Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G
2016-05-01
The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation.
Understanding Thermal Equilibrium through Activities
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
Relativistic perfect fluids in local thermal equilibrium
Coll, Bartolomé; Sáez, Juan Antonio
2016-01-01
The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...
A General Thermal Equilibrium Discharge Flow Model
ZHAO; Min-fu; ZHANG; Dong-xu; LV; Yu-feng
2015-01-01
In isentropic and thermal equilibrium assumptions,a discharge flow model was derived,which unified the rules of normal temperature water discharge,high temperature and high pressure water discharge,two-phase critical flow,saturated steam and superheated steam critical
Thermal equilibrium of two quantum Brownian particles
Valente, D M
2009-01-01
The influence of the environment in the thermal equilibrium properties of a bipartite continuous variable quantum system is studied. The problem is treated within a system-plus-reservoir approach. The considered model reproduces the conventional Brownian motion when the two particles are far apart and induces an effective interaction between them, depending on the choice of the spectral function of the bath. The coupling between the system and the environment guarantees the translational invariance of the system in the absence of an external potential. The entanglement between the particles is measured by the logarithmic negativity, which is shown to monotonically decrease with the increase of the temperature. A range of finite temperatures is found in which entanglement is still induced by the reservoir.
Path-integral formula for local thermal equilibrium
Hongo, Masaru
2016-01-01
We develop a complete path-integral formulation of relativistic quantum fields in local thermal equilibrium, which brings about the emergence of thermally induced curved spacetime. The resulting action is shown to have full diffeomorphism invariance and gauge invariance in thermal spacetime with imaginary-time independent backgrounds. This leads to the notable symmetry properties of emergent thermal spacetime: Kaluza-Klein gauge symmetry, spatial diffeomorphism symmetry, and gauge symmetry. A thermodynamic potential in local thermal equilibrium, or the so-called Masseiu-Planck functional, is identified as a generating functional for conserved currents such as the energy-momentum tensor and the electric current.
Dynamics of charged particles in an adiabatic thermal beam equilibrium
Haofei Wei
2011-02-01
Full Text Available Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Seasonal thermal energy storage in shallow geothermal systems: thermal equilibrium stage
Nowamooz Hossein
2016-01-01
Full Text Available This paper is dedicated to the study of seasonal heat storage in shallow geothermal installations in unsaturated soils for which hydrothermal properties such as degree of saturation and thermal conductivity vary with time throughout the profile. In the model, a semi-analytical model which estimates time-spatial thermal conductivity is coupled with a 2D cylindrical heat transfer modeling using finite difference method. The variation of temperature was obtained after 3 heating and cooling cycles for the different types of loads with maximum thermal load of qmax = 15 W.m−1 with variable angular frequency (8 months of heating and 4 months of cooling.and constant angular frequency (6 months of heating and 6 months of cooling to estimate the necessary number of cycles to reach the thermal equilibrium stage. The results show that we approach a thermal equilibrium stage where the same variation of temperature can be observed in soils after several heating and cooling cycles. Based on these simulations, the necessary number of cycles can be related to the total applied energy on the system and the minimum number of cycles is for a system with the total applied energy of 1.9qmax.
Casimir-Polder Potential in Thermal Non-Equilibrium
Ellingsen, Simen Å; Buhmann, Stefan Y; Scheel, Stefan
2009-01-01
Different non-equilibrium situations have recently been considered when studying the thermal Casimir--Polder interaction with a body. We show that the Keldysh Green function method provides a very general common framework for such studies where non-equilibrium of either the atom or the body with the environment can be accounted for. We apply the results to the case of ground state polar molecules out of equilibrium with their environment, observing several striking effects. We consider thermal Casimir--Polder potentials in planar configurations, and new results for a molecule in a cylindrical cavity are reported, showing similar characteristic behaviour as found in planar geometry.
Thermal Conduction in Systems out of Hydrostatic Equilibrium
Herrera, L; Hernández-Pastora, J L; Martín, J; Martínez, J
1997-01-01
We analyse the effects of thermal conduction in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of thermal relaxation time. It is obtained that the resulting evolution will critically depend on a parameter defined in terms of thermodynamic variables, which is constrained by causality requirements.
Convection with local thermal non-equilibrium and microfluidic effects
Straughan, Brian
2015-01-01
This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.
Local covariance, renormalization ambiguity, and local thermal equilibrium in cosmology
Verch, Rainer
2011-01-01
This article reviews some aspects of local covariance and of the ambiguities and anomalies involved in the definition of the stress energy tensor of quantum field theory in curved spacetime. Then, a summary is given of the approach proposed by Buchholz et al. to define local thermal equilibrium states in quantum field theory, i.e., non-equilibrium states to which, locally, one can assign thermal parameters, such as temperature or thermal stress-energy. The extension of that concept to curved spacetime is discussed and some related results are presented. Finally, the recent approach to cosmology by Dappiaggi, Fredenhagen and Pinamonti, based on a distinguished fixing of the stress-energy renormalization ambiguity in the setting of the semiclassical Einstein equations, is briefly described. The concept of local thermal equilibrium states is then applied, to yield the result that the temperature behaviour of a quantized, massless, conformally coupled linear scalar field at early cosmological times is more singul...
Local Thermal Equilibrium States in Relativistic Quantum Field Theory
Gransee, Michael
2016-01-01
It is well-known that thermal equilibrium states in quantum statistical mechanics and quantum field theory can be described in a mathematically rigorous manner by means of the so-called Kubo-Martin-Schwinger (KMS) condition, which is based on certain analyticity and periodicity properties of correlation functions. On the other hand, the characterization of non-equilibrium states which only locally have thermal properties still constitutes a challenge in quantum field theory. We discuss a recent proposal for characterization of such states by a generalized KMS condition. The connection of this proposal to a proposal by D. Buchholz, I. Ojima and H.-J. Roos for characterizing local thermal equilibrium states in quantum field theory is discussed.
Thermal non-equilibrium in heterogeneous media
de Lemos, Marcelo J S
2016-01-01
This book presents, in a self-contained fashion, a series of studies on flow and heat transfer in porous media, in which distinct energy balances are considered for the porous matrix and for the permeating fluid. Detailed mathematical modeling is presented considering both volume and time averaging operators simultaneously applied to the governing equations. System involving combustion in the gaseous phase, moving bed and double-diffusion mechanism are analyzed. Numerical results are presented for each case. In the end, this book contains the description of a tool that might benefit engineers in developing and designing more efficient thermal equipment.
The Earth's Equilibrium Climate Sensitivity and Thermal Inertia
Royce, B S H
2013-01-01
The Earth's equilibrium climate sensitivity has received much attention because of its relevance and importance for global warming policymaking. This paper focuses on the Earth's \\emph{thermal inertia time scale} which has received relatively little attention. The difference between the observed transient climate sensitivity and the equilibrium climate sensitivity is shown to be proportional to the thermal inertia time scale, and the numerical value of the proportionality factor is determined using recent observational data. Many useful policymaking insights can be extracted from the resulting empirical quantitative relation.
Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco
2016-08-01
Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.
Bonanno, A.; Camarca, M.; Sapia, P.
2012-11-01
Isomorphic problems play an acknowledged pedagogical role in the physics teaching/learning process. In this context, we describe a unified approach to a wide class of physical systems formally analogous to the well-known ‘two-capacitor system’. The proposed learning path, specifically addressed to university students, provides the opportunity to introduce a unitary graphical representation that is very suitable to describe the system energy evolution, as well as allowing the highlighting of the mutually exclusive roles of dissipation and reversibility when the system approaches its equilibrium conditions (where ‘equilibrium’ must be interpreted in its most general meaning, either as ‘static equilibrium’ or as ‘steady state’). Moreover, a new quantitative modeling is introduced for two representative systems, in order to show that the energy ‘missed’ during the equilibrium achievement is just equal to the negative work an external agent should make to let the system reach its final state quasi-statically and reversibly.
Pourali, Meisam; Maghari, Ali
2014-11-01
In this paper, direct non-equilibrium molecular dynamics simulation is developed to investigate thermal conductivity and thermal diffusion factors of confined binary mixtures of methane and some n-alkanes in a nanochannel. We used two thermal walls in different temperatures to impose temperature gradient in the system. The mixtures are confined between two parallel atomic walls, normal to temperature gradient. Simulation results show high inhomogeneity and layering in the mixtures. Thermal conductivity of mixtures increases with decreasing the channel width and increases in mixtures with high concentration of methane. Except for very small channels, confinement has minimal effect on thermal diffusion. In very narrow channels, thermal diffusion is small and it reaches a steady state value with increasing the channel width. Local velocity fields for two different channels also show different behaviors. In relatively large channels some convection patterns are observed in mixtures.
Pourali, Meisam; Maghari, Ali, E-mail: maghari@ut.ac.ir
2014-11-24
In this paper, direct non-equilibrium molecular dynamics simulation is developed to investigate thermal conductivity and thermal diffusion factors of confined binary mixtures of methane and some n-alkanes in a nanochannel. We used two thermal walls in different temperatures to impose temperature gradient in the system. The mixtures are confined between two parallel atomic walls, normal to temperature gradient. Simulation results show high inhomogeneity and layering in the mixtures. Thermal conductivity of mixtures increases with decreasing the channel width and increases in mixtures with high concentration of methane. Except for very small channels, confinement has minimal effect on thermal diffusion. In very narrow channels, thermal diffusion is small and it reaches a steady state value with increasing the channel width. Local velocity fields for two different channels also show different behaviors. In relatively large channels some convection patterns are observed in mixtures.
Boson spectra and correlations for thermal locally equilibrium systems
Sinyukov, Yu M
1999-01-01
The single- and multi- particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for an boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wave-lengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeable grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough.
Local Thermal Equilibrium and KMS states in Curved Spacetime
Solveen, Christoph
2012-01-01
On the example of a free massless and conformally coupled scalar field, it is argued that in quantum field theory in curved spacetimes with time-like Killing field, the corresponding KMS states (generalized Gibbs ensembles) at parameter \\beta>0 need not possess a definite temperature in the sense of the zeroth law. In fact, these states, although passive in the sense of the second law, are not always in local thermal equilibrium (LTE). A criterion characterizing LTE states with sharp local temperature is discussed. Moreover, a proposal is made for fixing the renormalization freedom of composite fields which serve as "thermal observables" and a new definition of the thermal energy of LTE states is introduced. Based on these results a general relation between the local temperature and the parameter \\beta\\ is established for KMS states in (Anti) de Sitter spacetime.
Failure of Local Thermal Equilibrium in Quantum Friction
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-09-01
Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.
Thermal equilibrium and statistical thermometers in special relativity.
Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter
2007-10-26
There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.
A STUDY ON THE EQUILIBRIUM PROFILE FOR THE LUOSHAN-HANKOU REACH IN THE MIDDLE YANGTZE RIVER
Jinyun DENG; Yitian LI
2003-01-01
Based on the morphology of the Luoshan-Hankou reach in the middle Yangtze River, the one dimensional (1 -D), unsteady flow and sediment transport model was applied to study the river channel equilibrium profile.Meanwhile, a simple theoretical model relating the equilibrium profile and the incoming flow and sediment from the upper reach was developed. The numerical simulation results of the 1-D model were compared with the corresponding results of the theoretical model with reasonable agreement found between the two models.Finally, the equilibrium slope variations and their effects on flood control in response to the changes in the sediment transport process because of the Three Gorges Reservoir were analyzed using the 1-D model.
A theoretical analysis of local thermal equilibrium in fibrous materials
Tian Mingwei
2015-01-01
Full Text Available The internal heat exchange between each phase and the Local Thermal Equilibrium (LTE scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the LTE condition, using derived characteristic parameters. Furthermore, the LTE situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their LTE status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on LTE of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity and pore hydraulic radius are investigated, illustrated and discussed in our study.
Considerations on the thermal equilibrium between matter and the cosmic horizon
Mimoso, José Pedro
2016-01-01
A common feature in the thermodynamic analysis of homogeneous and isotropic world models is the assumption that the temperature of the fluids inside the cosmic horizon (including dark energy) coincides with the temperature of the latter, whether it be either the event or the apparent horizon. We examine up to what extent this assumption may be justified, given that these temperatures evolve under different time-temperature laws. We argue that while radiation cannot reach thermal equilibrium with the horizon, non-relativistic matter may, and dark energy might though only approximately.
Lopez Molina, J A; Rivera, M J; Berjano, E
2016-04-01
It has been suggested that during RF thermal ablation of biological tissue the thermal lesion could reach an equilibrium size after 1-2 minutes. Our objective was to determine under which circumstances of electrode geometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood perfusion the temperature will reach a steady state at any point in the tissue. We solved the bioheat equation analytically both in cylindrical and spherical coordinates and the resultant limit temperatures were compared. Our results demonstrate mathematically that tissue temperature reaches a steady value in all cases except for cylindrical coordinates without the blood perfusion term, both for dry and cooled electrodes, where temperature increases infinitely. This result is only true when the boundary condition far from the active electrode is considered to be at infinitum. In contrast, when a finite and sufficiently large domain is considered, temperature reaches always a steady state.
Breaking two laser axioms: Lasing without inversion and thermal equilibrium
Weill, Rafi; Levit, Boris; Zhurahov, Michael; Fischer, Baruch
2016-01-01
It is well known that lasing requires population inversion and that lasers are not in thermal equilibrium (TE). There is a singular example for lasing without inversion (LWI) based on a subtle quantum interference effect that was presented and observed many years ago but has not become a spread and practical method [1-6]. Photons were found to be in TE in a special microcavity but not in a lasing regime [7,8]. Here we report on experimental findings that break these two axioms on lasers. We show LWI and TE in regular lasers with standard erbium-doped fibers (edf) at the 1550nm wavelength regime. The TE is observed for photons in edf cavities and even in open fibers in broad wavelength ranges up to ~200nm. The thermal-LWI results from photon thermalization that spreads the spectrum and transforms photons from low to high wavelengths where the emission cross section is larger than the absorption and compensates for the lower upper-state population. The experimental results are supported by a theoretical analysi...
Thermal Non-equilibrium Consistent with Widespread Cooling
Winebarger, A.; Lionello, R.; Mikic, Z.; Linker, J.; Mok, Y.
2014-01-01
Time correlation analysis has been used to show widespread cooling in the solar corona; this cooling has been interpreted as a result of impulsive (nanoflare) heating. In this work, we investigate wide-spread cooling using a 3D model for a solar active region which has been heated with highly stratified heating. This type of heating drives thermal non-equilibrium solutions, meaning that though the heating is effectively steady, the density and temperature in the solution are not. We simulate the expected observations in narrowband EUV images and apply the time correlation analysis. We find that the results of this analysis are qualitatively similar to the observed data. We discuss additional diagnostics that may be applied to differentiate between these two heating scenarios.
The effect of turbulent fluctuations on the relaxation of thermal non-equilibrium
Khurshid, Sualeh; Donzis, Diego
2015-11-01
In many engineering and natural systems, the microscopic behavior of constituent molecules can affect the macroscopic behavior of the flow. This interaction is significant when the two phenomena have commensurate time scales. We study the effect of turbulence on the relaxation of thermal non-equilibrium (TNE), in particular vibrational energy relaxation, using direct numerical simulation (DNS). First order effects are observed in the evolution of both vibrational energy and turbulence. For example, the rate of decay of kinetic energy is accelerated and temperature fluctuations are amplified. Analytic expressions for equilibrium vibrational energy, Ev*,and characteristic relaxation time scale, τv, are compared against DNS data and used to understand features of the decay. This decay can be divided into two regimes, one dominated by TNE exchanges in time scales of the order of τv followed by a turbulence decay. Between the two regimes, some vibrationally hot flows become cold before reaching equilibrium. This reflects an aspect of the strong coupling between turbulence and TNE in both regimes. Compressiblity effects, quantified by turbulent Mach number (Mt), are also discussed.
A non-equilibrium picture of the chemical freeze-out in hadronic thermal models
De Assis, Leonardo P G; Chiapparini, Marcelo; Hirsch, Luciana R; Delfino, Antonio
2012-01-01
Thermal models have proven to be an useful and simple tool used to make theoretical predictions and data analysis in relativistic and ultra-relativistic heavy ion collisions. A new version of these models is presented here, incorporating a non equilibrium feature to the description of the intermediate fireball state formed at the chemical freeze-out. Two different effective temperatures are attributed to the expanding fireball, regarding its baryonic and mesonic sectors. The proposal is not merely to include an additional degree of freedom to reach a better adjustment to the data, but to open a room in the model conception for considerations on the non-equilibrium scenario of the system evolution. A set of well consolidated data for particles production is used to validated the reformulated version of thermal models presented here. A rather good performance of the extended version was verified, both for the quality of particle ratio data fittings as well as for describing the asymptotic energy behavior of tem...
Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model
Lu, Yong; Cai, Lijun; Liu, Yuxiang; Liu, Jian; Yuan, Yinglong; Zheng, Guoyao; Liu, Dequan
2017-09-01
The heat flux of the HL-2M divertor would reach 10 MW m-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on the homogeneous equilibrium model. The results show that the current design of the HL-2M divertor could withstand the local heat flux 10 MW m-2 at a plasma pulse duration of 5 s, inlet coolant pressure of 1.5 MPa and flow velocity of 4 m s-1. The pulse duration that the HL-2M divertor could withstand is closely related to the coolant velocity. In addition, at the time of 2 min after plasma discharge, the flow velocity decreased from 4 m s-1 to 1 m s-1, and the divertor could also be cooled to the initial temperature before the next plasma discharge commences.
Schenkelberger, Marc; Mai, Timo; Ott, Albrecht
2016-01-01
The specificity of molecular recognition is important to molecular self-organization. A prominent example is the biological cell where, within a highly crowded molecular environment, a myriad of different molecular receptor pairs recognize their binding partner with astonishing accuracy. In thermal equilibrium it is usually admitted that the affinity of recognizer pairs only depends on the nature of the two binding molecules. Accordingly, Boltzmann factors of binding energy differences relate the molecular affinities among different target molecules that compete for the same probe. Here, we consider the molecular recognition of short DNA oligonucleotide single strands. We show that a better matching oligonucleotide strand can prevail against a disproportionally more concentrated competitor that exhibits reduced affinity due to a mismatch. The magnitude of deviation from the simple picture above may reach several orders of magnitude. In our experiments the effective molecular affinity of a given strand remains...
Non-equilibrium approaches to the pre-thermal and post-hadronisation stages of A+A collisions
Sinyukov, Yu M
2009-01-01
The results related to non-equilibrium phenomena at the very early and late stages of the processes of A+A collisions are presented. A good description of the hadron momentum spectra as well as pion and kaon interferometry data at RHIC is reached within the realistic dynamical picture of A+A collisions: HydroKinetic Model (HKM). The model accumulates the following features: not too early thermalization time; $\\tau\\geq 1$ fm/c; a developing of the pre-thermal transverse flows; the effectively more hard, than in the case of chemical equilibrium, equation of state of expanding chemically non-equilibrated multi-hadronic gas; a continuous non-equilibrated emission of hadrons. All these factors lead to a good description of the mentioned RHIC data, in particular, the observed $R_{out}/R_{side}$ ratios, solving, therefore, the HBT puzzle in detailed realistic model.
azzedine ABDEDOU
2015-01-01
Full Text Available Two criteria are used and compared to investigate the local thermal equilibrium assumption in a forced convection through a porous channel. The first criterion is based on the maximum local temperature difference between the solid and fluid phases, while the second is based on the average of the local differences between the temperature of the solid phase and the fluid phase. For this purpose, the momentum and energy equations based on the Darcy-Brinkman-Forchheimer and the local thermal non equilibrium models are solved numerically using the finite volume method. The analysis focused on searching thermophysical parameters ranges which validate local thermal equilibrium hypothesis. Thus, by using the two criteria, the obtained results mainly revealed that this local thermal equilibrium assumption is verified for low thermal conductivity ratio and Reynolds number values and for high interstitial Biot number and porosity, while it is unfavorably affected by the high values of Prandtl number. However, it is also found that the parameters ranges corresponding to the local equilibrium validity depends on the selected local thermal non equilibrium criterion.
Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro
2014-01-01
Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920
无
2009-01-01
The research progress of non-equilibrium grain-boundary segregation theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi- thermo- dynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.
XU TingDong; WANG Kai; SONG ShenHua
2009-01-01
The research progress of non-equilibrium grain-boundary segregaUon theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi-thermodynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.
Equilibrium Statistical-Thermal Models in High-Energy Physics
Tawfik, Abdel Nasser
2014-01-01
We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics, that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948 an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-par...
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.
Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A
2017-01-06
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium
Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Snoke, David W.; Nelson, Keith A.
2017-01-01
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.
Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun
2007-12-15
A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.
A numerical method for solving equilibrium problems of no-tension solids subject to thermal loads
Padovani, Cristina; Pasquinelli, Giuseppe; Zani, Nicola
1996-01-01
The paper starts out by recalling a constitutive equation of no-tension materiate that accounts for thermal dilatation and the temperature dependence of the material constants. Subsequently, a numerical method is presented for solving, via the finite element method, equilibrium problems of no-tension solids subjected to thermal loads. Finally, three examples are solved and discussed: a spherical container subjected to two uniform radiai pressures and a steady temperature distribution, a mason...
Resource theory of quantum states out of thermal equilibrium.
Brandão, Fernando G S L; Horodecki, Michał; Oppenheim, Jonathan; Renes, Joseph M; Spekkens, Robert W
2013-12-20
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.
Resource Theory of Quantum States Out of Thermal Equilibrium
Brandão, Fernando G. S. L.; Horodecki, Michał; Oppenheim, Jonathan; Renes, Joseph M.; Spekkens, Robert W.
2013-12-01
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State
Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich
2015-09-01
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.
Berges, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik]|[California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics; Rothkopf, A. [Tokyo Univ. (Japan). Dept. of Physics; Schmidt, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-02-15
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments. (orig.)
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
NUMERICAL SOLUTION FOR THE POTENTIAL AND DENSITY PROFILE OF A THERMAL EQUILIBRIUM SHEET BEAM
Lund, S M; Bazouin, G
2011-03-29
In a recent paper, S. M. Lund, A. Friedman, and G. Bazouin, Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam, in press, Phys. Rev. Special Topics - Accel. and Beams (2011), a 1D sheet beam model was extensively analyzed. In this complementary paper, we present details of a numerical procedure developed to construct the self-consistent electrostatic potential and density profile of a thermal equilibrium sheet beam distribution. This procedure effectively circumvents pathologies which can prevent use of standard numerical integration techniques when space-charge intensity is high. The procedure employs transformations and is straightforward to implement with standard numerical methods and produces accurate solutions which can be applied to thermal equilibria with arbitrarily strong space-charge intensity up to the applied focusing limit.
NUMERICAL SOLUTION FOR THE POTENTIAL AND DENSITY PROFILE OF A THERMAL EQUILIBRIUM SHEET BEAM
Bazouin, Steven M. Lund, Guillaume; Bazouin, Guillaume
2011-04-01
In a recent paper, S. M. Lund, A. Friedman, and G. Bazouin, Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam, in press, Phys. Rev. Special Topics - Accel. and Beams (2011), a 1D sheet beam model was extensively analyzed. In this complementary paper, we present details of a numerical procedure developed to construct the self-consistent electrostatic potential and density profile of a thermal equilibrium sheet beam distribution. This procedure effectively circumvents pathologies which can prevent use of standard numerical integration techniques when space-charge intensity is high. The procedure employs transformations and is straightforward to implement with standard numerical methods and produces accurate solutions which can be applied to thermal equilibria with arbitrarily strong space-charge intensity up to the applied focusing limit.
Romanova, M. S.; Rydalevskaya, M. A.
2017-05-01
Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.
李明春; 赵中亮; 静宇; 刘家涛; 吴玉胜
2013-01-01
To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the lo-cal thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8%at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.
Pelissetto, Andrea; Vicari, Ettore
2017-01-01
We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a dynamics that starts in the high-T phase at time t =ti0 in the low-T phase, with a time-dependent temperature T (t )/Tc≈1 -t /ts, where ts is the protocol time scale. A general off-equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of the two-dimensional q -state Potts model with q =20 and 10. The numerical results show evidence of a dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-field picture valid for systems with long-range interactions is qualitatively recovered, provided the time dependence is appropriately (logarithmically) rescaled.
Labarthe, Emilie; Bougrine, Anne-Julie; Delalu, Henri; Berthet, Jacques; Counioux, Jean-Jacques
2009-01-01
International audience; Isoplethic thermal analysis was used to determine the solid-liquid-liquid equilibria in the ternary system water-sodium sulfate-piperidine. The changes in state observed on the thermogram recorded during the displacement in a quasi-binary section permit the identification of the different phases and the delimitation of the corresponding equilibrium domains. Two isotherms were established at 25°C and 40°C because these temperatures frame the peritectic decomposition of ...
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
Hou, X. D.; Alvarez, C. L. M.; Jennett, N. M.
2017-02-01
Instrumented indentation testing (IIT) at elevated temperatures has proved to be a useful tool to study plastic and elastic deformation and understand the performance of material components at (or nearer to) the actual temperatures experienced in-service. The value of elevated temperature IIT data, however, depends on the ability not only to achieve a stable, isothermal indentation contact at thermal equilibrium when taking data, but to be able to assign a valid temperature to that contact (and so to the data). The most common method found in the current literature is to use the calculated thermal drift rate as an indicator, but this approach has never been properly validated. This study proves that using the thermal drift rate to determine isothermal contact may lead to large errors in the determination of the real contact temperature. Instead, a more sensitive and validated method is demonstrated, based upon using the indenter tip and the tip heater control thermocouple as a reproducible and calibrated contact temperature sensor. A simple calibration procedure is described, along with step by step guidance to establish an isothermal contact at a known temperature under thermal equilibrium when conducting elevated temperature IIT experiments.
Length dependence of thermal conductivity by approach-to-equilibrium molecular dynamics
Zaoui, Hayat; Cleri, Fabrizio; Lampin, Evelyne
2016-01-01
The length dependence of the thermal conductivity over more than two decades is systematically studied for a range of materials, interatomic potentials and temperatures, by the atomistic approach-to-equilibrium molecular dynamics method (AEMD). By comparing the values of conductivity obtained for a given supercell length and maximum phonon mean-free-path (MFP), we find that such values are strongly correlated, demonstrating that the AEMD calculation with a supercell of finite length, actually probes the thermal conductivity corresponding to a maximum phonon MFP. As a consequence, the less pronounced length dependence usually observed for poorer thermal conductors, such as amorphous silica, is physically justified by their shorter average phonon MFP. Finally, we compare different analytical extrapolations of the conductivity to infinite length, and demonstrate that the frequently used Matthiessen rule is not applicable in AEMD. An alternative extrapolation more suitable for transient-time, finite-supercell sim...
Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts.
Bertero, Melisa; Sedran, Ulises
2013-05-01
A raw bio-oil from pine sawdust, the liquid product from its thermal conditioning and a synthetic bio-oil composed by eight model compounds representing the main chemical groups in bio-oils, were converted thermally and over a commercial equilibrium FCC catalyst. The experiments were performed in a fixed bed reactor at 500 °C. The highest hydrocarbon yield (53.5 wt.%) was obtained with the conditioned liquid. The coke yields were significant in all the cases, from 9 to 14 wt.%. The synthetic bio-oil produced lesser hydrocarbons and more oxygenated compounds and coke than the authentic feedstocks from biomass. The previous thermal treatment of the raw bio-oil had the positive effects of increasing 25% the yield of hydrocarbons, decreasing 55% the yield of oxygenated compounds and decreasing 20% the yield of coke, particularly the more condensed coke.
Far-from-equilibrium processes without net thermal exchange via energy sorting.
Vilar, Jose M G; Rubi, J Miguel
2012-02-14
Many important processes at the microscale require far-from-equilibrium conditions to occur, as in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors. Achieving such conditions, however, is typically based on energy inputs that strongly affect the thermal properties of the environment and the controllability of the system itself. Here, we present a general class of far-from-equilibrium processes that suppress the net thermal exchange with the environment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon, referred to as ghost equilibrium, results from the statistical cancellation of superheated and subcooled nonequilibrated degrees of freedom that are autonomously generated through a microscale energy sorting process. We provide general conditions to observe this phenomenon and study its implications for manipulating energy at the microscale. The results are applied explicitly to two mechanistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which encompass a great variety of common situations involving both rotational and translational degrees of freedom. © 2012 American Institute of Physics
National Aeronautics and Space Administration — This SBIR project proposes to develop a gas-kinetic Navier-Stokes solver for simulation of hypersonic flows in thermal and chemical non-equilibrium. The...
Thermalization and out-of-equilibrium dynamics in open quantum many-body systems
Buchhold, Michael
2015-06-30
In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermis golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate σ{sup R}=ImΣ{sup R}, determined by the self-energy at equilibrium. However, for long times τ, it also reveals the presence of dynamical slow
Ostriker, Eve C; Leroy, Adam K
2010-01-01
We develop a model for regulation of galactic star formation rates Sigma_SFR in disk galaxies, in which ISM heating by stellar UV plays a key role. By requiring simultaneous thermal and (vertical) dynamical equilibrium in the diffuse gas, and star formation at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for Sigma_SFR as a function of the total gaseous surface density Sigma and the density of stars + dark matter, rho_sd. The physical basis of this relationship is that thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to Sigma_SFR, must adjust to match the midplane pressure set by the vertical gravitational field. Our model applies to regions where Sigma < 100 Msun/pc^2. In low-Sigma_SFR (outer-galaxy) regions where diffuse gas dominates, the theory predicts Sigma_SFR \\propto Sigma (rho_sd)^1/2. The decrease of thermal equilibrium pressure when Sigma_SFR is low implies, consistent with observations, that star formatio...
Thermal equilibrium of a Brownian particle in a fluctuating fluid: a numerical study
Liu, Yi; Nie, Deming
2017-07-01
In this work the fluctuating lattice Boltzmann method was adopted to simulate the motion of a Brownian particle in a fluid in two dimensions. The temperatures characterizing the translation motion and rotational motion of the particle were calculated to evaluate the thermal equilibrium between the particle and the fluid. Furthermore, the effects of the fluid temperature and viscosity on the fluid pressure fluctuation were investigated. The linear relationships were observed in a log-log coordinate. Besides, the slopes of the linear relation were obtained, which keeps constant for all cases studied.
THERMAL NON-EQUILIBRIUM REVISITED: A HEATING MODEL FOR CORONAL LOOPS
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Mok, Yung, E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: amy.r.winebarger@nasa.gov, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, 4129 Reines Hall, Irvine, CA 92697 (United States)
2013-08-20
The location and frequency of events that heat the million-degree corona are still a matter of debate. One potential heating scenario is that the energy release is effectively steady and highly localized at the footpoints of coronal structures. Such an energy deposition drives thermal non-equilibrium solutions in the hydrodynamic equations in longer loops. This heating scenario was considered and discarded by Klimchuk et al. on the basis of their one-dimensional simulations as incapable of reproducing observational characteristics of loops. In this paper, we use three-dimensional simulations to generate synthetic emission images, from which we select and analyze six loops. The main differences between our model and that of Klimchuk et al. concern (1) dimensionality, (2) resolution, (3) geometrical properties of the loops, (4) heating function, and (5) radiative function. We find evidence, in this small set of simulated loops, that the evolution of the light curves, the variation of temperature along the loops, the density profile, and the absence of small-scale structures are compatible with the characteristics of observed loops. We conclude that quasi-steady footpoint heating that drives thermal non-equilibrium solutions cannot yet be ruled out as a viable heating scenario for EUV loops.
