering heating effects due to inefficient power dissipation. From the analysis of the transfer characteristics (ID−VG in the subthreshold regime, the Schottky barrier height (ΦB ≈ 0.18 eV associated with the Ni/MoS2 contact was evaluated. The resulting contact resistance in the on-state (electron accumulation in the channel was also determined and it was found to increase with T as RC proportional to T3.1. The contribution of RC to the extraction of μ and Vth was evaluated, showing a more than 10% underestimation of μ when the effect of RC is neglected, whereas the effect on Vth is less significant. The temperature dependence of μ and Vth was also investigated. A decrease of μ proportional to 1/Tα with α = 1.4 ± 0.3 was found, indicating scattering by optical phonons as the main limiting mechanism for mobility above room temperature. The value of Vth showed a large negative shift (about 6 V increasing the temperature from 298 to 373 K, which was explained in terms of electron

  18. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    Science.gov (United States)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  19. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  20. Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes

    International Nuclear Information System (INIS)

    He, Wei; Zhou, JinZhi; Chen, Chi; Ji, Jie

    2014-01-01

    Highlights: • Thermoelectric heating system driven by heat pipe PV/T system was built and test. • Theoretical analysis has been done and simulation results have been validated by experiments. • The energetic efficiency and exergetic efficiency in summer and winter operation mode was analyzed and compared. - Abstract: This paper presents theoretical and experimental investigations of the winter operation mode of a thermoelectric cooling and heating system driven by a heat pipe photovoltaic/thermal (PV/T) panel. And the energy and exergy analysis of this system in summer and winter operation modes are also done. The winter operation mode of this system is tested in an experimental room which temperature is controlled at 18 °C. The results indicate the average coefficient of performance (COP) of thermoelectric module of this system can be about 1.7, the electrical efficiency of the PV/T panel can reach 16.7%, and the thermal efficiency of this system can reach 23.5%. The energy and exergy analysis show the energetic efficiency of the system in summer operation mode is higher than that of it in winter operation mode, but the exergetic efficiency in summer operation mode is lower than that in winter operation mode, on the contrary

  1. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  2. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    Science.gov (United States)

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  3. Real-time well condition monitoring in extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Kucs, R.; Spoerker, H.F. [OMV Austria Exploration and Production GmbH, Gaenserndorf (Austria); Thonhauser, G. [Montanuniversitaet Leoben (Austria)

    2008-10-23

    Ever rising daily operating cost for offshore operations make the risk of running into drilling problems due to torque and drag developments in extended reach applications a growing concern. One option to reduce cost related to torque and drag problems can be to monitor torque and drag trends in real time without additional workload on the platform drilling team. To evaluate observed torque or drag trends it is necessary to automatically recognize operations and to have a 'standard value' to compare the measurements to. The presented systematic approach features both options - fully automated operations recognition and real time analysis. Trends can be discussed between rig- and shore-based teams, and decisions can be based on up to date information. Since the system is focused on visualization of real-time torque and drag trends, instead of highly complex and repeated simulations, calculation time is reduced by comparing the real-time rig data against predictions imported from a commercial drilling engineering application. The system allows reacting to emerging stuck pipe situations or developing cuttings beds long before the situations become severe enough to result in substantial lost time. The ability to compare real-time data with historical data from the same or other wells makes the system a valuable tool in supporting a learning organization. The system has been developed in a joint research initiative for field application on the development of an offshore heavy oil field in New Zealand. (orig.)

  4. Reaching the unreached.

    Science.gov (United States)

    Ariyaratne, A T

    1989-01-01

    Embodied in the child survival revolution are ideological, methodological, and organizational innovations aimed at radical change in the condition of the world's children as rapidly as possible. In countries such as Sri Lanka, child survival and health for all by the year 2000 often seem to be impossible goals, given the tumultuous socioeconomic and political conditions. In Sri Lanka, the quality of life has been eroded, not enhanced, by the importation of Western technology and managerial capitalism and the destruction of indigenous processes. The chaos and violence that have been brought into the country have made it difficult to reach the poor children, women, and refugees in rural areas with primary health care interventions. Sri Lanka's unreachable--the decision making elites--have blocked access to the unreached--the urban and rural poor. If governments are to reach the unreached, they must remove the obstacles to a people-centered, community development process. It is the people themselves, and the institutions of their creation, that can reach the children amidst them in greatest need. To achieve this task, local communities must be provided with basic human rights, the power to make decisions that affect their lives, necessary resources, and appropriate technologies. Nongovernmental organizations can play a crucial role as bridges between the unreached and the unreachable by promoting community empowerment, aiding in the formation of networks of community organizations, and establishing linkages with government programs. If the ruling elites in developing countries can be persuaded to accommodate the needs and aspirations of those who, to date, have been excluded from the development process, the child survival revolution can be a nonviolent one.

  5. Impact of the Ageing on Viscoelastic Properties of Bitumen with the Liquid Surface Active Agent at Operating Temperatures

    Science.gov (United States)

    Iwański, Marek; Cholewińska, Malgorzata; Mazurek, Grzegorz

    2017-10-01

    The paper presents the influence of the ageing on viscoelastic properties of the bitumen at road pavement operating temperatures. The ageing process of bituminous binders causes changes in physical and mechanical properties of the bitumen. This phenomenon takes place in all stages of bituminous mixtures manufacturing, namely: mixing, storage, transport, placing. Nevertheless, during the service life it occurs the increase in stiffness of asphalt binder that is caused by the physical hardening of bitumen as well as the influence of oxidation. Therefore, it is important to identify the binder properties at a high and low operating temperatures of asphalt pavement after simulation of an ageing process. In the experiment as a reference bitumen, the polymer modified bitumen PMB 45/80-65 was used. The liquid surface active agent FA (fatty amine) was used as a bitumen viscosity-reducing modifier. It was added in the amount of 0,2%, 0,4% and 0,6% by the bitumen mass. All binder properties have been determined before ageing (NEAT) and after long-term ageing simulated by the Pressure Ageing Vessel method (PAV). To determine the binder properties at high temperatures the dynamic viscosity at 60°C was tested. On the basis of test results coming from the dynamic viscosity test it was calculated the binder hardening index. The properties at a low temperature were determined by measuring the creep modulus using Bending Beam Rheometer (BBR) at four temperatures: -10°C, -16°C, -22°C and -28°C. The stiffness creep modulus “S” and parameter “m” were determined. On the basis of dynamic viscosity test it was found that the ageing process caused a slight decrease in a dynamic viscosity. The level of a hardening index considerably increased at 0.6% fatty amine content. The long-term ageing process had a minor effect on stiffening of a polymer modified bitumen with FA additive regardless of a low temperature and an amount of fatty amine content.