Has Chemical Education Reached Equilibrium?
Moore, John W.
1997-06-01
The other day I got to thinking about whether something akin to Le Chatelier's principle operates in chemical education. That is, whenever someone alters the conditions under which we interact with students, there is a shift in the system that attempts to minimize or counteract the change.
Simulating ionic thermal trasport by equilibrium ab-initio molecular dynamics
Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
2014-03-01
The Green-Kubo approach to thermal transport is often considered to be incompatible with ab-initio molecular dynamics (AIMD) because a suitable quantum-mechanical definition of the heat current is not readily available, due to the ill-definedness of the microscopic energy density to which it is related by the continuity equation. We argue that a similar difficulty actually exists in classical mechanics as well, and we address the conditions that have to be fulfilled in order for the physically well defined transport coefficients to be independent of the ill defined microscopic energy density from which they derive. We then provide two alternative approaches to calculating thermal conductivites from equilibrium AIMD. The first is based on the Green-Kubo formula, supplemented with an expression for the energy current, which is a generalization of Thouless' expression for the adiabatic charge current. The second approach, which avoids the recourse to an energy current altogether, rests on an efficient and accurate extrapolation to infinite wavelengths of the energy-density time correlation functions. The two methods are compared on a simple classical test bed, and their implementation in AIMD is demonstrated with the calculation of the thermal conductivity of simple fluids.
Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2016-08-01
We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.
Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass.
Acharjee, Tapas C; Coronella, Charles J; Vasquez, Victor R
2011-04-01
The equilibrium moisture content (EMC) of raw lignocellulosic biomass, along with four samples subjected to thermal pretreatment, was measured at relative humidities ranging from 11% to 97% at a constant temperature of 30 °C. Three samples were prepared by treatment in hot compressed water by a process known as wet torrefaction, at temperatures of 200, 230, and 260 °C. An additional sample was prepared by dry torrefaction at 300 °C. Pretreated biomass shows EMC below that of raw biomass. This indicates that pretreated biomass, both dry and wet torrefied, is more hydrophobic than raw biomass. The EMC results were correlated with a recent model that takes into account additional non-adsorption interactions of water, such as mixing and swelling. The model offers physical insight into the water activity in lignocellulosic biomass.
Perturbative Non-Equilibrium Thermal Field Theory to all Orders in Gradient Expansion
Millington, Peter
2013-01-01
We present a new perturbative formulation of non-equilibrium thermal field theory, based upon non-homogeneous free propagators and time-dependent vertices. The resulting time-dependent diagrammatic perturbation series are free of pinch singularities without the need for quasi-particle approximation or effective resummation of finite widths. After arriving at a physically meaningful definition of particle number densities, we derive master time evolution equations for statistical distribution functions, which are valid to all orders in perturbation theory and to all orders in a gradient expansion. For a scalar model, we perform a loopwise truncation of these evolution equations, whilst still capturing fast transient behaviour, which is found to be dominated by energy-violating processes, leading to the non-Markovian evolution of memory effects.
Thermal Non-Equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops
Auchère, F; Bocchialini, K; Buchlin, E; Solomon, J
2016-01-01
We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.
Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals
McDonald, R.D. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)], E-mail: rmcd@lanl.gov; Harrison, N.; Singleton, J. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)
2008-04-01
The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} is conclusive proof of the existence of a three-dimensional chiral metal.
Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals
McDonald, R. D.; Harrison, N.; Singleton, J.
2008-04-01
The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt α- (BEDT-TTF)2KHg(SCN)4 is conclusive proof of the existence of a three-dimensional chiral metal.
Diffusion Mechanisms and Lattice Locations of Thermal-Equilibrium Defects in Si-Ge Alloys
Lyutovich, K; Touboltsev, V; Laitinen, P O; Strohm, A
2002-01-01
It is generally accepted that Ge and Si differ considerably with respect to intrinsic-point-defect-mediated diffusion. In Ge, the native point defects dominating under thermal-equilibium conditions at all solid-state temperatures accessible in diffusion experiments are vacancies, and therefore Ge self-diffusion is vacancy-controlled. In Si, by contrast, self-interstitials and vacancies co-exist in thermal equilibrium. Whereas in the most thoroughly investigated temperature regime above about 1000$^\\circ$C Si self-diffusion is self-interstitial-controlled, it is vacancy-controlled at lower temperatures. According to the scenario displayed above, self-diffusion in Si-Ge alloys is expected to change from an interstitialcy mechanism on the Si side to a vacancy mechanism on the Ge side. Therefore, $^{71}$Ge self-diffusion experiments in Si$_{1- \\it y}$Ge$_{\\it y}$ as a function of composition Y are highly interesting. In a first series of experiments the diffusion of Ge in 0.4 to 10 $\\mu$m thick, relaxed, low-disl...
Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles
Froment, C.; Auchère, F.; Aulanier, G.; Mikić, Z.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2017-02-01
In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.
Muthtamilselvan, M.; Prakash, D. [Bharathiar University, Coimbatore (Iran, Islamic Republic of); Doh, Deog Hee [Korea Maritime University, Busan (Korea, Republic of)
2014-09-15
This work is made to study the effect of local thermal non-equilibrium (LTNE) on transient MHD laminar boundary layer flow of viscous, incompressible nanofluid over a vertical stretching plate embedded in a sparsely packed porous medium. The flow in the porous medium is governed by simple Darcy model. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three temperature model is used to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent nonlinear coupled ordinary differential equations and they are solved by Runge-Kutta Fehlberg Method along with shooting technique. Numerical results of the boundary layer flow characteristics for the fluid, particle and solid phases are obtained for various combinations of the physical parameters. It is found that the thermal non-equilibrium effects are strongest when the fluid/particle, fluid/solid Nield numbers and thermal capacity ratios are small. Moreover, the amount of heat transfer is maximum in nanoparticles than that of fluid and solid phases because of enhancement of thermal conductivity in nanofluids.
Asir Intisar Khan
2015-12-01
Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.
Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet
Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun
2016-01-01
Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)
Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics
Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella
2017-08-01
In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic model by the variational method, then we use the compactness technique to prove the existence of weak solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quantum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, whereas the other one is presented classically in the whole domain. The semi-classical limit results are also obtained. Finally, the theoretical results are tested numerically on a simple toy model.
Non-equilibrium simulations of thermally induced electric fields in water
Wirnsberger, Peter; Šarić, Anđela; Neumann, Martin; Dellago, Christoph; Frenkel, Daan
2016-01-01
Using non-equilibrium molecular dynamics simulations, Bresme and co-workers recently demonstrated that water molecules align in response to an imposed temperature gradient. Employing the Wolf method to truncate the electrostatic interactions, they reported electric fields as high as $3.7\\times10^8~\\text{V/m}$ for a gradient of about $5.2~\\text{K/\\AA}$ [J. Chem. Phys. 139, 014504 (2013)]. Recently, however, Bresme and co-workers [J. Chem. Phys. 143, 036101 (2015)] advocated that the Wolf method overestimates the induced electric field by an order of magnitude. In this work, we investigate how thermally induced fields depend on the underlying treatment of long-ranged interactions. Our key findings are: Firstly, under identical conditions we find the peak field strength to be $2.8\\times 10^7~\\text{V/m}$ and $2.2\\times 10^7~\\text{V/m}$ for Ewald summation and the Wolf method, respectively. Our value for the short-ranged method is therefore an order of magnitude lower than the original value reported by Bresme and...
朱爱民; 宫为民; 张秀玲; 李小松
2002-01-01
At ambient temperature and pressure, C2H2 and H2 are the dominating products from pure methane conversion under pulsed corona discharge (PCD). When the energy density of 194-1788 kJ/mol was applied, 7%-30% of C2H2 yield and 6%-35% of H2 yield per pass have been obtained. These results are higher than the maximum thermodynamic yield of C2H2 (5.1%) and H2 (3.8%) at 100 kPa and 1100 K, respectively. Thereby, pulsed corona discharge is a very effective tool for "beyond-thermal-equilibrium" conversion of methane to C2H2 and H2 at ambient temperature and pressure. In the PCD energy density range of 339-822 kJ/mol, the carbon distribution of the methane conversion products is found to be: C2H2 86%-89%, C2H6 4%-6%, C2H4 4%-6%, C3 -2%, C4 -1%. Through comparison of the product from pure methane, ethane and ethylene conversion at the same discharge conditions, it can be concluded that three pathways may be responsible for the C2H2 formation via CHx radicals produced from the collisions of CH4 molecules with energi
Non-thermal equilibrium two-phase flow for melt migration and ascent
Schmeling, Harro; Marquart, Gabriele
2017-04-01
We develop a theory for heat exchange between a fluid phase in a solid porous matrix where the temperature of the fluid and of the matrix are different, i. e. not in thermal equilibrium. The formulation considers moving of the fluid within the porous matrix as well as moving of the matrix in an Eulerian grid. The theory can be applied to melts in partially molten rocks, particularly aiming at the transitional regime between melt percolation and flow through dikes, as well as to brine transport in porous rocks. The theory involves the energy conservation equations for the fluid and the solid phase which are coupled by a heat exchange term. We derive an expression based on a Fourier decomposition of a periodic half-waves for a macroscopic description of the non-equal temperatures in the fluid and the solid considering the relative volumetric fractions and surface to volume relations of the pores. We present a formulation for the heat exchange between the two phases taking into account different thermal conductivities of the fluid and the solid and considering the temporal evolution of the heat exchange. The latter leads to a convolution integral in case of a resting matrix. The evolution of the temperature in both phases with time is derived upon inserting the heat exchange term in the energy equations. We test the theory for a simple 1D case of sudden temperature difference between fluid and solid and vary fluid fractions and differential velocities between fluid and solid to obtain the requisites for the maximum Fourier coefficient and the time increments for numerical integration. The necessary time increments are small (between 10^-3 d2 / κ to 10^-5 d^2/ κ, where d is a scaling length, e.g. the pore radius and κ is a scaling diffusivity, e.g. the mean diffusivity) and strongly depend on the fluid fraction. The maximum Fourier coefficient need to be as high as 500 to resolve properly the sudden heat exchange between fluid and solid. Our results agree well with
Qiang Zheng; Yi-hu Song; Xiao-su Yi
2001-01-01
The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.
Opanowicz, A.
2007-08-01
Thermally stimulated luminescence (TSL) and conductivity (TSC) are considered using the classical insulator model that assumes one kind of active trap, one kind of inactive deep trap and one kind of recombination centre. Kinetic equations describing the model are solved numerically without and with the use of quasi-equilibrium (QE) approximation. The QE state is characterized by the parameter qI = (dnc/dt)/Ie, where dnc/dt is the rate of change of free electron density, and Ie is the TSL intensity. The QE state parameter qI, the relative recombination probability γ = Ie/(Ie + It) (It is the trapping intensity) and a new parameter called a quasi-stationary (QS) state parameter q* = qIγ = (dnc/dt)/(Ie + It) are used for the analysis of the TSL and TSC. The QE and QS states are determined by conditions |qI| Lt 1 and, respectively, |q*| Lt 1. The TSL and TSC curves and the temperature dependences of qI, q*, γ the recombination lifetime and the occupancies of active traps and recombination centres are numerically calculated for five sets of kinetic parameters and different heating rates. These calculation results show that (1) the upper limit of the heating rate for the presence of the QS state appears at a higher heating rate than that for the QE state when the retrapping process is present, and (2) the TSL (TSC) curves in the QS state have properties similar to those for the TSL (TSC) curves in the QE state. Approximate formulae for calculation of the parameters qI and q* in the initial range of the TSL and TSC curves are derived and used in the heating-rate methods, proposed in this work, for determination of those parameters from the calculated TSL curves.
Hydrological and thermal controls of ice formation in 25 boreal stream reaches
Lind, Lovisa; Alfredsen, Knut; Kuglerová, Lenka; Nilsson, Christer
2016-09-01
The Northern Hemisphere has a high density of fluvial freshwater ecosystems, many of which become ice-covered during winter. The development and extent of ice have both ecological and socio-economic implications. For example, ice can cause freezing of riparian vegetation and fish eggs as well as influence hydropower production; however, when, where and why ice develops in small streams is not well known. We used observations from 25 stream reaches to study the factors controlling ice development during two consecutive winters, addressing where in the catchment surface or anchor-ice is most likely to develop, how stream morphology influences ice formation, and how climate influences ice processes. Reaches far downstream from lake outlets, or without any upstream lakes, were most prone to develop anchor-ice, but other factors also influenced ice formation. Anchor-ice was most common where water temperature and groundwater inputs were low and stream power high. Given cold air temperature and water supercooling, the in-stream substrate as well as the current velocity were also important for the development of anchor-ice. Climate and substrate seemed to be important factors for the development of surface ice. This study shows that ice processes are substantial during the hydrological year and may therefore have large implications for the ecology and engineering around boreal streams. The study also demonstrates that ice formation in the studied streams was complex, involving many variables and physical processes. We constructed a conceptual model describing the likelihood for various ice types to develop, based on the large dataset. As such, this model will be useful for practitioners and scientists working in small watercourses in the Northern Hemisphere.
Eltayeb, I. A.; Elbashir, T. B. A.
2017-08-01
The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy-Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau-Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed.
Yang Xiao
2005-01-01
Based on the porous media theory and by taking into account the effects of the pore fluid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fluid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fluid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small deformation of the solid phase, small velocity of the fluid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fluid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles,especially Hu-Washizu type variational principles, for the initial boundary value problems of dynamic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fluid-saturated elastic porous media, which have been discussed previously.
Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source
Nazari Mohsen
2015-01-01
Full Text Available This paper is concerned with thermal non-equilibrium natural convection in a square cavity filled with a porous medium in the presence of a biomass which is transported in the cavity. The biomass can consume a secondary moving substrate. The physics of the presented problem is related to the analysis of heat and mass transfer in a composting process that controlled by internal heat generation. The intensity of the bio-heat source generated in the cavity is equal to the rate of consumption of the substrate by the biomass. It is assumed that the porous medium is homogeneous and isotropic. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. A simplified Monod model is introduced along with the governing equations to describe the consumption of the substrate by the biomass. In other word, the transient biochemical heat source which is dependent on a solute concentration is considered in the energy equations. Investigation of the biomass activity and bio-chemical heat generation in the case of thermal non-equilibrium assumption has not been considered in the literature and they are open research topics. The effects of thermal non-equilibrium model on heat transfer, flow pattern and biomass transfer are investigated. The effective parameters which have a direct impact on the generated bio-chemical heat source are also presented. The influences of the non-dimensional parameters such as fluid-to-solid conductivity ratio on the temperature distribution are presented.
Fermion- and spin-counting in strongly correlated systems in and out of thermal equilibrium
Braungardt, Sibylle; De, Aditi Sen; Sen, Ujjwal; Glauber, Roy J; Lewenstein, Maciej
2010-01-01
Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field, and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations, and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.
Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume
2011-01-10
A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.
Some properties of correlations of quantum lattice systems in thermal equilibrium
Fröhlich, Jürg, E-mail: juerg@phys.ethz.ch [Institut für Theoretische Physik, ETH Zürich (Switzerland); Ueltschi, Daniel, E-mail: daniel@ueltschi.org [Department of Mathematics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2015-05-15
Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.
Bellantone, Robert A; Patel, Piyush; Sandhu, Harpreet; Choi, Duk Soon; Singhal, Dharmendra; Chokshi, H; Malick, A Waseem; Shah, Navnit
2012-12-01
A method is presented for determining the equilibrium solubility of a drug in a solid polymer at or near room temperature, which represents a typical storage temperature. The method is based on a thermodynamic model to calculate the Gibbs energy change ΔG(SS) associated with forming a binary drug-polymer solid solution from the unmixed polymer and solid drug. The model includes contributions from heat capacity differences between the solid solution and the corresponding unmixed components, breaking up of the solid drug structure, and drug-polymer mixing. Calculation of ΔG(SS) from thermal analysis data is demonstrated, and it is shown that minima of plots of ΔG(SS) versus the dissolved drug concentration represent the equilibrium drug solubility in the polymer. Solid solutions were produced for drug-polymer systems (griseofulvin, indomethacin, itraconazole; PVP K30, Eudragit L100, Eudragit E100) in drug weight fractions up to ∼25%. At 25°C, it was seen that heat capacity effects were important in determining the drug solubility. It was concluded that drug solubilities in solid polymers can be determined using thermal analysis, and must include heat capacity effects when evaluated near room temperature.
Kim, Chang-Goo; Ostriker, Eve C
2011-01-01
We use vertically-resolved numerical hydrodynamic simulations to study star formation and the interstellar medium (ISM) in galactic disks. We focus on outer disk regions where diffuse HI dominates, with gas surface densities Sigma_SFR=3-20 Msun/kpc^2/yr and star-plus-dark matter volume densities rho_sd=0.003-0.5 Msun/pc^3. Star formation occurs in very dense, cold, self-gravitating clouds. Turbulence, driven by momentum feedback from supernova events, destroys bound clouds and puffs up the disk vertically. Time-dependent radiative heating (FUV) offsets gas cooling. We use our simulations to test a new theory for self-regulated star formation. Consistent with this theory, the disks evolve to a state of vertical dynamical equilibrium and thermal equilibrium with both warm and cold phases. The range of star formation surface densities and midplane thermal pressures is Sigma_SFR ~ 0.0001 - 0.01 Msun/kpc^2/yr and P_th/k_B ~ 100 -10000 cm^-3 K. In agreement with observations, turbulent velocity dispersions are ~7 k...
Anibas, Christian; Debele Tolche, Abebe; Ghysels, Gert; Schneidewind, Uwe; Nossent, Jiri; Touhidul Mustafa, Syed Md; Huysmans, Marijke; Batelaan, Okke
2017-04-01
The quantification of groundwater-surface water interaction is an important challenge for hydrologists and ecologists. Within the last decade, many new analytical and numerical estimation methods have been developed, including heat tracer techniques. In a number of publications, their sources of errors were investigated, and future directions for the research in groundwater-surface water exchange were discussed. To improve our respective knowledge of the Belgian lowland Aa River we reinvestigate temperature data which was gathered in the river bed and used for the quantification of the 1D vertical groundwater-surface water exchange. By assuming a thermal steady state of the river bed temperature distribution, Anibas et al. (2011) were unable to use the full potential of the entire large data set. The analysis tool STRIVE is modified to use the river water temperature time series as the upper model boundary. This transient thermal set up overcomes many of the limitations of the steady state assumption and allows for the analysis of vertical 1D exchange fluxes in space and time. Results of about 380 transient simulations covering a period of more than 1.5 years show high absolute changes in exchange fluxes in the upstream part of the river. However, in the downstream part, the relative changes in fluxes are larger. The 26 spatially distributed thermal profiles along the river reach are interpolated using kriging based on variograms calculated from the temperature dataset. Results indicate gaining conditions for most locations and most of the time. Few places in the downstream part show losing conditions in late winter and early spring. While in autumn and winter the mean exchange fluxes can be -90 mmd-1, in spring to early summer fluxes are only -42 mmd-1. The river bed near the banks shows elevated fluxes compared to the center of the river. Probably driven by regional groundwater flow, the river bed near the left and right bank shows fluxes respectively a factor 3
Johari, G. P.; Andersson, Ove
2017-06-01
We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ˜20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the
Identifying Student Resources in Reasoning about Entropy and the Approach to Thermal Equilibrium
Loverude, Michael
2015-01-01
As part of an ongoing project to examine student learning in upper-division courses in thermal and statistical physics, we have examined student reasoning about entropy and the second law of thermodynamics. We have examined reasoning in terms of heat transfer, entropy maximization, and statistical treatments of multiplicity and probability. In…
Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium
Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter
2013-01-01
This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.
Quantum non-equilibrium effects in rigidly-rotating thermal states
Ambruş, Victor E.
2017-08-01
Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET) operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL). While rigidly-rotating thermal states cannot be constructed for the Klein-Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.
Aguirre-Loredo, Rocío Yaneli; Rodríguez-Hernández, Adriana Inés; Morales-Sánchez, Eduardo; Gómez-Aldapa, Carlos Alberto; Velazquez, Gonzalo
2016-04-01
Water molecules modify the properties of biodegradable films obtained from hydrophilic materials. Most studies dealing with thermal, mechanical and barrier properties of hydrophilic films are carried out under one relative humidity (RH) condition. The objective of this work was to evaluate the effect of the moisture content on the thermal, mechanical and barrier properties of chitosan films under several RH conditions. Microclimates, obtained with saturated salt solutions were used for conditioning samples and the properties of the films were evaluated under each RH condition. Chitosan films absorbed up to 40% of moisture at the higher RH studied. The percentage of elongation and the water vapour permeability increased while tensile strength, Young's modulus and glass transition temperature decreased, when the moisture content increased. The results suggest that the water molecules plasticized the polymer matrix, changing the properties when the films were in contact with high RH environments.
Long, Luping; Liu, Wensheng; Ma, Yunzhu; Liu, Ye; Liu, Shuhua
2015-10-01
Electron beam melting (EBM) technology has been considered as one of the key steps for preparing high purity tungsten, and reasonable setting of process parameters is the premise. In this paper, the optimum process parameters obtained from thermal equilibrium calculation and evaporation loss control of tungsten are presented. Effective power is closely related to melting temperature, and the required power for maintaining the superheating melt linearly increases with the increase of melt superheat temperature. The evaporation loss behavior of tungsten is significantly influenced by melting rate and melting temperature. Analysis of experiments show that the best results are realized at melting rate of 1.82 g/s, melting temperature of 4200 K, and the corresponding melting power of 130 kW, in which the main impurity elements in tungsten, such as As, Cd, Mg and Sn, present high removal ratio of 90%, 95%, 85.7% and 90%, respectively.
Czachor, Andrzej, E-mail: a.czachor@ncbj.gov.pl
2016-02-15
In this paper we consider the assembly of weakly interacting identical particles, where the occupation of single-particle energy-levels at thermal equilibrium is governed by statistics. The analytic form of the inter-energy-level jump matrix is derived and analytic solution of the related eigen-problem is given. It allows one to demonstrate the nature of decline in time of the energy emission (fluorescence, recombination) of such many-level system after excitation in a relatively simple and unifying way – as a multi-exponential de-excitation. For the system of L energy levels the number of the de-excitation lifetimes is L−1. The lifetimes depend on the energy level spectrum as a whole. Two- and three-level systems are considered in detail. The impact of the energy level degeneracy on the lifetimes is discussed.
Sääskilahti, K.; Oksanen, J.; Tulkki, J.; McGaughey, A. J. H.; Volz, S.
2016-12-01
The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)- 2 scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with independent molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude.
Sääskilahti, K; Tulkki, J; McGaughey, A J H; Volz, S
2016-01-01
The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)$^{-2}$ scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with separate molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude.
Dongre, B.; Wang, T.; Madsen, G. K. H.
2017-07-01
Different molecular dynamics methods like the direct method, the Green-Kubo (GK) method and homogeneous non-equilibrium molecular dynamics (HNEMD) method have been widely used to calculate lattice thermal conductivity ({κ }{\\ell }). While the first two methods have been used and compared quite extensively, there is a lack of comparison of these methods with the HNEMD method. Focusing on the underlying computational parameters, we present a detailed comparison of the GK and HNEMD methods for both bulk and vacancy Si using the Stillinger-Weber potential. For the bulk calculations, we find both methods to perform well and yield {κ }{\\ell } within acceptable uncertainties. In case of the vacancy calculations, HNEMD method has a slight advantage over the GK method as it becomes computationally cheaper for lower {κ }{\\ell } values. This study could promote the application of HNEMD method in {κ }{\\ell } calculations involving other lattice defects like nanovoids, dislocations, interfaces.
Liolios, Konstantinos; Bergman, Jan; Moussas, Xenophon
2017-04-01
Heliospheric energetic particle populations of energies higher than 1 MeV are studied using a 33 year long data record composed of hourly measurements, as extracted from the NASA Goddard Space Flight Center's OMNI data set. Their periodicities are examined by means least-squares spectral analysis and wavelet analysis and found to be in good agreement with periodicities seen in sunspot numbers, which are well-known indicators of variations in solar activity. Hence, the source of this energetic and positively charged gas is mainly the Sun but part of it should be cosmic rays. As derived from the analyses of suprathermal "heavy" tails of the probability distribution, we assume that the gas kinetics is described by a deformed Maxwell-Boltzmann distribution, namely, the kappa distribution. The q-index analogue to the κ-index is computed for every hour in the data record and used to investigate how far away the gas is from being in classical thermal equilibrium (q = 1). We compare the q-index time series with that of sunspot numbers and conclude that the gas is in continously variable states away (q > 1) from the almost always assumed thermal equilibrium. During the first ˜15 years, the q-indices somewhat exceed the theoretically predicted limit but follow a pattern which is very homogeneous. However, just before 1990, the q-indices begin to fluctuate in a periodic manner, creating maxima and minima, as they continuously increase until they peak about 1996-1997, while after these years, they decrease following a similar pattern. As a result, we assume that after 1990, for a period that lasted at least 10 years, something changed in the Sun's behaviour. A higher number of solar bursts could easily affect the gas but further research, for instance an analysis of solar flare timeseries from the same period, is required to draw a more robust conclusion of what may have caused the observed anomaly.
Michaelis, Christopher Harold
2001-07-01
The motion of a gas may be studied from the microscopic or macroscopic point of view. At the microscopic level, molecules are constantly moving and colliding, and occasionally reacting to form new species. The accepted model for describing gases at the microscopic level is the Boltzmann equation. In contrast, macroscopic models rely on the conservation laws, combined with constitutive relations, which approximate the molecular relaxation in a gas. The resulting set of equations, called the Navier- Stokes equations, represent an approximation to the Boltzmann equation for small non-equilibrium. For flows that are sufficiently rarefied, the Navier- Stokes equations no longer represent an accurate approximation of the Boltzmann equation. Numerical solutions of the Boltzmann equation may be obtained through the direct simulation of molecular motion. Such approaches are termed Monte Carlo, or particle methods. In principle, particle methods can be used to simulate all flows, regardless of the degree of non-equilibrium. There are many instances where neither approach is ideal. One such example is the reentry of a blunt body through the atmosphere. Ahead of the body, there is a very strong shock wave that cannot be adequately modeled by the Navier-Stokes equations, due to the degree of non- equilibrium. At the surface of the blunt body, the temperature is substantially colder than the surrounding flow, resulting in a large increase in the density next to the surface. In this region, where the flow is near- continuum, particle methods are not computationally efficient. A numerical method that utilizes the Navier-Stokes equations in regions of near-continuum flow and a particle method everywhere else is ideal. In this study, a hybrid scheme, for the efficient numerical simulation of flows with thermal and chemical non-equilibrium, is successfully demonstrated. The hybrid method was applied to extreme, high Mach number flows, where vibrational and chemical relaxation are
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Prosen, Tomaz; Zunkovic, Bojan [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia)], E-mail: tomaz.prosen@fmf.uni-lj.si
2010-02-15
We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of a 4nx4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how one can compute all the physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time-dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that the recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium steady state to external (bath or bulk) parameters. Studying the heat transport, we find negative differential thermal conductance for sufficiently strong thermal driving as well as non-monotonic dependence of the heat current on the strength of the bath coupling.
Dadić, I.
2001-01-01
We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms of two-point functions. For two-point functions we define the concept of a projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both resummed and single self-energy insertion approximation) contributions appear which are not the Fourier transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.
Thermal Equilibrium Analysis of Hydraulic System%液压系统热平衡分析
李永衡
2016-01-01
For hydraulic system due to the ageing of the equipment caused to the system temperature is too high,don’t adopt the traditional method,for the heat generated by the power loss and heat coming from the system to calculate,but only for the Newly added heat of the hydraulic system for testing,calculation.Select the corre-sponding cooling mode,the hydraulic system is maintained at the set temperature range.When QAbsorption is equal to QRelease ,the new thermal balance of hydraulic system is realized.%针对液压系统因设备老化而造成的系统温度过高，传统的方法采用对功率损耗产生的热量与系统散发的热量进行计算，而本文是仅对液压系统的新增热量进行测试、计算。选择相对应的冷却方式，使液压系统保持在设定的温度范围内，当Q吸＝Q放时，即实现了液压系统新的热平衡。
Liu, Q
2016-01-01
In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for convection heat transfer in porous media under local thermal non-equilibrium (LTNE) condition. The model is constructed within the framework of the three-distribution-function approach: two temperature-based MRT-LB equations are proposed for the temperature fields of fluid and solid phases in addition to the MRT-LB equation of a density distribution function for the velocity field described by the generalized non-Darcy model. The thermal non-equilibrium effects are incorporated into the model by adding source terms into the temperature-based MRT-LB equations. Moreover, the discrete lattice effects are considered in the introduction of source terms into the temperature-based MRT-LB equations. The source terms accounting for the thermal non-equilibrium effects are simple and the model retains the inherent features of the standard LB method. Numerical results demonstrate that the proposed model can be served as an accura...
Rykaczewski, K; Mieritz, D G; Liu, M; Ma, Y; Iezzi, E B; Sun, X; Wang, L P; Solanki, K N; Seo, D-K; Wang, R Y
2016-06-01
Focused ion beam and scanning electron microscope (FIB-SEM) instruments are extensively used to characterize nanoscale composition of composite materials, however, their application to analysis of organic corrosion barrier coatings has been limited. The primary concern that arises with use of FIB to mill organic materials is the possibility of severe thermal damage that occurs in close proximity to the ion beam impact. Recent research has shown that such localized artefacts can be mitigated for a number of polymers through cryogenic cooling of the sample as well as low current milling and intelligent ion beam control. Here we report unexpected nonlocalized artefacts that occur during FIB milling of composite organic coatings with pigment particles. Specifically, we show that FIB milling of pigmented polysiloxane coating can lead to formation of multiple microscopic voids within the substrate as far as 5 μm away from the ion beam impact. We use further experimentation and modelling to show that void formation occurs via ion beam heating of the pigment particles that leads to decomposition and vaporization of the surrounding polysiloxane. We also identify FIB milling conditions that mitigate this issue.
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
Agarwal, Shilpi; Rana, Puneet
2016-04-01
In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.