  6. Start-up of a sequential dry anaerobic digestion of paunch under psychrophilic and mesophilic temperatures.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Hao, Xiying

    2018-04-01

    The present laboratory study evaluated the sequential leach bed dry anaerobic digestion (DAD) of paunch under psychrophilic (22°C) and mesophilic (40°C) temperatures. Three leach bed reactors were operated under the mesophilic temperature in sequence at a solid retention time (SRT) of 40d with a new batch started 27d into the run of the previous one. A total of six batches were operated for 135d. The results showed that the mesophilic DAD of paunch was efficient, reaching methane yields of 126.9-212.1mLg -1 volatile solid (VS) and a VS reduction of 32.9-55.5%. The average daily methane production rate increased from 334.3mLd -1 to 571.4mLd -1 and 825.7mLd -1 when one, two and three leach bed reactors were in operation, respectively. The psychrophilic DAD of paunch was operated under a SRT of 100d and a total of three batches were performed in sequence for 300d with each batch starting after completion of the previous one. Improvements in the methane yield from 93.9 to 107.3 and 148.3mLg -1 VS and VS reductions of 24.8, 30.2 and 38.6% were obtained in the consecutive runs, indicating the adaptation of anaerobic microbes from mesophilic to psychrophilic temperatures. In addition, it took three runs for anaerobic microbes to reduce the volatile fatty acid accumulation observed in the first and second trials. This study demonstrates the potential of renewable energy recovery from paunch under psychrophilic and mesophilic temperatures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Design and test of a 5 kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Pasel, Joachim; Janßen, Holger; Lehnert, Werner; Peters, Ralf; Stolten, Detlef

    2014-01-01

    Highlights: • A fuel cell system for application as auxiliary power unit was developed. • Key components were a high-temperature PEFC stack and an autothermal reformer. • The system was tested with GTL kerosene, BTL diesel and premium diesel fuel. • The target electrical power of 5 kW was achieved with all fuels used. • Self-sustaining system operation was demonstrated with the integrated system design. - Abstract: A high-temperature PEFC system, developed with the aim of delivering 5 kW electrical power from the chemical energy stored in diesel and kerosene fuels for application as an auxiliary power unit, was simulated and tested. The key components of the system were an autothermal reformer, a water–gas shift reactor, a catalytic burner, and the HT-PEFC stack. The targeted power level of 5 kW was achieved using different fuels, namely GTL kerosene, BTL diesel and premium diesel. Using an integrated system approach, operation without external heat input was demonstrated. The overall analysis showed slight but non-continuous performance loss for 250 h operation time

  8. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Chapter 6: Temperature

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

    2017-01-01

    Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

  10. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  11. Chapter 6. Operation of electrolytic cell in standard operating practices

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This chapter is devoted to operation of electrolytic cell in standard operating practices. Therefore, the electrolyte temperature, the composition of electrolyte, including the level of metals was considered. The regulation of electrolyte composition by liquidus temperature and electrolyte overheating was studied. Damping of anode effects was studied as well. Maintenance of electrolytic cells was described. Heat and energy balances of aluminium electrolytic cells were considered.

  12. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  13. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  14. Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations

    Science.gov (United States)

    Stewart, John; Giorges, Aklilu

    2009-05-01

    Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.

  15. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  16. An alternative geometry for bolometer sensors for use at high operating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching b. München (Germany); Langer, H. [KRP-Mechatec Engineering GbR, Lichtenbergstr. 8, D-85748 Garching b. München (Germany); Schmitt, S. [Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz (Germany)

    2016-11-15

    sensors at high operating temperatures.

  17. A COMPARISON OF THE SIT-AND-REACH TEST AND THE BACK-SAVER SIT-AND-REACH TEST IN UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Pedro A. López-Miñarro

    2009-03-01

    Full Text Available This study compares the forward reach score, spine and pelvis postures, and hamstring criterion-related validity (concurrent validity between the sit-and-reach test (SR and the back-saver sit-and-reach test (BS. Seventy-six men (mean age ± SD: 23.45 ± 3.96 years and 67 women (mean age ± SD: 23.85 ± 5.36 years were asked to perform three trials of SR, BS left (BSl, right (BSr, and passive straight leg raise (PSLR right and left (hamstring criterion measure in a randomized order. The thoracic, lumbar, and pelvis angles (measured with a Uni-level inclinometer and forward reach scores were recorded once the subjects reached forward as far as possible without flexing the knees. A repeated measure ANOVA was performed followed by Bonferroni´s post hoc test. Pearson correlation coefficients were used to define the relationships between SR and BS scores with respect to PSLR. In both men and women, the thoracic angle in BS was significantly greater than in SR (p<0.016. However, no significant differences were found between the tests in lumbar angle, pelvic angle, and forward reach scores. The concurrent validity of the forward reach score as a measure of hamstring extensibility was moderate in women (0.66 0. 76 and weak to moderate in men (0.51 0.59. The concurrent validity was slightly higher in SR than in BS, although no significant differences between the correlation values were observed. There were significant differences in the thoracic angle between the SR and BS, but not in the forward reach score. There was no difference in concurrent validity between the two tests. However, the traditional SR was preferred because it reached better concurrent validity than the BS

  18. Machine-operated low temperature system for cooling a germanium detector at great depths of the sea

    International Nuclear Information System (INIS)

    Bruederle, F.; Hain, K.; Huebener, J.; Schloss, F.

    1978-07-01

    The report outlines the conceptual design and technical implementation phases of a very reliable low temperature system for long-time cooling of a germanium detector at great depths of the sea. The approach chosen as the solution involves the choise of a proven commercial small-scale refrigeration unit operation by the Gifford-Mc Mahon process, which is modified so as to suit special requirements. Testing for the severe conditions of use is carried out on a jarring table for the critical components and on a rolling test rig for the whole low temperature machine so as to simulate the stresses imposed by ships and high seas. The cooling system designed in this way has demonstrated its full functioning capability in a test conducted at sea. (orig.) 891 HP [de

  19. Remote Sensing of Coral Bleaching Using Temperature and Light: Progress towards an Operational Algorithm

    Directory of Open Access Journals (Sweden)

    William Skirving

    2017-12-01

    Full Text Available The National Oceanic and Atmospheric Administration’s Coral Reef Watch program developed and operates several global satellite products to monitor bleaching-level heat stress. While these products have a proven ability to predict the onset of most mass coral bleaching events, they occasionally miss events; inaccurately predict the severity of some mass coral bleaching events; or report false alarms. These products are based solely on temperature and yet coral bleaching is known to result from both temperature and light stress. This study presents a novel methodology (still under development, which combines temperature and light into a single measure of stress to predict the onset and severity of mass coral bleaching. We describe here the biological basis of the Light Stress Damage (LSD algorithm under development. Then by using empirical relationships derived in separate experiments conducted in mesocosm facilities in the Mexican Caribbean we parameterize the LSD algorithm and demonstrate that it is able to describe three past bleaching events from the Great Barrier Reef (GBR. For this limited example, the LSD algorithm was able to better predict differences in the severity of the three past GBR bleaching events, quantifying the contribution of light to reduce or exacerbate the impact of heat stress. The new Light Stress Damage algorithm we present here is potentially a significant step forward in the evolution of satellite-based bleaching products.

  20. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  1. Micro string resonators as temperature sensors

    DEFF Research Database (Denmark)

    Larsen, T.; Schmid, S.; Boisen, A.

    2013-01-01

    The resonance frequency of strings is highly sensitive to temperature. In this work we have investigated the applicability of micro string resonators as temperature sensors. The resonance frequency of strings is a function of the tensile stress which is coupled to temperature by the thermal...... to the low thermal mass of the strings. A temperature resolution of 2.5×10-4 °C has been achieved with silicon nitride strings. The theoretical limit for the temperature resolution of 8×10-8 °C has not been reached yet and requires further improvement of the sensor....