Jiménez-González, Marco A.; Jordán, Antonio; Zavala, Lorena M.; Mataix-Solera, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Bellinfante, Nicolás
2014-05-01
1. INTRODUCTION Wildfires may induce important chemical and physical changes in soils, including changes in the soil composition, mineralogical changes, soil water repellency, aggregate stability or textural changes (Bodí et al., 2013; Granged et al., 2011a, 2011b, 2011c; Jordán et al., 2011, 2013; Mataix-Solera et al., 2011). As these changes usually occur after threshold temperature peaks, the assessment of these helps to explain many of the processes occurring during burning and in the postfire (Pereira et al., 2012, 2013; Shakesby, 2011). In July 2011, a wildfire burnt a pine forested area (50 ha) in Gorga (Alicante, SW Spain), approximately at 38° 44.3' N and 0° 20.7' W. Main soil type is Lithic Xerorthent developed from limestone. The study of mineralogical changes in soil after a wildfire should help to assess fire temperature peaks reached during burning. In order to study the impact of fire temperature on mineralogical changes and determine temperature peaks during burning, burnt soil plots under shrubland were randomly collected (0-5 cm deep). Control samples from adjacent unburnt areas were also collected for control. 2. METHODS Soil samples were ground using an agate mortar and then sieved (420 °C). In samples heated at 500 and 700 °C, these changes are not appreciated as they occurred during calcination. In the 300 °C heated sample, some of these changes partially occurred. Peaks observed approximately at 100 °C correspond to release of absorbed water. Peaks at 900 °C are a consequence of destruction of calcite. Finally a peak was observed at 680 °C in the control sample may be explained as a consequence of the destruction of blixite (Pb8(OH)2Cl4), which was present in control samples (1.1%) but not in burnt samples. This peak is probably masked in heated samples. REFERENCES Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.
Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.
2011-05-01
Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.
Equilibrium figures of dwarf planets
Rambaux, Nicolas; Chambat, Frederic; Castillo-Rogez, Julie; Baguet, Daniel
2016-10-01
Dwarf planets including transneptunian objects (TNO) and Ceres are >500 km large and display a spheroidal shape. These protoplanets are left over from the formation of the solar System about 4.6 billion years ago and their study could improve our knowledge of the early solar system. They could be formed in-situ or migrated to their current positions as a consequence of large-scale solar system dynamical evolution. Quantifying their internal composition would bring constraints on their accretion environment and migration history. That information may be inferred from studying their global shapes from stellar occultations or thermal infrared imaging. Here we model the equilibrium shapes of isolated dwarf planets under the assumption of hydrostatic equilibrium that forms the basis for interpreting shape data in terms of interior structure. Deviations from hydrostaticity can shed light on the thermal and geophysical history of the bodies. The dwarf planets are generally fast rotators spinning in few hours, so their shape modeling requires numerically integration with Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter, to reach an accuracy better than a few kilometers depending on the spin velocity and mean density. We also show that the difference between a 500-km radius homogeneous model described by a MacLaurin ellipsoid and a stratified model assuming silicate and ice layers can reach several kilometers in the long and short axes, which could be measurable. This type of modeling will be instrumental in assessing hydrostaticity and thus detecting large non-hydrostatic contributions in the observed shapes.
Mandal, R.; Dewangan, P.; Ramprasad, T.; Kumar, B.J.P.; Vishwanath, K.
in the vicinity of major fault systems. We presume that the likely mechanism for the increase in GTG is fluid advection from a deeper part of the basin. A detailed thermal modeling involving the effect of surface topography, high sedimentation rates, fluid...
Monique Florenzano
2008-09-01
Full Text Available General equilibrium is a central concept of economic theory. Unlike partial equilibrium analysis which study the equilibrium of a particular market under the clause “ceteris paribus” that revenues and prices on the other markets stay approximately unaffected, the ambition of a general equilibrium model is to analyze the simultaneous equilibrium in all markets of a competitive economy. Definition of the abstract model, some of its basic results and insights are presented. The important issues of uniqueness and local uniqueness of equilibrium are sketched; they are the condition for a predictive power of the theory and its ability to allow for statics comparisons. Finally, we review the main extensions of the general equilibrium model. Besides the natural extensions to infinitely many commodities and to a continuum of agents, some examples show how economic theory can accommodate the main ideas in order to study some contexts which were not thought of by the initial model
Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.
2017-03-01
The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.
Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.
2014-06-15
Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.
LIU Zhen-Xiang; XIE Kan
2000-01-01
Nanostructured CeO2 thin films and powders are studied by high temperature x-ray photoelectron spectroscopy and thermal gravimetric analysis. The results indicate that the surface composition strongly depends on temperature, the surface O/Ce ratio initially increases with increasing temperature, then decreases with the further increase of temperature, the maximum surface O/Ce ratio is at about 300℃ C. The variation of the surface composition with temperature arises from the ion migration, redistribution and transformation between lattice oxygen and gas phase oxygen near the grain boundaries during the thermodynamic equilibrium process. The results also show that CeO2 has a weakly bond oxygen, high oxygen mobility in the bulk and a high molecular dissociation rate at the surface, especially for the sol-gel prepared nanocrystallite CeO2.
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
Bosetti, Hadrien; Posch, Harald A; Dellago, Christoph; Hoover, William G
2010-10-01
Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a simple model representing a harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.
朱红飞; 王晓钧; 郭亮志; 张一帆
2013-01-01
TheNaHCO3, azodicarbonamide( AC) , azo - bis - isobutyronitrile and 4, 4- oxy bisbenzene sulfonyl hydrazide were selected and composed of the thermal equilibrium composite foaming agents for foaming the unsaturated polyester resin in accordance with the principle of thermal equilibrium foaming. The foaming mechanism was investigated by differential scanning calorimetry instrument ( DSC) , scanning electron microscopy ( SEM) and mechanical property testings. The results showed that the bubble hole diameter of foamed material using the prior en-dothermic/posterior exothermic equilibrium composite foaming agent was small and had uniform distribution. The apparent density, compressive strength and specific compression strength of foamed unsaturated polyester resin u-sing composite foaming agent of AC and NaHCO3 with mass ratio of 6:4 were 0. 546 g/cm3, 13. 73 MPa, and 25. 15 MPa/(g·cm-3) , respectively.%依据热平衡发泡原理,选择NaHCO3、偶氮二甲酰胺(AC)、偶氮二异丁腈和4,4-氧代双苯磺酰肼组成不同热平衡复合发泡剂发泡不饱和聚酯树脂,通过示差扫描量热仪(DSC)、扫描电镜(SEM)和力学性能测试对其发泡机制进行了研究.结果表明:先吸热后放热的热平衡复合发泡剂发泡材料泡孔孔径小且分布均匀.AC与NaHCO3质量比为6∶4组成的热平衡发泡剂制得的发泡不饱和聚酯树脂的表观密度为0.546 g/cm3,压缩强度为13.73 MPa,比压缩强度达到25.15 MPa/(g·cm-3).
Gelet, R.; Loret, B.; Khalili, N.
2012-07-01
The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro-mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.
Equilibrium Modeling Study on Thermal Treatment of POPs%热处理POPs的化学平衡计算
田君国; 王贵全; 邓晶; 徐永香; 盛宏至; 蔡伶俐
2013-01-01
为利用等离子体处理持续有机污染物POPs，需要根据某些已有的POPs数据判断其对于各类POPs的销毁能力。基于 Gibbs 自由能最小原理和能量守恒原理建立了平衡计算模型，并与实验结果进行对照。结果表明，模型在给定有机废物组分和产物温度的情况下与实验结果符合较好。利用该模型模拟了加水量对等离子体温度区域范围内处理数种 POPs 的平衡产物，以及不同温度下的摧毁率。该方法可用于预测采用等离子体技术处理各种 POPs 的摧毁效果。%In order to estimate the destruction efficiency for many sorts of POPs (the persistent organic pollutants) based upon the experimental data from several sorts of POPs destructed by plasma technology, this paper sets up an equilibrium model for predicting the reaction product distribution of organic wastes of given constituents under given reaction temperature. The model is based on Gibbs free energy principle and energy conservation, and agrees with experimental data very well. The results show that this model can be applied to predict the reaction products and de-struction efficiency for many sorts of POPs under different reaction temperatures, even under arc plasma temperature, and with water added.
Ohdaira, Keisuke; Nishikawa, Takuya; Shiba, Kazuhiro; Takemoto, Hiroyuki; Matsumura, Hideki [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa (Japan)
2010-04-15
Flash lamp annealing (FLA), with millisecond-order duration, can crystallize amorphous silicon (a-Si) films a few {mu}m thick on glass substrates, resulting in formation of polycrystalline Si (poly-Si) films with unprecedented periodic microstructures. The characteristic microstructure, formed spontaneously during crystallization, consists of large-grain regions, containing relatively large grains more than 100 nm in size, and fine-grain regions, including only 10-nm-sized fine grains. The microstructures results from explosive crystallization (EC), driven by heat generation corresponding to the difference of the enthalpies of meta-stable a-Si and stable crystalline Si(c-Si) states, which realizes lateral crystallization velocity on the order of m/s. The lateral crystallization may stop when the temperature of a-Si in the vicinity of c-Si, which is decided by both homogeneous heating from flash irradiation and thermal diffusion from c-Si, falls below a crystallization temperature. This idea is supported by the experimental fact that a lateral crystallization length decreases with decreasing pulse duration. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Velazquez P, S. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)
2008-07-01
In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)
Thermal Conductivity Coefficient from Microscopic Models
Nemakhavhani, T E
2016-01-01
Thermal conductivity of hadron matter is studied using a microscopic transport model, which will be used to simulate ultra-relativistic heavy ion collisions at different energy densities, namely the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). The molecular dynamics simulation is performed for a system of light mesons species (pion, rho, kaon) in a box with periodic boundary conditions. The equilibrium state is investigated by studying chemical equilibrium and thermal equilibrium of the system. Particle multiplicity equilibrates with time, and the energy spectra of different light mesons species have the same slopes and common temperatures when thermal equilibrium is reached. Thermal conductivity transport coefficient is calculated from the heat current - current correlations using the Green-Kubo relations.
van der Burg, W.; van Willigenburg, T.
1998-01-01
The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste
van der Burg, W.; van Willigenburg, T.
1998-01-01
The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste
Dapp, Wolf B.; Müser, Martin H.
2013-01-01
Force fields uniquely assign interatomic forces for a given set of atomic coordinates. The underlying assumption is that electrons are in their quantum-mechanical ground state or in thermal equilibrium. However, there is an abundance of cases where this is unjustified because the system is only locally in equilibrium. In particular, the fractional charges of atoms, clusters, or solids tend to not only depend on atomic positions but also on how the system reached its state. For example, the ch...
Rauscher, Emily [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Showman, Adam P., E-mail: rauscher@astro.princeton.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Tucson, AZ 85721 (United States)
2014-04-01
As a planet ages, it cools and its radius shrinks at a rate set by the efficiency with which heat is transported from the interior out to space. The bottleneck for this transport is at the boundary between the convective interior and the radiative atmosphere; the opacity there sets the global cooling rate. Models of planetary evolution are often one dimensional (1D), such that the radiative-convective boundary (RCB) is defined by a single temperature, pressure, and opacity. In reality the spatially inhomogeneous stellar heating pattern and circulation in the atmosphere could deform the RCB, allowing heat from the interior to escape more efficiently through regions with lower opacity. We present an analysis of the degree to which the RCB could be deformed and the resultant change in the evolutionary cooling rate. In this initial work we calculate the upper limit for this effect by comparing an atmospheric structure in local radiative equilibrium to its 1D equivalent. We find that the cooling through an uneven RCB could be enhanced over cooling through a uniform RCB by as much as 10%-50%. We also show that the deformation of the RCB (and the enhancement of the cooling rate) increases with a greater incident stellar flux or a lower inner entropy. Our results indicate that this mechanism could significantly change a planet's thermal evolution, causing it to cool and shrink more quickly than would otherwise be expected. This may exacerbate the well-known difficulty in explaining the very large radii observed for some hot Jupiters.
Guzella, Matheus dos Santos; Cabezas-Gómez, Luben; da Silva, José Antônio; Maia, Cristiana Brasil; Hanriot, Sérgio de Morais
2016-02-01
This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.
Chau, Nancy H.
2009-01-01
This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...
Zeroth Law, Entropy, Equilibrium, and All That
Canagaratna, Sebastian G.
2008-01-01
The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…
Zeroth Law, Entropy, Equilibrium, and All That
Canagaratna, Sebastian G.
2008-01-01
The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Oliveira, Mário J
2013-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbo...
Simmons, Charles J; Stratemeier, Horst; Hitchman, Michael A; Reinen, Dirk; Masters, Vanessa M; Riley, Mark J
2011-06-06
The crystal structures of trans-diaquabis(methoxyacetato)copper(II) and the isostructural nickel(II) complex have been determined over a wide temperature range. In conjunction with the reported behavior of the g-values, the structural data suggest that the copper(II) compound exhibits a thermal equilibrium between three structural forms, two having orthorhombically distorted, tetragonally elongated geometries but with the long and intermediate bonds to different atoms, and the third with a tetragonally compressed geometry. This is apparently the first reported example of a copper(II) complex undergoing an equilibrium between tetragonally elongated and compressed forms. The optical spectrum of single crystals of the copper(II) compound is used to obtain metal-ligand bonding parameters which yield the g-values of the compressed form of the complex and hence the proportions of the complex in each structural form at every temperature. When combined with estimates of the Jahn-Teller distortions of the different forms, the latter produce excellent agreement with the observed temperature dependence of the bond lengths. The behavior of an infrared combination band is consistent with such a thermal equilibrium, as is the temperature dependence of the thermal ellipsoid parameters and the XAFS. The potential surfaces of the different forms of the copper(II) complex have been calculated by a model based upon Jahn-Teller coupling. It is suggested that cooperative effects may cause the development of the population of tetragonally compressed complexes, and the crystal packing is consistent with this hypothesis, though the present model may oversimplify the diversity of structural forms present at high temperature. © 2011 American Chemical Society
Mathematical models and equilibrium in irreversible microeconomics
Anatoly M. Tsirlin
2010-07-01
Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.
U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...
Natural gas at thermodynamic equilibrium Implications for the origin of natural gas
Jarvie Daniel; Mango Frank D; Herriman Eleanor
2009-01-01
Abstract It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at ther...
Effect of Ultrasound on Desorption Equilibrium
秦炜; 原永辉; 戴猷元
2001-01-01
Effects of ultrasound on intensification of separation process were investigated through the experiment of desorption equilibrium behavior. Tri-butyl phosphate (TBP) on NKA-X resin and phenol on a solvent impregnated resin, CL-TBP resin, were used for desorption processes. The desorption rate was measured with and without ultrasound. Desorption equilibrium was studied under various ultrasonic power densities or thermal infusion. Results showed that the desorption rate with ultrasound was much higher than that with normal thermal infusion. Both ultrasound and thermal infusion broke the desorption equilibrium existed at room temperature. However, after the systems were cooled down, the amount of solute desorbed in the liquid phase in the presence of ultrasound was much higher than that at the temperature corresponding to the same ultrasound power. It is proved that the initial desorption equilibrium was broken as a result of the spot energy effect of ultrasound.
Rich, Evan A; Wisniewski, John P; Hashimoto, Jun; Brandt, Timothy D; Carson, Joseph C; Kuzuhara, Masayuki; Uyama, Taichi
2016-01-01
We present and analyze Subaru/IRCS L' and M' images of the nearby M dwarf VHS J125601.92-125723.9 (VHS 1256), which was recently claimed to have a ~11 M_Jup companion (VHS 1256 b) at ~102 au separation. Our AO images partially resolve the central star into a binary, whose components are nearly equal in brightness and separated by 0.106" +/- 0.001". VHS 1256 b occupies nearly the same near-IR color-magnitude diagram position as HR 8799 bcde and has a comparable L' brightness. However, it has a substantially redder H - M' color, implying a relatively brighter M' flux density than for the HR 8799 planets and suggesting that non-equilibrium carbon chemistry may be less significant in VHS 1256 b. We successfully match the entire SED (optical through thermal infrared) for VHS 1256 b to atmospheric models assuming chemical equilibrium, models which failed to reproduce HR 8799 b at 5 microns. Our modeling favors slightly thick clouds in the companion's atmosphere, although perhaps not quite as thick as those favored ...
Belkessa, Brahim; Badji, Riad; Bettahar, Kheireddine; Maza, Halim [Division de la Metallurgie et Mecanique. Centre de Recherche Scientifique et Technique en Soudage et Controle. B.P 64, Route de Dely Ibrahim, Cheraga, Alger (Algeria)
2006-07-01
Heat treatments in the temperature range between 800 to 1200 C, with a keeping at high temperature of 60 min, followed by a water quenching at 20 C, have been carried out on austeno-ferritic stainless steel welds (of type SAF 2205-UNS S31803). The heat treatments carried out at temperatures below 1000 C have modified the structure of the duplex stainless steel 2205 in inducing the formation of precipitates, identified by X-ray diffraction as being the intermetallic compound {sigma} and the chromium carbides M{sub 23}C{sub 6}. The treatments applied to temperatures superior to 1000 C shift the {delta}-{gamma} equilibrium towards the {delta} phase. Indeed, the increase of the ferrite rate with the treatment temperature is approximately linear. The ferrite rates are higher in the heat-affected zone, which has been submitted to a ferritizing due to the welding thermal effects. (O.M.)
Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions
Cleymans, Jean
2009-01-01
Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.
Status of chemical equilibrium in relativistic heavy-ion collisions
J Cleymans
2003-04-01
Recent work on chemical equilibrium in heavy-ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.
Sahu, J.N.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering
2009-03-15
Ammonia has long been known to be useful in the treatment of flue/tail/stack gases from industrial furnaces, incinerators, and electric power generation industries. In this study, urea hydrolysis for production of ammonia, in different application areas that require safe use of ammonia at in situ condition, was investigated in a batch reactor. The equilibrium and kinetic study of urea hydrolysis was done in a batch reactor at reaction pressure to investigate the effect of reaction temperature, initial feed concentration, and time on ammonia production. This study reveals that conversion increases exponentially with an increase in temperature but with increases in initial feed concentration of urea the conversion decreases marginally. Further, the effect of time on conversion has also been studied; it was found that conversion increases with increase in time. Using collision theory, the temperature dependency of forward rate constant developed from which activation energy of the reaction and the frequency factor has been calculated. The activation energy and frequency factor of urea hydrolysis reaction at atmospheric pressure was found to be 73.6 kJ/mol and 2.89 x 10{sup 7} min{sup -1}, respectively.
On thermalization of electron-positron-photon plasma
Siutsou, I. A., E-mail: siutsou@icranet.org [CAPES–ICRANet program, ICRANet–Rio, CBPF 22290-180, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ (Brazil); Aksenov, A. G. [Institute for Computer-Aided Design, Russian Academy of Sciences 123056, 2nd Brestskaya st., 19/18, Moscow (Russian Federation); Vereshchagin, G. V. [ICRANet 65122, p.le della Republica, 10, Pescara (Italy)
2015-12-17
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
Beyond the thermal model in relativistic heavy-ion collisions
Wolschin, Georg
2016-01-01
Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.
Morphodynamic equilibrium of alluvial estuaries
Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni
2014-05-01
The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final
Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David
2016-04-21
Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate.
2016-09-01
Popular culture reflects both the interests of and the issues affecting the general public. As concerns regarding climate change and its impacts grow, is it permeating into popular culture and reaching that global audience?
Teratology testing under REACH.
Barton, Steve
2013-01-01
REACH guidelines may require teratology testing for new and existing chemicals. This chapter discusses procedures to assess the need for teratology testing and the conduct and interpretation of teratology tests where required.
Reaching affects saccade trajectories.
Tipper, S P; Howard, L A; Paul, M A
2001-01-01
The pre-motor theory suggests that, when attention is oriented to a location, the motor systems that are involved in achieving current behavioural goals are activated. For example, when a task requires accurate reaching, attention to a location activates the motor circuits controlling saccades and manual reaches. These actions involve separate neural systems for the control of eye and hand, but we believe that the selection processes acting on neural population codes within these systems are similar and can affect each other. The attentional effect can be revealed in the subsequent movement. The present study shows that the path the eye takes as it saccades to a target is affected by whether a reach to the target is also produced. This effect is interpreted as the influence of a hand-centred frame used in reaching on the spatial frame of reference required for the saccade.
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Quantifying mixing using equilibrium reactions
Wheat, Philip M.; Posner, Jonathan D.
2009-03-01
A method of quantifying equilibrium reactions in a microchannel using a fluorometric reaction of Fluo-4 and Ca2+ ions is presented. Under the proper conditions, equilibrium reactions can be used to quantify fluid mixing without the challenges associated with constituent mixing measures such as limited imaging spatial resolution and viewing angle coupled with three-dimensional structure. Quantitative measurements of CaCl and calcium-indicating fluorescent dye Fluo-4 mixing are measured in Y-shaped microchannels. Reactant and product concentration distributions are modeled using Green's function solutions and a numerical solution to the advection-diffusion equation. Equilibrium reactions provide for an unambiguous, quantitative measure of mixing when the reactant concentrations are greater than 100 times their dissociation constant and the diffusivities are equal. At lower concentrations and for dissimilar diffusivities, the area averaged fluorescence signal reaches a maximum before the species have interdiffused, suggesting that reactant concentrations and diffusivities must be carefully selected to provide unambiguous, quantitative mixing measures. Fluorometric equilibrium reactions work over a wide range of pH and background concentrations such that they can be used for a wide variety of fluid mixing measures including industrial or microscale flows.
Equilibrium fluctuation energy of gyrokinetic plasma
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result
Historical Change of Equilibrium Water Temperature in Japan
Miyamoto, H.
2015-12-01
Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e
Terry, Dorothy Givens
2012-01-01
Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…
REACH. Air Conditioning Units.
Garrison, Joe; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…
REACH. Air Conditioning Units.
Garrison, Joe; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…
Reaching into Pictorial Spaces
Volcic, Robert; Vishwanath, Dhanraj; Domini, Fulvio
2014-02-01
While binocular viewing of 2D pictures generates an impression of 3D objects and space, viewing a picture monocularly through an aperture produces a more compelling impression of depth and the feeling that the objects are "out there", almost touchable. Here, we asked observers to actually reach into pictorial space under both binocular- and monocular-aperture viewing. Images of natural scenes were presented at different physical distances via a mirror-system and their retinal size was kept constant. Targets that observers had to reach for in physical space were marked on the image plane, but at different pictorial depths. We measured the 3D position of the index finger at the end of each reach-to-point movement. Observers found the task intuitive. Reaching responses varied as a function of both pictorial depth and physical distance. Under binocular viewing, responses were mainly modulated by the different physical distances. Instead, under monocular viewing, responses were modulated by the different pictorial depths. Importantly, individual variations over time were minor, that is, observers conformed to a consistent pictorial space. Monocular viewing of 2D pictures thus produces a compelling experience of an immersive space and tangible solid objects that can be easily explored through motor actions.
Snow, Rufus; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…
Terry, Dorothy Givens
2012-01-01
Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…
国义军; 代光月; 桂业伟; 童福林; 邱波; 刘骁
2015-01-01
A detailed description of the methods used to evaluate the non-equilibrium and catalytic surface effects on thermal environment of the reentry vehicles is presented.There are lots of engineering prediction models for non-equilibrium effects since 1950s,most of them based on the hypothesis that the boundary layer is frozen and recombination of the dissociated gases only occurs at the wall surface depending on the wall catalytic properties.Five widely used meth-ods for one same question are selected and compared,and their results are quite different from one another.Based on recently numerical results and theoretical analysis,a new model which takes chemical reactions both in boundary layer and on body surface into account simultaneously is proposed in this paper.It is shown that the chemical state of the boundary layer is controlled mainly by the recombination that takes place near the wall,which suggests representing the gas-phase reaction by an equivalent surface reaction with all state variables specified by surface conditions.The equivalent surface reaction method then can be extended to the case in which the surface has an arbitrary catalytic.The results obtained by this proposed model agree quite well with the flying test data of STS-2 space shuttle.From the calculation results,the non-equilibri-um effect often appears when the vehicle flight altitude is above 50 km at atmosphere accompa-nied by the rarefied flow effects,and the non-equilibrium effect mainly occurs near the nosetip regions.At the place far down the nosetip,the chemical state of the boundary layer will transfer to equilibrium.%综合比较了现有的非平衡热环境工程计算方法，发现采用不同方法给出的计算结果相互之间差别较大。本文基于边界层中的原子复合反应主要发生在靠近壁面薄层内的特点，将边界层中的气相反应等价到表面上，建立了同时考虑边界层内非平衡反应和表面催化特性的非平衡边界层气
Moreno S, H. [Instituto Tecnologico de Toluca, Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Pacheco S, J.; Cruz A, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hilda_saavedra@yahoo.com.mx
2005-07-01
In spite of the measures that have taken for the decrease of the emitted pollution by mobile sources (''Today it doesn't Circulate'', implementation of catalysts in those exhaust pipes,...), the pollution in the Valley of Mexico area overcomes the limits fixed by Mexican standards several days each year. It is foreseen that for 2020 those emissions of pollutants will be increase considerably, as example we can mention to the sulfur oxides which will be increase a 48% with regard to 1998. The purpose of this work is of proposing a technique for the degradation of the sulfur dioxide (SO{sub 2}) that consists in introducing this gas to a plasma out of thermal equilibrium where its were formed key radicals (O, OH) for its degradation. The proposed reactor has the advantage of combining the kindness of the dielectric barrier discharge and of corona discharge, besides working to atmospheric pressure and having small dimensions. The first obtained results of the modelling of the degradation of the SO{sub 2} in plasma as well as those experimentally obtained are presented. (Author)
A toy model linking atmospheric thermal radiation and sea ice growth
Thorndike, A. S.
1992-01-01
A simplified analytical model of sea ice growth is presented where the atmosphere is in thermal radiative equilibrium with the ice. This makes the downwelling longwave radiation reaching the ice surface an internal variable rather than a specified forcing. Analytical results demonstrate how the ice state depends on properties of the ice and on the externally specified climate.
ON VECTOR NETWORK EQUILIBRIUM PROBLEMS
Guangya CHEN
2005-01-01
In this paper we define a concept of weak equilibrium for vector network equilibrium problems.We obtain sufficient conditions of weak equilibrium points and establish relation with vector network equilibrium problems and vector variational inequalities.
Brignole, Esteban Alberto
2013-01-01
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and
Mirabilite solubility in equilibrium sea ice brines
Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary
2016-06-01
The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the
Solar Hydrogen Reaching Maturity
Rongé Jan
2015-09-01
Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.
Mesoscopic non-equilibrium thermodynamics
Rubi, Jose' Miguel
2008-02-01
Full Text Available Basic concepts like energy, heat, and temperature have acquired a precise meaning after the development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work are related and with the general rules that the macroscopic properties of systems at equilibrium follow. Outside equilibrium and away from macroscopic regimes most of those rules cannot be applied directly. In this paper we present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with probability conservation laws can be used to obtain kinetic equations describing the evolution of the relevant degrees of freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly from the knowledge of its equilibrium properties. A wide variety of situations can be studied in this way, including many that were thought to be out of reach of thermodynamic theories, such as non-linear transport in the presence of potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, like translocation and stretching.
Westar reaches critical crossroads
1992-06-01
Westar Mining Ltd. has applied for court protection until September 30, 1992 to gain time to draw up a final reorganization plan. The Companies' Creditors Arrangement Act is a federal statute that allows a business to restructure financially without having to declare bankruptcy. Normal trade terms with suppliers are usually maintained during this period. The company is struggling under the effects of falling coal prices, a high Canadian dollar and a high debt burden. Changes in work practices at the company's Balmer mine are a major part of the restructuring. An agreement must be reached with the United Mineworkers of America and other stakeholders or the Balmer mine will close permanently. Employees have been locked out since May 1, 1992 when union members rejected the company's final offer.
Spin equilibrium in strongly-magnetized accreting stars
D'Angelo, Caroline
2016-01-01
The spin rate of a strongly-magnetized accreting star is regulated by the interaction between the star's magnetic field and the accreting gas. These systems are often hypothesized to be in `spin equilibrium' with their surrounding accretion flows such that the net spin change of the star as a result of accretion is very small. This condition requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. However, this is not true for most magnetically accreting stars, which have strongly variable accretion outbursts (by one to many orders of magnitude) on timescales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss -- where angular momentum is carried away in an outflow (the standard `propeller', centrifugally-launched outflow), where most angular momentum ...
Out-of-equilibrium phenomena and Transport in Cold Atoms
Giamarchi, Thierry
Transport of particle or charge current between two reservoirs is one of the most studied phenomenon in the context of condensed matter. Despite its apparent simplicity this phenomenon is in fact a case of an out of equilibrium situation requiring in principle new theoretical tools and concepts for its solution. One way to sweep the difficulty under the rug has been usually to tackle this problem in the linear response, where one can come back to the comfortable case of equilibrium. There are however many cases when the linear response is not enough and when a full solution of the non-equilibrium problem is needed. This is in particular the case for quantum point contacts or junctions where the full current-voltage characteristics gives direct information on the physics of the problem. In the recent years, in complement to condensed matter experimental realizations, due to the full control on the parameters of the problem and the fact that they realize isolated quantum systems cold atoms have proven a fantastic laboratory to produce out of equilibrium situations. This ranges from the case of quenches, to more recently via experiments of the ETHZ group to the case of real transport between reservoirs. This experimental activity has in turn thus stimulated strongly theoretical developments in this field. I will discuss in this talk some of the recent advances and realizations both at the experimental and of course the theoretical level. I will in particular focus on a recent study which was able to realize a tunable, ballistic quantum point contact between two fermi reservoirs with a tunable interaction allowing to reach unitarity and to provide a theoretical description of the out-of equilibrium corresponding problem. In such a system the current has been shown to originate from multiple Andreev reflections which leads to a very non-linear current-chemical potential characteristics. The geometry of the contact can be changed showing a competition between
Reaching Fleming's dicrimination bound
Gruebl, Gebhard
2012-01-01
Any rule for identifying a quantum system's state within a set of two non-orthogonal pure states by a single measurement is flawed. It has a non-zero probability of either yielding the wrong result or leaving the query undecided. This also holds if the measurement of an observable $A$ is repeated on a finite sample of $n$ state copies. We formulate a state identification rule for such a sample. This rule's probability of giving the wrong result turns out to be bounded from above by $1/n\\delta_{A}^{2}$ with $\\delta_{A}=|_{1}-_{2}|/(\\Delta_{1}A+\\Delta_{2}A).$ A larger $\\delta_{A}$ results in a smaller upper bound. Yet, according to Fleming, $\\delta_{A}$ cannot exceed $\\tan\\theta$ with $\\theta\\in(0,\\pi/2) $ being the angle between the pure states under consideration. We demonstrate that there exist observables $A$ which reach the bound $\\tan\\theta$ and we determine all of them.
2001-01-01
The creation of the world's largest sandstone cavern, not a small feat! At the bottom, cave-in preventing steel mesh can be seen clinging to the top of the tunnel. The digging of UX-15, the cavern that will house ATLAS, reached the upper ceiling of LEP on October 10th. The breakthrough which took place nearly 100 metres underground occurred precisely on schedule and exactly as planned. But much caution was taken beforehand to make the LEP breakthrough clean and safe. To prevent the possibility of cave-ins in the side tunnels that will eventually be attached to the completed UX-15 cavern, reinforcing steel mesh was fixed into the walls with bolts. Obviously no people were allowed in the LEP tunnels below UX-15 as the breakthrough occurred. The area was completely evacuated and fences were put into place to keep all personnel out. However, while personnel were being kept out of the tunnels below, this has been anything but the case for the work taking place up above. With the creation of the world's largest...