  2. Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition

    Science.gov (United States)

    Hung, Nguyen Trong; Thuan, Le Ba; Thanh, Tran Chi; Nhuan, Hoang; Khoai, Do Van; Tung, Nguyen Van; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2018-06-01

    Modeling uranium dioxide pellet process from ammonium uranyl carbonate - derived uranium dioxide powder (UO2 ex-AUC powder) and predicting fuel rod temperature distribution were reported in the paper. Response surface methodology (RSM) and FRAPCON-4.0 code were used to model the process and to predict the fuel rod temperature under steady-state operating condition. Fuel rod design of AP-1000 designed by Westinghouse Electric Corporation, in these the pellet fabrication parameters are from the study, were input data for the code. The predictive data were suggested the relationship between the fabrication parameters of UO2 pellets and their temperature image in nuclear reactor.

  3. Low-temperature H2-4He and H2-3He targets for operation on an electron beam

    International Nuclear Information System (INIS)

    Gol'dshtejn, V.A.; Lubyanyj, V.V.

    1981-01-01

    Structures and basic characteristics of H 2 - 4 He and H 2 - 3 He low temperature targets are given. Technique of 3 He target filling is described. Initial target cooling up to liquid 4 He temperature and its filling up take near approximately 1 h, at that 4 He flow rate equals 15 l. Repeated filling up of 4 He takes 20 min, and target filling up with 3 He - 10-15 min. Good thermal insulation of a cryostat and targets permits the 4 He target to be operated with an electron beam of a mean current of up to 0.5 μA without filling up 4 He for 70 h. At that flow rate of liquid 4 He amounts to 0.2 l/h, and liquid hydrogen - 0.04 l/h. It is concluded that H 2 - 4 He and H 2 - 3 He targets are reliable and simple in operation and permit to work with accelerated particle beams of intensity corresponding to power release >= 0.5 W without corrections for density change [ru

  4. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    International Nuclear Information System (INIS)

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1988-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 deg. C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 deg. C. The 200-kW motor for each circulator is enclosed in the pressure boundary, and the motor is cooled by circulating the gas within the cavity over a water-cooled coil. The full operating speed is 23,500 rpm. A full-flow filter, absolute for particulate above 10 μm, is installed upstream of the circulator to protect the gas bearing surfaces. The minimum clearances between these surfaces during operation are in the range of 15 to 30 μm. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat

  5. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions

    Directory of Open Access Journals (Sweden)

    Jiangong Zhu

    2017-01-01

    Full Text Available An impedance-based temperature estimation method is investigated considering the electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium before the impedance measurement. A detailed experiment is performed to investigate the regularity of the battery impedance in short-term relaxation time after switch-off current excitation, which indicates that the impedance can be measured and also has systematical decrement with the relaxation time growth. Based on the discussion of impedance variation in electrochemical perspective, as well as the monotonic relationship between impedance phase shift and battery internal temperature in the electrochemical equilibrium state, an exponential equation that accounts for both measured phase shift and relaxation time is established to correct the measuring deviation caused by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived considering the temperature gradients between the active part and battery surface. Equations stated above are all identified with the embedded thermocouple experimentally. In conclusion, the temperature estimation method can be a valuable alternative for temperature monitoring during cell operating, and serve the functionality as an efficient implementation in battery thermal management system for electric vehicles (EVs and hybrid electric vehicles (HEVs.

  6. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions

    International Nuclear Information System (INIS)

    Lin Bihong; Zhang Yue; Chen Jincan

    2006-01-01

    The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed

  7. Investigation of wear of insulation of traction engines of locomotives in operation

    Directory of Open Access Journals (Sweden)

    Nefedov Roman

    2018-01-01

    Full Text Available The article analyzes reliability of traction electric motors in operation. It is shown that the greatest number of failure falls on the winding of the armature. Investigation of the causes of increased wear of the armature winding insulation was carried out using the dynamic thermal model of the electric motor. The model is represented by 150 final elements and takes into account the conditions of thermal conductivity between the nodes and heat transfer to the cooling air. Verification of the model was carried out by comparison with the results of thermal tests of electric motors of the series HБ-406 and ЭД-118. The field of temperatures in the traction motor under various loads was investigated. It is shown that in stationary mode the temperature change along the armature winding can reach 60C. Modeling of thermal dynamic processes in the engine during its operation on the locomotive allowed to identify the most stressed nodes. It is shown that the resource of the electric motor is determined by the wear of the insulation of the frontal part of the armature winding on the side of the traction drive of the locomotive.

  8. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  9. Planning of the Extended Reach well Dieksand 2; Planung der Extended Reach Bohrung Dieksand 2

    Energy Technology Data Exchange (ETDEWEB)

    Frank, U.; Berners, H. [RWE-DEA AG, Hamburg (Germany). Drilling Team Mittelplate und Dieksand; Hadow, A.; Klop, G.; Sickinger, W. [Wintershall AG Erdoelwerke, Barnstdorf (Germany); Sudron, K.

    1998-12-31

    The Mittelplate oil field is located 7 km offshore the town of Friedrichskoog. Reserves are estimated at 30 million tonnes of oil. At a production rate of 2,500 t/d, it will last about 33 years. The transport capacity of the offshore platform is limited, so that attempts were made to enhance production by constructing the extended reach borehole Dieksand 2. Details are presented. (orig.) [Deutsch] Das Erdoelfeld Mittelplate liegt am suedlichen Rand des Nationalparks Schleswig Holsteinisches Wattenmeer, ca. 7000 m westlich der Ortschaft Friedrichskoog. Die gewinnbaren Reserven betragen ca. 30 Millionen t Oel. Bei einer Foerderkapazitaet von 2.500 t/Tag betraegt die Foerderdauer ca. 33 Jahre. Aufgrund der begrenzten Transportkapazitaeten von der Insel, laesst sich durch zusaetzliche Bohrungen von der kuenstlichen Insel Mittelplate keine entscheidende Erhoehung der Foerderkapazitaet erzielen. Ab Sommer 1996 wurde erstmals die Moeglichkeit der Lagerstaettenerschliessung von Land untersucht. Ein im Mai 1997 in Hamburg etabliertes Drilling Team wurde mit der Aufgabe betraut, die Extended Reach Bohrung Dieksand 2 zu planen und abzuteufen. Die Planungsphasen fuer die Extended Reach Bohrung Dieksand 2 wurden aufgezeigt. Die fuer den Erfolg einer Extended Reach Bohrung wichtigen Planungsparameter wurden erlaeutert. Es wurden Wege gezeigt, wie bei diesem Projekt technische und geologische Risiken in der Planung mit beruecksichtigt und nach Beginn der Bohrung weiter bearbeitet werden koennen. (orig.)

  10. Vestibular feedback maintains reaching accuracy during body movement

    Science.gov (United States)

    Reynolds, Raymond F.

    2016-01-01

    Key points Reaching movements can be perturbed by vestibular input, but the function of this response is unclear.Here, we applied galvanic vestibular stimulation concurrently with real body movement while subjects maintained arm position either fixed in space or fixed with respect to their body.During the fixed‐in‐space conditions, galvanic vestibular stimulation caused large changes in arm trajectory consistent with a compensatory response to maintain upper‐limb accuracy in the face of body movement.Galvanic vestibular stimulation responses were absent during the body‐fixed task, demonstrating task dependency in vestibular control of the upper limb.The results suggest that the function of vestibular‐evoked arm movements is to maintain the accuracy of the upper limb during unpredictable body movement, but only when reaching in an earth‐fixed reference frame. Abstract When using our arms to interact with the world, unintended body motion can introduce movement error. A mechanism that could detect and compensate for such motion would be beneficial. Observations of arm movements evoked by vestibular stimulation provide some support for this mechanism. However, the physiological function underlying these artificially evoked movements is unclear from previous research. For such a mechanism to be functional, it should operate only when the arm is being controlled in an earth‐fixed rather than a body‐fixed reference frame. In the latter case, compensation would be unnecessary and even deleterious. To test this hypothesis, subjects were gently rotated in a chair while being asked to maintain their outstretched arm pointing towards either earth‐fixed or body‐fixed memorized targets. Galvanic vestibular stimulation was applied concurrently during rotation to isolate the influence of vestibular input, uncontaminated by inertial factors. During the earth‐fixed task, galvanic vestibular stimulation produced large polarity‐dependent corrections in arm

  11. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  12. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  13. Teratology testing under REACH.

    Science.gov (United States)

    Barton, Steve

    2013-01-01

    REACH guidelines may require teratology testing for new and existing chemicals. This chapter discusses procedures to assess the need for teratology testing and the conduct and interpretation of teratology tests where required.

  14. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    Science.gov (United States)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  15. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-01-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  16. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung, E-mail: cwy@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  17. ESO telbib: Linking In and Reaching Out

    Science.gov (United States)

    Grothkopf, U.; Meakins, S.

    2015-04-01

    Measuring an observatory's research output is an integral part of its science operations. Like many other observatories, ESO tracks scholarly papers that use observational data from ESO facilities and uses state-of-the-art tools to create, maintain, and further develop the Telescope Bibliography database (telbib). While telbib started out as a stand-alone tool mostly used to compile lists of papers, it has by now developed into a multi-faceted, interlinked system. The core of the telbib database is links between scientific papers and observational data generated by the La Silla Paranal Observatory residing in the ESO archive. This functionality has also been deployed for ALMA data. In addition, telbib reaches out to several other systems, including ESO press releases, the NASA ADS Abstract Service, databases at the CDS Strasbourg, and impact scores at Altmetric.com. We illustrate these features to show how the interconnected telbib system enhances the content of the database as well as the user experience.

  18. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  19. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  20. The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges

    International Nuclear Information System (INIS)

    Fang, Xiang; Yu, Suyuan; Wang, Haitao; Li, Chenfeng

    2014-01-01

    Highlights: • The mechanical behavior of graphite component in HTRs under high temperature and neutron irradiation conditions is simulated. • The computational process of mechanical analysis is introduced. • Deformation, stresses and failure probability of the graphite component are obtained and discussed. • Various temperature and neutron dose ranges are selected in order to investigate the effect of in-core conditions on the results. - Abstract: In a pebble-bed high temperature gas-cooled reactor (HTR), nuclear graphite serves as the main structural material of the side reflectors. The reactor core is made up of a large number of graphite bricks. In the normal operation case of the reactor, the maximum temperature of the helium coolant commonly reaches about 750 °C. After around 30 years’ full power operation, the peak value of in-core fast neutron cumulative dose reaches to 1 × 10 22 n cm −2 (EDN). Such high temperature and neutron irradiation strongly impact the behavior of graphite component, causing obvious deformation. The temperature and neutron dose are unevenly distributed inside a graphite brick, resulting in stress concentrations. The deformation and stress concentration can both greatly affect safety and reliability of the graphite component. In addition, most of the graphite properties (such as Young's modulus and coefficient of thermal expansion) change remarkably under high temperature and neutron irradiations. The irradiation-induced creep also plays a very important role during the whole process, and provides a significant impact on the stress accumulation. In order to simulate the behavior of graphite component under various in-core conditions, all of the above factors must be considered carefully. In this paper, the deformation, stress distribution and failure probability of a side graphite component are studied at various temperature points and neutron dose levels. 400 °C, 500 °C, 600 °C and 750 °C are selected as the

  1. REACH: Evaluation Report and Executive Summary

    Science.gov (United States)

    Sibieta, Luke

    2016-01-01

    REACH is a targeted reading support programme designed to improve reading accuracy and comprehension in pupils with reading difficulties in Years 7 and 8. It is based on research by the Centre for Reading and Language at York and is delivered by specially trained teaching assistants (TAs). This evaluation tested two REACH interventions, one based…

  2. Global reach and engagement

    Science.gov (United States)

    2016-09-01

    Popular culture reflects both the interests of and the issues affecting the general public. As concerns regarding climate change and its impacts grow, is it permeating into popular culture and reaching that global audience?

  3. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  4. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    Science.gov (United States)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  5. Channel evolution under changing hydrological regimes in anabranching reaches downstream of the Three Gorges Dam

    Science.gov (United States)

    Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang

    2018-03-01

    Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.

  6. Combined long reach and dexterous manipulation for waste storage tank applications

    International Nuclear Information System (INIS)

    Burks, B.L.; Armstrong, G.A.; Butler, P.L.; Boissiere, P.

    1991-01-01

    One of the highest priority environmental restoration tasks within the Department of Energy (DOE) is the remediation of single-shell waste storage tanks (WSTs), especially those suspected of, or documented as, leakers. Most currently proposed approaches for remediation of large underground WSTs require application of remotely operated long-reach (greater than 10 m), high-lift capacity (greater than 200 kg) manipulator systems. Because of the complexity of in-tank hardware, waste forms, remediation tasks, and variety of end-effector tools, these manipulator systems must also be capable of performing a diverse set of dexterous manipulations. This presentation will describe the integration of a Spar RMS 2500 manipulator system, a Schilling Titan-7F manipulator, and control systems developed at ORNL and SNL to provide a combined long reach and dexterous manipulation system. The purpose of integrating these two manipulator systems was to study and demonstrate their combined performance, evaluate design requirements for a deployed system, and provide a testbed for control and end-effector technologies that might be applicable to remediation of WSTs. 5 refs

  7. Rise-to-power test in High Temperature Engineering Test Reactor. Test progress and summary of test results up to 30 MW of reactor thermal power

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi

    2002-08-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30 MW and the reactor outlet coolant temperature of 850degC/950degC. Rise-to-power test in the HTTR was performed from April 23rd to June 6th in 2000 as phase 1 test up to 10 MW in the rated operation mode, from January 29th to March 1st in 2001 as phase 2 test up to 20 MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20 MW in the high temperature test the mechanism of the reactor outlet coolant temperature becomes 850degC at 30 MW in the rated operation mode and 950degC in the high temperature test operation mode. Phase 4 rise-to-power test to achieve the thermal reactor power of 30 MW started on October 23rd in 2001. On December 7th in 2001 it was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30 MW and 850degC respectively in the single loaded operation mode in which only the primary pressurized water cooler is operating. Phase 4 test was performed until March 6th in 2002. JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests by MEXT were passed successfully with the reactor transient test at an abnormal event as a final pre-operation test. From the test results of the rise-up-power test up to 30 MW in the rated operation mode, performance of the reactor and cooling system were confirmed, and it was also confirmed that an operation of reactor facility can be performed safely. Some problems to be solved were found through the tests. By solving them, the reactor operation with the reactor outlet coolant temperature of 950degC will be achievable. (author)

  8. The effect of temperature on photosynthetic induction under fluctuating light in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Öztürk, Isik; Ottosen, Carl-Otto; Ritz, Christian

    2013-01-01

    for photosynthetic induction. Gas exchange measurements were used to investigate the rate of induction and the opening of stomata. It was determined that induction equilibrium for C. morifolium at varying temperatures under dynamic light conditions was reached within 15 to 45 minutes except at saturating light...... intensity. For the same photon irradiance, the momentary state of induction equilibrated was higher approximately at 30° C and it decreased as temperature increased. The interaction effect of irradiance and temperature on induction equilibrium was not significant. The rate of photosynthetic induction...... and the time that it reached its 90% value (t90) was influenced by irradiance significantly. The light history of a leaf had a significant effect on t90, which indicated that an equilibrium state of induction will not always be reached within the same time. The effect of temperature on photosynthetic induction...