Non-equilibrium and band tailing in organic conductors
A T Oza; P C Vinodkumar; R G Patel
2003-03-01
The concept of band tailing with focal point and width of the tail from IR absorption spectra of different organic conductors is found valid even for thermal and elastic changes. The experimental situations like change of solvents, method of preparation, applied pressure and pressure cycle apart from compositions is analyzed within the framework of tailing of states. Non-equilibrium due to coupling between applied energy and free electrons can be responsible for the exponential relaxation from non-equilibrium to equilibrium.
Berty, J.M.; Krishnan, C.; Elliott, J.R. Jr. (Berty Reaction Engineers, Ltd. (USA))
1990-10-01
Methanol is synthesised catalytically from H{sub 2}, CO and CO{sub 2}. Equilibrium considerations dictated the use of high pressures until the advent of copper-based catalysts. But equilibrium problems still exist; single pass conversions of CO and H{sub 2} are low, typically 30-40%. A solvent methanol process (SMP) is proposed to overcome existing problems. A high-boiling inert solvent is introduced with the synthesis gas. The solvent selectively absorbs CH{sub 3}OH, thus shifting the equilibrium towards the product. The strongest solvent identified and tested is tetraethyleneglycol dimethyl ether (tetraglyme). 24 refs., 4 figs., 2 tabs.
Chemical Principles Revisited: Chemical Equilibrium.
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Statistical fluctuations and correlations in hadronic equilibrium systems
Hauer, Michael
2010-06-17
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Thermodynamics "beyond" local equilibrium
Vilar, Jose; Rubi, Miguel
2002-03-01
Nonequilibrium thermodynamics has shown its applicability in a wide variety of different situations pertaining to fields such as physics, chemistry, biology, and engineering. As successful as it is, however, its current formulation considers only systems close to equilibrium, those satisfying the so-called local equilibrium hypothesis. Here we show that diffusion processes that occur far away from equilibrium can be viewed as at local equilibrium in a space that includes all the relevant variables in addition to the spatial coordinate. In this way, nonequilibrium thermodynamics can be used and the difficulties and ambiguities associated with the lack of a thermodynamic description disappear. We analyze explicitly the inertial effects in diffusion and outline how the main ideas can be applied to other situations. [J.M.G. Vilar and J.M. Rubi, Proc. Natl. Acad. Sci. USA 98, 11081-11084 (2001)].
Katalin Martinás
2007-02-01
Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.
Response reactions: equilibrium coupling.
Hoffmann, Eufrozina A; Nagypal, Istvan
2006-06-01
It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
An analytical model of crater count equilibrium
Hirabayashi, Masatoshi; Minton, David A.; Fassett, Caleb I.
2017-06-01
Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.
Hagedorn States and Thermalization
Noronha-Hostler, Jacquelyn
2010-01-01
In recent years Hagedorn states have been used to explain the physics close to the critical temperature within a hadron gas. Because of their large decay widths these massive resonances lower $\\eta/s$ to near the AdS/CFT limit within the hadron gas phase. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. In this paper we also observe the effects of Hagedorn States on the $K^+/\\pi^+$ horn seen at AGS, SPS, and RHIC.
Local non-equilibrium thermodynamics.
Jinwoo, Lee; Tanaka, Hajime
2015-01-16
Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.
Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan
2014-12-01
It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Non-equilibrium quantum heat machines
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Neuman, M.W.
1982-01-01
The conundrum of blood undersaturation with respect to bone mineralization and its supersaturation with respect to bone's homeostatic function has acquired a new equation. On the supply side, Ca/sup 2 +/ is pumped in across bone cells to provide the needed Ca/sup 2 +/ x P/sub i/ for brushite precipitation. On the demand side, blood is in equilibrium with bone fluid, which is in equilibrium with a mineral more soluble than apatite. The function of potassium in this equation is yet to be found.
The Development of Equilibrium After Preheating
Kofman, L A
2001-01-01
We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identica...
Demaison, Jean; Császár, Attila G.
2012-09-01
Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.
Dynamic assignment: there is an equilibrium !
Meunier, Frédéric
2008-01-01
Given a network with a continuum of users at some origins, suppose that the users wish to reach specific destinations, but that they are not indifferent to the time needed to reach their destination. They may have several possibilities (of routes or deparure time), but their choices modify the travel times on the network. Hence, each user faces the following problem: given a pattern of travel times for the different possible routes that reach the destination, find a shortest path. The situation in a context of perfect information is a so-called Nash equilibrium, and the question whether there is such an equilibrium and of finding it if it exists is the so-called equilibrium assignment problem. It arises for various kind of networks, such as computers, communication or transportation network. When each user occupies permanently the whole route from the origin to its destination, we call it the static assignment problem, which has been extensively studied with pioneers works by Wardrop or Beckmann. A less studi...
Aerospace Applications of Non-Equilibrium Plasma
Blankson, Isaiah M.
2016-01-01
Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).
Non-equilibrium properties of hadronic mixtures
Prakasch, Madappa (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Prakasch, Manju (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Venugopalan, R. (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Welke, G. (Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.)
1993-05-01
The equilibration of hot hadronic matter is studied in the framework of relativistic kinetic theory. Various non-equilibrium properties of a mixture comprised of pions, kaons and nucleons are calculated in the dilute limit for small deviations from local thermal equilibrium. Interactions between these constituents are specified through the empirical phase shifts. The properties calculated include the relaxation/collision times, momentum and energy persistence ratios in elastic collisions, and transport properties such as the viscosity, the thermal conductivity, and the diffusion and thermal diffusion coefficients. The Chapman-Enskog formalism is extended to extract relaxation times associated with shear and heat flows, and drag and diffusion flows in a mixture. The equilibrium number concentration of the constituents is chosen to mimic those expected in the mid-rapidity interval of CERN and RHIC experiments. In this case, kaons and nucleons are found to equilibrate significantly more slowly than pions. These results shed new light on the influence of collective flow effects on the transverse momentum distributions of kaons and nucleons versus those of pions in ultra-relativistic nuclear collisions. (orig.)
Ana Maria S. Maia
2007-03-01
Full Text Available Durante as últimas décadas, o interesse em polímeros anfifílicos tem aumentado continuamente. Neste trabalho, o comportamento do copolímero hidrofílico/hidrofóbico poli(acrilamida-b-N,N-dihexilacrilamida (PADHA na interface sólido/líquido foi estudado para se quantificar a adsorção quando o equilíbrio do sistema é atingido. Na interface água/arenito, a isoterma de adsorção para a PADHA mostrou uma forma incomum, caracterizada pela ausência de uma região de patamar e um aumento contínuo na quantidade adsorvida com a concentração polimérica. Esta forma de adsorção particular poderia ser explicada pela formação de múltiplas camadas devido a associações hidrofóbicas, através das quais as camadas adsorvidas seriam formadas, em parte, por algumas cadeias que não estão diretamente em contato com a superfície sólida.During the last few decades, interest in amphiphilic polymers has increased steadily. In this work, the behavior of the hydrophilic/hydrophobic copolymer poly(acrylamide-b-N,N-dihexylacrylamide (PADHA at a solid/liquid interface has been studied to quantify adsorption at equilibrium. At the water/sandstone interface, the adsorption isotherm for PADHA show an unusual profile, characterized by the absence of a "plateau" region and a monotonic increase in the adsorbed amount with polymer concentration in the bulk. This particular adsorption profile could be explained by the formation of multiple layers caused by hydrophobic associations, the adsorbed layers being partly formed by chains that are not directly in contact with the surface.
Problems in equilibrium theory
Aliprantis, Charalambos D
1996-01-01
In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.
Bounded Computational Capacity Equilibrium
Hernandez, Penelope
2010-01-01
We study repeated games played by players with bounded computational power, where, in contrast to Abreu and Rubisntein (1988), the memory is costly. We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies, as the cost of memory goes to 0, includes the set of feasible and individually rational payoffs. This result stands in sharp contrast to Abreu and Rubisntein (1988), who proved that when memory is free, the set of equilibrium payoffs in repeated games played by players with bounded computational power is a strict subset of the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost and of mixing when players have bounded computational power.
General Search Market Equilibrium
Albrecht, James W.; Axell, Bo
1982-01-01
In this paper we extend models of “search market equilibrium” to incorporate general equilibrium considerations. The model we treat is one with a single product market and a single labor market. Imperfectly informed individuals follow optimal strategies in searching for a suitably low price and high wage. For any distribution of price and wage offers across firms these optimal strategies generate product demand and labor supply schedules. Firms then choose prices and wages to maximize expecte...
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Bollerslev, Tim; Sizova, Natalia; Tauchen, George
Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....
Tourism Equilibrium Price Trends
Mohammad Mohebi
2012-01-01
Full Text Available Problem statement: A review of the tourism history shows that tourism as an industry was virtually unknown in Malaysia until the late 1960s. Since then, it has developed and grown into a major industry, making an important contribution to the country's economy. By allocating substantial funds to the promotion of tourism and the provision of the necessary infrastructure, the government has played an important role in the impressive progress of the Malaysian tourism industry. One of the important factors which can attract tourists to Malaysia is the tourism price. Has the price of tourism decreased? To answer this question, it is necessary to obtain the equilibrium prices as well as the yearly trend for Malaysia during the sample period as it will be useful for analysis of the infrastructure situation of the tourism industry in this country. The purpose of the study is to identify equilibrium tourism price trends in Malaysian tourism market. Approach: We use hotel room as representative of tourism market. Quarterly data from 1995-2009 are used and a dynamic model of simultaneous equation is employed. Results: Based on the result during the period of 1995 until 2000, the growth rate of the equilibrium price was greater than consumer price index and producer price index. Conclusion: In the Malaysian tourism market, new infrastructure during this period had not been developed to keep pace with tourist arrivals.
Non-Equilibrium Transitions of Heliospheric plasma
Livadiotis, G.; McComas, D. J.
2011-12-01
Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A
Entanglement negativity and entropy in non-equilibrium conformal field theory
Hoogeveen, Marianne, E-mail: marianne.hoogeveen@gmail.com; Doyon, Benjamin
2015-09-15
We study the dynamics of the entanglement in one-dimensional critical quantum systems after a local quench in which two independently thermalized semi-infinite halves are joined to form a homogeneous infinite system and left to evolve unitarily. We show that under certain conditions a nonequilibrium steady state (NESS) is reached instantaneously as soon as the entanglement interval is within the light cone emanating from the contact point. In this steady state, the exact expressions for the entanglement entropy and the logarithmic negativity are in agreement with the steady state density matrix being a boosted thermal state, as expected. We derive various general identities: relating the negativity after the quench with unequal left and right initial temperatures with that where the left and right temperatures are equal; and relating these with the negativity in equilibrium thermal states. In certain regimes the resulting expressions can be analytically evaluated. Immediately after the interval intersects the light cone, we find logarithmic growth. For a very long interval, we find that the negativity approaches a plateau after sufficiently long times, different from its NESS value. The NESS value is reached instantly as soon as the entire interval is contained in the light cone. This provides a theoretical framework explaining recently obtained numerical results.
Noncompact Equilibrium Points and Applications
Zahra Al-Rumaih
2012-01-01
Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.
Towards Non-Equilibrium Dynamics with Trapped Ions
Silbert, Ariel; Jubin, Sierra; Doret, Charlie
2016-05-01
Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.
Phase Transitions and Scaling in Systems Far from Equilibrium
Täuber, Uwe C.
2017-03-01
Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.
Simulation of a thermal battery using Phoenics {sup registered}
Freitas, Giancarlo C.S.; Vianna, Ardson S. Jr. [Instituto Militar de Engenharia, Secao de Ensino de Engenharia Quimica, Praca General Tiburcio, 80, Rio de Janeiro (Brazil); Peixoto, Fernando C. [Universidade Federal Fluminense, Escola de Engenharia, Departamento de Engenharia Quimica e de Petroleo, Rua Passo da Patria, 156 - Bloco D - Sala 307, 24210-240 Niteroi, RJ (Brazil)
2008-04-15
Thermal batteries are primary disposable systems specially designed to develop a high energy density in a short period. In the present work, the modeling of heat generation and propagation within three Ca/CaCrO{sub 4} thermal batteries has been carried out, using a transient model. The commercial CFD software Phoenics {sup registered} has been used and, through a typical finite volume approach, the related 2D transport equations have been solved, giving the time-dependent temperature profiles. To check the quality of the model, the temperature of pseudo-equilibrium state (a typical thermodynamic parameter), has been analyzed. The temperatures related in the literature were close to those calculated. The results also indicate that the fusion of electrolytes is virtually an instantaneous process when compared to the time to reach the pseudo-equilibrium state, which indicates that the generation of electrical current occurs immediately after the thermite burning. (author)
Extended Mixed Vector Equilibrium Problems
Mijanur Rahaman
2014-01-01
Full Text Available We study extended mixed vector equilibrium problems, namely, extended weak mixed vector equilibrium problem and extended strong mixed vector equilibrium problem in Hausdorff topological vector spaces. Using generalized KKM-Fan theorem (Ben-El-Mechaiekh et al.; 2005, some existence results for both problems are proved in noncompact domain.
Greene, Nicholas
2012-01-01
ABOUT THE BOOK Halo Reach is the latest installment, and goes back to Halo's roots in more ways than one. Set around one of the most frequently referenced events in the Haloverse-The Fall of Reach-Reach puts you in the shoes of Noble 6, an unnamed Spartan, fighting a doomed battle to save the planet. Dual-wielding's gone, health is back, and equipment now takes the form of different "classes," with different weapon loadouts and special abilities (such as sprinting, cloaking, or flight). If you're reading this guide, you're either new to the Halo franchise and looking to get a leg up on all
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
[Study on the maximum entropy principle and population genetic equilibrium].
Zhang, Hong-Li; Zhang, Hong-Yan
2006-03-01
A general mathematic model of population genetic equilibrium about one locus was constructed based on the maximum entropy principle by WANG Xiao-Long et al. They proved that the maximum solve of the model was just the frequency distribution that a population reached Hardy-Weinberg genetic equilibrium. It can suggest that a population reached Hardy-Weinberg genetic equilibrium when the genotype entropy of the population reached the maximal possible value, and that the frequency distribution of the maximum entropy was equivalent to the distribution of Hardy-Weinberg equilibrium law about one locus. They further assumed that the frequency distribution of the maximum entropy was equivalent to all genetic equilibrium distributions. This is incorrect, however. The frequency distribution of the maximum entropy was only equivalent to the distribution of Hardy-Weinberg equilibrium with respect to one locus or several limited loci. The case with regard to limited loci was proved in this paper. Finally we also discussed an example where the maximum entropy principle was not the equivalent of other genetic equilibria.
Equilibrium distribution of heavy quarks in fokker-planck dynamics
Walton; Rafelski
2000-01-01
We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1. We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.
Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth
Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.
1988-01-01
Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....
One-group constant libraries for nuclear equilibrium state
Mizutani, Akihiko; Sekimoto, Hiroshi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors
1997-03-01
One-group constant libraries for the nuclear equilibrium state were generated for both liquid sodium cooled MOX fuel type fast reactor and PWR type thermal reactor with Equilibrium Cell Iterative Calculation System (ECICS) using JENDL-3.2, -3, -2 and ENDF/B-VI nuclear data libraries. ECICS produced one-group constant sets for 129 heavy metal nuclides and 1238 fission products. (author)
Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators
Lotov, K V
2016-01-01
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
The equilibrium of neural firing: A mathematical theory
Lan, Sizhong, E-mail: lsz@fuyunresearch.org [Fuyun Research, Beijing, 100055 (China)
2014-12-15
Inspired by statistical thermodynamics, we presume that neuron system has equilibrium condition with respect to neural firing. We show that, even with dynamically changeable neural connections, it is inevitable for neural firing to evolve to equilibrium. To study the dynamics between neural firing and neural connections, we propose an extended communication system where noisy channel has the tendency towards fixed point, implying that neural connections are always attracted into fixed points such that equilibrium can be reached. The extended communication system and its mathematics could be useful back in thermodynamics.
Topologically protected modes in non-equilibrium stochastic systems
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-01
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Jiang, Shixiao W.; Lu, Haihao; Zhou, Douglas; Cai, David
2016-08-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β-Fermi-Pasta-Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.
Lunar Probe Reaches Deep Space
2011-01-01
@@ China's second lunar probe, Chang'e-2, has reached an orbit 1.5 million kilometers from Earth for an additional mission of deep space exploration, the State Administration for Science, Technology and Industry for National Defense announced.
Does an irreversible chemical cycle support equilibrium?
Banerjee, Kinshuk
2013-01-01
The impossibility of attaining equilibrium for cyclic chemical reaction networks with irreversible steps is apparently due to a divergent entropy production rate. A deeper reason seems to be the violation of the detailed balance condition. In this work, we discuss how the standard theoretical framework can be adapted to include irreversible cycles, avoiding the divergence. With properly redefined force terms, such systems are also seen to reach and sustain equilibria that are characterized by the vanishing of the entropy production rate, though detailed balance is not maintained. Equivalence of the present formulation with Onsager's original prescription is established for both reversible and irreversible cycles, with a few adjustments in the latter case. Further justification of the attainment of true equilibrium is provided with the help of the minimum entropy production principle. All the results are generalized for an irreversible cycle comprising of N number of species.
Khan, M Nisa
2016-02-10
We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.
Statistical physics ""Beyond equilibrium
Ecke, Robert E [Los Alamos National Laboratory
2009-01-01
The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.
Non-equilibrium modelling of arc plasma torches
Trelles, J P; Heberlein, J V R; Pfender, E [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)
2007-10-07
A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a dc arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma-cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibrium results show improved agreement with experimental observations.
General equilibrium without utility functions
Balasko, Yves; Tvede, Mich
2010-01-01
How far can we go in weakening the assumptions of the general equilibrium model? Existence of equilibrium, structural stability and finiteness of equilibria of regular economies, genericity of regular economies and an index formula for the equilibria of regular economies have been known not to re......How far can we go in weakening the assumptions of the general equilibrium model? Existence of equilibrium, structural stability and finiteness of equilibria of regular economies, genericity of regular economies and an index formula for the equilibria of regular economies have been known...... and the diffeomorphism of the equilibrium manifold with a Euclidean space; (2) the diffeomorphism of the set of no-trade equilibria with a Euclidean space; (3) the openness and genericity of the set of regular equilibria as a subset of the equilibrium manifold; (4) for small trade vectors, the uniqueness, regularity...
Equilibrium models and variational inequalities
Konnov, Igor
2007-01-01
The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...
On the Local Equilibrium Principle
Hessling, H
2001-01-01
A physical system should be in a local equilibrium if it cannot be distinguished from a global equilibrium by ``infinitesimally localized measurements''. This seems to be a natural characterization of local equilibrium, however the problem is to give a precise meaning to the qualitative phrase ``infinitesimally localized measurements''. A solution is suggested in form of a {\\em Local Equilibrium Condition} (LEC) which can be applied to non-interacting quanta. The Unruh temperature of massless quanta is derived by applying LEC to an arbitrary point inside the Rindler Wedge. Massless quanta outside a hot sphere are analyzed. A stationary spherically symmetric local equilibrium does only exist according to LEC if the temperature is globally constant. Using LEC a non-trivial stationary local equilibrium is found for rotating massless quanta between two concentric cylinders of different temperatures. This shows that quanta may behave like a fluid with a B\\'enard instability.
J. de Haan; W.P. Knulst
2000-01-01
Original title: Het bereik van de kunsten. The reach of the arts (Het bereik van de kunsten) is the fourth study in a series which periodically analyses the status of cultural participation, reading and use of other media. The series, Support for culture (Het culturele draagvlak) is sponsored by th
Studies of parton thermalization at RHIC
Shin, G R; Shin, Ghi R.; Müller, Berndt
2003-01-01
We consider the evolution of a parton system which is formed in the central region just after a relativistic heavy ion collision. The parton consist of mostly gluons, minijets, which are produced by elastic scattering between constituent partons of the colliding nuclei. We assume the system can be described by a semi-classical Boltzmann transport equation, which we solve by means of the test particle Monte-Carlo method including retardation. The partons proliferate via secondary radiative $gg \\to ggg$ processes until the thermalization is reached for some assumptions. The extended system is thermalized at about $t=1.6$ fm/$c$ with $T = 570$ MeV and stays in equilibrium for about 2 fm/$c$ with breaking temperature $T = 360$ MeV in the rapidity central region.
Natural gas at thermodynamic equilibrium. Implications for the origin of natural gas.
Mango, Frank D; Jarvie, Daniel; Herriman, Eleanor
2009-06-16
It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, [Formula in text] and isotopic compositions are also under equilibrium constraints: [Formula in text].The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200 degrees C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions.
Natural gas at thermodynamic equilibrium Implications for the origin of natural gas
Jarvie Daniel
2009-06-01
Full Text Available Abstract It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4*(C3H8] and [(C2H62] exhibit a strong nonlinear correlation (R2 = 0.84 in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions.
Equilibrium theory-based analysis of nonlinear waves in separation processes.
Mazzotti, Marco; Rajendran, Arvind
2013-01-01
Different areas of engineering, particularly separation process technology, deal with one-dimensional, nonstationary processes that under reasonable assumptions, namely negligible dispersion effects and transport resistances, are described by mathematical models consisting of systems of first-order partial differential equations. Their behavior is characterized by continuous or discontinuous composition (or thermal) fronts that propagate along the separation unit. The equilibrium theory (i.e., the approach discussed here to determine the solution to these model equations) predicts this with remarkable accuracy, despite the simplifications and assumptions. Interesting applications are in adsorption, chromatography and ion-exchange, distillation, gas injection, heat storage, sedimentation, precipitation, and dissolution waves. We show how mathematics can enlighten the engineering aspects, and we guide the researcher not only to reach a synthetic understanding of properties of fundamental and applicative interest but also to discover new, unexpected, and fascinating phenomena. The tools presented here are useful to teachers, researchers, and practitioners alike.
Phillips, Rob
2015-03-01
It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.
Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems
Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup
, we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial......Understanding nonequilibrium glassy dynamics is of great scientific and technological importance. However, prediction of the temperature, thermal history, and composition dependence of nonequilibrium viscosity is challenging due to the noncrystalline and nonergodic nature of the glassy state. Here...
Equilibrium Suicides of Palladium
Wysocki, J. A.; Duwez, P. E.
1981-08-01
The Pd-Si system was examined in the 13 to 25 at. pct silicon range by X-ray diffraction, thermal analysis, and metallography. The existence of the compounds Pd5Si, Pd9Si2, and Pd3Si was confirmed. The three compounds form peritectically. Pd5Si is monoclinic, while Pd9Si2 and Pd3Si are orthorhombic. These compounds form defect structures having low symmetry and large unit cells. Electron concentrations per unit cell govern compound formation. However, there was no evidence of the existence of either Pd4Si or Pd9Si4.
Freudenburg, William R.
2006-01-01
Rather than seeking ivory-tower isolation, members of the Rural Sociological Society have always been distinguished by a willingness to work with specialists from a broad range of disciplines, and to work on some of the world's most challenging problems. What is less commonly recognized is that the willingness to reach beyond disciplinary…
Equilibrium sampling for a thermodynamic assessment of contaminated sediments
Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo
valid equilibrium sampling (method incorporated QA/QC). The measured equilibrium concentrations in silicone (Csil) can then be divided by silicone/water partition ratios to yield Cfree. CSil can also be compared to CSil from silicone equilibrated with biota in order to determine the equilibrium status...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments.......Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree...
Fundamental functions in equilibrium thermodynamics
Horst, H.J. ter
1987-01-01
In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using
Rapid-Equilibrium Enzyme Kinetics
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
A non-equilibrium extension of quantum gravity
Mandrin, Pierre A
2016-01-01
A variety of quantum gravity models (including spin foams) can be described using a path integral formulation. A path integral has a well-known statistical mechanical interpretation in connection with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein's Equations which depart from local thermodynamical equilibrium (one example is shown explicitly). For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium description. As a non-equilibrium description, we propose to use a global microcanonical ensemble with constraints. The constraints reduce the set of admissible microscopic states to be consistent with the macroscopic geometry. We also analyse the relation between the microcanonical description and a statistical approach not based on dynamical assumptions which has been proposed recently. This analysis is of interest for the test o...
Non-equilibrium fluctuation-dissipation relation from holography
Mukhopadhyay, Ayan
2012-01-01
We derive non-equilibrium fluctuation-dissipation relation for bosonic correlation functions from holography in the classical gravity approximation. We also show this holds universally in any classical gravity theory which has a stable thermal background as a solution. Therefore, this can provide a strong experimental test for the applicability of the holographic framework. The fluctuation-dissipation relation gives a proportionality factor between the expectation value of the commutator i.e. the spectral function, and the expectation value of the anti-commutator, i.e. the Keldysh propagator, in an arbitrary non-equilibrium state. We show that, in the limit in which the external sources vanish and within the range of validity of perturbative hydrodynamic (derivative) and non-hydrodynamic (amplitude) expansions, the holographic non-equilibrium fluctuation-dissipation relation is fixed completely by the temperature of the final equilibrium. We argue this is consistent with locality and causality of the dual fie...
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
A Multiperiod Equilibrium Pricing Model
Minsuk Kwak
2014-01-01
Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.
Equilibrium with arbitrary market structure
Grodal, Birgit; Vind, Karl
2005-01-01
Fifty years ago Arrow [1] introduced contingent commodities and Debreu [4] observed that this reinterpretation of a commodity was enough to apply the existing general equilibrium theory to uncertainty and time. This interpretation of general equilibrium theory is the Arrow-Debreu model. The compl......Fifty years ago Arrow [1] introduced contingent commodities and Debreu [4] observed that this reinterpretation of a commodity was enough to apply the existing general equilibrium theory to uncertainty and time. This interpretation of general equilibrium theory is the Arrow-Debreu model....... The complete market predicted by this theory is clearly unrealistic, and Radner [10] formulated and proved existence of equilibrium in a multiperiod model with incomplete markets. In this paper the Radner result is extended. Radner assumed a specific structure of markets, independence of preferences...
Equilibrium time correlation functions in the low density limit
Beijeren, H. van; Lanford, O.E.; Lebowitz, J.L.; Spohn, H.
1980-01-01
We consider a system of hard spheres in thermal equilibrium. Using Lanford's result about the convergence of the solutions of the BBGKY hierarchy to the solutions of the Boltzmann hierarchy, we show that in the low-density limit (Boltzmann-Grad limit): (i) the total time correlation function is
Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma
Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander
2007-01-01
As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.
Growth and decay of large fluctuations far from equilibrium
Shrabani Sen; Syed Shahed Riaz; Deb Shankar Ray
2009-09-01
We have explored the weak noise limit of stochastic processes in nonlinear dissipative systems which admit of stable dynamical attractors in absence of noise. An interesting `detailed balance’ like condition in the steady state which is manifested in the time reversal symmetry between growth and decay of fluctuation far from equilibrium, similar to what is observed in thermally equilibrated systems, is demonstrated.
Non-Equilibrium Modeling of Arc Plasma Torches
Trelles, J P; Heberlein, J V R
2013-01-01
A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a DC arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma - cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibr...
Sampling hard to reach populations.
Faugier, J; Sargeant, M
1997-10-01
Studies on 'hidden populations', such as homeless people, prostitutes and drug addicts, raise a number of specific methodological questions usually absent from research involving known populations and less sensitive subjects. This paper examines the advantages and limitations of nonrandom methods of data collection such as snowball sampling. It reviews the currently available literature on sampling hard to reach populations and highlights the dearth of material currently available on this subject. The paper also assesses the potential for using these methods in nursing research. The sampling methodology used by Faugier (1996) in her study of prostitutes, HIV and drugs is used as a current example within this context.
How to reach library users who cannot reach libraries?
Dragana Ljuić
2002-01-01
Full Text Available The article discusses the ways of getting library activities closer to the individuals or groups of users who have difficulties to or cannot visit the library themselves. The author presents the services offered by the Maribor Public Library and discusses how one of the basic human rights – the right to the access of cultural goods, knowledge and information - is exercised also through library activities. By enabling access to library material and information, public libraries help to fulfill basic human rights and thus raise the quality of living in a social environment. The following forms of library activities are presented in the article: »distance library« – borrowing books at home, in hospital, station for the bibliobus for disabled users, »mobile collections« in the institutions where users, due to their age or illness, have difficulties in accessing or even cannot reach library materials and information by themselves.
Equilibrium relationships for non-equilibrium chemical dependencies
Yablonsky, Gregory S.; Constales, Denis; Marin, Guy B.
2010-01-01
In contrast to common opinion, it is shown that equilibrium constants determine the time-dependent behavior of particular ratios of concentrations for any system of reversible first-order reactions. Indeed, some special ratios actually coincide with the equilibrium constant at any moment in time. This is established for batch reactors, and similar relations hold for steady-state plug-flow reactors, replacing astronomic time by residence time. Such relationships can be termed time invariants o...
Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior
Täuber, Uwe C
2014-01-01
Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...
Reach Envelope of Human Extremities
YANG Jingzhou(杨景周); ZHANG Yunqing(张云清); CHEN Liping(陈立平); ABDEL-MALEK Karim
2004-01-01
Significant attention in recent years has been given to obtain a better understanding of human joint ranges, measurement, and functionality, especially in conjunction with commands issued by the central nervous system. While researchers have studied motor commands needed to drive a limb to follow a path trajectory, various computer algorithms have been reported that provide adequate analysis of limb modeling and motion. This paper uses a rigorous mathematical formulation to model human limbs, understand their reach envelope, delineate barriers therein where a trajectory becomes difficult to control, and help visualize these barriers. Workspaces of a typical forearm with 9 degrees of freedom, a typical finger modeled as a 4- degree-of-freedom system, and a lower extremity with 4 degrees of freedom are discussed. The results show that using the proposed formulation, joint limits play an important role in distinguishing the barriers.
Han, Kai; Song, Rui; Xu, Xiaojun; Liu, Zejin
2016-09-01
The laser induced damage is a troublesome issue in the application of optical mirrors, which is related to the robustness of the whole laser system. There are two types of mechanisms about the damage of optical mirrors: thermal effect and field effect, which are responsible for the high energy continuous wave (cw) laser induced damage and the high power pulsed laser induced damage, respectively. Under the irradiation of high energy laser, the contaminant on the mirror surface absorbs the laser energy and converts the laser energy to heat. With the heat accumulating, the optical mirror is likely to fuse and even be totally destroyed. The temperature of the contaminant was measured when it was irradiated by a cw high energy laser with power intensity 3.3kW/cm2. It is found that the contaminant achieves thermal equilibrium in a few seconds and then the temperature stays at 1700K. A physical model was established to describe the process of the thermal equilibrium. The influence of the contaminant size on the thermal damage of the optical mirror was studied theoretically. The results show that the contaminant size plays an important role in the thermal damage of the optical mirror. Only when the contaminant size is smaller than a critical size ( 10μm), the contaminant may reach thermal equilibrium and the optical mirror works well in the high energy laser system. If the contaminant size is quite large (mirror will damage under the irradiation of high energy laser.
a Methodology for Thermal Characterization of Cementitious Materials.
Rousan, Akram Abdel-Majeed
This study was an attempt to develop and utilize a method to measure thermal conductivity of cementitious materials without affecting the state of equilibrium of the sample. The thermal comparator method employed and developed here was proved to be suitable for this kind of material. The method was used to measure thermal conductivity of neat cement and cement plus additives. An attempt was also made to study other thermal properties of cementitious materials, such as thermal expansion and early heat of hydration. Class C portland cement was used in this study, mixed with different water to cement ratios and with additives and admixtures (fine quartz, fly ash, and quartz and basalt sands); and the thermal properties were measured at curing times up to three months. Thermal conductivity and thermal expansion were found to be dependent upon curing times, moisture contents, and concentrations and types of admixed phases. Mathematical relations of thermal conductivity as a function of additive contents were obtained at different curing times for the additives used in this study. Both thermal conductivity and thermal expansion were found to reach constant values when cementitious materials approach maturity. It was shown that thermal conductivity of mature hydrated additives can be estimated using the experimental results from measurements on composites. The hydration rate was also studied and the effect of additives as accelerators or retarders was explored using the rate of heat evolution curves. Results indicate that inert additives like quartz have no significant effect on the hydration rate, and reactive additives like fly ash tend, in general, to accelerate the reaction. Applications of the methods to the determination of properties of seal materials for geologic repositories for nuclear waste are discussed.
On Generalized Vector Equilibrium Problems
An-hua Wan; Jun-yi Fu; Wei-hua Mao
2006-01-01
A new generalized vector equilibrium problem involving set-valued mappings and the proper quasi-concavity of set-valued mappings in topological vector spaces are introduced; its existence theorems and the convexity of the solution sets are established.
Equilibrium and Orientation in Cephalopods.
Budelmann, Bernd-Ulrich
1980-01-01
Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)
Equilibrium Electro-osmotic Instability
Rubinstein, Isaak
2014-01-01
Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...
Michelini, Fabienne; Crépieux, Adeline; Beltako, Katawoura
2017-05-04
We discuss some thermodynamic aspects of energy conversion in electronic nanosystems able to convert light energy into electrical or/and thermal energy using the non-equilibrium Green's function formalism. In a first part, we derive the photon energy and particle currents inside a nanosystem interacting with light and in contact with two electron reservoirs at different temperatures. Energy conservation is verified, and radiation laws are discussed from electron non-equilibrium Green's functions. We further use the photon currents to formulate the rate of entropy production for steady-state nanosystems, and we recast this rate in terms of efficiency for specific photovoltaic-thermoelectric nanodevices. In a second part, a quantum dot based nanojunction is closely examined using a two-level model. We show analytically that the rate of entropy production is always positive, but we find numerically that it can reach negative values when the derived particule and energy currents are empirically modified as it is usually done for modeling realistic photovoltaic systems.
Gabriel J. Turbay
2011-03-01
Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players. This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox. A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal
B. Funke
2009-04-01
Full Text Available We present global distributions of carbon monoxide (CO from the upper troposphere to the mesosphere observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat. Vertically resolved volume mixing ratio profiles have been retrieved from 4.7 μm limb emission spectra under consideration of non-local thermodynamic equilibrium. The precision of individual CO profiles is typically 5–30 ppbv (15–40% for altitudes greater than 40 km and lower than 15 km and 30–90% within 15–40 km. Estimated systematic errors are in the order of 8–15%. Below 60 km, the vertical resolution is 4–7 km. The data set which covers 54 days from September 2003 to March 2004 has been derived with an improved retrieval version including (i the retrieval of log(vmr, (ii the consideration of illumination-dependent vibrational population gradients along the instrument's line of sight, and (iii joint-fitted vmr horizontal gradients in latitudinal and longitudinal directions. A detailed analysis of spatially resolved CO distributions during the 2003/2004 Northern Hemisphere major warming event demonstrate the potential of MIPAS CO observations to obtain new information on transport processes during dynamical active episodes, particularly on those acting in the vertical. From the temporal evolution of zonally averaged CO abundances, we derived extraordinary polar winter descent velocities of 1200 m per day inside the recovered polar vortex in January 2004. Middle stratospheric CO abundances show a well established correlation with the chemical source CH_{4}, particularly in the tropics. In the upper troposphere, a moderate CO decrease from September 2003 to March 2004 was observed. Upper tropospheric CO observations provide a detailed picture of long-range transport of polluted air masses and uplift events. MIPAS observations taken on 9–11 September 2003 confirm the trapping of convective outflow of polluted CO-rich air from
Koppe's Work of 1948: A fundamental for non-equilibrium rate of particle production
Tawfik, Abdel Nasser
2013-01-01
In 1948, Koppe formulated an almost complete recipe for statistical-thermal models including particle production, formation and decay of resonances, temporal and thermal evolution of the interacting system, statistical approaches and equilibrium condition in final state of the nuclear interaction. As the rate of particle production was one of the basic assumptions, recalling Koppe's work would be an essential input to be involved in the statistical prediction of non-equilibrium particle production in recent and future ultra-relativistic collisions.
Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling
Lin, Shu
2013-01-01
We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...
CNT based thermal Brownian motor to pump water in nanodevices
Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.
2016-11-01
Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.
Thermal dependence of electrical characteristics of micromachined silica microchannel plates
Tremsin, Anton S.; Vallerga, John V.; Siegmund, Oswald H. W.; Beetz, Charles P.; Boerstler, Robert W.
2004-04-01
Micromachined silica microchannel plates (MCPs) under development have a number of advantages over standard glass MCPs and open completely new possibilities in detector technologies. In this article we present the results of our studies on the thermal properties of silica microchannel plates (sMCPs). Similar to standard glass microchanel plates the resistance of silica MCPs was measured to change exponentially with temperature with a negative thermal coefficient of -0.036 per °C, somewhat larger than that of standard glass MCPs. The resistance also decreases linearly with the applied voltage, with the voltage coefficient of -3.1×10-4 V-1. With the knowledge of these two coefficients, our thermal model allows the calculation of the maximum voltage, which can be applied to a given MCP without inducing a thermal runaway. A typical 25 mm diam, 240 μm thick sMCP with 6 μm pores has to have the resistance larger than ˜30 MΩ to operate safely at voltages up to 800 V. With this model we can also calculate the time required for a given silica MCP to reach the point of thermal equilibrium after a voltage increase. We hope that the ongoing efforts on a proper modification of the sMCP semiconducting layer will lead to the production of new MCPs with a small negative or even a positive thermal coefficient, reducing the possibility of thermal runaways of low-resistance MCPs required for high count rate applications.
NUMERICAL MODELING OF CHANNEL EQUILIBRIUM PROFILE AND ITS EFFECT ON FLOOD CONTROL
无
2002-01-01
Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized channel equilibrium profile. The variation of the longitudinal equilibrium profile, and the relation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with the corresponding theoretical results. Finally, the equilibrium longitudinal slope variations and its impact on flood control were analyzed after the sediment transport process has changed.
Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics
Christoph Dellago
2013-12-01
Full Text Available As shown by Jarzynski, free energy differences between equilibrium states can be expressed in terms of the statistics of work carried out on a system during non-equilibrium transformations. This exact result, as well as the related Crooks fluctuation theorem, provide the basis for the computation of free energy differences from fast switching molecular dynamics simulations, in which an external parameter is changed at a finite rate, driving the system away from equilibrium. In this article, we first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then survey various algorithms building on these relations. We pay particular attention to the statistical efficiency of these methods and discuss practical issues arising in their implementation and the analysis of the results.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I
Sustainable Efficiency of Far-from-equilibrium Systems
Michel Moreau
2012-06-01
Full Text Available The Carnot efficiency of usual thermal motors compares the work produced by the motor to the heat received from the hot source, neglecting the perturbation of the cold source: thus, even if it may be appropriate for industrial purposes, it is not pertinent in the scope of sustainable development and environment care. In the framework of stochastic dynamics we propose a different definition of efficiency, which takes into account the entropy production in all the irreversible processes considered and allows for a fair estimation of the global costs of energy production from heat sources: thus, we may call it “sustainable efficiency“. It can be defined for any number of sources and any kind of reservoir, and it may be extended to other fields than conventional thermodynamics, such as biology and, hopefully, economics.Both sustainable efficiency and Carnot efficiency reach their maximum value when the processes are reversible, but then, power production vanishes. In practise, it is important to consider these efficiencies out of equilibrium, in the conditions of maximum power production. It can be proved that in these conditions, the sustainable efficiency has a universal upper bound, and that the power loss due to irreversibility is at less equal to the power delivered to the mechanical, external system.However, it may be difficult to deduce the sustainable efficiency from experimental observations, whereas Carnot’s efficiency is easily measurable and most generally used for practical purposes. It can be shown that the upper bound of sustainable efficiency implies a new higher bound of Carnot efficiency at maximum power, which is higher than the so-called Curzon-Ahlborn bound of efficiency at maximum power.
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.
How Do Chinese Enterprises Look at REACH?
无
2007-01-01
@@ The new European REACH (Registration, Evaluation, Authorization of Chemicals) regulation has come into force. As soon as the REACH white paper was issued, Chinese enterprises started to research the possible impacts of REACH and prepare to cope with them. How then do these Chinese enterprises look at REACH? Following are views of some Chinese enterprises exporting chemical products to the European Union.
Diluted Equilibrium Sterile Neutrino Dark Matter
Patwardhan, Amol V; Kishimoto, Chad T; Kusenko, Alexander
2015-01-01
We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large scale structure, and X-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest mass range, possibly associated with new physics at high energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to ...
Diluted equilibrium sterile neutrino dark matter
Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander
2015-11-01
We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.
Chemical Equilibrium in Collisions of Small Systems
Kraus, I; Oeschler, H; Redlich, K; Wheaton, S
2007-01-01
The system-size dependence of particle production in heavy-ion collisions at the top SPS energy is analyzed in terms of the statistical model. A systematic comparison is made of two suppression mechanisms that quantify strange particle yields in ultra-relativistic heavy-ion collisions: the canonical model with strangeness correlation radius determined from the data and the model formulated in the canonical ensemble using chemical off-equilibrium strangeness suppression factor. The system-size dependence of the correlation radius and the thermal parameters are obtained for p-p, C-C, Si-Si and Pb-Pb collisions at sqrt(s_NN) = 17.3 AGeV. It is shown that on the basis of a consistent set of data there is no clear difference between the two suppression patterns. In the present study the strangeness correlation radius was found to exhibit a rather weak dependence on the system size.
Non-equilibrium steady states in the Klein-Gordon theory
Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.
2015-03-01
We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.
Physicochemical Perturbations of Phase Equilibriums
Dobruskin, Vladimir Kh
2010-01-01
The alternative approach to the displacement of gas/liquid equilibrium is developed on the basis of the Clapeyron equation. The phase transition in the system with well-established properties is taken as a reference process to search for the parameters of phase transition in the perturbed equilibrium system. The main equation, derived in the framework of both classical thermodynamics and statistical mechanics, establishes a correlation between variations of enthalpies of evaporation, \\Delta (\\Delta H), which is induced by perturbations, and the equilibrium vapor pressures. The dissolution of a solute, changing the surface shape, and the effect of the external field of adsorbents are considered as the perturbing actions on the liquid phase. The model provides the unified method for studying (1) solutions, (2) membrane separations (3) surface phenomena, and (4) effect of the adsorption field; it leads to the useful relations between \\Delta (\\Delta H), on the one hand, and the osmotic pressures, the Donnan poten...
General equilibrium of an ecosystem.
Tschirhart, J
2000-03-07
Ecosystems and economies are inextricably linked: ecosystem models and economic models are not linked. Consequently, using either type of model to design policies for preserving ecosystems or improving economic performance omits important information. Improved policies would follow from a model that links the systems and accounts for the mutual feedbacks by recognizing how key ecosystem variables influence key economic variables, and vice versa. Because general equilibrium economic models already are widely used for policy making, the approach used here is to develop a general equilibrium ecosystem model which captures salient biological functions and which can be integrated with extant economic models. In the ecosystem model, each organism is assumed to be a net energy maximizer that must exert energy to capture biomass from other organisms. The exerted energies are the "prices" that are paid to biomass, and each organism takes the prices as signals over which it has no control. The maximization problem yields the organism's demand for and supply of biomass to other organisms as functions of the prices. The demands and supplies for each biomass are aggregated over all organisms in each species which establishes biomass markets wherein biomass prices are determined. A short-run equilibrium is established when all organisms are maximizing and demand equals supply in every biomass market. If a species exhibits positive (negative) net energy in equilibrium, its population increases (decreases) and a new equilibrium follows. The demand and supply forces in the biomass markets drive each species toward zero stored energy and a long-run equilibrium. Population adjustments are not based on typical Lotka-Volterra differential equations in which one entire population adjusts to another entire population thereby masking organism behavior; instead, individual organism behavior is central to population adjustments. Numerical simulations use a marine food web in Alaska to
Electron-Dominated Spontaneous Bifurcation of Harris Equilibrium
Lee, Kuang-Wu
2012-01-01
In this letter the spontaneous bifurcation of Harris equilibrium current sheet is reported. The collisionless current bifurcation is simulated by a 2D particle-in-cell approach. Explicit particle advancing method is used to resolve the transient electron dynamics. Unlike previous implicit investigations no initial perturbations is applied to trigger current bifurcation. Instead, an electron-dominated spontaneously bifurcation is observed. Electromagnetic fluctuations grow from thermal noise initially. Soon the noise triggers the eigenmodes and eventually causes current sheet bifurcation. The relative entropy of the bifurcated state exceeds the value of initial Harris equilibrium. It is also found that the Helmholtz free energy decreases in the bifurcation process. Hence it is concluded that Harris equilibrium evolves toward a more stable (smaller free energy) bifurcated state.
Equilibrium reconstruction for Single Helical Axis reversed field pinch plasmas
Martines, Emilio; Momo, Barbara; Terranova, David; Zanca, Paolo; Alfier, Alberto; Bonomo, Federica; Canton, Alessandra; Fassina, Alessandro; Franz, Paolo; Innocente, Paolo
2011-01-01
Single Helical Axis (SHAx) configurations are emerging as the natural state for high current reversed field pinch (RFP) plasmas. These states feature the presence of transport barriers in the core plasma. Here we present a method for computing the equilibrium magnetic surfaces for these states in the force-free approximation, which has been implemented in the SHEq code. The method is based on the superposition of a zeroth order axisymmetric equilibrium and of a first order helical perturbation computed according to Newcomb's equation supplemented with edge magnetic field measurements. The mapping of the measured electron temperature profiles, soft X-ray emission and interferometric density measurements on the computed magnetic surfaces demonstrates the quality of the equilibrium reconstruction. The procedure for computing flux surface averages is illustrated, and applied to the evaluation of the thermal conductivity profile. The consistency of the evaluated equilibria with Ohm's law is also discussed.
Equilibrium reconstruction for single helical axis reversed field pinch plasmas
Martines, E; Lorenzini, R; Momo, B; Terranova, D; Zanca, P; Alfier, A; Bonomo, F; Canton, A; Fassina, A; Franz, P; Innocente, P, E-mail: emilio.martines@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, corso Stati Uniti 4, 35127 Padova (Italy)
2011-03-15
Single helical axis configurations are emerging as the natural state for high-current reversed field pinch plasmas. These states feature the presence of transport barriers in the core plasma. Here we present a method for computing the equilibrium magnetic surfaces for these states in the force-free approximation, which has been implemented in the SHEq code. The method is based on the superposition of a zeroth-order axisymmetric equilibrium and of a first-order helical perturbation computed according to Newcomb's equation supplemented with edge magnetic field measurements. The mapping of the measured electron temperature profiles, soft x-ray emission and interferometric density measurements on the computed magnetic surfaces demonstrates the quality of the equilibrium reconstruction. The procedure for computing flux surface averages is illustrated, and applied to the evaluation of the thermal conductivity profile. The consistency of the evaluated equilibria with Ohm's law is also discussed.
Topologically protected modes in non-equilibrium stochastic systems
Murugan, Arvind
2016-01-01
Non-equilibrium driving of biochemical reactions is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enyzmatic specificity and maintenance of coherent oscillations. Non-equilibrium biochemical reactions can be modeled as a master equation whose rate constants break detailed balance. We find that non equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. We show that when a biochemical network can be decomposed into two ordered bulks that meet at a possibly disordered interferace, the ordered bulks can be each associated with a topologically invariant winding number. If the winding numbers are mismatched, we are guaranteed that the steady state distribution is localized at the interface between the bulks, even in the presence of strong disorder in reaction rates. We argue that our work provides a framew...
Incentives in Supply Function Equilibrium
Vetter, Henrik
2014-01-01
The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...... to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming...
Incentives in Supply Function Equilibrium
Vetter, Henrik
2014-01-01
to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming......The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...
Equilibrium in a Production Economy
Chiarolla, Maria B., E-mail: maria.chiarolla@uniroma1.it [Universita di Roma ' La Sapienza' , Dipartimento di Metodi e Modelli per l' Economia, il Territorio e la Finanza, Facolta di Economia (Italy); Haussmann, Ulrich G., E-mail: uhaus@math.ubc.ca [University of British Columbia, Department of Mathematics (Canada)
2011-06-15
Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.
Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers
Kim, Pilbum
Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to
ALMA telescope reaches new heights
2009-09-01
of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in
Entanglement structure of non-equilibrium steady states
Mahajan, Raghu; Mumford, Sam; Tubman, Norm; Swingle, Brian
2016-01-01
We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a di...
Financial equilibrium with career concerns
Amil Dasgupta
2006-03-01
Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.
Equilibrium theory : A salient approach
Schalk, S.
1999-01-01
Whereas the neoclassical models in General Equilibrium Theory focus on the existence of separate commodities, this thesis regards 'bundles of trade' as the unit objects of exchange. Apart from commodities and commodity bundles in the neoclassical sense, the term `bundle of trade' includes, for
Approximate Equilibrium Shapes for Spinning, Gravitating Rubble Asteroids
Burns, Joseph A.; Sharma, I.; Jenkins, J. T.
2007-10-01
Approximate Equilibrium Shapes for Spinning, Gravitating Rubble Asteroids Joseph A. Burns, Ishan Sharma and James T. Jenkins Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study those equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes may be compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. First, to instill confidence in our approach, we have collapsed our dynamical approach to its statical limit to re-derive regions in spin-shape parameter space that allow equilibrium solutions to exist. Not surprisingly, our results duplicate static results reported by Holsapple (Icarus 154 [2001], 432; 172 [2004], 272) since the two sets of final equations match, although the formalisms to reach these expressions differ. We note that the approach applied here was obtained independently by I.S. in his Ph.D. dissertation (Cornell University, 2004); it provides a general, though approximate, framework that is amenable to systematic improvements and flexible enough to incorporate the dynamical effects of a changing shape, different rheologies and complex rotational histories. To demonstrate the power of our technique, we investigate the non-equilibrium dynamics of rigid-plastic, spinning, prolate asteroids to watch the simultaneous histories of shape and spin rate for rubble piles. We have succeeded in recovering most results of Richardson et al. (Icarus 173 [2004], 349), who obtained equilibrium shapes by studying numerically the passage into equilibrium of aggregates containing discrete, interacting, frictionless, spherical particles. Our mainly analytical approach aids
Far from equilibrium energy flow in quantum critical systems
Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad
2013-01-01
We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.
Concurrent fractional and equilibrium crystallisation
Sha, Lian-Kun
2012-06-01
This paper proposes the concept of concurrent fractional and equilibrium crystallisation (CFEC) in a multi-phase magmatic system in light of experimental results on diffusivities of elements and other species in minerals and melts. A group of equations are presented to describe how the concentrations of an element or isotope change in fractionated solid, equilibrated solid, melt, liquid, and gas phases, as well as in magma, as a function of distribution coefficients and mass fractions during the CFEC process. CFEC model is a generalised and unified formulation that is valid, not only for pure fractional crystallisation (FC) and perfect equilibrium crystallisation (EC) singly, as two of its limiting end-member cases, but also for the geologically more important process of concurrent fractional and equilibrium crystallisation. The concept that both fractional and equilibrium crystallisation can operate concurrently in a magmatic system, for a given element, among different minerals, and even within different-sized crystal grains of the very same mineral phase, is of fundamental importance in deepening our current understanding of magmatic differentiation processes. CFEC probably occurs more frequently in the natural world than either pure fractional or perfect equilibrium crystallisation alone, as a result of the interplay of varying diffusivities of elements under diverse physicochemical conditions, different residence time and growth rates of mineral phases in magmas, and varying grain sizes within each phase and among different phases. The marked systematic variations in trace element concentrations in the melts of the Bishop Tuff have long been perplexing and difficult to reconcile with existing models of differentiation. CFEC, which is able to better explain the scatter trends in a systematic way than fractional crystallisation, is considered to be the cause.
Photoproduction Enhancement from Non Equilibrium Disoriented Chiral Condensates
Boyanovsky, D; Holman, R; Kumar, S P
1997-01-01
We study photoproduction during the non-equilibrium stages of the formation of chiral condensates within the ``quench'' scenario of the chiral phase transition. The dynamics is modeled with a gauged linear sigma model. A novel quantum kinetic approach to the description of photoproduction far off equilibrium is developed. We find that non-equilibrium spinodal instabilities of long wavelength pion fluctuations are responsible for an enhanced photoproduction rate for energies $\\leq 80$ MeV at order $\\alpha$. These non-equilibrium effects lead to a larger contribution than the typical processes in the medium, including that of the anomalous neutral pion decay evolution of the dynamics throughout the phase transition, which in this scenario occurs on a time scale of about $2.5-3$ fm/c and integrate the photon yield through its evolution. The spectrum of photons produced throughout the phase transition is a non- equilibrium one. For thermal initial conditions at the time of the quench it interpolates between a the...
On local and global equilibrium in heavy ion collisions
Sollfrank, J
1999-01-01
The thermal model is commonly used in two different ways for the description of hadron production in ultra-relativistic heavy ion collision. One is the application of the thermal model to 4pi integrated data and the other is the thermal description of central dN/dy ratios. While the first method implicitly assumes global equilibrium the other scenario assumes Bjorken scaling within the investigated rapidity range. Both assumptions are only approximations for real physical collision systems. We study the impact of both approximations for the extraction of thermal parameters on the exemplary case of S+S collisions at SPS energies. The particle distributions are modeled by a hydrodynamical description of the relevant collision system.
Stream Habitat Reach Summary - NCWAP [ds158
California Department of Resources — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...
Thermal evolution of the Schwinger model with Matrix Product Operators
Bañuls, M C; Cirac, J I; Jansen, K; Saito, H
2015-01-01
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Thermal evolution of the Schwinger model with matrix product operators
Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC); Jansen, K.; Saito, H. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC)
2015-10-15
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Kulkarni, Y; Knap, J; Ortiz, M
2007-04-26
The aim of this paper is the development of equilibrium and non-equilibrium extensions of the quasicontinuum (QC) method. We first use variational mean-field theory and the maximum-entropy formalism for deriving approximate probability distribution and partition functions for the system. The resulting probability distribution depends locally on atomic temperatures defined for every atom and the corresponding thermodynamic potentials are explicit and local in nature. The method requires an interatomic potential as the sole empirical input. Numerical validation is performed by simulating thermal equilibrium properties of selected materials using the Lennard-Jones pair potential and the EAM potential and comparing with molecular dynamics results as well as experimental data. The max-ent variational approach is then taken as a basis for developing a three-dimensional non-equilibrium finite temperature extension of the quasicontinuum method. This extension is accomplished by coupling the local temperature-dependent free energy furnished by the max-ent approximation scheme to the heat equation in a joint thermo-mechanical variational setting. Results for finite-temperature nanoindentation tests demonstrate the ability of the method to capture non-equilibrium transport properties and differentiate between slow and fast indentation.
On generalized operator quasi-equilibrium problems
Kum, Sangho; Kim, Won Kyu
2008-09-01
In this paper, we will introduce the generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which generalize the operator equilibrium problem due to Kazmi and Raouf [K.R. Kazmi, A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl. 308 (2005) 554-564] into multi-valued and quasi-equilibrium problems. Using a Fan-Browder type fixed point theorem in [S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994) 493-519] and an existence theorem of equilibrium for 1-person game in [X.-P. Ding, W.K. Kim, K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992) 508-517] as basic tools, we prove new existence theorems on generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which includes operator equilibrium problems.
Protonation Equilibrium of Linear Homopolyacids
Požar J.
2015-07-01
Full Text Available The paper presents a short summary of investigations dealing with protonation equilibrium of linear homopolyacids, in particularly those of high charge density. Apart from the review of experimental results which can be found in the literature, a brief description of theoretical models used in processing the dependence of protonation constants on monomer dissociation degree and ionic strength is given (cylindrical model based on Poisson-Boltzmann equation, cylindrical Stern model, the models according to Ising, Högfeldt, Mandel and Katchalsky. The applicability of these models regarding the polyion charge density, electrolyte concentration and counterion type is discussed. The results of Monte Carlo simulations of protonation equilibrium are also briefly mentioned. In addition, frequently encountered errors connected with calibration of of glass electrode and the related unreliability of determined protonation constants are pointed out.
Holding Costs and Equilibrium Arbitrage
Tuckman, Bruce; Vila, Jean-Luc
1993-01-01
This paper constructs a dynamic model of the equilibrium determination of relative prices when arbitragers face holding costs. The major findings are that 1) models based on riskless arbitrage arguments alone may not provide usefully tight bounds on observed prices, 2) arbitragers are often most effective in eliminating the mispricings of shorter-term assets, 3) arbitrage activity increases the mean reversion of changes in the mispricing process and reduces their conditional volatility, and 4...
Monetary policy as equilibrium selection
Gaetano Antinolfi; Costas Azariadis; Bullard, James B.
2007-01-01
Can monetary policy guide expectations toward desirable outcomes when equilibrium and welfare are sensitive to alternative, commonly held rational beliefs? This paper studies this question in an exchange economy with endogenous debt limits in which dynamic complementarities between dated debt limits support two Pareto-ranked steady states: a suboptimal, locally stable autarkic state and a constrained optimal, locally unstable trading state. The authors identify feedback policies that reverse ...
Korshunov instantons out of equilibrium
Titov, M.; Gutman, D. B.
2016-04-01
Zero-dimensional dissipative action possesses nontrivial minima known as Korshunov instantons. They have been known so far only for imaginary time representation that is limited to equilibrium systems. In this work we reconstruct and generalise Korshunov instantons using real-time Keldysh approach. This allows us to formulate the dissipative action theory for generic nonequilibrium conditions. Possible applications of the theory to transport in strongly biased quantum dots are discussed.
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Quantum statistical theory of semiconductor junctions in thermal equilibrium
Von Roos, O.
1977-01-01
Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.
Thermal Equilibrium of Vortex Lines in Counterflowing He II
Nemirovskii, Sergey K.
2016-12-01
The problem of the statistics of a set of chaotic vortex lines in counterflowing superfluid helium is studied. We introduced a Langevin-type force into the equation of motion of the vortex line in the presence of relative velocity {v_{ns}}. This random force is supposed to be Gaussian satisfying the fluctuation-dissipation theorem. The corresponding Fokker-Planck equation for probability functional in the vortex loop configuration space is shown to have a solution in the form of Gibbs distribution with the substitution E{{s}→ }E({{s}-P(vn-vs)}, where E{{s}} is the energy of the vortex configuration s and P is the Lamb impulse. Some physical consequences of this fact are discussed.
Feeding upon negative entropy in a thermal-equilibrium environment
Crosignani, B.; Di Porto, P.; Conti, C.
2003-01-01
The validity of the Second Law of thermodynamics, indisputable in the macroscopic world, is challenged at the mesoscopic level: a mesoscopic isolated system, possessing spatial dimensions of the order of a few microns, is capable, as shown by a straightforward kinetic analysis, to exhibit a perpetuum mobile behavior associated with large negative variations of the Clausius entropy of the system. This violation of the Second Law is expedient for devising a cyclic process through which an isola...
Resource Theory of Quantum States Out of Thermal Equilibrium
Brandão, Fernando G. S. L.; Horodecki, Michał; Oppenheim, Jonathan; Renes, Joseph M.; Spekkens, Robert W.
2013-01-01
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource t...
The Resource Theory of Quantum States Out of Thermal Equilibrium
Brandão, Fernando G. S. L.; Horodecki, Michał; Oppenheim, Jonathan; Renes, Joseph M.; Spekkens, Robert W.
2011-01-01
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here we return to the basic questions of thermodynamics using the formalism of resource th...
Local equilibrium in bird flocks
Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene
2016-12-01
The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
On static equilibrium and balance puzzler
Dey, Samrat; Saikia, Dipankar; Kalita, Deepjyoti; Debbarma, Anamika; Wahab, Shaheen Akhtar; Sarma, Saurabh
2012-01-01
The principles of static equilibrium are of special interest to civil engineers. For a rigid body to be in static equilibrium the condition is that net force and net torque acting on the body should be zero. That clearly signifies that if equal weights are placed on either sides of a balance, the balance should be in equilibrium, even if its beam is not horizontal (we have considered the beam to be straight and have no thickness, an ideal case). Thus, although the weights are equal, they will appear different which is puzzling. This also shows that the concept of equilibrium is confusing, especially neutral equilibrium is confused to be stable equilibrium. The study not only throws more light on the concept of static equilibrium, but also clarifies that a structure need not be firm and steady even if it is in static equilibrium.
Equilibrium thermodynamics - Callen’s postulational approach
Jongschaap, Robert J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
The geometry of finite equilibrium sets
Balasko, Yves; Tvede, Mich
2009-01-01
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....
Open problems in non-equilibrium physics
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
The concept of equilibrium in organization theory
Gazendam, Henk W.M.
1997-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
The concept of equilibrium in organization theory
Gazendam, Henk W.M.
1998-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
Risk premia in general equilibrium
Posch, Olaf
This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explicit...... solutions of dynamic stochastic general equilibrium models, including a novel solution with endogenous labor supply, to obtain closed-form expressions for the risk premium in production economies. We find that the curvature of the policy functions affects the risk premium through controlling the individual......'s effective risk aversion....
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
effects are described based on a hybrid State-to-State (StS) approach. A multi-temperature formulation is used to account for thermal non-equilibrium...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...usually obtained through quantum chemistry calculations51–56 or through phenomenological models providing a simplified descrip- tion of the kinetic
Bifurcation to 3D helical magnetic equilibrium in an axisymmetric toroidal device.
Bergerson, W F; Auriemma, F; Chapman, B E; Ding, W X; Zanca, P; Brower, D L; Innocente, P; Lin, L; Lorenzini, R; Martines, E; Momo, B; Sarff, J S; Terranova, D
2011-12-16
We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established. © 2011 American Physical Society
Bifurcation to 3D Helical Magnetic Equilibrium in an Axisymmetric Toroidal Device
Bergerson, W. F.; Auriemma, F.; Chapman, B. E.; Ding, W. X.; Zanca, P.; Brower, D. L.; Innocente, P.; Lin, L.; Lorenzini, R.; Martines, E.; Momo, B.; Sarff, J. S.; Terranova, D.
2011-12-01
We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.
Simplified method for calculation of equilibrium plasma composition
Rydalevskaya, Maria A.