  9. A comparison of two Shuttle launch and entry suits - Reach envelope, isokinetic strength, and treadmill tests

    Science.gov (United States)

    Schafer, Lauren E.; Rajulu, Sudhakar L.; Klute, Glenn K.

    1992-01-01

    A quantification has been conducted of any existing differences between the performance, in operational conditions, of the Space Shuttle crew Launch Entry Suit (LES) and the new Advanced Crew Escape Suit (ACES). While LES is a partial-pressure suit, the ACES system which is being considered as a replacement for LES is a full-pressure suit. Three tests have been conducted with six subjects to ascertain the suits' reach envelope, strength, and treadmill performance. No significant operational differences were found between the two suit designs.

  10. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  11. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  12. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  13. The influence of microstructure and operating temperature on the fatigue endurance of hot forged Inconel{sup ®} 718 components

    Energy Technology Data Exchange (ETDEWEB)

    Maderbacher, H., E-mail: hermann.maderbacher@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Oberwinkler, B., E-mail: bernd.oberwinkler@bohler-forging.com [Böhler Schmiedetechnik GmbH and Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Gänser, H.-P., E-mail: hans-peter.gaenser@mcl.at [Materials Center Leoben Forschung GmbH, Roseggerstraße 12, 8700 Leoben (Austria); Tan, W., E-mail: wen.tan@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Rollett, M., E-mail: mathias.rollett@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Stoschka, M., E-mail: michael.stoschka@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2013-11-15

    The dependence of the fatigue behavior of hot-forged Inconel{sup ®} 718 aircraft components on the operating temperature and the material microstructure is investigated. To this purpose, possible correlations between a variety of tested microstructural parameters and the results from low-cycle fatigue (LCF) testing are analyzed using statistical methods. To identify the prevailing damage mechanisms, failure analyses are carried out on specimens tested at different temperatures. Optical and scanning electron microscopy are used for the inspection of surface crack networks and of the final fracture surface. In addition, energy dispersive X-ray (EDX) analyses are performed at the crack initiation sites to track down possible accumulations of alloying elements. The results are critically reviewed and used to propose a temperature and microstructure dependent fatigue model for predicting LCF ε⧸N-curves.

  14. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  15. Facile fabrication of CNT-based chemical sensor operating at room temperature

    Science.gov (United States)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  16. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  17. Effects of Engine Cooling Water Temperature on Performance and Emission Characteristics of a Ci Engine Operated with Biofuel Blend

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2017-03-01

    Full Text Available The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.

  18. Low-Temperature Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  19. Assessment of temperature peaks reached during a wildfire. An approach using X-ray diffraction and differential thermal analysis

    Science.gov (United States)

    Jiménez-González, Marco A.; Jordán, Antonio; Zavala, Lorena M.; Mataix-Solera, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Bellinfante, Nicolás

    2014-05-01

    1. INTRODUCTION Wildfires may induce important chemical and physical changes in soils, including changes in the soil composition, mineralogical changes, soil water repellency, aggregate stability or textural changes (Bodí et al., 2013; Granged et al., 2011a, 2011b, 2011c; Jordán et al., 2011, 2013; Mataix-Solera et al., 2011). As these changes usually occur after threshold temperature peaks, the assessment of these helps to explain many of the processes occurring during burning and in the postfire (Pereira et al., 2012, 2013; Shakesby, 2011). In July 2011, a wildfire burnt a pine forested area (50 ha) in Gorga (Alicante, SW Spain), approximately at 38° 44.3' N and 0° 20.7' W. Main soil type is Lithic Xerorthent developed from limestone. The study of mineralogical changes in soil after a wildfire should help to assess fire temperature peaks reached during burning. In order to study the impact of fire temperature on mineralogical changes and determine temperature peaks during burning, burnt soil plots under shrubland were randomly collected (0-5 cm deep). Control samples from adjacent unburnt areas were also collected for control. 2. METHODS Soil samples were ground using an agate mortar and then sieved (420 °C). In samples heated at 500 and 700 °C, these changes are not appreciated as they occurred during calcination. In the 300 °C heated sample, some of these changes partially occurred. Peaks observed approximately at 100 °C correspond to release of absorbed water. Peaks at 900 °C are a consequence of destruction of calcite. Finally a peak was observed at 680 °C in the control sample may be explained as a consequence of the destruction of blixite (Pb8(OH)2Cl4), which was present in control samples (1.1%) but not in burnt samples. This peak is probably masked in heated samples. REFERENCES Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its

  20. Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate

    International Nuclear Information System (INIS)

    Rodriguez, J. B.; Cerutti, L.; Grech, P.; Tournie, E.

    2009-01-01

    We report on a GaSb-based type-I laser structure grown by molecular beam epitaxy on a (001) silicon substrate. A thin AlSb nucleation layer followed by a 1 μm thick GaSb buffer layer was used to accommodate the very large lattice mismatch existing with the silicon substrate. Processed devices with mesa geometry exhibited laser operation in pulsed mode with a duty cycle up to 10% at room temperature

  1. Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K

    Science.gov (United States)

    van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.

    2018-06-01

    This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.

  2. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    Science.gov (United States)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  3. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  4. Application of coating and base material living models to evaluate degradation and estimate the mean local operating temperature of two ex-service 1{sup st} stage blades

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, M. [Proing Italia, Torbole sul Garda, Trento (Italy); Rinaldi, C. [ERSE, Milan (Italy); Vacchieri, E. [Ansaldo Energia S.p.A., Genoa (Italy)

    2010-07-01

    In the frame of the collaborative program COST 538 a coating life prediction code was implemented by Proing and ERSE with an inverse problem solution routine able to calculate the local mean operating temperature from the operating conditions and the extension of the coating depleted regions. Moreover base material degradation models were developed by Ansaldo Energia on both equiaxed and single crystal superalloys. This paper describes the application of such methodologies to two ex-service 1st stage gas turbine blades delivered to COST 538 by AEN after operation in two different plants with different operating conditions. The objective of the study was the application and validation of an innovative NDT and the estimate of the mean operating temperature at different positions of the components. The destructive metallographic analysis of the blades let to validate the non destructive frequency scanning eddy current technique (F-SECT). Coating life modelling results are compared with those of the base material degradation models. An interesting correlation was found between the estimated temperatures with the two methods and also with the NDT findings at the most significant component positions. (orig.)