2017-06-01
In this work, a simplified method for the evaluation of equilibrium composition of plasmas consisted of monoatomic species is proposed. Multicomponent gas systems resulting from thermal ionization of spatially uniform mixtures are assumed enough rarefied to be treated as ideal gases even after multiple ionization steps. The method developed for the calculation of equilibrium composition of these mixtures makes use of the fundamental principles of statistical physics. Equilibrium concentrations of mixture components are determined by integration of distribution functions over the space of momentum and summation over electronic energy levels. These functions correspond to the entropy maximum. To determine unknown parameters, the systems of equations corresponding to the normalization conditions are derived. It is shown that the systems may be reduced to one algebraic equation if the equilibrium temperature is known. Numeral method to solve this equation is proposed. Special attention is given to the ionized mixtures, generated from the atoms of a single chemical species and the situations, when in the gas only the first- or the first- and second-order ionization are possible.
Nematic-like stable glasses without equilibrium liquid crystal phases.
Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M D
2017-02-07
We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼10(5) times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.
Patra, Puneet Kumar; Bhattacharya, Baidurya
2016-10-01
Crook's fluctuation theorem (CFT) and Jarzynski equality (JE) are effective tools for obtaining free-energy difference Δ F (λA→λB,T0) through a set of finite-time protocol driven nonequilibrium transitions between two equilibrium states A and B [parametrized by the time-varying protocol λ (t ) ] at the same temperature T0. Using the generalized dimensionless work function Δ WG , we extend CFT to transitions between two nonequilibrium steady states (NESSs) created by a thermal gradient. We show that it is possible, provided the period over which the transitions occur is sufficiently long, to obtain Δ F (λA→λB,T0) for different values of T0, using the same set of finite-time transitions between these two NESSs. Our approach thus completely eliminates the need to make new samples for each new T0. The generalized form of JE arises naturally as the average of the exponentiated Δ WG . The results are demonstrated on two test cases: (i) a single particle quartic oscillator having a known closed form Δ F , and (ii) a one-dimensional ϕ4 chain. Each system is sampled from the canonical distribution at an arbitrary T' with λ =λA , then subjected to a temperature gradient between its ends, and after steady state is reached, the protocol change λA→λB is effected in time τ , following which Δ WG is computed. The reverse path likewise initiates in equilibrium at T' with λ =λB and the protocol is time reversed leading to λ =λA and the reverse Δ WG . Our method is found to be more efficient than either JE or CFT when free-energy differences at multiple T0's are required for the same system.
Reach preparation enhances visual performance and appearance.
Rolfs, Martin; Lawrence, Bonnie M; Carrasco, Marisa
2013-10-19
We investigated the impact of the preparation of reach movements on visual perception by simultaneously quantifying both an objective measure of visual sensitivity and the subjective experience of apparent contrast. Using a two-by-two alternative forced choice task, observers compared the orientation (clockwise or counterclockwise) and the contrast (higher or lower) of a Standard Gabor and a Test Gabor, the latter of which was presented during reach preparation, at the reach target location or the opposite location. Discrimination performance was better overall at the reach target than at the opposite location. Perceived contrast increased continuously at the target relative to the opposite location during reach preparation, that is, after the onset of the cue indicating the reach target. The finding that performance and appearance do not evolve in parallel during reach preparation points to a distinction with saccade preparation, for which we have shown previously there is a parallel temporal evolution of performance and appearance. Yet akin to saccade preparation, this study reveals that overall reach preparation enhances both visual performance and appearance.
Binding Energy and Equilibrium of Compact Objects
Germano M.
2014-04-01
Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.
Silverberg, Lee J.; Raff, Lionel M.
2015-01-01
Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…
Pre-equilibrium plasma dynamics
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)
Out of equilibrium: understanding cosmological evolution to lower-entropy states
Aguirre, Anthony; Johnson, Matthew C
2011-01-01
Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.
Effects of Isospin Equilibrium on Cold Fusion of Superheavy Nuclei
LIU Zu-Hua; BAO Jing-Dong
2005-01-01
@@ The neutron flow model predicts that neutrons start to flow freely between the approaching nuclei 58Fe and 208 Pb at s = 3fm, a length in which the effective surfaces of these nuclei are 3fm apart. As a result of neutron flow,the N/Z value rapidly reaches an equilibrium distribution. Meanwhile the system, originally in the fusion valley,is injected into the asymmetric fission valley. The dynamic process of the composite nucleus in the asymmetric fission valley is treated with a two-parameter Smoluchowski equation. It is shown that the probability to overcome the asymmetric fission barrier and to achieve compound nucleus configuration, hence the fusion cross section is obviously suppressed due to the effect of isospin equilibrium.
Rheology modulated non-equilibrium fluctuations in time-dependent diffusion processes
Maity, Debonil; Bandopadhyay, Aditya; Chakraborty, Suman
2016-11-01
The effect of non-Newtonian rheology, manifested through a viscoelastic linearized Maxwell model, on the time-dependent non-equilibrium concentration fluctuations due to free diffusion as well as thermal diffusion of a species is analyzed theoretically. Contrary to the belief that non-equilibrium Rayleigh line is not influenced by viscoelastic effects, through rigorous calculations, we put forward the fact that viscoelastic effects do influence the non-equilibrium Rayleigh line, while the effects are absent for the equilibrium scenario. The non-equilibrium process is quantified through the concentration fluctuation auto-correlation function, also known as the structure factor. The analysis reveals that the effect of rheology is prominent for both the cases of free diffusion and thermal diffusion at long times, where the influence of rheology dictates not only the location of the peaks in concentration dynamic structure factors, but also the magnitudes; such peaks in dynamic structure factors are absent in the case of Newtonian fluid. At smaller times, for the case of free diffusion, presence of time-dependent peak(s) are observed, which are weakly dependent on the influence of rheology, a phenomenon which is absent in the case of thermal diffusion. Different regimes of the frequency dependent overall dynamic structure factor, depending on the interplay of the fluid relaxation time and momentum diffusivity, are evaluated. The static structure factor is not affected to a great extent for the case of free-diffusion and is unaffected for the case of thermal diffusion.
Equilibrium Sequences and Gravitational Instability of Rotating Isothermal Rings
Kim, Woong-Tae
2016-01-01
Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. Unlike in the incompressible case, not all values of R_B yield an isothermal equilibrium, and the range of R_B for such equilibria shrinks with decreasing alpha. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega_0 and central density rho_max. Rings with smaller ...
Improving exposure scenario definitions within REACH
Lee, Jihyun; Pizzol, Massimo; Thomsen, Marianne
instruments to support a precautionary chemicals management system and to protect receptor’s health have also been increasing. Since 2007, the European Union adopted REACH (the Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals): REACH makes industry responsible for assessing...... the different background exposure between two countries allows in fact the definition of a common framework for improving exposure scenarios within REACH system, for monitoring environmental health, and for increasing degree of circularity of resource and substance flows. References 1. European Commission...
Lagasse, R.R.
1982-02-01
Techniques for measuring the enthalpy change during isothermal aging of polymer glasses are discussed. Critical analysis of conventional scanning calorimetry reveals that its accuracy may be suspect under certain circumstances due to the thermal lag inherent in a temperature scanning experiment. An additional problem is that the conventional technique is restricted to certain kinds of paths for reaching the aging temperature. It is proposed that both problems can be overcome by analyzing the output of a scanning calorimeter not only during the steady heating but also during an extension of a method used previously by others in accurate measurements of the much larger heat of fusion of crystalline polymers. Practical feasibility of the improved technique is demonstrated by preliminary measurements of enthalpy relaxation during aging of well-characterized polystyrene at 80/sup 0/C. In particular, the initial departure from equilibrium of a glass prepared by 5/sup 0/C/min cooling from the liquid state is found to be 6.9 +- 0.6 J/g. This measured value agrees with a value calculated on the basis of the glass transition temperature corresponding to 5/sup 0/C/min cooling and at-capacity data from the literature.
Equilibrium calculations of firework mixtures
Hobbs, M.L. [Sandia National Labs., Albuquerque, NM (United States); Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)
1994-12-31
Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.
Equilibrium Analysis in Cake Cutting
Branzei, Simina; Miltersen, Peter Bro
2013-01-01
Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... to guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...
Neoclassical equilibrium in gyrokinetic simulations
Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.
2009-06-01
This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.
Ringed accretion disks: equilibrium configurations
Pugliese, D
2015-01-01
We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...
Compact muon solenoid magnet reaches full field
2006-01-01
Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)
Hanford Reach - Ringold Russian Knapweed Treatment
US Fish and Wildlife Service, Department of the Interior — Increase the diversity of the seed mix on approximately 250 acres in the Ringold Unit of the Hanford Reach National Monument (Monument) treated with aminopyralid as...
RICHY
Expanded Program on Immunisation (EPI) training in. Zambia and critically analyses ... excellence in skills such as sport, music or dance, so it is ... only improve through reaching every child both physically and in .... Non-verbal communication.
Women Reaching Equality in Dubious Habit: Drinking
... page: https://medlineplus.gov/news/fullstory_161640.html Women Reaching Equality in Dubious Habit: Drinking Females also ... 25, 2016 MONDAY, Oct. 24, 2016 (HealthDay News) -- Women have made major strides towards equality with men, ...
Reaching the Overlooked Student in Physical Education
Esslinger, Keri; Esslinger, Travis; Bagshaw, Jarad
2015-01-01
This article describes the use of live action role-playing, or "LARPing," as a non-traditional activity that has the potential to reach students who are not interested in traditional physical education.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)
2016-02-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.
Coppola, Carla Maria; Galli, Daniele; Tennyson, Jonathan; Longo, Savino
2012-01-01
Energy exchange processes play a crucial role in the early Universe, affecting the thermal balance and the dynamical evolution of the primordial gas. In the present work we focus on the consequences of a non-thermal distribution of the level populations of H$_2$: first, we determine the excitation temperatures of vibrational transitions and the non-equilibrium heat transfer; second, we compare the modifications to chemical reaction rate coefficients with respect to the values obtained assuming local thermodynamic equilibrium; third, we compute the spectral distortions to the cosmic background radiation generated by the formation of H$_2$ in vibrationally excited levels. We conclude that non-equilibrium processes cannot be ignored in cosmological simulations of the evolution of baryons, although their observational signatures remain below current limits of detection. New fits to the equilibrium and non-equilibrium heat transfer functions are provided.
Chemical Reactions Using a Non-Equilibrium Wigner Function Approach
Ramón F. Álvarez-Estrada
2016-10-01
Full Text Available A three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature T > 0 . Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at T = 0 , there is no transition between both states, such a transition is possible when T > 0 (due to the heat bath and plays a key role as k B T approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a the thermal wavelength is shorter than the range of the attractive potential (lower limit on T and (b ( 3 / 2 k B T does not exceed the magnitude of the attractive potential (upper limit on T. In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a and (b, and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.
Impact of the REACH II and REACH VA Dementia Caregiver Interventions on Healthcare Costs.
Nichols, Linda O; Martindale-Adams, Jennifer; Zhu, Carolyn W; Kaplan, Erin K; Zuber, Jeffrey K; Waters, Teresa M
2017-05-01
Examine caregiver and care recipient healthcare costs associated with caregivers' participation in Resources for Enhancing Alzheimer's Caregivers Health (REACH II or REACH VA) behavioral interventions to improve coping skills and care recipient management. RCT (REACH II); propensity-score matched, retrospective cohort study (REACH VA). Five community sites (REACH II); 24 VA facilities (REACH VA). Care recipients with Alzheimer's disease and related dementias (ADRD) and their caregivers who participated in REACH II study (analysis sample of 110 caregivers and 197 care recipients); care recipients whose caregivers participated in REACH VA and a propensity matched control group (analysis sample of 491). Previously collected data plus Medicare expenditures (REACH II) and VA costs plus Medicare expenditures (REACH VA). There was no increase in VA or Medicare expenditures for care recipients or their caregivers who participated in either REACH intervention. For VA care recipients, REACH was associated with significantly lower total VA costs of care (33.6%). VA caregiver cost data was not available. In previous research, both REACH II and REACH VA have been shown to provide benefit for dementia caregivers at a cost of less than $5/day; however, concerns about additional healthcare costs may have hindered REACH's widespread adoption. Neither REACH intervention was associated with additional healthcare costs for caregivers or patients; in fact, for VA patients, there were significantly lower healthcare costs. The VA costs savings may be related to the addition of a structured format for addressing the caregiver's role in managing complex ADRD care to an existing, integrated care system. These findings suggest that behavioral interventions are a viable mechanism to support burdened dementia caregivers without additional healthcare costs. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations
Ramon F. Álvarez-Estrada
2014-03-01
Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not
An optically trapped mirror for reaching the standard quantum limit
Matsumoto, Nobuyuki; Aso, Yoichi; Tsubono, Kimio
2014-01-01
The preparation of a mechanical oscillator driven by quantum back-action is a fundamental requirement to reach the standard quantum limit (SQL) for force measurement, in optomechanical systems. However, thermal fluctuating force generally dominates a disturbance on the oscillator. In the macroscopic scale, an optical linear cavity including a suspended mirror has been used for the weak force measurement, such as gravitational-wave detectors. This configuration has the advantages of reducing the dissipation of the pendulum (i.e., suspension thermal noise) due to a gravitational dilution by using a thin wire, and of increasing the circulating laser power. However, the use of the thin wire is weak for an optical torsional anti-spring effect in the cavity, due to the low mechanical restoring force of the wire. Thus, there is the trade-off between the stability of the system and the sensitivity. Here, we describe using a triangular optical cavity to overcome this limitation for reaching the SQL. The triangular cav...
Physical Equilibrium Evaluation in Parkinson Disease
Schmidt, Paula da Silva
2011-04-01
Full Text Available Introduction: The Parkinson disease can be among the multiple causes of alterations in the physical equilibrium. Accordingly, this study has the objective to evaluate Parkinson patients' physical equilibrium. Method: Potential study in which 12 Parkinson individuals were evaluated by way of tests of static and dynamic equilibrium, dynamic posturography and vectoelectronystagmograph. To compare the dynamic posturography results a group of gauged control was used. Results: Alterations in Romberg-Barré, Unterberger and Walk tests were found. The vestibular exam revealed 06 normal cases, 04 central vestibular syndrome and 02 cases of peripheral vestibular syndrome. In the dynamic posturography, an equilibrium alteration has been verified, when compared to the control group in all Sensorial Organization Tests, in average and in the utilization of vestibular system. Conclusion: Parkinson patients present a physical equilibrium alteration. The dynamic posturography was more sensitive to detect the equilibrium alterations than vectoelectronystagmograph.
A Constructive Generalization of Nash Equilibrium
Huang, Xiaofei
2009-01-01
In a society of multiple individuals, if everybody is only interested in maximizing his own payoff, will there exist any equilibrium for the society? John Nash proved more than 50 years ago that an equilibrium always exists such that nobody would benefit from unilaterally changing his strategy. Nash Equilibrium is a central concept in game theory, which offers the mathematical foundation for social science and economy. However, the original definition is declarative without including a solution to find them. It has been found later that it is computationally difficult to find a Nash equilibrium. Furthermore, a Nash equilibrium may be unstable, sensitive to the smallest variation of payoff functions. Making the situation worse, a society with selfish individuals can have an enormous number of equilibria, making it extremely hard to find out the global optimal one. This paper offers a constructive generalization of Nash equilibrium to cover the case when the selfishness of individuals are reduced to lower level...
Equilibrium Solubility of CO2 in Alkanolamines
Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas
2014-01-01
Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....
Extended irreversible thermodynamics and non-equilibrium temperature
Casas-Vazquez, Jose'
2008-02-01
Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.
Characteristics of equilibrium reaction of zolazepam.
Hong, W H; Szulczewski, D H
1981-06-01
The equilibrium reaction of zolazepam, a pyrazolodiazepinone, was studied and analyzed using the approach used previously for other pyrazolodiazepinone derivatives. The intrinsic ring closure equilibrium constant for this reaction was approximately 100 times larger than that observed for pyrazolodiazepinones studied previously. This study illustrates that the diazepinone ring can dominate in equilibrium mixtures formed at pH values far below the pKa of the corresponding form.
1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO
T. EVANS; ET AL
2000-08-01
We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Do working environment interventions reach shift workers?
Nabe-Nielsen, Kirsten; Jørgensen, Marie Birk; Garde, Anne Helene
2016-01-01
workers were less likely to be reached by workplace interventions. For example, night workers less frequently reported that they had got more flexibility (OR 0.5; 95 % CI 0.3-0.7) or that they had participated in improvements of the working procedures (OR 0.6; 95 % CI 0.5-0.8). Quality of leadership......PURPOSE: Shift workers are exposed to more physical and psychosocial stressors in the working environment as compared to day workers. Despite the need for targeted prevention, it is likely that workplace interventions less frequently reach shift workers. The aim was therefore to investigate whether...... the reach of workplace interventions varied between shift workers and day workers and whether such differences could be explained by the quality of leadership exhibited at different times of the day. METHODS: We used questionnaire data from 5361 female care workers in the Danish eldercare sector...
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Reflective Equilibrium: Epistemological or Political?
Andrew Lister
2016-01-01
Full Text Available One of the reasons for ongoing interest in the work of political philosopher John Rawls is that he developed novel methods for thinking systematically about the nature of justice. This paper examines the moral and epistemological motivations for Rawls’s method of “reflective equilibrium,” and the tension between them in Kai Nielsen’s use of “wide reflective equilibrium” in the service of critical and emancipatory social theory. Une des raisons de l’intérêt soutenu pour l’oeuvre du philosophe politique John Rawls est qu’il a développé de nouvelles méthodes de réflexion systématique au sujet de la nature de la justice. Cet article étudie les motifs moraux et épistémologiques soutenant la méthode d’ «équilibre réflectif» de Rawls, et les tensions entre eux dans l’utilisation par Kai Nielsen d’ «équilibre réflectif étendu» au service de la théorie sociale critique et émancipatrice.
Colin Rowe and ' Dynamic Equilibrium'
Pablo López Marín
2015-05-01
Full Text Available AbstractIn 1944 Gyorgy Kepes published what undoubtless will be his most influential text, "The language of vision". What Kepes tried to do was a guide of grammar and syntax of vision, which allows to face art as purely sensory experience or just visual, devisted of any literary , semantic or sentimental meaning.Among all the concepts that Kepes developes in his essay perhaps the most decisive one is the so called dynamic equilibrium, which is introduced in this work for fi rst time, verbalizing something that was in the air, orbiting around the entire modern plastic but far only explained in an empirical way.Colin Rowe reverberates the recent readed kepesian ideas on his own writings Transparency: Literal and Phenomenal and Neo-'Classicism' and Modern Architecture I and II, when the author tries to highlight the founding principles of the modern movement refusing the plastic dimension of the discipline . The article will try to expose and explain this influence.
RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2015-12-15
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.
Equilibrium avalanches in spin glasses
Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg
2012-06-01
We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.
REACH. Analytical characterisation of petroleum UVCB substances
De Graaff, R.; Forbes, S.; Gennart, J.P.; Gimeno Cortes, M.J.; Hovius, H.; King, D.; Kleise, H.; Martinez Martin, C.; Montanari, L.; Pinzuti, M.; Pollack, H.; Ruggieri, P.; Thomas, M.; Walton, A.; Dmytrasz, B.
2012-10-15
The purpose of this report is to summarise the findings of the scientific and technical work undertaken by CONCAWE to assess the feasibility and potential benefit of characterising petroleum UVCB substances (Substances of Unknown or Variable Composition, Complex reaction products or Biological Materials) beyond the recommendations issued by CONCAWE for the substance identification of petroleum substances under REACH. REACH is the European Community Regulation on chemicals and their safe use (EC 1907/2006). It deals with the Registration, Evaluation, Authorisation and Restriction of Chemical substances. The report is based on Member Company experience of the chemical analysis of petroleum UVCB substances, including analysis in support of REACH registrations undertaken in 2010. This report is structured into four main sections, namely: Section 1 which provides an introduction to the subject of petroleum UVCB substance identification including the purpose of the report, regulatory requirements, the nature of petroleum UVCB substances, and CONCAWE's guidance to Member Companies and other potential registrants. Section 2 provides a description of the capabilities of each of the analytical techniques described in the REACH Regulation. This section also includes details on the type of analytical information obtained by each technique and an evaluation of what each technique can provide for the characterisation of petroleum UVCB substances. Section 3 provides a series of case studies for six petroleum substance categories (low boiling point naphthas, kerosene, heavy fuel oils, other lubricant base oils, residual aromatic extracts and bitumens) to illustrate the value of the information derived from each analytical procedure, and provide an explanation for why some techniques are not scientifically necessary. Section 4 provides a summary of the conclusions reached from the technical investigations undertaken by CONCAWE Member Companies, and summarising the
Thermalization of magnetically trapped metastable helium
Browaeys, A; Sirjean, O; Poupard, J; Nowak, S; Boiron, D; Westbrook, C I; Aspect, Alain
2001-01-01
We have observed thermalization by elastic collisions of magnetically trapped metastable helium atoms. Our method directly samples the reconstruction of a thermal energy distribution after the application of an RF knife. The relaxation time of our sample towards equilibrium gives an elastic collision rate constant close to the unitarity limit.
Non-equilibrium chemistry and cooling in simulations of galaxy formation
Richings, Alexander James
2015-01-01
In this thesis we used numerical simulations to explore the role that chemistry plays in galaxy formation. Simulations of galaxies often assume chemical equilibrium, where the chemical reactions between ions and molecules have reached a steady state. However, this assumption may not be valid if the
Influence of wettability on the equilibrium wall flow of liquid in a packed column
Patwardhan, V.S.; Pataskar, S.G.
1982-03-01
It is well known that when a packed column is irrigated by a liquid and is operated in the trickle flow regime, part of the liquid flows preferentially along the column wall. The liquid distribution reaches equilibrium if the column is tall enough. In the present study the equilibrium wall flow in a column packed with rasching rings was studied experimentally. The effects of the wettability of the wall and the packing, and the total liquid flow rate on the equilibrium wall flow were investigated. It was found that the equilibrium wall flow depends strongly on the wettability of the wall, but is almost independent of the wettability of the packing. These results were used to gain some insight into the mechanism of the development of wall flow in packed columns.
Kinetics of faceting of crystals in growth, etching, and equilibrium
Vlachos, D. G.; Schmidt, L. D.; Aris, R.
1993-03-01
The faceting of crystals in equilibrium with the gas phase and also during crystal growth and etching conditions is studied using the Monte Carlo method. The dynamics of the transformation of unstable crystallographic orientations into hill and valley structures and the spatial patterns that develop are examined as functions of surface temperature, crystallographic orientation, and strength of interatomic potential for two transport processes: adsorption-desorption and surface diffusion. The results are compared with the continuum theory for facet formation. Thermodynamically unstable orientations break into hill and valley structures, and faceting exhibits three time regimes: disordering, facet nucleation, and coarsening of small facets to large facets. Faceting is accelerated as temperature increases, but thermal roughening can occur at high temperatures. Surface diffusion is the dominant mechanism at short times and small facets but adsorption-desorption becomes important at long times and large facets. Growth and etching promote faceting for conditions close to equilibrium but induce kinetic roughening for conditions far from equilibrium. Simultaneous irreversible growth and etching conditions with fast surface diffusion result in enhanced faceting.
Non-equilibrium modelling of distillation
Wesselingh, JA; Darton, R
1997-01-01
There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase
Approximate Equilibrium Problems and Fixed Points
H. Mazaheri
2013-01-01
Full Text Available We find a common element of the set of fixed points of a map and the set of solutions of an approximate equilibrium problem in a Hilbert space. Then, we show that one of the sequences weakly converges. Also we obtain some theorems about equilibrium problems and fixed points.
The Geometry of Finite Equilibrium Datasets
Balasko, Yves; Tvede, Mich
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...
Equilibrium Tail Distribution Due to Touschek Scattering
Nash,B.; Krinsky, S.
2009-05-04
Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.
System of Operator Quasi Equilibrium Problems
Suhel Ahmad Khan
2014-01-01
Full Text Available We consider a system of operator quasi equilibrium problems and system of generalized quasi operator equilibrium problems in topological vector spaces. Using a maximal element theorem for a family of set-valued mappings as basic tool, we derive some existence theorems for solutions to these problems with and without involving Φ-condensing mappings.
Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China
You, Xingying; Tang, Jinwu
2017-06-01
Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river
High-frequency thermal processes in harmonic crystals
Kuzkin, Vitaly A
2016-01-01
We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...
Nayak, B.; Menon, S. V. G.
2017-04-01
A generalized enthalpy-based equation of state, which includes thermal electron excitations and non-equilibrium thermal energies, is formulated for binary solid and porous mixtures. Our approach gives rise to an extra contribution to mixture volume, in addition to those corresponding to average mixture parameters. This excess term involves the difference of thermal enthalpies of the two components, which depend on their individual temperatures. We propose to use the Hugoniot of the components to compute non-equilibrium temperatures in the mixture. These are then compared with the average temperature obtained from the mixture Hugoniot, thereby giving an estimate of non-equilibrium effects. The Birch-Murnaghan model for the zero-temperature isotherm and a linear thermal model are then used for applying the method to several mixtures, including one porous case. Comparison with experimental data on the pressure-volume Hugoniot and shock speed versus particle speed shows good agreement.
Dilution and resonance enhanced repulsion in non-equilibrium fluctuation forces
Bimonte, Giuseppe; Kruger, Matthias; Kardar, Mehran
2011-01-01
In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable objects (microscopic or macroscopic) in vacuum are always attractive. The force may, however, become repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that this non-equilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the thermal region, and by (ii) reducing the dielectric contrast due to "dilution". This can lead to stable equilibrium positions. We discuss the realization of these effects for aerogels, yielding repulsion down to sub-micron distances at realistic porosities.
Equilibrium thickness of large liquid lenses spreading over another liquid surface.
Sebilleau, Julien
2013-10-01
This article discusses the equilibrium states and more particularly the equilibrium thickness of large lenses of a liquid spread over the surface of a denser liquid. Both liquids are supposed to be nonvolatile and immiscible. Taking into account the effect of intermolecular forces in addition to the sign of the spreading parameters leads to four possible states. The three first are similar to the states of equilibrium of a liquid spread on a solid surface: total wetting where the floating liquid spreads until it reaches an equilibrium thickness on the order of the molecular size, partial wetting where the floating liquid forms a lens of macroscopic thickness in equilibrium with a "dry" bath, and pseudopartial wetting where the floating liquid spreads as a lens of macroscopic thickness in equilibrium with a thin film covering the bath. The last regime, called pseudototal wetting, consists of a macroscopic lens of the floating liquid covered with a thin film of the bath. These four regimes are described through a free-energy minimization, and their equilibrium thicknesses are predicted. A comparison of this model with experimental results available in the literature and dedicated experiments for the pseudototal wetting state are reported.
LI Li; LI Qing-fen; LIU Er-bao
2005-01-01
An experimental study and computer simulation on non-equilibrium grain-boundary segregation kinetics and the critical time for phosphorus in 12Cr1MoV steel(which is used in steam pipeline of ships)are put forward in this paper. The segregation level of phosphorus with solution temperature 1050℃ at the isothermal holding temperature of 540℃,have been measured at grain-boundaries. A non-equilibrium grain-boundary segregation kinetics curve of phosphorus is given. The critical time for phosphorus non-equilibrium grain-boundary segregation is about 500h at 540℃ for the experimental steel. When the holding time is longer than 1500h, non-equilibrium segregation disappears and the level of segregation reaches full equilibrium. The simulation using the kinetic equations of non-equilibrium grain-boundary segregation is in good accordance with the experimental observation for phosphorus in steel 12Cr1MoV. The non-equilibrium grain-boundary segregation kinetic model is therefore proved.
Polishing Difficult-To-Reach Cavities
Malinzak, R. Michael; Booth, Gary N.
1990-01-01
Springy abrasive tool used to finish surfaces of narrow cavities made by electrical-discharge machining. Robot arm moves vibrator around perimeters of cavities, polishing walls of cavities as it does so. Tool needed because such cavities inaccessible or at least difficult to reach with most surface-finishing tools.
REACH. Electricity Units, Post-Secondary.
Smith, Gene; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this postsecondary student manual contains individualized instructional units in the area of electricity. The instructional units focus on electricity fundamentals, electric motors, electrical components, and controls and installation.…
Reliability of the Advanced REACH Tool (ART)
Schinkel, J.; Fransman, W.; McDonnell, P.E.; Entink, R.K.; Tielemans, E.; Kromhout, H.
2014-01-01
Objectives: The aim of this study was to assess the reliability of the Advanced REACH Tool (ART) by (i) studying interassessor agreement of the resulting exposure estimates generated by the ART mechanistic model, (ii) studying interassessor agreement per model parameters of the ART mechanistic model
Reliability of the Advanced REACH Tool (ART)
Schinkel, J.; Fransman, W.; McDonnell, P.E.; Entink, R.K.; Tielemans, E.; Kromhout, H.
2014-01-01
Objectives: The aim of this study was to assess the reliability of the Advanced REACH Tool (ART) by (i) studying interassessor agreement of the resulting exposure estimates generated by the ART mechanistic model, (ii) studying interassessor agreement per model parameters of the ART mechanistic
Guiding Warfare to Reach Sustainable Peace
Vestenskov, David; Drewes, Line
The conference report Guiding Warfare to Reach Sustainable Peace constitutes the primary outcome of the conference It is based on excerpts from the conference presenters and workshop discussions. Furthermore, the report contains policy recommendations and key findings, with the ambition of develo...
ATLAS Barrel Toroid magnet reached nominal field
2006-01-01
Â OnÂ 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph
Science Experiments: Reaching Out to Our Users
Nolan, Maureen; Tschirhart, Lori; Wright, Stephanie; Barrett, Laura; Parsons, Matthew; Whang, Linda
2008-01-01
As more users access library services remotely, it has become increasingly important for librarians to reach out to their user communities and promote the value of libraries. Convincing the faculty and students in the sciences of the value of libraries and librarians can be a particularly "hard sell" as more and more of their primary…
The REACH Youth Program Learning Toolkit
Sierra Health Foundation, 2011
2011-01-01
Believing in the value of using video documentaries and data as learning tools, members of the REACH technical assistance team collaborated to develop this toolkit. The learning toolkit was designed using and/or incorporating components of the "Engaging Youth in Community Change: Outcomes and Lessons Learned from Sierra Health Foundation's…
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.
Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V
2015-09-01
Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.
Anomalous Thermoelectric Response in an Orbital-Ordered Oxide Near and Far from Equilibrium
Nishina, Yasuo; Okazaki, Ryuji; Yasui, Yukio; Nakamura, Fumihiko; Terasaki, Ichiro
2017-09-01
We report the thermoelectric transport properties in the orbital-ordered Mott insulating phase of Ca2RuO4 close to and far from equilibrium. Near equilibrium conditions where the temperature gradient is only applied to the sample, an insulating but non-monotonic temperature variation of the Seebeck coefficient is observed, which is accounted for in terms of a temperature-induced suppression of the orbital order. In non-equilibrium conditions where we have applied high electrical currents, we find that the Seebeck coefficient is anomalously increased in magnitude with increasing external current. The present result clearly demonstrates a non-thermal effect since the heating simply causes a decrease of the Seebeck coefficient, implying a non-trivial non-equilibrium effect such as a modification of the spin and orbital state in currents.