  5. Standard for assessment of fuel integrity under anticipated operational occurrences in BWR power plant:2002

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Suzuki, Riichiro; Komura, Seiichi; Kudo, Yoshiro; Yamanaka, Akihiro; Oomizu, Satoru; Kitamura, Hideya; Nagata, Yoshifumi

    2003-01-01

    To secure fuel integrity, a Light Water Reactor (LWR) core is designed so that no boiling transition (BT) should take place in fuel assemblies and excessive rise in fuel cladding temperature due to deteriorated that transfer should be avoided in Anticipated Operational Occurrences (AOO). In some AOO in a Boiling Water Reactor (BWR), however, the rise in reactor power could be limited by SCRAM or void reactivity effect. Recent studies have provided accumulated knowledge that even if BT takes place in fuel assemblies, the rise in fuel cladding temperature could be so small that it will not threat to fuel integrity, as long as the BT condition terminates within a short period of time. In addition, appropriate methods have been developed to evaluate the cladding temperature during dryout. This standard provides requirements in the assessment of fuel integrity under AOO in which limited-BT condition is temporarily reached and the propriety of reusing a fuel assembly that has experienced limited-BT condition. The standard has been approved by the Atomic Energy Society of Japan following deliberation by impartial members for two and half years. It is now expected that this standard will provide an effective measure for the rational expansion of fuel design and operational margin. (author)

  6. Superconducting single-photon detectors designed for operation at 1.55-μm telecommunication wavelength

    International Nuclear Information System (INIS)

    Milostnaya, I; Korneev, A; Rubtsova, I; Seleznev, V; Minaeva, O; Chulkova, G; Okunev, O; Voronov, B; Smirnov, K; Gol'tsman, G; Slysz, W; Wegrzecki, M; Guziewicz, M; Bar, J; Gorska, M; Pearlman, A; Kitaygorsky, J; Cross, A; Sobolewski, Roman

    2006-01-01

    We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ∼30-40%, which is limited by the NbN film absorption. For the infrared range (1.55μm), QE is ∼6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ∼20% for 1.55-μm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 μm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 μm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-μm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ∼1% system QE for 1.55 μm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications

  7. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  8. High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yoon, S.F.; Sun, Z.Z.; Yew, K.C.

    2006-01-01

    Self-assembled GaInNAs/GaAsN single layer quantum-dot (QD) lasers grown using solid-source molecular-beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm 2 from a GaInNAs QD laser (50x1700 μm 2 ) at 10 deg. C. High-temperature operation up to 65 deg. C was also demonstrated from an unbonded GaInNAs QD laser (50x1060 μm 2 ), with high characteristic temperature of 79.4 K in the temperature range of 10-60 deg. C

  9. Room-Temperature Single-photon level Memory for Polarization States

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordaan, Bertus; Namazi, Mehdi; Nölleke, Christian; Figueroa, Eden

    2015-01-01

    An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled for polarization qubits in systems based on cold atoms and cryogenically cooled crystals. Here, we report a room-temperature memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity surpassing the classical benchmark for weak laser pulses containing 1.6 photons on average, without taking into account non-unitary operation. Our results demonstrate that a common vapor cell can reach the low background noise levels necessary for polarization qubit storage using single-photon level light, and propels atomic-vapor systems towards a level of functionality akin to other quantum information processing architectures.

  10. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke.

    Science.gov (United States)

    Duff, Margaret; Chen, Yinpeng; Cheng, Long; Liu, Sheng-Min; Blake, Paul; Wolf, Steven L; Rikakis, Thanassis

    2013-05-01

    Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. We describe the first proof-of-concept study to compare outcomes of AMRR and traditional upper-extremity physical therapy. Two groups of participants with chronic stroke received either a month of AMRR therapy (n = 11) or matched dosing of traditional repetitive task therapy (n = 10). Participants were right handed, between 35 and 85 years old, and could independently reach to and at least partially grasp an object in front of them. Upper-extremity clinical scale scores and kinematic performances were measured before and after treatment. Both groups showed increased function after therapy, demonstrated by statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment (FMA) scores, with the traditional therapy group improving significantly more on the FMA. However, only participants who received AMRR therapy showed a consistent improvement in kinematic measurements, both for the trained task of reaching to grasp a cone and the untrained task of reaching to push a lighted button. AMRR may be useful in improving both functionality and the kinematics of reaching. Further study is needed to determine if AMRR therapy induces long-term changes in movement quality that foster better functional recovery.

  11. ATSR sea surface temperature data in a global analysis with TOPEX/POSEIDON altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Knudsen, Thomas

    1996-01-01

    Along Track Scanning Radiometer (ATSR) data from the ERS 1 satellite mission are used in a global analysis of the surface temperature of the oceans. The data are the low resolution 0.5 degrees by 0.5 degrees average temperatures and cover about 24 months. At global scales a significant seasonal...... variability is found. On each of the hemispheres the surface temperatures reach their maximum after summer heating. The seasonal sea level variability, as observed from TOPEX/POSEIDON, reaches its maximum 1.1-1.4 months later....

  12. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  13. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  14. Operator product expansion and its thermal average

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1998-05-01

    QCD sum rules at finite temperature, like the ones at zero temperature, require the coefficients of local operators, which arise in the short distance expansion of the thermal average of two-point functions of currents. We extend the configuration space method, applied earlier at zero temperature, to the case at finite temperature. We find that, upto dimension four, two new operators arise, in addition to the two appearing already in the vacuum correlation functions. It is argued that the new operators would contribute substantially to the sum rules, when the temperature is not too low. (orig.) 7 refs.

  15. Consistency assessment of rating curve data in various locations using Bidirectional Reach (BReach)

    Science.gov (United States)

    Van Eerdenbrugh, Katrien; Van Hoey, Stijn; Coxon, Gemma; Freer, Jim; Verhoest, Niko E. C.

    2017-10-01

    When estimating discharges through rating curves, temporal data consistency is a critical issue. In this research, consistency in stage-discharge data is investigated using a methodology called Bidirectional Reach (BReach), which departs from a (in operational hydrology) commonly used definition of consistency. A period is considered to be consistent if no consecutive and systematic deviations from a current situation occur that exceed observational uncertainty. Therefore, the capability of a rating curve model to describe a subset of the (chronologically sorted) data is assessed in each observation by indicating the outermost data points for which the rating curve model behaves satisfactorily. These points are called the maximum left or right reach, depending on the direction of the investigation. This temporal reach should not be confused with a spatial reach (indicating a part of a river). Changes in these reaches throughout the data series indicate possible changes in data consistency and if not resolved could introduce additional errors and biases. In this research, various measurement stations in the UK, New Zealand and Belgium are selected based on their significant historical ratings information and their specific characteristics related to data consistency. For each country, regional information is maximally used to estimate observational uncertainty. Based on this uncertainty, a BReach analysis is performed and, subsequently, results are validated against available knowledge about the history and behavior of the site. For all investigated cases, the methodology provides results that appear to be consistent with this knowledge of historical changes and thus facilitates a reliable assessment of (in)consistent periods in stage-discharge measurements. This assessment is not only useful for the analysis and determination of discharge time series, but also to enhance applications based on these data (e.g., by informing hydrological and hydraulic model

  16. Outcomes of senior reach gatekeeper referrals: comparison of the Spokane gatekeeper program, Colorado Senior Reach, and Mid-Kansas Senior Outreach.

    Science.gov (United States)

    Bartsch, David A; Rodgers, Vicki K; Strong, Don

    2013-01-01

    Outcomes of older adults referred for care management and mental health services through the senior reach gatekeeper model of case finding were examined in this study and compared with the Spokane gatekeeper model Colorado Senior Reach and the Mid-Kansas Senior Outreach (MKSO) programs are the two Senior Reach Gatekeeper programs modeled after the Spokane program, employing the same community education and gatekeeper model and with mental health treatment for elderly adults in need of support. The three mature programs were compared on seniors served isolation, and depression ratings. Nontraditional community gatekeepers were trained and referred seniors in need. Findings indicate that individuals served by the two Senior Reach Gatekeeper programs demonstrated significant improvements. Isolation indicators such as social isolation decreased and depression symptoms and suicide ideation also decreased. These findings for two Senior Reach Gatekeeper programs demonstrate that the gatekeeper approach to training community partners worked in referring at-risk seniors in need in meeting their needs, and in having a positive impact on their lives.

  17. Influence of initial temperature and heating method in the temperature profile during alkaline dissolution of Al for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: cruzaraujo22@gmail.com, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radionuclides in nuclear medicine can be used for diagnosis and therapy. The {sup 99m}Tc, son of {sup 99}Mo, is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Aiming to resolve the dependency of Brazil with respect to the supply of {sup 99}Mo was created the Brazilian Multipurpose Reactor project (BMR), started in 2008, having as main objective to produce about 1000 Ci/week of {sup 99}Mo. This study is part of the project to obtain {sup 9}'9Mo by alkaline dissolution of UAl{sub x}-Al targets. The initial reaction temperature is an important parameter, since it has great influence on the value of the maximum temperature and dissolution time. According to literature, for security reasons the dissolution process must have its temperature controlled so that the maximum temperature has to be around 90 deg C. The behavior of the temperature during dissolution using three different methods of heating in order to minimize the fluctuation of temperature during dissolution, keeping its maximum value at around 90 deg C was studied. The three methods of heating chosen were: a) initial temperature of 85 deg C with continuous heating, b) heating water bath until it reaches the initial temperature (70 to 95 deg C), turning off after that, and c) external heating until it reached the starting temperature (60-95 deg C). The alkaline solution used was 3 mol.L{sup -1} NaOH{sub 3} and 2 mol.L{sup -1} NaNO{sub 3}. In the first study it was observed that after 1 minute of dissolution the solution temperature reached 100 deg C on average, up to a maximum of 109 deg C, ending with values around 95 deg C. In the second study after 3 minutes of dissolution the maximum temperature was 106 deg C and the minimum 100 deg C. In the third study the temperature rise during dissolution increased with increasing initial temperature which practically remains constant until the end

  18. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  19. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  20. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    Science.gov (United States)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  1. A fuel performance analysis for a 450 MWth deep burn-high temperature reactor

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, Chang Keun; Jun, Ji Su; Cho, Moon Sung; Venneri, Francesco

    2011-01-01

    Highlights: → We have checked, through a fuel performance analysis, if a 450 MW th high temperature reactor was safe for the deep burn of a TRU fuel. → During a core heat-up event, the fuel temperature was below 1600 deg. C and the maximum gas pressure in the void of coated fuel particle was about 90 MPa. → At elevated temperatures of the accident event, the failure fraction of coated fuel particles resulted from the mechanical failure and the thermal decomposition of the SiC barrier was 3.30 x 10 -3 . - Abstract: A performance analysis for a 450 MW th deep burn-high temperature reactor (DB-HTR) fuel was performed using COPA, a fuel performance analysis code of Korea Atomic Energy Research Institute (KAERI). The code computes gas pressure buildup in the void volume of a tri-isotropic coated fuel particle (TRISO), temperature distribution in a DB-HTR fuel, thermo-mechanical stress in a coated fuel particle (CFP), failure fractions of a batch of CFPs, and fission product (FP) releases into the coolant. The 350 μm DB-HTR kernel is composed of 30% UO 2 + 70% (5% NpO 2 + 95% PuO 1.8 ) mixed with 0.6 moles of silicon carbide (SiC) per mole of heavy metal. The DB-HTR is operated at the constant temperature and power of 858 deg. C and 39.02 mW per CFP for 1395 effective full power days (EFPD) and is subjected to a core heat-up event for 250 h during which the maximum coolant temperature reaches 1548.70 deg. C. Within the normal operating temperature, the fuel showed good thermal and mechanical integrity. At elevated temperatures of the accident event, the failure fraction of CFPs resulted from the mechanical failure (MF) and the thermal decomposition (TD) of the SiC barrier is 3.30 x 10 -3 .

  2. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [ORNL; McManamay, Ryan A [ORNL; Stewart, Kevin M [ORNL; Samu, Nicole M [ORNL; Hadjerioua, Boualem [ORNL; DeNeale, Scott T [ORNL; Yeasmin, Dilruba [California State University, Fresno; Pasha, M. Fayzul K. [California State University, Fresno; Oubeidillah, Abdoul A [ORNL; Smith, Brennan T [ORNL

    2014-04-01

    The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage, and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest

  3. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  4. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  5. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  6. The dipoles reach the half-way mark

    CERN Multimedia

    2006-01-01

    With the positioning of the 616th magnet, installation of the LHC dipoles has reached the half-way mark. Only half the dipoles remain to be installed! The 616th dipole out of a total of 1232 was installed at 3 a.m on Wednesday 12 July. Night and day, the tunnel is the setting for a never-ending series of carefully choreographed installation operations. At a rate of around twenty per week, there has been a steady underground flow of dipole magnets, each measuring 15 metres in length and weighing 34 tonnes. 'In order to recover the accumulated delays, installation is proceeding three times faster than planned', confides Claude Hauviller, who is supervising LHC installation. Four dipoles can be transported underground at the same time. It is a real challenge, which the 65-man team responsible for this difficult task faces on a daily basis. This is because there is very little space in the tunnel and there are no passing places for the magnet transport vehicles. The room for manoeuvre can sometimes be measured ...

  7. CAST reaches milestone but keeps on searching

    CERN Multimedia

    CERN Courier (september 2011 issue)

    2011-01-01

    After eight years of searching for the emission of a dark matter candidate particle, the axion, from the Sun, the CERN Axion Solar Telescope (CAST) has fulfilled its original physics programme.   Members of the CAST collaboration in July, together with dipole-based helioscope. CAST, the world’s most sensitive axion helioscope, points a recycled prototype LHC dipole magnet at the Sun at dawn and dusk, looking for the conversion of axions to X-rays. It incorporates four state-of-the-art X-ray detectors: three Micromegas detectors and a pn-CCD imaging camera attached to a focusing X-ray telescope that was recovered from the German space programme (see CERN Courier April 2010).  Over the years, CAST has operated with the magnet bores - the location of the axion conversion - in different conditions: first in vacuum, covering axion masses up to 20 meV/c2, and then with a buffer gas (4He and later 3He) at various densities, finally reaching the goal of 1.17 eV/c2 on 22 ...

  8. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  9. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  10. Perceiver as polar planimeter: Direct perception of jumping, reaching, and jump-reaching affordances for the self and others.