Economic networks in and out of equilibrium
Squartini, Tiziano
2013-01-01
Economic and financial networks play a crucial role in various important processes, including economic integration, globalization, and financial crises. Of particular interest is understanding whether the temporal evolution of a real economic network is in a (quasi-)stationary equilibrium, i.e. characterized by smooth structural changes rather than abrupt transitions. Smooth changes in quasi-equilibrium networks can be generally controlled for, and largely predicted, via an appropriate rescaling of structural quantities, while this is generally not possible for abrupt transitions in non-stationary networks. Here we study whether real economic networks are in or out of equilibrium by checking their consistency with quasi-equilibrium maximum-entropy ensembles of graphs. As illustrative examples, we consider the International Trade Network (ITN) and the Dutch Interbank Network (DIN). We show that, despite the globalization process, the ITN is an almost perfect example of quasi-equilibrium network, while the DIN ...
Cosmological particle production and generalized thermodynamic equilibrium
Zimdahl, W
1998-01-01
With the help of a conformal, timelike Killing-vector we define generalized equilibrium states for cosmological fluids with particle production. For massless particles the generalized equilibrium conditions require the production rate to vanish and the well known ``global'' equilibrium of standard relativistic thermodynamics is recovered as a limiting case. The equivalence between the creation rate for particles with nonzero mass and an effective viscous fluid pressure follows as a consequence of the generalized equilibrium properties. The implications of this equivalence for the cosmological dynamics are discussed, including the possibility of a power-law inflationary behaviour. For a simple gas a microscopic derivation for such kind of equilibrium is given on the basis of relativistic kinetic theory.
Equilibrium and Sudden Events in Chemical Evolution
Weinberg, David H; Freudenburg, Jenna
2016-01-01
We present new analytic solutions for one-zone (fully mixed) chemical evolution models and explore their implications. In contrast to existing analytic models, we incorporate a realistic delay time distribution for Type Ia supernovae (SNIa) and can therefore track the separate evolution of $\\alpha$-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNIa. In generic cases, $\\alpha$ and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter $\\eta$, while the equilibrium abundance ratio [$\\alpha$/Fe] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Sy...
Disturbances in equilibrium function after major earthquake
Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi
2012-10-01
Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.
Conjectural Equilibrium in Water-filling Games
Su, Yi
2008-01-01
This paper considers a non-cooperative game in which competing users sharing a frequency-selective interference channel selfishly optimize their power allocation in order to improve their achievable rates. Previously, it was shown that a user having the knowledge of its opponents' channel state information can make foresighted decisions and substantially improve its performance compared with the case in which it deploys the conventional iterative water-filling algorithm, which does not exploit such knowledge. This paper discusses how a foresighted user can acquire this knowledge by modeling its experienced interference as a function of its own power allocation. To characterize the outcome of the multi-user interaction, the conjectural equilibrium is introduced, and the existence of this equilibrium for the investigated water-filling game is proved. Interestingly, both the Nash equilibrium and the Stackelberg equilibrium are shown to be special cases of the generalization of conjectural equilibrium. We develop...
The Impact of Kitesurfing on the Dynamic Equilibrium
da Luz, Rafael Leonardo Ferreira; da Silva, Fernando Alves; Coertjens, Marcelo
2016-01-01
Background The kitesurfing athletes endure unexpected conditions in terms of the function of irregularities in the surface of the water that requires a correct proprioceptive response in order to maintain equilibrium and execute the required movements while maintaining contact with the board and the water. Objectives The objective of this work was to use the star excursion balance test to compare the dynamic equilibrium of athletes who engage in kitesurfing activities with non-athletic subjects. Methods Fourteen kitesurfing athletes and fifteen sedentary male subjects completed three rounds of the star excursion balance test: familiarity, test one and test two. During each phase the eight directions of the test were performed three times on each leg and the maximum distance reached by the leg (cm) was measured before being divided by the length of the lower limb (%). To compare the intergroup averages, a student test t to independent samples was performed. To compare the averages across the eight directions in the same group, the repeated-measures ANOVA test was employed and to compare the averages of the right leg and the left leg, a student test t to dependent samples was used (α = 0.05). Results For both groups and in both legs, the distance reached in the medial, posteromedial, posterior and posterolateral directions was similar and further than the other directions. It was observed that the athletes in the comparison intergroup achieved superior results than those in the control group in the medial, posteromedial, posterior and posterolateral directions in both right and left legs and the lateral direction in the right leg (P < 0.05). Conclusions Kitesurfing activities result in proportionate adaptations in the dynamic equilibrium of athletes, maybe in function of adaptations in the neuromuscular structure, resulting in a better performance in situations that cause disequilibrium.
The Impact of Kitesurfing on the Dynamic Equilibrium.
da Luz, Rafael Leonardo Ferreira; da Silva, Fernando Alves; Coertjens, Marcelo
2016-12-01
The kitesurfing athletes endure unexpected conditions in terms of the function of irregularities in the surface of the water that requires a correct proprioceptive response in order to maintain equilibrium and execute the required movements while maintaining contact with the board and the water. The objective of this work was to use the star excursion balance test to compare the dynamic equilibrium of athletes who engage in kitesurfing activities with non-athletic subjects. Fourteen kitesurfing athletes and fifteen sedentary male subjects completed three rounds of the star excursion balance test: familiarity, test one and test two. During each phase the eight directions of the test were performed three times on each leg and the maximum distance reached by the leg (cm) was measured before being divided by the length of the lower limb (%). To compare the intergroup averages, a student test t to independent samples was performed. To compare the averages across the eight directions in the same group, the repeated-measures ANOVA test was employed and to compare the averages of the right leg and the left leg, a student test t to dependent samples was used (α = 0.05). For both groups and in both legs, the distance reached in the medial, posteromedial, posterior and posterolateral directions was similar and further than the other directions. It was observed that the athletes in the comparison intergroup achieved superior results than those in the control group in the medial, posteromedial, posterior and posterolateral directions in both right and left legs and the lateral direction in the right leg (P < 0.05). Kitesurfing activities result in proportionate adaptations in the dynamic equilibrium of athletes, maybe in function of adaptations in the neuromuscular structure, resulting in a better performance in situations that cause disequilibrium.
Pure Electron Equilibrium and Transport Jumps in the Columbia Non-neutral Torus
Hahn, M.; Pedersen, T. Sunn; Marksteiner, Q.; Berkery, J.; Brenner, P. W.
2008-11-01
CNT is a simple stellarator being used to study pure electron plasmas. The dependence of the equilibrium on the location of the electron source has been studied. When the emitter is displaced from the magnetic axis the equilibrium on the inner surfaces is consistent with a global thermal equilibrium, as demonstrated by comparing measurements with the results of a numerical equilibrium solver. The equilibrium of a pure electron plasma depends on electrostatic boundary conditions. Recently a conducting boundary conforming to the last closed flux surface was installed. Experimental studies have been done to characterize the equilibrium with this new boundary condition and compare it to the results with the non-conforming boundary. For an internal emitter in a steady state plasma the loss rate of electrons is the same as the total emission current. As parameters are varied to increase transport abrupt jumps in the emission current occur at particular currents. The jumps imply discontinuous changes in the confinement time and are accompanied by measureable changes in the equilibrium. Using multiple emitters it has been shown that the jumps occur at the local emission current not the total transport rate, which strongly suggests that the jumps are caused by a cathode instability. Supported by NSF-DOE grant NSF-PHY-04-49813.
Staying thermal with Hartree ensemble approximations
Salle, Mischa E-mail: msalle@science.uva.nl; Smit, Jan E-mail: jsmit@science.uva.nl; Vink, Jeroen C. E-mail: jcvink@science.uva.nl
2002-03-25
We study thermal behavior of a recently introduced Hartree ensemble approximation, which allows for non-perturbative inhomogeneous field configurations as well as for approximate thermalization, in the phi (cursive,open) Greek{sup 4} model in 1+1 dimensions. Using ensembles with a free field thermal distribution as out-of-equilibrium initial conditions we determine thermalization time scales. The time scale for which the system stays in approximate quantum thermal equilibrium is an indication of the time scales for which the approximation method stays reasonable. This time scale turns out to be two orders of magnitude larger than the time scale for thermalization, in the range of couplings and temperatures studied. We also discuss simplifications of our method which are numerically more efficient and make a comparison with classical dynamics.
Scour and silting evolution and its influencing factors in Inner Mongolian Reach of the Yellow River
QIN Yi; ZHANG Xiaofang; WANG Fenglong; YAN Heng; HAN Haijun
2011-01-01
Rivers with fluvial equilibrium are characterized by bed deformation adjustment.The erosion-deposition area in cross-section reflects this characteristic,which is a base of researching the river scour and deposition evolution by time series analysis.With an erosion-deposition area indicator method proposed in this paper,the time series of erosion-deposition area quantity at Bygl and Shhk stations were obtained with the series duration of 31 years from 1976 to 2006.After analysis of its trend and mutation,three different tendencies about the evolution were observed in general from the quasi-equilibrium phase through a rapid shrinkage to the final new quasi-equilibrium.It is also found that the trend of erosion-deposition area series will change once a big flood occurred in some of the tributaries,and its ever greater influence is due to the decrease of deluge with the completion of upstream reservoirs.Almost all the turning points were coincident with the time when hyper-concentrated sediment flood occurred in some tributaries.With the time series of clear mutations since the late 1990s,the Inner Mongolian Reach has been in a new equilibrium phase.This can be concluded in two aspects.1.The absence of big floods and sediment transportation from tributaries result in the river shrinkage,and to regain the channel flow-carrying capacity in Inner Mongolian Reach a large flood is needed both of high peak discharge and of lengthy interval to destroy the new equilibrium.2.The proposed method of erosion-deposition area indicator is of great help to channel scour-deposition evolution analysis because it can demonstrate real time deformation of cross section in quantity.
Holographic thermalization from nonrelativistic branes
Roychowdhury, Dibakar
2016-05-01
In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.
Phan Quoc Khanh
2014-01-01
Full Text Available The purpose of this paper is introduce several types of Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Base on criterion and characterizations for these types of Levitin-Polyak well-posedness we argue on diameters and Kuratowski’s, Hausdorff’s, or Istrǎtescus measures of noncompactness of approximate solution sets under suitable conditions, and we prove the Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Obtain a gap function for bilevel vector equilibrium problems with equilibrium constraints using the nonlinear scalarization function and consider relations between these types of LP well-posedness for bilevel vector optimization problems with equilibrium constraints and these types of Levitin-Polyak well-posedness for bilevel vector equilibrium problems with equilibrium constraints under suitable conditions; we prove the Levitin-Polyak well-posedness for bilevel equilibrium and optimization problems with equilibrium constraints.
Does workplace health promotion reach shift workers?
Nabe-Nielsen, Kirsten; Garde, Anne Helene; Clausen, Thomas;
2015-01-01
OBJECTIVES: One reason for health disparities between shift and day workers may be that workplace health promotion does not reach shift workers to the same extent as it reaches day workers. This study aimed to investigate the association between shift work and the availability of and participation...... in workplace health promotion. METHODS: We used cross-sectional questionnaire data from a large representative sample of all employed people in Denmark. We obtained information on the availability of and participation in six types of workplace health promotion. We also obtained information on working hours, ie......). RESULTS: In the general working population, fixed evening and fixed night workers, and employees working variable shifts including night work reported a higher availability of health promotion, while employees working variable shifts without night work reported a lower availability of health promotion...
Olefins and chemical regulation in Europe: REACH.
Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus
2015-11-05
REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for
Distance Reached in the Anteromedial Reach Test as a Function of Learning and Leg Length
Bent, Nicholas P.; Rushton, Alison B.; Wright, Chris C.; Batt, Mark E.
2012-01-01
The Anteromedial Reach Test (ART) is a new outcome measure for assessing dynamic knee stability in anterior cruciate ligament-injured patients. The effect of learning and leg length on distance reached in the ART was examined. Thirty-two healthy volunteers performed 15 trials of the ART on each leg. There was a moderate correlation (r = 0.44-0.50)…
Ferreira, Ricardo Z.; Notari, Alessio
2017-09-01
We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.
Electric Current Equilibrium in the Corona
Filippov, Boris
2013-01-01
A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific "herring-bone structures" in a chromospheric fibril pattern.
Electric Current Equilibrium in the Corona
Filippov, Boris
2013-04-01
A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific "herring-bone structures" in a chromospheric fibril pattern.
A Multi Period Equilibrium Pricing Model
Pirvu, Traian A
2012-01-01
In this paper, we propose an equilibrium pricing model in a dynamic multi-period stochastic framework with uncertain income streams. In an incomplete market, there exist two traded risky assets (e.g. stock/commodity and weather derivative) and a non-traded underlying (e.g. temperature). The risk preferences are of exponential (CARA) type with a stochastic coefficient of risk aversion. Both time consistent and time inconsistent trading strategies are considered. We obtain the equilibriums prices of a contingent claim written on the risky asset and non-traded underlying. By running numerical experiments we examine how the equilibriums prices vary in response to changes in model parameters.
THE STABILITY OF LIQUID EVAPORATION EQUILIBRIUM
SHIMIN ZHANG
2005-01-01
For the evaporation of the pure liquid under the condition of constant temperature and constant external pressure, the phase equilibrium of the liquid vapor in the bubble and the liquid outside the bubble is always a kind of stable equilibrium whether there is air or not in the bubble. If there is no air in the bubble, the bubble and liquid cannot coexist in the mechanical equilibrium when the vapor pressure of the liquid in the bubble is less than or equal to the external pressure; the bubbl...
The solubility of (Ba,Sr)SO 4 precipitates: Thermodynamic equilibrium and reaction path analysis
Felmy, Andrew R.; Rai, Dhanpat; Moore, Dean A.
1993-09-01
The solubility of (Ba,Sr)SO 4 precipitates, varying in SrSO 4 mole fraction from 0.05-0.90, was investigated at room temperature with an equilibration period extending to almost three years. The data show that on or before 315 days of equilibration the precipitates reach a reversible equilibrium with the aqueous solution. The reversibility of this equilibrium was verified both by the attainment of steady-state concentrations with time and by heating the samples to perturb the equilibrium and then observing the slow return to the initial equilibrium state. The dissolution of the (Ba,Sr)SO 4 precipitates does not, in general, follow limiting reaction paths as defined by the Lippmann solutus or stoichiometric dissolution curves. In addition, activity coefficient calculations for the BaSO 4 and SrSO 4 components of the solid phase, using either total bulk analysis or near-surface analysis of the component mole fractions, do not satisfy the Gibbs-Duhem equation, demonstrating that a single solid-solution phase does not control both the aqueous Ba and Sr concentrations. Instead, our long-term equilibration data can be explained by the unavoidable formation of small amounts of barite and substitution of Sr into a solid-solution phase with the BaSO 4 component of the solid-solution phase never reaching thermodynamic equilibrium with the aqueous phase.
Behavior of phenol adsorption on thermal modified activated carbon☆
Dengfeng Zhang; Peili Huo; Wei Liu
2016-01-01
Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon (AC) samples after thermal modification were prepared by using muffle furnace. The phenol ad-sorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC sam-ples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the exper-imental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach 144.93 mg·g−1 which is higher than that of the raw sample, i.e. 119.53 mg·g−1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Equilibrium Analysis for Anycast in WDM Networks
唐矛宁; 王汉兴
2005-01-01
In this paper, the wavelength-routed WDM network, was analyzed for the dynamic case where the arrival of anycast requests was modeled by a state-dependent Poisson process. The equilibrium analysis was also given with the UWNC algorithm.
POSITIVE EQUILIBRIUM SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS
无
2006-01-01
The author studies semilinear parabolic equations with initial and periodic boundary value conditions. In the presence of non-well-ordered sub- and super-solutions:"subsolution (≤) supersolution", the existence and stability/instability of equilibrium solutions are obtained.
Thermodynamics and fluctuations far from equilibrium
Ross, John
2008-01-01
This book deals with the formulation of the thermodynamics of chemical and other systems far from equilibrium, including connections to fluctuations. It contains applications to non-equilibrium stationary states and approaches to such states, systems with multiple stationary states, stability and equi-stability conditions, reaction diffusion systems, transport properties, and electrochemical systems. The theoretical treatment is complemented by experimental results to substantiate the formulation. Dissipation and efficiency are analyzed in autonomous and externally forced reactions, including several biochemical systems.
Information equilibrium as an economic principle
2015-01-01
A general information equilibrium model in the case of ideal information transfer is defined and then used to derive the relationship between supply (information destination) and demand (information source) with the price as the detector of information exchange between demand and supply. We recover the properties of the traditional economic supply-demand diagram. Information equilibrium is then applied to macroeconomic problems, recovering some common macroeconomic models in particular limits...
The Theory of Variances in Equilibrium Reconstruction
Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren
2008-01-14
The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature.
OPTIMAL RESOURCE ALLOCATION IN GENERAL COURNOTCOMPETITIVE EQUILIBRIUM
Ervik, Inger Sommerfelt; Soegaard, Christian
2013-01-01
Conventional economic theory stipulates that output in Cournot competition is too low relative to that which is attained in perfect competition. We revisit this result in a General Cournot-competitive Equilibrium model with two industries that di er only in terms of productivity. We show that in general equilibrium, the more ecient industry produces too little and the less ecient industry produces too much compared to an optimal scenario with perfect competition.
Poliszczuk, Tatiana; Broda, Daria
2010-01-01
The greatest similarities in body constitution were noted in competitors practising the same discipline. The similarities increase with the training level. A typical body constitution for a given discipline not only favourably affects athletic performance, but is also the factor preventing sportsrelated contusions. The ability to maintain body equilibrium, together with somatic constitution, are the basic selective criteria in rhythmic gymnastics. The objective of this paper was to determine somatotypes, to evaluate the ability to maintain dynamic body equilibrium in girls practicing rhythmic gymnastics and to develop model characteristics enabling early diagnosis of the disorders equilibrium system function. The sample comprised 19 girls aged 8-11 years, practising rhythmic gymnastics. For the evaluation of the competitors' somatotypes, the Heath-Carter method was used, based on the classic concept of Sheldon's body constitution components. Body equilibrium level was evaluated by means of posturography. The mean values of the endomorphic component I, mesomorphic component II and ectomorphic component III in the gymnasts were 2.65+/-1.29, 2.45+/-0.37 and 3.95+/-0.64 respectively. The mean body mass index (BMI) value for this cohort was 15.32, which means advanced slimness. The level of dynamic equilibrium is determined by the following mean values: the time of reaching the equilibrium, the way of reaching it and the duration of stay at the defined point. The model of above mentioned indicates was developed based on the analysis of it's best results. Body constitution type in the qualified gymnasts is characterised by the prevalence of the ectomorphic component. The study results indicate that female gymnasts are generally slim and lean. It is necessary to monitor BMI in order to exclude weight-related disorders and to observe the changes with age. The poorest result was found when the gymnasts bent in the backward direction as this body position is most difficult
Reach-scale land use drives the stress responses of a resident stream fish.
Blevins, Zachary W; Wahl, David H; Suski, Cory D
2014-01-01
Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.
Reaching Diverse Audiences through NOAO Education Programs
Pompea, Stephen M.; Sparks, R. T.; Walker, C. E.
2009-01-01
NOAO education programs are designed to reach diverse audiences. Examples described in this poster include the Hands-On Optics Project nationwide, an extension of the Hands-On Optics program at Boys and Girls Clubs in Arizona and in Hawaii, a professional development program for Navajo and Hopi teachers, a number of programs for the Tohono O'odham Nation, and a project collecting and reviewing Spanish language astronomy materials. Additionally NOAO is also involved in several local outreach projects for diverse and underserved audiences.
de Koning, Maurice; Antonelli, Alex
2008-01-01
We present a model for the determination of the thermal equilibrium concentrations of Bjerrum defects, molecular point defects, and their aggregates in ice I(h). First, using a procedure which minimizes the free energy of an ice crystal with respect to the numbers of defect species, we derive a set of equations for the equilibrium concentrations of free Bjerrum and point defects, as well their complexes. Using density-functional-theory calculations, we then evaluate the binding energies of Bj...
Pre-equilibrium {\\alpha}-particle emission as a probe to study {\\alpha}-clustering in nuclei
Fotina, O V; Eremenko, D O; Platonov, S Yu; Yuminov, O A; Kravchuk, V L; Gramegna, F; Marchi, T; Cinausero, M; D'Agostino, M; Bruno, M; Baiocco, G; Morelli, L; Degerlier, M; Casini, G; Barlini, S; Valdrè, S; Piantelli, S; Pasquali, G; Bracco, A; Camera, F; Wieland, O; Benzoni, G; Blasi, N; Giaz, A; Corsi, A
2013-01-01
A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {\\alpha}-particle production. Griffin's model of non-equilibrium processes is used to account for the first stage of the compound system formation, while a Monte Carlo statistical approach was used to describe the further decay from a hot source at thermal equilibrium. The probabilities of neutron, proton and {\\alpha}-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Fission and {\\gamma}-ray emission competition were also considered after equilibration. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and {\\alpha}-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to th...
Can donated media placements reach intended audiences?
Cooper, Crystale Purvis; Gelb, Cynthia A; Chu, Jennifer; Polonec, Lindsey
2013-09-01
Donated media placements for public service announcements (PSAs) can be difficult to secure, and may not always reach intended audiences. Strategies used by the Centers for Disease Control and Prevention's (CDC) Screen for Life: National Colorectal Cancer Action Campaign (SFL) to obtain donated media placements include producing a diverse mix of high-quality PSAs, co-branding with state and tribal health agencies, securing celebrity involvement, monitoring media trends to identify new distribution opportunities, and strategically timing the release of PSAs. To investigate open-ended recall of PSAs promoting colorectal cancer screening, CDC conducted 12 focus groups in three U.S. cities with men and women either nearing age 50 years, when screening is recommended to begin, or aged 50-75 years who were not in compliance with screening guidelines. In most focus groups, multiple participants recalled exposure to PSAs promoting colorectal cancer screening, and most of these individuals reported having seen SFL PSAs on television, in transit stations, or on the sides of public buses. Some participants reported exposure to SFL PSAs without prompting from the moderator, as they explained how they learned about the disease. Several participants reported learning key campaign messages from PSAs, including that colorectal cancer screening should begin at age 50 years and screening can find polyps so they can be removed before becoming cancerous. Donated media placements can reach and educate mass audiences, including millions of U.S. adults who have not been screened appropriately for colorectal cancer.
Extended-reach wells tap outlying reserves
Nazzal, G. (Eastman Teleco, Houston, TX (United States))
1993-03-01
Extended-reach drilling (ERD) is being used to exploit fields and reserves that are located far from existing platforms. Effective wellbore placement from fewer platforms can reduce development costs, maximize production and increase reserve recovery. Six wells drilled offshore in the US, North Sea and Australia illustrate how to get the most economic benefit from available infrastructure. These wells are divided into three categories by depth (shallow, medium and deep). Vertical depth of these wells range from 963 to 12,791 ft TVD and displacements range from 4,871 to 23,917 ft. Important factors for successful extended-reach drilling included: careful, comprehensive pre-planning; adequate cuttings removal in all sections; hole stability in long, exposed intervals; torque and drag modeling of drilling BHAs, casing and liners; buoyancy-assisted casing techniques where appropriate; critical modifications to drilling rig and top drive, for medium and deep ERD; modified power swivels for shallow operations; drill pipe rubbers or other casing protection during extended periods of drill string rotation; heavy-wall casting across anticipated high-wear areas; survey accuracy and frequency; sound drilling practices and creativity to accomplish goals and objectives. This paper reviews the case history of these sites and records planning and design procedures.
Napa River Restoration Project: Rutherford Reach Completion and Oakville to Oak Knoll Reach
Information about the SFBWQP Napa River Restoration Project: Rutherford Reach Completion/Oakville to Oak Knoll, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Entanglement pre-thermalization in a one-dimensional Bose gas
Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito
2015-12-01
An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.
Yamaji, Youhei; Imada, Masatoshi
2016-09-01
Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.
Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2+TBAB
2008-01-01
The present work investigates equilibrium conditions and dissociation enthalpy of hydrates formed from CO2-TBAB(tetra-n-butylammonium bromide)-water mixtures. Differential Thermal Analysis (DTA) was used for Hydrate-Liquid-Vapour (H-L-V) equilibrium condition determination in a TBAB concentration range from 4.43 to 9.01 wt% and in a CO2 pressure range from 0.3 to 2.5 MPa. The results showed that the presence of TBAB allowed decreasing the formation pressure of CO2 hydrate by approximately ...
1978-09-01
general equilibrium model of an economy with market fritions. A market is said to have frictions if buyers and sellers have trouble finding each other, if it is costly for them to search for each other, and if it is costly to wait to buy or sell. Equilibrium is a stationary probability distribution over the set of possible time paths of states of the economy. This equilibrium reflects rational expectations if all agents know the stationary distribution of the variables they observe and if they exploit this information. Prices are fixed and are not necessarily equilibrium
Reach and get capability in a computing environment
Bouchard, Ann M [Albuquerque, NM; Osbourn, Gordon C [Albuquerque, NM
2012-06-05
A reach and get technique includes invoking a reach command from a reach location within a computing environment. A user can then navigate to an object within the computing environment and invoke a get command on the object. In response to invoking the get command, the computing environment is automatically navigated back to the reach location and the object copied into the reach location.
Speeded reaching movements around invisible obstacles.
Todd E Hudson
Full Text Available We analyze the problem of obstacle avoidance from a Bayesian decision-theoretic perspective using an experimental task in which reaches around a virtual obstacle were made toward targets on an upright monitor. Subjects received monetary rewards for touching the target and incurred losses for accidentally touching the intervening obstacle. The locations of target-obstacle pairs within the workspace were varied from trial to trial. We compared human performance to that of a Bayesian ideal movement planner (who chooses motor strategies maximizing expected gain using the Dominance Test employed in Hudson et al. (2007. The ideal movement planner suffers from the same sources of noise as the human, but selects movement plans that maximize expected gain in the presence of that noise. We find good agreement between the predictions of the model and actual performance in most but not all experimental conditions.
Priority setting in the REACH system.
Hansson, Sven Ove; Rudén, Christina
2006-04-01
Due to the large number of chemicals for which toxicological and ecotoxicological information is lacking, priority setting for data acquisition is a major concern in chemicals regulation. In the current European system, two administrative priority-setting criteria are used, namely novelty (i.e., time of market introduction) and production volume. In the proposed Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system, the novelty criterion is no longer used, and production volume will be the main priority-setting criterion for testing requirements, supplemented in some cases with hazard indications obtained from QSAR modelling. This system for priority setting has severe weaknesses. In this paper we propose that a multicriteria system should be developed that includes at least three additional criteria: chemical properties, results from initial testing in a tiered system, and voluntary testing for which efficient incentives can be created. Toxicological and decision-theoretical research is needed to design testing systems with validated priority-setting mechanisms.
Reaching Consensus by Allowing Moments of Indecision
Svenkeson, A.; Swami, A.
2015-10-01
Group decision-making processes often turn into a drawn out and costly battle between two opposing subgroups. Using analytical arguments based on a master equation description of the opinion dynamics occurring in a three-state model of cooperatively interacting units, we show how the capability of a social group to reach consensus can be enhanced when there is an intermediate state for indecisive individuals to pass through. The time spent in the intermediate state must be relatively short compared to that of the two polar states in order to create the beneficial effect. Furthermore, the cooperation between individuals must not be too low, as the benefit to consensus is possible only when the cooperation level exceeds a specific threshold. We also discuss how zealots, agents that remain in one state forever, can affect the consensus among the rest of the population by counteracting the benefit of the intermediate state or making it virtually impossible for an opposition to form.
Wall ablation of heated compound-materials into non-equilibrium discharge plasmas
Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing
2017-02-01
The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results
Morphodynamics of a pseudomeandering gravel bar reach
Bartholdy, J.; Billi, P.
2002-01-01
A large number of rivers in Tuscany have channel planforms, which are neither straight nor what is usually understood as meandering. In the typical case, they consist of an almost straight, slightly incised main channel fringed with large lateral bars and lunate-shaped embayments eroded into the former flood plain. In the past, these rivers have not been recognised as an individual category and have often been considered to be either braided or meandering. It is suggested here that this type of river planform be termed pseudomeandering. A typical pseudomeandering river (the Cecina River) is described and analysed to investigate the main factors responsible for producing this channel pattern. A study reach (100×300 m) was surveyed in detail and related to data on discharge, channel changes after floods and grain-size distribution of bed sediments. During 18 months of topographic monitoring, the inner lateral bar in the study reach expanded and migrated towards the concave outer bank which, concurrently, retreated by as much as 25 m. A sediment balance was constructed to analyse bar growth and bank retreat in relation to sediment supply and channel morphology. The conditions necessary to maintain the pseudomeandering morphology of these rivers by preventing them from developing a meandering planform, are discussed and interpreted as a combination of a few main factors such as the flashy character of floods, sediment supply (influenced by both natural processes and human impact), the morphological effects of discharges with contrasting return intervals and the short duration of flood events. Finally, the channel response to floods with variable sediment transport capacity (represented by bed shear stress) is analysed using a simple model. It is demonstrated that bend migration is associated with moderate floods while major floods are responsible for the development of chute channels, which act to suppress bend growth and maintain the low sinuosity configuration of
Collective phenomena in the non-equilibrium quark-gluon plasma
Schenke, Bjoern Peter
2008-07-03
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient q. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy. (orig.)
Thermodynamic State Variables in Quasi-Equilibrium Ultracold Neutral Plasma
Tiwari, Sanat Kumar; Baalrud, Scott D
2016-01-01
The pressure and internal energy of an ultracold plasma in a state of quasi-equilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length-scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudo-potential model is also applied to Debye-H\\"{u}ckel theory to describe the weakly coupled regime.
The quasi-equilibrium phase of nonlinear chains
T R Krishna Mohan; Surajit Sen
2005-03-01
We show that time evolution initiated via kinetic energy perturbations in conservative, discrete, spring-mass chains with purely nonlinear, non-integrable, algebraic potentials of the form ( − +1 ∼ $(_{} − _{+1})^{2}$, ≥ 2 and an integer, occurs via discrete solitary waves (DSWs) and discrete antisolitary waves (DASWs). Presence of reflecting and periodic boundaries in the system leads to collisions between the DSWs and DASWs. Such collisions lead to the breakage and subsequent reformation of (different) DSWs and DASWs. Our calculations show that the system eventually reaches a stable `quasi-equilibrium' phase that appears to be independent of initial conditions, possesses Gaussian velocity distribution, and has a higher mean kinetic energy and larger range of kinetic energy fluctuations as compared to the pure harmonic system with = 1; the latter indicates possible violation of equipartition.
CrⅥ adsorption on four typical soil colloids: equilibrium and kinetics
无
2000-01-01
It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of CrⅥ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of CrⅥ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of CrⅥ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on CrⅥ adsorption on different soil colloid and clay minerals are also investigated.
Boyanovsky, D; Lee, D S; Silva, J P; Daniel Boyanovsky; Richard Holman; Da-Shin Lee; Joao P Silva
1994-01-01
Thermal activation is mediated by field configurations that correspond to saddle points of the energy functional. The rate of probability flow along the unstable functional directions, i.e the activation rate, is usually obtained from the imaginary part of a suitable analytic continuation of the equilibrium free energy. In this note we provide a real-time, non-equilibrium interpretation of this imaginary part which is analogous to the real-time interpretation of the imaginary part of the one-loop effective potential in theories with symmetry breaking. We argue that in situations in which the system is strongly out of equilibrium the rate will be time dependent and illustrate this with an example.
On equilibrium structures of the water molecule
Császár, Attila G.; Czakó, Gábor; Furtenbacher, Tibor; Tennyson, Jonathan; Szalay, Viktor; Shirin, Sergei V.; Zobov, Nikolai F.; Polyansky, Oleg L.
2005-06-01
Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×10-5Å and 0.02° for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J =1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm-1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm-1 (or the lower ones to better than 0.0035cm-1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The
Rapid thermal processing and beyond applications in semiconductor processing
Lerch, W
2008-01-01
Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a
Inhomogeneous Thermal Quenches
Sohrabi, Kiyoumars A
2015-01-01
We describe holographic thermal quenches that are inhomogeneous in space. The main characteristic of the quench is to take the system far from its equilibrium configuration. Except special extreme cases, the problem has no analytic solution. Using the numerical holography methods, we study different observables that measure thermalization such as the time evolution of the horizon, two-point Wightman function and entanglement entropy (EE). Having an extra nontrivial spacial direction, allows us to study this peculiar generalization since we categorize the problem based on whether we do the measurements along this special direction or perpendicular to it. Exciting new features appear that are absent in the common computations in the literature, the appearance of negative EE valleys surrounding the positive EE hills and abrupt quenches that occupy the whole space at their universal limit are some of the results of this paper. We have tried to provide physical explanations wherever possible. The physical picture ...
Non-equilibrium evolution of a "Tsunami" Dynamical Symmetry Breaking
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.
1998-01-01
We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle pro...
Disclosing phonon squeezing by non-equilibrium optical experiments
Esposito, Martina; Zimmermann, Klaus; Giusti, Francesca; Randi, Francesco; Boschetto, Davide; Parmigiani, Fulvio; Floreanini, Roberto; Benatti, Fabio; Fausti, Daniele
2015-01-01
Fluctuations of the atomic positions are at the core of a large class of unusual material properties ranging from quantum para-electricity and charge density wave to, possibly, high temperature superconductivity. Their measurement in solids is subject of an intense scientific debate focused on the research of a methodology capable of establishing a direct link between the variance of the ionic displacements and experimentally measurable observables. Here we address this issue by means of non-equilibrium optical experiments performed in shot-noise limited regime. The variance of the time dependent atomic positions and momenta is directly mapped into the quantum fluctuations of the photon number of the scattered probing light. A fully quantum description of the non-linear interactions between photonic and phononic fields unveils evidences of squeezing of thermal phonons in $\\alpha-$quartz.
Renormalization out of equilibrium in a superrenormalizable theory
Garny, Mathias
2016-01-01
We discuss the renormalization of the initial value problem in Nonequilibrium Quantum Field Theory within a simple, yet instructive, example and show how to obtain a renormalized time evolution for the two-point functions of a scalar field and its conjugate momentum at all times. The scheme we propose is applicable to systems that are initially far from equilibrium and compatible with non-secular approximation schemes which capture thermalization. It is based on Kadanoff-Baym equations for non-Gaussian initial states, complemented by usual vacuum counterterms. We explicitly demonstrate how various cutoff-dependent effects peculiar to nonequilibrium systems, including time-dependent divergences or initial-time singularities, are avoided by taking an initial non-Gaussian three-point vacuum correlation into account.
Stabilization of beam-weibel instability by equilibrium density ripples
Mishra, S. K., E-mail: nishfeb@gmail.com; Kaw, Predhiman; Das, A.; Sengupta, S. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Ravindra Kumar, G. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)
2014-01-15
In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length) collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.
Coevolutionary Genetic Algorithms for Establishing Nash Equilibrium in Symmetric Cournot Games
Mattheos K. Protopapas
2010-01-01
Full Text Available We use coevolutionary genetic algorithms to model the players' learning process in several Cournot models and evaluate them in terms of their convergence to the Nash Equilibrium. The “social-learning” versions of the two coevolutionary algorithms we introduce establish Nash Equilibrium in those models, in contrast to the “individual learning” versions which, do not imply the convergence of the players' strategies to the Nash outcome. When players use “canonical coevolutionary genetic algorithms” as learning algorithms, the process of the game is an ergodic Markov Chain; we find that in the “social” cases states leading to NE play are highly frequent at the stationary distribution of the chain, in contrast to the “individual learning” case, when NE is not reached at all in our simulations; and finally we show that a large fraction of the games played are indeed at the Nash Equilibrium.
Non-Equilibrium Phenomena in High Power Beam Materials Processing
Tosto, Sebastiano
2004-03-01
The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.
Continental reach: The Westcoast Energy story
Newman, P. C.
2002-07-01
A historical account is given of the spectacular success that was Westcoast Energy Inc., a Canadian natural gas giant that charted a wilderness pipeline from natural gas fields in Canada's sub-arctic solitude. The beginning of the company is traced to an event in 1934 when near the bank of the Pouce Coupe River, close to the Alberta-British Columbia border, Frank McMahon, a solitary wildcatter and the eventual founder of the company, first sighted the fiery inferno of a runaway wildcat well, drilled by geologists of the Imperial Oil Company during their original search for the Canadian petroleum basin's motherlode. It was on this occasion in 1934 that McMahon first conceived a geological profile that connected the gas-bearing sandstone of Pouce Coupe with the reservoir rock of the biggest natural gas field of Alberta, and a pipeline from this sandstone storehouse across the rugged heart of British Columbia to Vancouver, and south into the United States. It took the better part of a quarter century to realize the dream of that pipeline which, in due course, turned out to be only the first step towards reaching the top rank of Canadian corporations in operational and financial terms, and becoming one of only a handful in terms of a story that became a Canadian corporate legend. By chronicling the lives and contributions of the company's founder and senior officials over the years, the book traces the company's meteoric rise from a gleam in its founder's eye to a cautious regional utility, and to the aggressive Canadian adventurer that went on to burst the boundaries of its Pacific Coast world, until the continental reach of its operations and interests run from Canada's Pacific shoreline to its Atlantic basins and Mexico's Campeche Bay to Alaska's Prudhoe Bay. The company's independent existence came to an end in 2002 when Westcoast Energy, by then a $15 billion operation, was acquired by Duke Energy Limited of North
New symmetry of intended curved reaches
Torres Elizabeth B
2010-04-01
Full Text Available Abstract Background Movement regularities are inherently present in automated goal-directed motions of the primate's arm system. They can provide important signatures of intentional behaviours driven by sensory-motor strategies, but it remains unknown if during motor learning new regularities can be uncovered despite high variability in the temporal dynamics of the hand motions. Methods We investigated the conservation and violation of new movement regularity obtained from the hand motions traced by two untrained monkeys as they learned to reach outwardly towards spatial targets while avoiding obstacles in the dark. The regularity pertains to the transformation from postural to hand paths that aim at visual goals. Results In length-minimizing curves the area enclosed between the Euclidean straight line and the curve up to its point of maximum curvature is 1/2 of the total area. Similar trend is found if one examines the perimeter. This new movement regularity remained robust to striking changes in arm dynamics that gave rise to changes in the speed of the reach, to changes in the hand path curvature, and to changes in the arm's postural paths. The area and perimeter ratios characterizing the regularity co-varied across repeats of randomly presented targets whenever the transformation from posture to hand paths was compliant with the intended goals. To interpret this conservation and the cases in which the regularity was violated and recovered, we provide a geometric model that characterizes arm-to-hand and hand-to-arm motion paths as length minimizing curves (geodesics in a non-Euclidean space. Whenever the transformation from one space to the other is distance-metric preserving (isometric the two symmetric ratios co-vary. Otherwise, the symmetric ratios and their co-variation are violated. As predicted by the model we found empirical evidence for the violation of this movement regularity whenever the intended goals mismatched the actions. This
A case of rapid rock riverbed incision in a coseismic uplift reach and its implications
Huang, Ming-Wan; Pan, Yii-Wen; Liao, Jyh-Jong
2013-02-01
During the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan, the coseismic displacement induced fault scarps and a pop-up structure in the Taan River. The fault scarps across the river experienced maximum vertical slip of 10 m, which disturbed the dynamic equilibrium of the fluvial system. As a result, rapid incision in the weak bedrock, with a maximum depth of 20 m, was activated within a decade after its armor layer was removed. This case provides an excellent opportunity for closely tracking and recording the progressive evolution of river morphology that is subjected to coseismic uplift. Based on multistaged orthophotographs and digital elevation model (DEM) data, the process of morphology evolution in the uplift reach was divided into four consecutive stages. Plucking is the dominant mechanism of bedrock erosion associated with channel incision and knickpoint migration. The astonishingly high rate of knickpoint retreat (KPR), as rapid as a few hundred meters per year, may be responsible for the rapid incision in the main channel. The reasons for the high rate of KPR are discussed in depth. The total length of the river affected by the coseismic uplift is 5 km: 1 km in the uplift reach and 4 km in the downstream reach. The downstream reach was affected by a reduction in sediment supply and increase in stream power. The KPR cut through the uplift reach within roughly a decade; further significant flooding in the future will mainly cause widening instead of deepening of the channel.
Communication: Microphase equilibrium and assembly dynamics
Zhuang, Yuan; Charbonneau, Patrick
2017-09-01
Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.
Regret Theory and Equilibrium Asset Prices
Jiliang Sheng
2014-01-01
Full Text Available Regret theory is a behavioral approach to decision making under uncertainty. In this paper we assume that there are two representative investors in a frictionless market, a representative active investor who selects his optimal portfolio based on regret theory and a representative passive investor who invests only in the benchmark portfolio. In a partial equilibrium setting, the objective of the representative active investor is modeled as minimization of the regret about final wealth relative to the benchmark portfolio. In equilibrium this optimal strategy gives rise to a behavioral asset priciting model. We show that the market beta and the benchmark beta that is related to the investor’s regret are the determinants of equilibrium asset prices. We also extend our model to a market with multibenchmark portfolios. Empirical tests using stock price data from Shanghai Stock Exchange show strong support to the asset pricing model based on regret theory.
Non-Equilibrium Thermodynamics in Multiphase Flows
Mauri, Roberto
2013-01-01
Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...
Module description of TOKAMAK equilibrium code MEUDAS
Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2002-01-01
The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)
The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions
Chao, Youchuang; Mak, Sze Yi; Shum, Ho Cheung
2016-10-01
We use a glass-based microfluidic device to generate non-equilibrium water-in-water-in-oil (w/w/o) double emulsions and study how they transform into equilibrium configurations. The method relies on using three immiscible liquids, with two of them from the phase-separated aqueous two-phase systems. We find that the transformation is accompanied by an expansion rim, while the characteristic transformation speed of the rim mainly depends on the interfacial tension between the innermost and middle phases, as well as the viscosity of the innermost phase when the middle phase is non-viscous. Remarkably, the viscosity of the outermost phase has little effect on the transformation speed. Our results account for the dynamics of non-equilibrium double emulsions towards their equilibrium structure and suggest a possibility to utilize the non-equilibrium drops to synthesize functional particles.
Ngo, Van A
2013-01-01
We propose a combination between the theory of diagonal entropy representing far-from-equilibrium ensembles and Jarzynski Equality to explore thermalization effects on thermodynamic quantities such as temperature, entropy, mechanical work and free-energy changes. Applying the theory to a quantum harmonic oscillator, we find that diagonal entropy offers a definition of temperature for closed systems far from equilibrium, and a better sampling of reaction pathways than the conventional von Neumann entropy. We also apply the theory to a many-body system of hard-core boson lattice, and discuss the ideas of how to estimate temperature, entropy and measure work distribution functions. The theory suggests a powerful technique to study non-equilibrium dynamics in quantum systems by means of performing work in a series of quenches.
Equilibrium statistical mechanics and energy partition for the shallow water model
Renaud, Antoine; Bouchet, Freddy
2015-01-01
The aim of this paper is to use large deviation theory in order to compute the entropy of macrostates for the microcanonical measure of the shallow water system. The main prediction of this full statistical mechanics computation is the energy partition between a large scale vortical flow and small scale fluctuations related to inertia-gravity waves. We introduce for that purpose a discretized model of the continuous shallow water system, and compute the corresponding statistical equilibria. We argue that microcanonical equilibrium states of the discretized model in the continuous limit are equilibrium states of the actual shallow water system. We show that the presence of small scale fluctuations selects a subclass of equilibria among the states that were previously computed by phenomenological approaches that were neglecting such fluctuations. In the limit of weak height fluctuations, the equilibrium state can be interpreted as two subsystems in thermal contact: one subsystem corresponds to the large scale v...
Important ATLAS Forward Calorimeter Milestone Reached
Loch, P.
The ATLAS Forward Calorimeter working group has reached an important milestone in the production of their detectors. The mechanical assembly of the first electromagnetic module (FCal1C) has been completed at the University of Arizona on February 25, 2002, only ten days after the originally scheduled date. The photo shows the University of Arizona FCal group in the clean room, together with the assembled FCal1C module. The module consists of a stack of 18 round copper plates, each about one inch thick. Each plate is about 90 cm in diameter, and has 12260 precision-drilled holes in it, to accommodate the tube/rod electrode assembly. The machining of the plates, which was done at the Science Technology Center (STC) at Carleton University, Ottawa, Canada, required high precision to allow for easy insertion of the electrode copper tube. The plates have been carefully cleaned at the University of Arizona, to remove any machining residue and metal flakes. This process alone took about eleven weeks. Exactly 122...
LEP Dismantling Reaches Half-Way Stage
2001-01-01
LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...
CAST reaches milestone but keeps on searching
CERN Courier (september 2011 issue)
2011-01-01
After eight years of searching for the emission of a dark matter candidate particle, the axion, from the Sun, the CERN Axion Solar Telescope (CAST) has fulfilled its original physics programme. Members of the CAST collaboration in July, together with dipole-based helioscope. CAST, the world’s most sensitive axion helioscope, points a recycled prototype LHC dipole magnet at the Sun at dawn and dusk, looking for the conversion of axions to X-rays. It incorporates four state-of-the-art X-ray detectors: three Micromegas detectors and a pn-CCD imaging camera attached to a focusing X-ray telescope that was recovered from the German space programme (see CERN Courier April 2010). Over the years, CAST has operated with the magnet bores - the location of the axion conversion - in different conditions: first in vacuum, covering axion masses up to 20 meV/c2, and then with a buffer gas (4He and later 3He) at various densities, finally reaching the goal of 1.17 eV/c2 on 22 ...
Media perspective - new opportunities for reaching audiences
Haswell, Katy
2007-08-01
The world of media is experiencing a period of extreme and rapid change with the rise of internet television and the download generation. Many young people no longer watch standard TV. Instead, they go on-line, talking to friends and downloading pictures, videos, music clips to put on their own websites and watch/ listen to on their laptops and mobile phones. Gone are the days when TV controllers determined what you watched and when you watched it. Now the buzzword is IPTV, Internet Protocol Television, with companies such as JOOST offering hundreds of channels on a wide range of subjects, all of which you can choose to watch when and where you wish, on your high-def widescreen with stereo surround sound at home or on your mobile phone on the train. This media revolution is changing the way organisations get their message out. And it is encouraging companies such as advertising agencies to be creative about new ways of accessing audiences. The good news is that we have fresh opportunities to reach young people through internet-based media and material downloaded through tools such as games machines, as well as through the traditional media. And it is important for Europlanet to make the most of these new and exciting developments.
Return to equilibrium in the XY model
Hume, L.; Robinson, D.W.
1986-09-01
We prove that the locally perturbed XY model returns to equilibrium under the unperturbed evolution but the unperturbed model does not necessarily approach equilibrium under the perturbed evolution. In fact this latter property is false for perturbation by a local magnetization. The failure is directly attributable to the formation of bound states. If the perturbation is quadratic these problems are reduced to spectral analysis of the one-particle Hamiltonian. We demonstrate that the perturbed Hamiltonian has a finite set of eigenvalues of finite multiplicity together with some absolutely continuous spectrum. Eigenvalues can occur in the continuum if, and only if, the perturbation dislocates the system. Singular continuous spectrum cannot occur.
Unconstrained Optimization Reformulations of Equilibrium Problems
Li Ping ZHANG; Ji Ye HAN
2009-01-01
We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function,the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally,these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.
Equilibrium-torus bifurcation in nonsmooth systems
Zhusubahyev, Z.T.; Mosekilde, Erik
2008-01-01
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium......-torus bifurcation curve....
Asymptotic stability estimates near an equilibrium point
Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia
2017-07-01
We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.
Putting A Human Face on Equilibrium
Glickstein, Neil
2005-03-01
A short biography of chemist Fritz Haber is used to personalize the abstract concepts of equilibrium chemistry for high school students in an introductory course. In addition to giving the Haber Bosch process an historic, an economic, and a scientific background the reading and subsequent discussion allows students for whom the human perspective is of paramount importance a chance to investigate the irony of balance or equilibrium in Haber's life story. Since the inclusion of the Haber biography, performance in the laboratory and on examinations for those students who are usually only partially engaged has dramatically improved.
Structure and thermal expansion of liquid bismuth
Mudry S.
2015-12-01
Full Text Available Experimental structural data for liquid Bi were used for estimation of the main structure parameters as well as the thermal expansion coefficient both in supercooled and superheated temperature ranges. It was shown that the equilibrium melt had a positive thermal expansion coefficient within a temperature range upon melting and a negative one at higher temperatures. The former was related to structure changes upon melting, whereas the latter with topologic disordering upon further heating. It was found that the superheated melt had a negative thermal expansion coefficient. The results obtained from structural data were compared with the thermal expansion coefficient calculated from the data of density for liquid Bi.
Effect of Ultrasound on Desorption Equilibrium%超声场对氢键缔合体系解吸平衡的影响研究
秦炜; 原永辉; 戴猷元
2001-01-01
Effects of ultrasound on intensification of separation process were investigated through the experiment of desorption equilibrium behavior. Tri-butyl phosphate (TBP) on NKA-Ⅱ resin and phenol on a solvent impregnated resin, CL-TBP resin, were used for desorption processes. The desorption rate was measured with and without ultrasound. Desorption equilibrium was studied under various ultrasonic power densities or thermal infusion. Results showed that the desorption rate with ultrasound was much higher than that with normal thermal infusion. Both ultrasound and thermal infusion broke the desorption equilibrium existed at room temperature. However, after the systems were cooled down, the amount of solute desorbed in the liquid phase in the presence of ultrasound was much higher than that at the temperature corresponding to the same ultrasound power. It is proved that the initial desorption equilibrium was broken as a result of the spot energy effect of ultrasound.``
Planning of the Extended Reach well Dieksand 2; Planung der Extended Reach Bohrung Dieksand 2
Frank, U.; Berners, H. [RWE-DEA AG, Hamburg (Germany). Drilling Team Mittelplate und Dieksand; Hadow, A.; Klop, G.; Sickinger, W. [Wintershall AG Erdoelwerke, Barnstdorf (Germany); Sudron, K.
1998-12-31
The Mittelplate oil field is located 7 km offshore the town of Friedrichskoog. Reserves are estimated at 30 million tonnes of oil. At a production rate of 2,500 t/d, it will last about 33 years. The transport capacity of the offshore platform is limited, so that attempts were made to enhance production by constructing the extended reach borehole Dieksand 2. Details are presented. (orig.) [Deutsch] Das Erdoelfeld Mittelplate liegt am suedlichen Rand des Nationalparks Schleswig Holsteinisches Wattenmeer, ca. 7000 m westlich der Ortschaft Friedrichskoog. Die gewinnbaren Reserven betragen ca. 30 Millionen t Oel. Bei einer Foerderkapazitaet von 2.500 t/Tag betraegt die Foerderdauer ca. 33 Jahre. Aufgrund der begrenzten Transportkapazitaeten von der Insel, laesst sich durch zusaetzliche Bohrungen von der kuenstlichen Insel Mittelplate keine entscheidende Erhoehung der Foerderkapazitaet erzielen. Ab Sommer 1996 wurde erstmals die Moeglichkeit der Lagerstaettenerschliessung von Land untersucht. Ein im Mai 1997 in Hamburg etabliertes Drilling Team wurde mit der Aufgabe betraut, die Extended Reach Bohrung Dieksand 2 zu planen und abzuteufen. Die Planungsphasen fuer die Extended Reach Bohrung Dieksand 2 wurden aufgezeigt. Die fuer den Erfolg einer Extended Reach Bohrung wichtigen Planungsparameter wurden erlaeutert. Es wurden Wege gezeigt, wie bei diesem Projekt technische und geologische Risiken in der Planung mit beruecksichtigt und nach Beginn der Bohrung weiter bearbeitet werden koennen. (orig.)
Columbia River Estuary Ecosystem Classification Hydrogeomorphic Reach
Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith
2012-01-01
Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub
Bagchi, Debarshee; Tsallis, Constantino
2017-04-01
The relaxation to equilibrium of two long-range-interacting Fermi-Pasta-Ulam-like models (β type) in thermal contact is numerically studied. These systems, with different sizes and energy densities, are coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the kinetic definition of temperature, we compute the time evolution of temperature and energy density of the two systems. Eventually, for some time t >teq, the temperature and energy density of the coupled system equilibrate to values consistent with standard Boltzmann-Gibbs thermostatistics. The equilibration time teq depends on the system size N as teq ∼Nγ where γ ≃ 1.8. We compute the velocity distribution P (v) of the oscillators of the two systems during the relaxation process. We find that P (v) is non-Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium is reached. During the relaxation process we observe q > 1 while close to t =teq the value of q converges to unity and P (v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged systems connected by a thermal contact can be generically described as a crossover from q-statistics to Boltzmann-Gibbs statistics.
Parallel explicit and implicit control of reaching.
Pietro Mazzoni
Full Text Available BACKGROUND: Human movement can be guided automatically (implicit control or attentively (explicit control. Explicit control may be engaged when learning a new movement, while implicit control enables simultaneous execution of multiple actions. Explicit and implicit control can often be assigned arbitrarily: we can simultaneously drive a car and tune the radio, seamlessly allocating implicit or explicit control to either action. This flexibility suggests that sensorimotor signals, including those that encode spatially overlapping perception and behavior, can be accurately segregated to explicit and implicit control processes. METHODOLOGY/PRINCIPAL FINDINGS: We tested human subjects' ability to segregate sensorimotor signals to parallel control processes by requiring dual (explicit and implicit control of the same reaching movement and testing for interference between these processes. Healthy control subjects were able to engage dual explicit and implicit motor control without degradation of performance compared to explicit or implicit control alone. We then asked whether segregation of explicit and implicit motor control can be selectively disrupted by studying dual-control performance in subjects with no clinically manifest neurologic deficits in the presymptomatic stage of Huntington's disease (HD. These subjects performed successfully under either explicit or implicit control alone, but were impaired in the dual-control condition. CONCLUSION/SIGNIFICANCE: The human nervous system can exert dual control on a single action, and is therefore able to accurately segregate sensorimotor signals to explicit and implicit control. The impairment observed in the presymptomatic stage of HD points to a possible crucial contribution of the striatum to the segregation of sensorimotor signals to multiple control processes.
A class of almost equilibrium states in Robertson-Walker spacetimes
Kueskue, Muharrem
2008-11-06
In quantum field theory in curved spacetimes the construction of the algebra of observables of linear fields is today well understood. However, it remains a non-trivial task to construct physically meaningful states on the algebra. For instance, we are in the unsatisfactory situation that there exist no examples of states suited to describe local thermal equilibrium in a non-stationary spacetime. In this thesis, we construct a class of states for the Klein-Gordon field in Robertson-Walker spacetimes, which seem to provide the first example of thermal states in a spacetime without time translation symmetry. More precisely, in the setting of real, linear, scalar fields in Robertson-Walker spacetimes we define on the set of homogeneous, isotropic, quasi-free states a free energy functional that is based on the averaged energy density measured by an isotropic observer along his worldline. This functional is well defined and lower bounded by a suitable quantum energy inequality. Subsequently, we minimize this functional and obtain states that we interpret as 'almost equilibrium states'. It turns out that the states of low energy are the ground states of the almost equilibrium states. Finally, we prove that the almost equilibrium states satisfy the Hadamard condition, which qualifies them as physically meaningful states. (orig.)
Estimation of the equilibrium formation temperature in the presence of bore fluid invasion
Poulsen, Søren Erbs; Nielsen, S.B.; Balling, N.
2012-01-01
Bottom hole temperatures (BHTs) measured during drilling operations are thermally disturbed by the drilling process. This paper presents a method, CSMI (Cylindrical Source Model with Invasion of bore mud filtrate), for estimating equilibrium formation temperatures with probability distributions...... from BHT measurements in the presence of bore fluid invasion. The scheme is based on finite element analysis in conjunction with Markov chain Monte Carlo inversion. The axisymmetric forward model assumes a cylindrical source of finite radius and contrasting thermal parameters, which includes...... with the CSMI scheme. The analysis of five BHT records measured onshore Denmark, for which the equilibrium formation temperature is known, shows that CSMI temperatures based on single datum records are highly uncertain because of a strong negative coupling between the temperature of the mud filtrate...
Estimation of the equilibrium formation temperature in the presence of bore fluid invasion
Poulsen, Søren Erbs; Nielsen, S.B.; Balling, N.
2012-01-01
Bottom hole temperatures (BHTs) measured during drilling operations are thermally disturbed by the drilling process. This paper presents a method, CSMI (Cylindrical Source Model with Invasion of bore mud filtrate), for estimating equilibrium formation temperatures with probability distributions...... from BHT measurements in the presence of bore fluid invasion. The scheme is based on finite element analysis in conjunction with Markov chain Monte Carlo inversion. The axisymmetric forward model assumes a cylindrical source of finite radius and contrasting thermal parameters, which includes...... the possibility of invasion (advection) of mud filtrate into the formation. In a synthetic example, it is demonstrated that given bore fluid invasion and a low and high temperature of the bore mud and formation, respectively, the equilibrium formation temperature and the uncertainty hereon is underestimated...
Reilly, Anthony M.; Habershon, Scott; Morrison, Carole A.; Rankin, David W. H.
2010-03-01
Path-integral molecular dynamics (PIMD) simulations with an empirical interaction potential have been used to determine the experimental equilibrium structure of solid nitromethane at 4.2 and 15 K. By comparing the time-averaged molecular structure determined in a PIMD simulation to the calculated minimum-energy (zero-temperature) molecular structure, we have derived structural corrections that describe the effects of thermal motion. These corrections were subsequently used to determine the equilibrium structure of nitromethane from the experimental time-averaged structure. We find that the corrections to the intramolecular and intermolecular bond distances, as well as to the torsion angles, are quite significant, particularly for those atoms participating in the anharmonic motion of the methyl group. Our results demonstrate that simple harmonic models of thermal motion may not be sufficiently accurate, even at low temperatures, while molecular simulations employing more realistic potential-energy surfaces can provide important insight into the role and magnitude of anharmonic atomic motions.
Non-equilibrium Landauer transport model for Hawking radiation from a black hole
Nation, P. D.; Blencowe, M. P.; Nori, Franco
2012-03-01
We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. As an application of the Landauer approach, we show that Hawking radiation gives a net entropy production that is 50% larger than that obtained assuming standard 3D emission into vacuum.
Di Troia, Claudio
2015-01-01
A class of parametric distribution functions has been proposed in [C.DiTroia, Plasma Physics and Controlled Fusion,54,2012] as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection, Ion Cyclotron Heating scenarios. Moreover, the EDFs can also represent nearly isotropic equilibria for Slowing-Down $alpha$ particles and core thermal plasma populations. These EDFs depend on constants of motion (COMs). Assuming an axisymmetric system with no equilibrium electric field, the EDF depends on the toroidal canonical momentum $P_\\phi$, the kinetic energy $w$ and the magnetic moment \\mu. In the present work, the EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes' Theorem. The bayesian argument allows us to describe how far from the prior probability distribution function (pdf), e.g. Maxwellian, the plasma is, based on the information...
Dynamics of isolated quantum systems: many-body localization and thermalization
Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.
2016-05-01
We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.
Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China
Xingying You; Jinwu Tang
2017-06-01
Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of <4, a gradient >1.2‰, a silty clay content of the concave bank >9.5%, and a median diameter of the bed sediment >0.158 mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long
Cyclic causal discovery from continuous equilibrium data
Mooij, J.M.; Heskes, T.; Nicholson, A.; Smyth, P.
2013-01-01
We propose a method for learning cycliccausal models from a combination of observational and interventional equilibrium data. Novel aspects of the proposed method are its ability to work with continuous data (without assuming linearity) and to deal with feedback loops. Within the context of biochemi
Non-equilibrium thermodynamics and physical kinetics
Bikkin, Halid
2014-01-01
This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.
Dynamical Non-Equilibrium Molecular Dynamics
Giovanni Ciccotti
2013-12-01
Full Text Available In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD, which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from the problem of sampling the initial condition. D-NEMD provides the theoretical framework to compute time-dependent macroscopic dynamical behaviors by averaging on a large sample of non-equilibrium trajectories starting from an ensemble of initial conditions generated from a suitable (equilibrium or non-equilibrium distribution at time zero. We also discuss how to generate a large class of initial distributions. The same approach applies also to the calculation of the rate constants of activated processes. The range of problems treatable by this method is illustrated by discussing applications to a few key hydrodynamic processes (the “classical” flow under shear, the formation of convective cells and the relaxation of an interface between two immiscible liquids.
Estimating Equilibrium Effects of Job Search Assistance
Gautier, Pieter; Muller, Paul; van der Klaauw, Bas
that the nonparticipants in the experiment regions find jobs slower after the introduction of the activation program (relative to workers in other regions). We then estimate an equilibrium search model. This model shows that a large scale role out of the activation program decreases welfare, while a standard partial...
Monetary Policy Frameworks and Real Equilibrium Determinacy
Jensen, Henrik
2002-01-01
In a simple "prototype" model of monetary policymaking, I examine the issue of real equilibrium determinacy under targeting and instrument rules. The former framework involves minimization of a loss function (under discretion or commitment), whereas the latter involves commitment to an interest......'s stability properties. Instead, they could reveal whether targeting-rule based policy is performed under discretion or commitment...
Equilibrium Selection in Games with Macroeconomic Complementarities
Kaarboe, Oddvar M.; Tieman, Alexander F.
1999-01-01
We apply the stochastic evolutionary approach of equilibrium selection tomacroeconomic models in which a complementarity at the macro level ispresent. These models often exhibit multiple Pareto-ranked Nash equilibria,and the best response-correspondence of an individual increases with ameasure of th
Equilibrium molecular thermodynamics from Kirkwood sampling.
Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J; Wales, David J
2015-05-21
We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.
MAXIMAL ELEMENTS AND EQUILIBRIUM OF ABSTRACT ECONOMY
刘心歌; 蔡海涛
2001-01-01
An existence theorem of maximal elements for a new type of preference correspondences which are Qθ-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which the constraint or preference correspondences are Qθ-majorized are obtained in locally convex topological vector spaces.
Internal equilibrium layer growth over forest
Dellwik, E.; Jensen, N.O.
2000-01-01
the magnitude of the scatter. Different theoretical friction velocity profiles for the Internal Boundary Layer (IBL) are tested against the forest data. The results yield information on the Internal Equilibrium Layer (IEL) growth and an equation for the IEL height fur neutral conditions is derived. For stable...