    Science.gov (United States)

    Thomas, Brandon J; Hawkins, Matthew M; Nalepka, Patrick

    2017-03-30

    Runeson (Scandanavian Journal of Psychology 18:172-179, 1977) suggested that the polar planimeter might serve as an informative model system of perceptual mechanism. The key aspect of the polar planimeter is that it registers a higher order property of the environment without computational mediation on the basis of lower order properties, detecting task-specific information only. This aspect was posited as a hypothesis for the perception of jumping and reaching affordances for the self and another person. The findings supported this hypothesis. The perception of reaching while jumping significantly differed from an additive combination of jump-without-reaching and reach-without-jumping perception. The results are consistent with Gibson's (The senses considered as perceptual systems, Houghton Mifflin, Boston, MA; Gibson, The senses considered as perceptual systems, Houghton Mifflin, Boston, MA, 1966; The ecological approach to visual perception, Houghton Mifflin, Boston, MA; Gibson, The ecological approach to visual perception, Houghton Mifflin, Boston, MA, 1979) theory of information-that aspects of the environment are specified by patterns in energetic media.

  11. Physics behind the Debye temperature

    OpenAIRE

    Garai, Jozsef

    2007-01-01

    Textbooks introduce the Debye temperature to simplify the integration of the heat capacity. This approach gives the impression that the Debye temperature is a parameter which makes the integration more convenient. The Debye frequency cut occurs when the wavelength of the phonon frequency reaches the size of the smallest unit of the lattice which is the length of the unit cell. At frequencies higher than the cut off frequency the 'lattice' unable to 'see' the vibration because the wavelength o...

  12. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  13. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  14. Curiosity: A Prerequisite for the Attainment of Formal Operations?

    Science.gov (United States)

    Hawkins, Vincent J.

    1982-01-01

    Research on Piaget's four stages of cognitive development has shown that although nearly everyone passes through sensorimotor, preoperational, and concrete operational stages, most do not reach the stage of formal operations. Those people who do attain formal operations seem to have a curiosity factor not operative in those who don't. (Author/BRR)

  15. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  16. Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

    International Nuclear Information System (INIS)

    Son, M. C.; Park, J. R.; Hong, K. T.; Seok, H. K.

    2005-01-01

    Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used

  17. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  18. Theoretical modeling of critical temperature increase in metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  19. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  20. RECORDS REACHING RECORDING DATA TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    G. W. L. Gresik

    2013-07-01

    Full Text Available The goal of RECORDS (Reaching Recording Data Technologies is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  1. Records Reaching Recording Data Technologies

    Science.gov (United States)

    Gresik, G. W. L.; Siebe, S.; Drewello, R.

    2013-07-01

    The goal of RECORDS (Reaching Recording Data Technologies) is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  2. Input shaping filter methods for the control of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.; Burks, B.L.

    1993-01-01

    Within the Environmental Restoration and Waste Management Program of the US Department of Energy, the remediation of single-shell radioactive waste storage tanks is one of the areas that challenge state-of-the-art equipment and methods. Concepts that utilize long-reach manipulators are being seriously considered for this task. Due to high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operation, various types of shaping filter methods have been investigated. A robust notch filtering method and an impulse shaping method were used as simulation benchmarks. In addition to that, two very different approaches have been developed and compared. One new approach, referred to as a ''feedforward simulation filter,'' uses imbedded simulation with complete knowledge of the system dynamics. The other approach, ''fuzzy shaping method,'' employs a fuzzy logic method to modify the joint trajectory from the desired end-position trajectory without precise knowledge of the system dynamics

  3. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    Science.gov (United States)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  4. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  5. Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation

    Science.gov (United States)

    Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari

    2016-07-01

    In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.

  6. Operating results of 220 MW SKODA saturated steam turbines

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    One of the steam turbines produced by the SKODA Works, the 220 MW steam turbine for saturated admission steam of a speed of 3000 r.p.m. is described; it is used in nuclear power plants with 400 MW PWR type reactors. 16 units of 8 turbines each have been in operation in the Jaslovske Bohunice and Dukovany power plants with the total period of operation of all machines exceeding 750,000 hours. The 220 MW steam turbine consists of a two-flow high-pressure section and of two identical two-flow low-pressure sections. The pressure of saturated steam at the inlet of the high-pressure section is 4.32 MPa (the corresponding temperature of the saturation limit being 255 degC) and during the expansion in the high-pressure section it drops to 0.6 MPa; steam moisture reaches 12%. In a separator and two-stage reheater using blend steam, the steam is freed of the moisture and is reheated to a temperature of 217 degC. Some operational problems are discussed, as are the loss of the material of the stator parts of the high-pressure section due to corrosion-erosion wear and corrosion-erosion wear of the guide wheels of the high-pressure section, and measures are presented carried out for the reduction of the corrosion-erosion effects of wet steam. One of the serious problems were the fatigue fractures of the blades of the 4th high-pressure stage, which appeared after 20 000 to 24 000 hours of operation in the dented tee-root. The guide wheels of the 4th stage were substituted by new guide wheels with uniform pitch of the channels and with increased number of guide blades. Also discussed are the dynamic behavior of the low-pressure section of the bridge structure, the operating reliability and the heat off-take for water heating of long-distance heating systems. (Z.S.) 9 figs

  7. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  8. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-01-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  9. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  10. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    Science.gov (United States)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  11. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luís F.R.; Ribeiro, Guilherme B., E-mail: luisromano_91@hotmail.com, E-mail: gbribeiro@ieav.cta.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil). Pós-Graduação Ciências e Tecnologias Espaciais

    2017-07-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  12. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    International Nuclear Information System (INIS)

    Romano, Luís F.R.; Ribeiro, Guilherme B.

    2017-01-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  13. Effect of elevated temperature on the compressive strength of ...

    African Journals Online (AJOL)

    Based on results of tests, partial replacement of cement with 10 % PSMS is recommended for use in concrete production and resistance to elevated temperature. The studies show that at this replacement, the concrete compressive strength is not adversely affected when the elevated temperature reaches 500°C. Keywords: ...

  14. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  15. Seventh meeting of the Global Alliance to Eliminate Lymphatic Filariasis: reaching the vision by scaling up, scaling down, and reaching out

    Science.gov (United States)

    2014-01-01

    This report summarizes the 7th meeting of the Global Alliance to Eliminate Lymphatic Filariasis (GAELF), Washington DC, November 18–19, 2012. The theme, “A Future Free of Lymphatic Filariasis: Reaching the Vision by Scaling Up, Scaling Down and Reaching Out”, emphasized new strategies and partnerships necessary to reach the 2020 goal of elimination of lymphatic filariasis (LF) as a public-health problem. PMID:24450283

  16. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    Science.gov (United States)

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe

    2017-10-01

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  17. Ionometric determination of fluorides at low temperatures

    International Nuclear Information System (INIS)

    Kostyukova, I.S.; Ennan, A.A.; Dzerzhko, E.K.; Leivikova, A.A.

    1995-01-01

    A method for determining fluoride ions in solution at low temperatures using a solid-contact fluorine-selective electrode (FSE) has been developed. The effect of temperature (60 to -15 degrees C) on the calibration slope, potential equilibrium time, and operational stability is studied; the effect of an organic additive (cryoprotector) on the calibration slope is also studied. The temperature relationships obtained for the solid-contact FSEs allow appropriate corrections to be applied to the operational algorithm of the open-quotes Ftoringclose quotes hand-held semiautomatic HF gas analyzer for the operational temperature range of -16 to 60 degrees C

  18. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  19. Identifying ephemeral and perennial stream reaches using apparent thermal inertia for an ungauged basin: The Rio Salado, Central New Mexico

    Science.gov (United States)

    Night and day temperature images from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing images are used to identify ephemeral and perennial stream reaches for use in the calibration of an integrated hydrologic model of an ungauged basin. The concept is based on a...

  20. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce