WorldWideScience

Sample records for rbmk-1500 nuclear fuel

  1. Generic repository concept for RBMK-1500 spent nuclear fuel disposal in crystalline rocks in Lithuania

    International Nuclear Information System (INIS)

    Poskas, P.; Brazauskaite, A.; Narkunas, E.; Smaizys, A.; Sirvydas, A.

    2006-01-01

    During 2002-2005 investigations on possibilities to dispose of spent nuclear fuel (SNF) in Lithuania were performed with support of Swedish experts. Disposal concept for RBMK-1500 SNF in crystalline rocks in Lithuania is based on Swedish KBS-3 concept with SNF emplacement into the copper canister with cast iron insert. The bentonite and its mixture with crushed rock are also foreseen as buffer and backfill material. In this paper modelling results on thermal, criticality and other important disposal characteristics for RBMK-1500 SNF fuel emplaced in copper canisters are presented. Based on thermal calculations, the distances between the canisters and between the tunnels were justified. Criticality calculations for the canister with fresh fuel with 2.8 % 235 U enrichment demonstrated that effective neutron multiplication factor k eff values are less than allowable value of 0.95. Dose calculations have shown that total equivalent dose rate from the canister with 50 years stored RBMK-1500 SNF is rather high and is defined mainly by the γ radiation. (author)

  2. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  3. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  4. Tests of the RBMK-1500 reactor fuel assemblies in the Leningrad reactor

    International Nuclear Information System (INIS)

    Aden, V.C.; Varovin, I.A.; Vorontsov, B.A.

    1981-01-01

    Test of fuel assemblies of the RBMK-1500 reactor is conducted in the reactor of the Leningrad NPP unit 2 for proving the calculational values of critical power of the RBMK-1500 reactor fuel assemblies adopted in design. The experiment presupposes the maximal approximation of the fuel assembly operation parameters to the calculational critical parameters without bringing into the mode of heat transfer crisis. The experiments are carried out at 500, 850 and 900 MW(el) of the reactor. The maximal channel power made up 472 kW at 20.5 t/h coolant flow rate and 49% mass steam content at the outlet of the channel. It was concluded that there was supply up to the heat transfer crisis in all the investigated modes. Data of temperature measurings of the fuel element cans, readings of the devices of the failure control system of the fuel element cans and external inspection of the assemblies after the tests testify to it [ru

  5. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  6. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, Audrius

    2003-07-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  7. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    International Nuclear Information System (INIS)

    Jasiulevicius, Audrius

    2003-01-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  8. Analyses of severe accident scenarios in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Rimkevicius, S.; Uspuras, E.; Urbonavicius, E.

    2006-01-01

    Even though research of severe accidents in light water reactors is performed around the world for several decades many questions remain. Research is mostly performed for vessel-type reactors. RBMK is a channel type light water reactor, which differs from the vessel-type reactors in several aspects. These differences impose some specifics in the accident phenomena and processes that occur during severe accidents. Severe accident research for RBMK reactors is taking first steps and very little information is available in the open literature. The existing severe accident analysis codes are developed for vessel-type reactors and their application to the analysis of accidents in RBMK is not straightforward. This paper presents the results of an analysis of large loss-of-coolant accident scenarios with loss of coolant injection to the core of RBMK-1500. The analysis performed considers processes in the reactor core, in the reactor cooling system and in the confinement until the fuel melting started. This paper does not aim to answer all the questions regarding severe accidents in RBMK but rather to start a discussion, identify the expected timing of the key phenomena. (orig.)

  9. Leak-before-break assessment of RBMK-1500 fuel channel in case of delayed hydride cracking

    International Nuclear Information System (INIS)

    Klimasauskas, A.; Grybenas, A.; Makarevicius, V.; Nedzinskas, L.; Levinskas, R.; Kiselev, V.

    2003-01-01

    One of the factors determining remaining lifetime of Zr-2.5% Nb fuel channel (FC) is the amount of hydrogen dissolved during corrosion process. When the concentration of hydrogen exceeds the terminal solid solubility limit zirconium hydrides are precipitated. As a result form necessary conditions for delayed hydride cracking (DHC). Data from the RBMK-1500 fuel channel tubes (removed from service) shows that hydrogen in some cases distributes unevenly and hydrogen concentration can differ several times between individual FC tubes or separate zones of the same tube and possibly, can reach dangerous levels in the future. Consequently, lacking statistical research data, it is difficult to forecast increase of hydrogen concentration and formation of DHC. So it is important to verify if under the most unfavorable situation leak before break condition will be satisfied in the case of DHC. To estimate possible DHC rates in RBMK 1500 FC pressure tubes experiments were done in the following order: hydriding of the Zr-2.5Nb pressure tube material to the required hydrogen concentration; hydrogen analysis; machining of specimens, fatigue crack formation in the axial direction, DHC testing; average crack length measurement and DHC velocity calculation. During the tests in average DHC values were determined at 283, 250 and 144 degC (with hydrogen concentrations correspondingly 76, 54 and 27 ppm). The fracture resistance dependence from hydrogen concentration was measured at 20 degC. To calculate leak through the postulated flaw, statistical distribution of DHC surface irregularity was determined. Leak before break analysis was carried out according to requirements of RBMK 1500 regulatory documents. J integral and crack opening were calculated using finite element method. Loading of the FC was determined using RELAP5 code. Critical crack length was calculated using R6 and J-integral methods. Coolant flow rate through the postulated crack was estimated using SQUIRT software

  10. Approach to accident management in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Urbonavicius, E.; Uspuras, E.

    2008-01-01

    In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK. Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed. This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account

  11. Numeric modeling of HfO2 neutron flux sensor parameters during sensor burnup in the RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2001-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) from the package SCALE 4.3 was used for calculations. It has been obtained that the main neutron absorber 167 Er isotope practically burns up completely at the 18 MW d/kgU burnup depth, and at that time the capture rate of thermal neutrons in erbium decreases ten-fold. The average neutron flux density was calculated 7.6*10 13 neutrons. Cm -2 S -1 in the RBMK-1500 reactor grating, when the nuclear fuel enriched with 235 U by 2.4% and with Er by 0.4% is used in a fuel assembly. When the sensor burnup reaches 28 MW d/kgU, the neutron absorption rate of 178 Hf exceeds the rate of 177 Hf. The overall neutron absorption rate in hafnium decreases 2.53 times due to the sensor burnup to 56 MW d/kgU. The corrective factors ξ d (I) at different integral flux I of the sensors were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by processing repeated calibration results of Hf sensors in RBMK-1500 reactors, as well as compared to the theoretical one currently used in the Ignalina NPP special mathematical algorithms. (author)

  12. State of the Art of the Ignalina RBMK-1500 Safety

    International Nuclear Information System (INIS)

    Uspuras, E.

    2010-01-01

    Ignalina NPP is the only nuclear power plant in Lithuania consisting of two units, commissioned in 1983 and 1987. Unit 1 of Ignalina NPP was shut down for decommissioning at the end of 2004 and Unit 2 is to be operated until the end of 2009. Both units are equipped with channel-type graphite-moderated boiling water reactors RBMK-1500. The paper summarizing the results of deterministic and probabilistic analyses is developed within 1991 to 2007 by specialists from Lithuanian Energy Institute. The main operational safety aspects, including analyses performed according the Ignalina Safety Improvement Programs, development and installation of the Second Shutdown System and Guidelines on Severe Accidents Management are discussed. Also the phenomena related to the closure of the gap between fuel channel and graphite bricks, multiple fuel channel tube rupture, and containment issues as well as implication of the external events to the Ignalina NPP safety are discussed separately.

  13. Validation of coupled Relap5-3D code in the analysis of RBMK-1500 specific transients

    International Nuclear Information System (INIS)

    Evaldas, Bubelis; Algirdas, Kaliatka; Eugenijus, Uspuras

    2003-01-01

    This paper deals with the modelling of RBMK-1500 specific transients taking place at Ignalina NPP. These transients include: measurements of void and fast power reactivity coefficients, change of graphite cooling conditions and reactor power reduction transients. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Graphite temperature reactivity coefficient at the plant is determined by changing graphite cooling conditions in the reactor cavity. This type of transient is very unique and important from the gap between fuel channel and the graphite bricks model validation point of view. The measurement results, obtained during this transient, allowed to determine the thermal conductivity coefficient for this gap and to validate the graphite temperature reactivity feedback model. Reactor power reduction is a regular operation procedure during the entire lifetime of the reactor. In all cases it starts by either a scram or a power reduction signal activation by the reactor control and protection system or by an operator. The obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviours of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modelling of the neutronic processes taking place in RBMK- 1500 reactor core. And finally, the performed validation of RELAP5-3D model of Ignalina NPP RBMK-1500

  14. Additional reactor protection system of RBMK-1500

    International Nuclear Information System (INIS)

    1999-01-01

    Analysis of anticipated transients without scram of RBMK-1500 reactor showed that additional reactor protection system is required. Data of accident analysis in the case of loose of external electric power and loose of vacuum in condensers of turbines are provided

  15. Evolution of the hafnium isotopic composition in the RBMK reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2002-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) program from the package SCALE 4.4A and the HELIOS code system were used for calculations. It has been obtained that the overall neutron absorption rates in hafnium for the sensors located in the 2.4 % and 2.6 % enrichment uranium-erbium nuclear fuel assemblies are by 16 % and 19 % lower than in the 2.0 % enrichment uranium nuclear fuel assemblies. The overall neutron absorption rate in hafnium decreases 2.70-2.75 times due to the sensor burnup to 5800 MW d. The sensitivity of the Hf sensors to the thermal neutron flux increases twice due to the nuclear fuel assembly burnup to 3000 MW d. The corrective factors ξ d (I) at the different integral current I of the sensors and ξ td (E) at the different burnup E of the nuclear fuel assemblies were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by comparing signals of the fresh sensor and the sensor with the integral current I and by processing repeated calibration results of Hf sensors in RBMK-1500 reactors. The relative relationship coefficients K T (T FA ) were found for all RBMK-1500 nuclear fuel types. (author)

  16. Qualitative and quantitative characteristics of fission products in spent nuclear fuel from RBMK-type reactor

    International Nuclear Information System (INIS)

    Adlys, G.; Adliene, D.

    2002-01-01

    Well-known empirical models or experimental instruments and methods for the estimation of fission product yields do not allow prediction of the behavior and evaluation of the time-dependent qualitative and quantitative characteristics of all fission products in spent nuclear fuel during long-term storage. Several computer codes were developed in different countries to solve this problem. French codes APOLLO1 and PEPIN were used in this work for modeling the characteristics of spent nuclear fuel in the RBMK reactor. The modeling results of qualitative and quantitative characteristics of long-lived fission products for different cooling periods of spent nuclear fuel, including 50-year cooling period, are presented in this paper. The 50-year cooling period conforms to the foreseen time of storage of spent nuclear fuel in CONSTOR and CASTOR casks at the Ignalina NPP. These results correlate well with evaluated quantities for the well-known yields of the nuclides and could be used for the compilation of the database for long-lived fission products in spent nuclear fuel from the RBMK-type reactor. They allow one to predict and to solve effectively safety problems concerning with long-term spent nuclear fuel storage in casks. (author)

  17. Temperature control of the graphite stack of the reactor RBMK-1500

    International Nuclear Information System (INIS)

    Lesnoj, S.

    1998-01-01

    The paper includes general information about RBMK-1500 reactor, construction features and main technical data; graphite moderator stack, temperature channel, thermocouple TXA-1379, its basic technical and metrologic parameters as well as its advantages and disadvantages

  18. Informational system to assist decision making at spent nuclear fuel transportation from VVER-440, VVER-1000 and RBMK-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Kuryndin, A.V.; Kirkin, A.M.; Stroganov, A.A.

    2012-01-01

    The developed informational system provides an automated estimations of nuclear and radiation safety parameters during spent nuclear fuel transportation from WWER-440 and WWER-1000 and RBMK-1000 nuclear power plants to the nuclear fuel cycle facilities, and allows us to determine the optimum cask loading from the dose rates distribution outside of protection point of view [ru

  19. Remote technology in RBMK-1000 spent fuel management at NPP site

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Kozlov, Y.V.; Tikhonov, N.S.; Tokarenko, A.I.; Spichev, V.V.; Kaljazin, N.N.

    1999-01-01

    The report describes the remote technologies employed in the nuclear power plant with RBMK-1000 type. Spent fuel transfer and handling operations at reactor (AR) and away from reactor (AFR) on reactor site (RS) facilities are illustrated by the example of the Leningradskaya NPP and are typical for all NPPs with RBMK-1000. The current approach to spent fuel management at NPP sites is also presented. (author)

  20. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  1. Uncertainty of determination of 158Tb in the RBMK nuclear reactor waste.

    Science.gov (United States)

    Plukis, Artūras; Barkauskas, Vytenis; Druteikienė, Rūta; Duškesas, Grigorijus; Germanas, Darius; Gudelis, Arūnas; Juodis, Laurynas; Lagzdina, Elena; Plukienė, Rita; Remeikis, Vidmantas

    2018-04-01

    The activity of 158 Tb was measured in waste samples from the Ignalina NPP Unit I RBMK-1500 reactor using gamma-ray spectrometry. The origin of 158 Tb and the other observed gamma-ray emitters has been studied by using SCALE 6.1 modeling and comparing radionuclide ratios in the RBMK-1500 radioactive waste. The results of the calculation of the massic activity of gamma-ray emitters were used for interpretation of the total gamma-ray spectrum and the determination of 158 Tb massic activity uncertainty in the waste of RBMK-1500. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. RELAP5-3D code validation of RBMK-1500 reactor reactivity measurement transients

    International Nuclear Information System (INIS)

    Kaliatka, Algirdas; Bubelis, Evaldas; Uspuras, Eugenijus

    2003-01-01

    This paper deals with the modeling of transients taking place during the measurements of the void and fast power reactivity coefficients performed at Ignalina NPP. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Following the simulation of the two above mentioned transients with RELAP5-3D code, a conclusion was made that the obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data. Despite of the small differences, RELAP5-3D code predicts reactivity and the total reactor core power behavior during the transients in a reasonable manner. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core

  3. On the slimeless water operation in the RBMK type reactors

    International Nuclear Information System (INIS)

    Margulova, T.Kh.; Mamet, V.A.; Nikitina, I.S.; Karakhanyan, L.N.

    1988-01-01

    Water chemistry conditions of the operating RBMK-1000 and RBMK-1500 units are analysed. Inevitability of iron oxide deposits in RBMK-1000 and particularly in RBMK-1500 reactors is demonstrated. Organization of a new slimeless correcting water chemistry for RBMK-1000 and RBMK-1500 reactors is recommended

  4. RBMK fuel channel integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The fuel channel integrity in the RBMK NPPs is an issue of high safety concern. To date, three single fuel channel ruptures have occurred. Fuel channel rupture results in release of radioactivity to the reactor cavity and may lead to a release of radioactivity to the environment if the confinement safety system does not function properly. A multiple fuel channel rupture exceeding the venting capacity of the reactor cavity overpressure protection system poses a major impact on the plant safety. Further, due to incorrect prediction at the design stage the gas gap between the fuel channel pressure tube and the graphite blocks closes after approximately 17 years of plant operation. There is no safety justification available for the continued plant operation in this condition and the reactors are being retubed to avoid operation in this out of design condition, which may have negative impact on the fuel channel integrity. The loss of the mechanical integrity of fuel channel pressure tubes is a major safety concern for RBMK reactors since it may lead to overpressurization of the reactor cavity and consequently develop into a severe accident. In this report, information on the main design features of the RBMK reactor related to the fuel channel integrity is given. Further, detailed information on the fuel channel pressure tube and the graphite blocks with respect to their design, manufacture, in-service inspection, operating experience, ageing behaviour including degradation mechanisms is discussed in detail. The behaviour of the system fuel channel-graphite core including the corrective actions developed and implemented is discussed. Both normal operating conditions and accident conditions are addressed, considering also the gas gap closure process and its impact. The report also covers the fuel channel ducts. It is concluded in the report that for RBMK-1000 reactors and the adopted retubing strategy, limited local gas gap closure occurs at the time of pressure tube

  5. Assessment of different mechanisms of C-14 production in irradiated graphite of RBMK-1500 reactors

    International Nuclear Information System (INIS)

    Narkunas, Ernestas; Smaizys, Arturas; Poskas, Povilas; Kilda, Raimondas

    2010-01-01

    Two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at the Ignalina Nuclear Power Plant (INPP) are under decommissioning now. The total mass of irradiated graphite in the cores of both units is more than 3600 tons. The main source of uncertainty in the numerical assessment of graphite activity is the uncertainty of the initial impurities content in graphite. Nitrogen is one of the most important impurities, having a large neutron capture cross-section. This impurity may become the dominant source of C-14 production. RBMK reactors graphite stacks operate in the cooling mixture of helium-nitrogen gases and this may additionally increase the quantity of the nitrogen impurity. In this paper the results of the numerical modelling of graphite activation for the INPP Unit I reactor are presented. In order to evaluate the C-14 activity dependence on the nitrogen impurity content, several cases with different nitrogen content were modelled taking into account initial nitrogen impurity quantities in the graphite matrix and possible nitrogen quantities entrapped in the graphite pores from cooling gases. (orig.)

  6. Calculation and experimental study of the RBMK-1500 reactor emergency cooling at maximum designed accident

    International Nuclear Information System (INIS)

    Cherkashov, Yu.M.; Vasilevskij, V.P.; Labazov, V.H.; Loninov, A.Ya.; Molochnikov, Yu.S.; Novosel'skij, O.Yu.; Podlazov, L.N.; Pavlov, V.B.; Pushkarev, V.I.

    1981-01-01

    The analysis of thermohydraulic and neutron-physical processes occurring in the RBMK-1500 reactor during the reactor emergency cooling system triggering (RECS) after the maximum designed accident (MDA) is conducted. The MDA means hypothetical instant hilliotine break of the main circulating pump head collector. During the whole cooling down period the RECS should provide the temperature level of the fuel elements not exceeding 1200 deg C and the channel pipe temperature - 600 deg C. The principal flowsheet of the balloon type RECS is described. Calculations of the valve fast response effect on the RECS productivity are carried out. It is concluded that the chosen balloon RECS provides reliable temperature modes of fuel elements naand channel pipes under the MDA conditions. At the same time a momentary splash of neutron power by the value not more than 10% can take place [ru

  7. Analysis of water hammer phenomena in RBMK-1500 reactor main circulation circuit

    International Nuclear Information System (INIS)

    Kaliatka, A.; Uspuras, E.; Vaisnoras, M.

    2006-01-01

    Water hammer can occur in any thermal-hydraulic systems. Water hammer can reach pressure levels far exceeding the pressure range of a pipe given by the manufacturer, and it can lead to the failure of the pipeline integrity. In the past three decades, since a large number of water hammer events occurred in the light-water- reactor power plants, a number of comprehensive studies on the phenomena associated with water hammer events have been performed. There are three basic types of severe water hammer occurring at power plants that can result in significant plant damage: rapid valve operation events; void-induced water hammer; condensation-induced water hammer. Correct prediction of water hammer transients, is therefore of paramount importance for the safe operation of the plant. Therefore verifying of computer codes capability to simulate water hammer type transients is very important issue at performing of safety analyses for nuclear power plants. Verification of RELAP5/MOD3.3 code capability to simulate water hammer type transients employing the experimental investigations is presented. Experience gained from benchmarking analyses has been used at development of the detail RELAP5 code RBMK-1500 model for simulation of water hammer effects in reactor main circulation circuit. Analysis of reactor cooling system shows, that water hammers can occur in main circulation circuit of RBMK-1500 reactor in cases of: (1) Guillotine break of the inlet piping upstream of the Group Distribution Header and (2) Guillotine break of the pressure piping upstream the Main Circulation Pump check valve. Analysis of above mentioned accident scenarios is presented in this paper. First scenario of the accident potentially is more dangerous, because the pressure pulses influence not only the reactor cooling circuit, but also the piping of safety related system (Emergency Core Cooling System pipeline) connected to affected Group Distribution Header. The performed analysis using RELAP5 code

  8. Strategy for Handling and Treatment of INPP RBMK-1500 Irradiated Graphite

    International Nuclear Information System (INIS)

    Oryšaka, A.

    2016-01-01

    There are two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at Ignalina NPP. After the final shutdown of the INPP, radioactive i-graphite dismantling, handling, conditioning, storage and disposal is an important part of the decommissioning activities. The core of the INPP unit 1 and 2 contains about 3600 tons of i-graphite. Formation of activation products strongly depends on the contents of impurities, operational mode and concentration of impurities in the graphite. The case study for INPP envisages the analysis of possibilities of graphite handling and treatment in the context of immediate decommissioning. (author)

  9. Problems in experimental and mathematical investigations of the accidental thermalhydraulic processes in RBMK nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B.I.; Tikhonenko, L.K. [Engineering Centre (EREC) for Nuclear Plants Safety, Electrogorsk (Russian Federation); Blinkov, V.N. [Aviation Institute, Kharkov (Ukraine)] [and others

    1995-09-01

    In this paper the thermalhydraulic scheme and peculiarities of the boiling water graphite-moderated channel-type reactor RBMK are presented and discussed shortly. The essential for RBMK transient regimes, accidental situations and accompanying thermalhydraulic phenomena and processes are formulated. These data are presented in the form of cross reference matrix (version 1) for system computer codes verification. The paper includes qualitative analysis of the computer codes and integral facilities which have been used or can be used for RBMK transients and accidents investigations. The stability margins for RBMK-1000 and RBMK-1500 are shown.

  10. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  11. A limit load analysis of RBMK-1500 reactor structures

    International Nuclear Information System (INIS)

    Petkevichius, K.; Dundulis, G.; Marchertas, A.

    1996-09-01

    Presented is a mathematical model of Ignalina NPP facilities where the transported hermetic containers CASTOR RBMK will be located. Analysis of the mathematical model provides resultant stresses caused by free falling container with spent fuel. The result yield wall deflections and maximum stresses in the reinforcing bars of the structure, which maintains the integrity of these facilities of the Ignalina NPP. They indicate the excessive deflections of the walls and stresses in reinforcement in certain areas of the facilities. The ALGOR computer code is used for the calculation. (author). 3 figs., 6 refs

  12. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    International Nuclear Information System (INIS)

    Jasiulevicius, A.

    2001-01-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core

  13. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  14. Status and development of RBMK fuel rods and reactor materials

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Reshetnikov, F.G.; Ioltukhovsky, A.G.

    1998-01-01

    The paper presents current status and development of RBMK fuel rods and reactor materials. With regard to fuel rod cladding the following issues have been discussed: corrosion, tensile properties, welding technology and testing of an alternative cladding alloy with a composition of Zr-Nb-Sn-Fe. Erbium doped fuel has been suggested for safety improvement. Also analysis of fuel reliability is presented in the paper. (author)

  15. RBMK nuclear power plants: Generic safety issues. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1996-05-01

    This report has been prepared on the basis of above mentioned report and it is intended to provide information on RBMK NPPs generic safety issues. As all other insights, recommendations and conclusions resulting from the IAEA Programme, this report is intended to assist national decision makers, who have sole responsibility for the regulation and safe operation of their nuclear power plants. It also serves to focus national and international projects on priority of the RBMK safety improvements. 23 refs, 10 figs, 3 tabs

  16. Analysis of fuel pin mechanics in case of flow blockage of a single RBMK channel

    International Nuclear Information System (INIS)

    Pierro, F.; Moretti, F.; Mazzini, D.; D'Auria, F.

    2005-01-01

    The evaluation of the consequences of the pressure tube rupture due to accidental overheating is one of the key elements for addressing an RBMK safety analysis, since it causes the lost of design boundaries against the fission products release. Several events are expected to take place: thermal hydraulic crisis (energy unbalance), fuel overheating, fuel rod damage, pressure tube overheating, pressure tube failure and graphite stack damage, Hydrogen and fission products release. The present work deals with the research activity carried out at ''Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione'' (DIMNP) of the University of Pisa aimed at assessing numerical models for safety analysis of the RBMK-1000. The attention is focused on the modelling of (1) a single fuel channel and its surrounding graphite column for evaluating the transient conditions enabling the different damaging phenomena, (2) a single fuel rod for investigating fuel pin behaviour, (3) the ruptured fuel channel for figuring the magnitude of the hydrodynamic loads acting on fuel rods. Different codes were employed to cover the competences for the investigation of each field; in particular, RELAP5 code for thermal-hydraulics, FRAPCON-3 and FRAPTRAN1-2 codes for fuel pin mechanics, FLUENT-6 for fluid dynamics. The paper discusses the numerical models, the analysis capabilities of numerical models in comparison with available data about the Leningrad NPP 1992 accident. Furthermore, the possibility to draw a failure map identifying the range of the cladding safety respect to the transient condition is outlined. (author)

  17. International cooperation in accident analysis of RBMK reactors

    International Nuclear Information System (INIS)

    Kaliatka, A.; Isag

    2005-01-01

    safety programme reflected International Atomic Energy Agency safety recommendations. The Specific Objective of this project is to provide the Russian Authorities with a detailed code system able to reliably evaluate the core behavior (and all the associated safety outcomes) during severe transients and accidents, including extensive fuel melting, individual fuel channel rupture and then multiple channel ruptures. This code system should enable experts to evaluate the safety of core designs, and to give advice how to lessen-and mitigate- the consequences of core severe transients and accidents. The use of this code system shall lead to a safety improvement, which should be reflected in Russian and international safety review reports. The beneficiary in this project is the Russian Authorities 'ROSENERGOATOM' and 'GOSATOMNADZOR', the contractor - University of Pisa. The sub-contractor - Russian research institute, designer of RBMK - MINATOM/NIKIET. The key experts for this project are involved from different countries and institutions: LEI and Ignalina NPP (Lithuania), IAEA, PSU (USA), FZK (Germany), ITER (Italy) and other. The scope of the second project (PHARE projects) is to enhance the experience and capabilities and to establish a powerful infrastructure to Lithuanian State Nuclear Power Safety Inspectorate (VATESI) for following purposes: 1) Development of requirements for the Equipment Qualification Programme at Ignalina NPP, 2) Development of a regulatory guide on implementation of requirement for Ignalina NPP accident analysis, 3) Development of governing procedures for the operation of VATESI Emergency Centre accident analysis group, 4) Development of requirements on beyond design basis accident assessment and management of RBMK-1500 reactors, The beneficiary in this project was the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and its technical support organizations. The contractor was RISKAUDIT; which formed an EU project team with GRS, IRSN, SIP

  18. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 2, Concept of Repository in Crystalline Rocks

    International Nuclear Information System (INIS)

    Motiejunas, S.; Poskas, P.

    2005-01-01

    The aim is to present the generic repository concept in crystalline rocks in Lithuania and cost assessment of the disposal of spent nuclear fuel and long-lived intermediate level waste in this repository. Due to limited budget of this project the repository concept development for Lithuania was based mostly on the experience of foreign countries. In this Volume a review of the existing information on disposal concept in crystalline rocks from various countries is presented. Described repository concept for crystalline rocks in Lithuania covers repository layout, backfill, canister, construction materials and auxiliary buildings. Costs calculations for disposal of spent nuclear fuel and long-lived intermediate-level wastes from Ignalina NPP are presented too. Thermal, criticality and other important disposal evaluations for RBMK-1500 spent nuclear fuel emplaced in copper canister were performed and described

  19. Thermal-Hydraulic Analysis of Coolant Flow Decrease in Fuel Channels of Smolensk-3 RBMK during GDH Blockage Event

    International Nuclear Information System (INIS)

    Costa, A. L.; Cherubini, M.; D'Auria, F.; Giannotti, W.; Moskalev, A.

    2007-01-01

    One of the transients that have received considerable attention in the safety evaluation of RBMK reactors is the partial break of a group distribution header (GDH). The coolant flow rate blockage in one GDH might lead to excessive heat-up of the pressure tubes and can result in multiple fuel channels (FC) ruptures. In this work, the GDH flow blockage transient has been studied considering the Smolensk-3 RBMK NPP (nuclear power plant). In the RBMK, each GDH distributes coolant to 40-43 FC. To investigate the behavior of each FC belonging to the damaged GDH and to have a more realistic trend, one (affected) GDH has been schematised with its forty-two FC, one by one. The calculations were performed using the 0-D NK (neutron kinetic) model of the RELAP5-3.3 stand-alone code. The results show that, during the event, the mass flow rate is disturbed differently according to the power distribution established for each FC in the schematization. The start time of the oscillations in mass flow rate depends strongly on the attributed power to each FC. It was also observed that, during the event, the fuel channels at higher thermal power values tend to undergo first cladding rupture leaving the reactor to scram and safeguarding all the other FCs connected to the affected GDH.

  20. Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.

    2007-01-01

    Ignalina NPP is equipped with channel-type boiling-water graphite-moderated reactor RBMK-1500. Results of the level-1 probabilistic safety assessment of the Ignalina NPP have shown that in topography of the risk, the transients with failure of long-term core cooling other than LOCA are the main contributors to the core damage frequency. The total loss of off-site power with a failure to start any diesel generator, that is station blackout, is the event which could lead to the loss of long-term core cooling. Such accident could lead to multiple ruptures of fuel channels with severe consequences and should be analyzed in order to estimate the timing of the key events and the possibilities for accident management. This paper presents the results of the analysis of station blackout at Ignalina NPP. Analysis was performed using thermal-hydraulic state-of-the-art RELAP5/MOD3.2 code. The response of reactor cooling system and the processes in the reactor cavity and its venting system in case of a few fuel-channel ruptures due to overheating were demonstrated. The possible measures for prevention of the development of this beyond design basis accident (BDBA) to a severe accident are discussed

  1. Impact of Zr + 2.5% Nb alloy corrosion upon operability of RBMK-1000 fuel channels

    International Nuclear Information System (INIS)

    Kovyrshin, V.; Zaritsky, N.

    1999-01-01

    The basic components of RBMK-1000 core (fuel channels, bimetal adapters, claddings of fuel elements, etc.) are of zirconium alloys. Their corrosion is one of factors influencing upon fuel channels operability. Dynamics of channel tubes nodular corrosion development is presented by the results of in-reactor investigation at ChNPP. Radiation-induced mechanism of corrosion damage of tubes surface in contact with coolant was formulated and substantiated by data of post-reactor studies. Within the certain time period of operation corrosion of zirconium alloy of lower bimetal adapter along with removal from there of corrosion products are predominant within the whole process of reactor elements corrosion. The experimental and calculating method was proposed and substantiated to predict time duration up to loss of fuel channels leak tightness. The approaches were generalized to control state of fuel channels material to assess their operability under operation of RBMK-1000 reactors. (author)

  2. Methods for estimating the reliability of the RBMK fuel assemblies and elements

    International Nuclear Information System (INIS)

    Klemin, A.I.; Sitkarev, A.G.

    1985-01-01

    Applied non-parametric methods for calculation of point and interval estimations for the basic nomenclature of reliability factors for the RBMK fuel assemblies and elements are described. As the fuel assembly and element reliability factors, the average lifetime is considered at a preset operating time up to unloading due to fuel burnout as well as the average lifetime at the reactor transient operation and at the steady-state fuel reloading mode of reactor operation. The formulae obtained are included into the special standardized engineering documentation

  3. Calculations of a station blackout transient in a RBMK type nuclear power plant with the CATHARE code

    International Nuclear Information System (INIS)

    Niklaus, F.; Korteniemi, V.

    1996-01-01

    At the Department of Energy Technology at Lappeenranta University of Technology a CATHARE model of one unit of the St. Petersburg (RBMK) nuclear power plant has been generated. The investigations have been done in order to understand better the thermal-hydraulic behaviour of RBMK type reactors and in order to see how far the French thermal-hydraulic safety code CATHARE can predict the physical phenomena during various RBMK transients. (12 refs.)

  4. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  5. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  6. Comprehensive survey of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the organization of nuclear activities in the Russian federation: Minatom and its replacement by the federal agency of atomic energy, personnel, nuclear power plants (VVER, RBMK, fast neutron and mixed reactors), availability and power production, export of activities (construction of nuclear power plants in Slovakia, Iran, China, India, project in Viet Nam), expansion of the nuclear power plants park (improvement of plants safety, increase of service life), completion of uncompleted plants, the construction of which was stopped after the Chernobyl accident and the reorganization of the former-USSR, construction of new generation power plants (VVER-640, -1000 and -1500), fuel cycle facilities (geographical distribution, production of natural uranium, conversion and enrichment), fuel fabrication, reprocessing processes and spent fuel storage, management of radioactive wastes (leasing), R and D activities (organizations and institutes), research programs of the international scientific and technical center, nuclear safety authority (Gosatomnadzor - GAN). (J.S.)

  7. APOLLO2 calculations of RBMK lattices

    International Nuclear Information System (INIS)

    Kalashnikov, D.

    1998-01-01

    The purpose of this study is to investigate the use of erbium as burnable poison in RBMK reactors. The neutronic code APOLLO2 has been used and a comparison with the Monte-Carlo code TRIPOLI2 has been made. The first chapter briefly presents the RBMK characteristics, the second chapter deals with the neutronic behaviour of a fuel assembly in an infinite lattice which is an important step in the modelling process. The third chapter presents the analysis of the use of erbium in typical elements of the RBMK lattice. A good agreement is obtained between the 2 codes except in the draining situations. Erbium appears to reduce the positive reactivity effect of the draining configuration. (A.C.)

  8. Problems and experience of ensuring nuclear safety in NPP spent fuel storage facilities in Russia

    International Nuclear Information System (INIS)

    Vnukov, Victor S.; Ryazanov, Boris G.

    2003-01-01

    The amount of Nuclear Power Plant (NPP) spent fuel in special storage facilities of Russia runs to more than 15000 tons and the annual growth is equal to about 850 tons. The storage facilities for spent nuclear fuel from the main nuclear reactors of Russia (RBMK-1000, VVER-1000, BN-600, EGP-6) were designed in the 60s - 70s. In the last years when the concept of closed fuel cycle and safety requirements had changed, the need was generated to have the nuclear storage facilities more crowded. First of all it is due to the necessity to increase the storage capacity because the RBMK-1000, VVER-1000, EGP-6 fuel is not reprocessed. So there comes the need for the facilities of a bigger capacity which meet the current safety requirements. The paper presents the results of studies of the most important nuclear safety issues, in particular: development of regulatory requirements; analysis of design-basis and beyond-the design-basis accidents (DBA and BDBA); computation code development and verification; justification of nuclear safety when water density goes down; the use of burn-up fraction values; the necessity and possibility to experimentally study the storage facility subcriticality; development of storage norms and rules for new types of fuel assemblies with mixed fuel and burnable poison. (author)

  9. Comprehensive survey of the Russian nuclear industry; Le panorama nucleaire russe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This document presents the organization of nuclear activities in the Russian federation: Minatom and its replacement by the federal agency of atomic energy, personnel, nuclear power plants (VVER, RBMK, fast neutron and mixed reactors), availability and power production, export of activities (construction of nuclear power plants in Slovakia, Iran, China, India, project in Viet Nam), expansion of the nuclear power plants park (improvement of plants safety, increase of service life), completion of uncompleted plants, the construction of which was stopped after the Chernobyl accident and the reorganization of the former-USSR, construction of new generation power plants (VVER-640, -1000 and -1500), fuel cycle facilities (geographical distribution, production of natural uranium, conversion and enrichment), fuel fabrication, reprocessing processes and spent fuel storage, management of radioactive wastes (leasing), R and D activities (organizations and institutes), research programs of the international scientific and technical center, nuclear safety authority (Gosatomnadzor - GAN). (J.S.)

  10. Comparison of technical and economical factors of 1000-MW steam turbines at 3000 and 1500 r.p.m. for nuclear power plants

    International Nuclear Information System (INIS)

    Markov, N.M.; Safonov, L.P.

    1980-01-01

    The problem of unification of the low-pressure cilinders (LPC) for turbo-generator units of nuclear power plants with power of 1000 MW on base of the WWER and RBMK type reactors is discussed. The results of the comparison of the K-1000-60/1500 and K-1000-60/3000 turbines in the thermal efficiency of flow passages and arrangements masses and dimensions, static and dynamic strength manoeurrability and reliability are given. To cerry out the correct comparison methods adoped as branch standards thermal calculations, calculation of low-potential part and thermal arrangements, calculations of temperature fields and of low cycle fatigue calculation of the erosion failure accumulation of blades calculation of the blades for the last steps have been used. A conclusion is made that in the nearest future it is necessary to produce the K-1000-60/1500 and K-1000-60/3000 turbines simultaneously. The low-speed lurbines with three LPC are preferable for the nuclear power plants with average annual temperatures of water up to 20 deg C and the high-speed turbines and the K-1000-60/1500 units with two LPC are expedient for nuclear power plants with temperatures higher than 20 deg C. Introduction of the turboplants with reduced number of LPC in the nuclear power engineering provides the increase of reliability, maintenance fitness and the decrease of building costs and transport expenses

  11. The safety of RBMK nuclear power plants

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1993-01-01

    The accident at Chernobyl coincided with the beginning of the era of ''perestroika'' and ''glasnost'' in the USSR. The accident provoked unprecedented openness between the USSR and the West, with Britain playing a large part in the exchanges because of its experience, albeit in separate reactor types, of large on-load fuelled graphite moderated reactor systems and pressure tube technologies. The Research and Development Institute of Power Engineering (RDIPE) had always been responsible for the design, development and safety analysis of the RBMK reactors. Since the accident it has therefore played the leading role in investigations of what went wrong and in developing the programme of RBMK safety improvements. (author)

  12. Calculation of the real states of Ignalina NPP Unit 1 and Unit 2 RBMK-1500 reactors in the verification process of QUABOX/CUBBOX code

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.; Demcenko, M.

    2001-01-01

    Calculations of the main neutron-physical characteristics of RBMK-1500 reactors of Ignalina NPP Unit 1 and Unit 2 were performed, taking real reactor core states as the basis for these calculations. Comparison of the calculation results, obtained using QUABOX/CUBBOX code, with experimental data and the calculation results, obtained using STEPAN code, showed that all the main neutron-physical characteristics of the reactors of Unit 1 and Unit 2 of Ignalina NPP are in the safe deviation range of die analyzed parameters, and that reactors of Ignalina NPP, during the process of the reactor core composition change, are operated in a safe and stable manner. (author)

  13. Perspectives of nuclear energy in Lithuania

    International Nuclear Information System (INIS)

    Bieliauskas, V.; Marchenas, V.

    1998-01-01

    Description of present status of nuclear power in Lithuania and prospects for future are presented. Lithuania operate two reactors of RBMK-1500 type. Since regaining of independence in 1990 Lithuania made a great efforts in developing legal framework for nuclear power regulation and improving safety of both reactors at Ignalina NPP. The main ideas of the draft of a new energy strategy are summarized. As regards nuclear power development in Lithuania there are two scenarios in the draft strategy: operation of the plant till the end of its design lifetime and operation of the plant till the gap closure between fuel channel and graphite and non re channeling of the reactors. Comparison of the cost and implications to the country's economy of both scenarios is discussed

  14. RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Parisi, C.; D'Auria, F.

    2007-01-01

    The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)

  15. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  16. Dynamic reliability and risk assessment of the accident localization system of the Ignalina NPP RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Kopustinskas, V.; Augutis, J.; Rimkevicius, S.

    2005-01-01

    The paper presents reliability and risk analysis of the RBMK-1500 reactor accident localization system (ALS) (confinement), which prevents radioactive releases to the environment. Reliability of the system was estimated and compared by two methods: the conventional fault tree method and an innovative dynamic reliability model, based on stochastic differential equations. Frequency of radioactive release through ALS was also estimated. The results of the study indicate that conventional fault tree modeling techniques in this case apply high degree of conservatism in the system reliability estimates. One of the purposes of the ALS reliability study was to demonstrate advantages of the dynamic reliability analysis against the conventional fault/event tree methods. The Markovian framework to deal with dynamic aspects of system behavior is presented. Although not analyzed in detail, the framework is also capable of accounting for non-constant component failure rates. Computational methods are proposed to solve stochastic differential equations, including analytical solution, which is possible only for relatively small and simple systems. Other numerical methods, like Monte Carlo and numerical schemes of differential equations are analyzed and compared. The study is finalized with concluding remarks regarding both the studied system reliability and computational methods used

  17. Flux stability and power control in the Soviet RBMK-1000 reactors

    International Nuclear Information System (INIS)

    Meriwether, G.H.; McNeece, J.P.

    1993-08-01

    As a result of the Chernobyl accident, the Soviets have studied and implemented various design changes to improve the safety of the RBMK reactors. The safety measurements include modifications of the control rod configuration, fuel enrichment increase from 2.0 to 2.4 weight percent U-235, and installation of additional supplemental absorbers. The purpose of this study is to investigate the effects of increased fuel enrichment, different control rod positions, and supplemental absorber loadings on reactivity control, power distribution within the large RBMK core, and relative stability against power oscillations

  18. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  19. Databases on safety issues for WWER and RBMK reactors. Users' manual. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1996-04-01

    At the beginning of the IAEA Extrabudgetary Programme on the safety of WWER reactors a great number of findings and recommendations (safety items) were collected as a result of design review and safety review missions of the WWER-440/230 type reactors. On the basis of these findings a technical database containing more than 1300 records was established to support the consolidation of the information obtained and to help in identification of safety issues. After the scope of the WWER extrabudgetary programme was extended similar data sets were prepared for the WWER-440/213, WWER-1000 and RBMK nuclear power plants. This publication describes the structure of the databases on safety issues of WWER and RBMK NPPs, the information sources used in the databases and interrogation capabilities for users to obtain the necessary information. 14 refs, 9 figs, 5 tabs

  20. Water chemistry at RBMK plants: Problems and solutions

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2002-01-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH 25 value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH 25 value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH 25 maintenance in a slightly acid area. (authors)

  1. Water chemistry at RBMK plants: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mamet, V.; Yurmanov, V. [VNIIAES (Russian Federation)

    2002-07-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH{sub 25} value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH{sub 25} value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH{sub 25} maintenance in a slightly acid area. (authors)

  2. Lithuanian requirements for ageing management of systems and components important to safety of nuclear power plant

    International Nuclear Information System (INIS)

    Ramanauskiene, A.

    2000-01-01

    In this paper the Lithuanian requirements for ageing management of systems and components important to safety of Ignalina nuclear power plant (two RBMK-1500 water-cooled graphite moderated channel-type power reactors) are presented

  3. Mitigation of intergranular stress corrosion cracking in RBMK reactors. Final report of the programme's steering committee

    International Nuclear Information System (INIS)

    2002-09-01

    In 2000 the IAEA initiated an Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK Reactors to assist countries operating RBMK reactors in addressing the issue in austenitic stainless steel 300 mm diameter piping. Intergranular stress corrosion cracking of austenitic stainless steel piping in BWRs has been a major safety concern since the early seventies. Similar degradation was found in RBMK reactor piping in 1997. Early in 1998 the IAEA responded to requests for assistance from RBMK operating countries on this issue through activities organized in the framework of Technical Co-operation Department regional projects and the Extrabudgetary Programme on the Safety of WWER and RBMK Nuclear Power Plants. Results of these activities were a basis for the formulation of the objective and scope of the Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK reactors ('the Programme'). The scope of the Programme included in-service inspection, assessment, repair and mitigation, and water chemistry and decontamination. The Programme was pursued by means of exchange of experience, formulation of guidance, transfer of technology, and training, which will assist the RBMK operators to address related safety concerns. The Programme implementation relied on voluntary extrabudgetary financial contributions from Japan, Spain, the United Kingdom and the USA, and on in kind contributions from Finland, Germany and Sweden. The Programme was implemented in close co-ordination with ongoing national and bilateral activities and major inputs to the Programme were provided through the activities of the Swedish International Project Nuclear Safety and of the US DOE International Nuclear Safety Program. The RBMK nuclear power plants in Lithuania, Russian Federation and Ukraine hosted most of the Programme activities. Support of these Member States involved in the Programme was instrumental for its successful completion in

  4. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  5. Rearrangement of fuel assemblies in the RBMK type reactors to flatten power distribution and improve the fuel cycle

    International Nuclear Information System (INIS)

    Mityaev, Yu.I.; Vikulov, V.K.

    1982-01-01

    A possibility of increasing the burnup of uranium fuel unloaded from the RBMK type reactors is investigated. Three variants of a two-zone reactor-refueling are considered: 1. the simplest variant of continuous refueling used at present, when the central and peripherical reactor zones are additionally fueled independently by similar fuel assemblies (FA); 2. the variant under which new FA are loaded to the peripherical zone and are used there up to the same burnup as in the first case, then all the peripherical FA (PFA) are rearranged to the centre and they are used there up to maximum burnup; 3. the same as in the second variant, but not all the PFA are rearranged to the centre but only FA with small fuel burnup. It is shown by calculation that average fuel burnup for the third refueling variant is several per cent higher at the optimal burnup of rearranged FA. Besides, flattening of fuel channel power is improved in this case, that permits to increase uranium enrichment and burnup at the same maximum power. It essentially improves economic parameters of the reactor. It is concluded that realization of the considered variant of fuel refueling will produce the most essential effect for reactors refueled without shutdown

  6. Static analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)], E-mail: gintas@mail.lei.lt; Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)

    2009-01-15

    The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite-moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shutdown at the end of 2004, while Unit 2 is foreseen to be shutdown at the end of 2009. At the Ignalina NPP Unit 1 remains approximately 1000 spent fuel assemblies with low burn-up depth. A special set of equipment was developed to reuse these assemblies in the reactor of Unit 2. One of most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined by using scaled experiments. The objective of this article is the estimation whether the proposed design of shock absorber fulfils the function of the absorber and the optimization of its geometrical parameters using the results of the performed investigations. Static analytical and experimental investigations are presented in the article. The finite element code BRIGADE/Plus was used for the analytical analysis. The calculation model was verified by comparing the experimental investigation and simulation results for further employment of this finite element model in the development of an optimum design of shock absorber. Static simulation was used to perform primary optimization of design and dimension of the shock absorber.

  7. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  8. Pressure-tube reactors as a part of Russian nuclear fleet

    International Nuclear Information System (INIS)

    Gmyrko, V.E.; Grozdov, I.I.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Finyakin, A.F.

    2007-01-01

    The place and role of channel reactors in nuclear power in our country and the main measures for upgrading and improving the power generating units of nuclear power plants with RBMK reactors are described. It is shown that the risk indicators for serious damage to the core of power generating units with RBMK reactors are lower after upgrading and the corresponding IAEA criterion established for operating nuclear power plants. Upgrading and implementation of a service life extension program has made it possible to obtain licenses for continuing operation of power generating units with first-generation RBMK reactors and predicting a service life increase to 45 years. The characteristics of nuclear power plants with channel reactors with more highly developed internal and natural safety properties are shown in evolutionary designs of the power generating units MCER-860,-1000, and-1500, which have protective shells and which meet all requirements for power generating units built today. It is shown that innovative solutions for the channel reactor concept can be implemented on the basis of the designs of power generating units with nuclear superheating of steam or on the basis of designs for developing reactors with supercritical parameters [ru

  9. Method of experimental and theoretical modeling for multiple pressure tube rupture for RBMK reactor

    International Nuclear Information System (INIS)

    Medvedeva, N.Y.; Goldstein, R.V.; Burrows, J.A.

    2001-01-01

    The rupture of single RBMK reactor channels has occurred at a number of stations with a variety of initiating events. It is assumed in RBMK Safety Cases that the force of the escaping fluid will not cause neighbouring channels to break. This assumption has not been justified. A chain reaction of tube breaks could over-pressurise the reactor cavity leading to catastrophic failure of the containment. To validate the claims of the RBMK Safety Cases the Electrogorsk Research and Engineering Centre, in participation with experts from the Institute of Mechanics of RAS, has developed the method of interacting multiscale physical and mathematical modelling for coupled thermophysical, hydrogasodynamic processes and deformation and break processes causing and (or) accompanying potential failures, design and beyond the design RBMK reactor accidents. To realise the method the set of rigs, physical and mathematical models and specialized computer codes are under creation. This article sets out an experimental philosophy and programme for achieving this objective to solve the problem of credibility or non-credibility for multiple fuel channel rupture in RBMK.(author)

  10. Final report of the programme on the safety of WWER and RBMK nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1999-05-01

    The review of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants focuses on the wide scope of the activities aimed at identifying safety deficiencies, ranking their importance on the results of safety improvement programmes and on areas where future work is necessary. The information in the report reflects to a large extent, the situation as it stood when individual IAEA tasks actually took place. It deals with the IAEA activities and it discusses selected safety issues and safety review results as they apply to each reactor type. The results, recommendations and conclusions resulting from the IAEA Programme are intended to assist national decision makers who have the sole responsibilities for the regulation and safety operation of their nuclear power plants

  11. The Soviet RBMK-1000 containment system

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1988-01-01

    Following the accident in April, 1986, considerable attention was focused on the failure of the containment at the Chernobyl RBMK-1000 nuclear power plant. Conflicting statements arose regarding the nature of the plant's containment system primarily because of terminology differences, translation difficulties and lack of reliable information. This article, based on reports and briefings by the Soviet delegation, during the post-accident review meetings in Vienna and prior publications is intended to clarify perceptions of the Soviet RMBK-1000 nuclear power plant containment system design, and its relevance to containment management concepts. (author)

  12. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  13. Dynamic analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas, E-mail: gintas@mail.lei.lt [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania)

    2013-07-15

    Highlights: • Plastical deformation of the shock absorber. • Dynamic testing of the scaled shock absorber. • Dynamic simulation of the shock absorber using finite element method. • Strain-rate evaluation in dynamic analysis. • Variation of displacement, acceleration and velocity during dynamic impact. -- Abstract: The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shut down at the end of 2004 while Unit 2 has been in operation for over 5 years. After shutdown at the Unit 1 remained spent fuel assemblies with low burn-up depth. In order to reuse these assemblies in the reactor of Unit 2 a special set of equipment was developed. One of the most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined using scaled experiments and finite element analysis. Static and dynamic investigations of the shock absorber were performed for the estimation and optimization of its geometrical parameters. The objective of this work is the estimation whether the proposed design of shock absorber can fulfil the stopping function of the spent fuel assemblies and is capable to withstand the dynamics load. Experimental testing of scaled shock absorber models and dynamic analytical investigations using the finite element code ABAQUS/Explicit were performed. The simulation model was verified by comparing the experimental and simulation results and it was concluded that the shock absorber is capable to withstand the dynamic load, i.e. successful force suppression function in case of accident.

  14. Analysis of the RBMK-1500 type reactor emergency core cooling system behavior, taking into account the specified hydraulic characteristics of fast acting motor valves

    International Nuclear Information System (INIS)

    Kaliatka, A.; Ognerubov, V.; Adomavicius, A.; Ziedelis, S.

    2005-01-01

    During the accident analysis of nuclear power plants, reliability and uncertainty of results depends on adequateness of mathematical models of main elements and phenomena in systems important to safety. The best way for qualification of these models is collation with relevant experimental data. However, at the case of lack of such data modern computational fluid dynamics codes can be used for this purpose. This paper presents the results of an attempt to specify the hydraulic characteristics of the fast acting motor valves as well as to demonstrate the impact of these characteristics to transient processes in emergency core cooling system of the RBMK-1500 type reactor. For these purposes the finite element model of fast acting motor valve was developed and analyzed, using two separate computational fluid dynamics codes in parallel: CFX5 and COSMOS/FLOWORKS. Both all main design particularities and changes of flow structure during valve opening (closure) process were taken into account. It was demonstrated, that the obtained dependencies of changes of hydraulic loss coefficient in respect of relative valve opening (closure) rate substantially differ from those commonly used in thermal-hydraulic calculations of nuclear reactors. This difference is extremely big at the square one of the valve opening process, when the value of the valve hydraulic resistance is most important to flow of coolant channelized to the group distribution header. The series of thermal-hydraulic calculations of the maximum design-basis accident initiated by full break of main circulation pump pressure header were performed. The obtained dependencies of changes of hydraulic loss coefficient in respect of relative valve opening (closure) rate as well as those commonly used in thermal-hydraulic code RELAP5 were used. The results of calculations show, that in the initial stage of accident flow of coolant going from emergency core cooling system via fast acting motor valves to group distribution

  15. Application of 3D coupled code ATHLET-QUABOX/CUBBOX for RBMK-1000 transients after graphite block modernization

    Energy Technology Data Exchange (ETDEWEB)

    Samokhin, Aleksei [Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS), Moscow (Russian Federation); Zilly, Matias [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work describes the application and the results of transient calculations for the RBMK-1000 with the coupled code system ATHLET 2.2A-QUABOX/CUBBOX which was developed in GRS. Within these studies the planned modernization of the graphite blocks of the RBMK-1000 reactor is taken into account. During the long-term operation of the uranium-graphite reactors RBMK-1000, a change of physical and mechanical properties of the reactor graphite blocks is observed due to the impact of radiation and temperature effects. These have led to a deformation of the reactor graphite columns and, as a result, a deformation of the control and protection system (CPS) and of fuel channels. Potentially, this deformation can lead to problems affecting the smooth movement of the control rods in the CPS channels and problems during the loading and unloading of fuel assemblies. The present paper analyzes two reactivity insertion transients, each taking into account three graphite removal scenarios. The presented work is directly connected with the modernization program of the RBMK- 1000 reactors and has an important contribution to the assessment of the safety-relevant parameters after the modification of the core graphite blocks.

  16. United States Department of Energy's reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    International Nuclear Information System (INIS)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage

  17. RBMK-LOCA-Analyses with the ATHLET-Code

    Energy Technology Data Exchange (ETDEWEB)

    Petry, A. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Kurfuerstendamm, Berlin (Germany); Domoradov, A.; Finjakin, A. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    1995-09-01

    The scientific technical cooperation between Germany and Russia includes the area of adaptation of several German codes for the Russian-designed RBMK-reactor. One point of this cooperation is the adaptation of the Thermal-Hydraulic code ATHLET (Analyses of the Thermal-Hydraulics of LEaks and Transients), for RBMK-specific safety problems. This paper contains a short description of a RBMK-1000 reactor circuit. Furthermore, the main features of the thermal-hydraulic code ATHLET are presented. The main assumptions for the ATHLET-RBMK model are discussed. As an example for the application, the results of test calculations concerning a guillotine type rupture of a distribution group header are presented and discussed, and the general analysis conditions are described. A comparison with corresponding RELAP-calculations is given. This paper gives an overview on some problems posed and experience by application of Western best-estimate codes for RBMK-calculations.

  18. Top-Level Software for VVER-1000 In-core Monitoring System under Implementation of Expanded Nuclear Fuel Diversification Program in Ukraine

    International Nuclear Information System (INIS)

    Khalimonchuk, V.A.

    2015-01-01

    The paper considers the possibility and expediency of developing mathematical software for VVER-1000 ICMS in Ukraine. This mathematical software is among the most important conditions for implementation of the expanded nuclear fuel diversification program. The top-level software is to be developed based on SSTC own studies in the development of codes for power distribution recovery, which were successfully used previously for RBMK-1000 safety analysis

  19. Safety of RBMK reactors: Major results and prospects

    International Nuclear Information System (INIS)

    Sidorenko, V.A.

    1996-01-01

    The paper considers the following issues: basic reasons for the advent of NPPs with RBMK reactors; the logic of identifying top-priority measures immediately after the accident; top-priority measures for improving the safety and reliability of NPPs with RBMK reactors; upgrading NPPs with RBMK reactors in compliance with the Norms; programmes for retrofitting and upgrading of NPPs of the ''Rosnergoatom'' Concern and progress with their implementation as of April 1996; the safety of RBMK plants and the programmes of its enhancement with regard to modern requirements in the light of national and international assessment; objective indicators of safety, reliability, and economic efficiency of NPPs with RBMK reactors; economics: rationale for continuing plants operation till the end of their design lifetime. 8 refs, 3 figs

  20. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  1. RBMK safety issues

    International Nuclear Information System (INIS)

    Weber, J.P.; Reichenbach, D.; Tscherkashow, J.M.

    1995-01-01

    On the basis of information and documents from the RBMK operation countries, the Western consortium mainly examined the two most modern plants, Ignalin-2 and Smolensk-3. The identification of numerous shortcomings, some of which had already been recongized by the participating Eastern organizations, resulted in some 300 specific recommendations to reactor designers, operators and licensing authorities. These recommendations are to be acted upon at once; only a small number did not meet with the approval of the Eastern partners. The safety review provided the Western consotrium with a profound insight into the design and safety of third-generation RBMK reactors; the Eastern partners were able to accumulate experience in working with Western safety philosophy. (orig.) [de

  2. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  3. Methodology for estimating reprocessing costs for nuclear fuels

    International Nuclear Information System (INIS)

    Carter, W.L.; Rainey, R.H.

    1980-02-01

    A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods

  4. Heat transfer in the core graphite structures of RBMK nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Knoglinger, E., E-mail: ernst.knoglinger@a1.net [Am Winklerwald 15, A 4020 Linz (Austria); Wölfl, H., E-mail: herbert.woelfl@tele2.at [Berg, Im Weideland 19, A 4060 Linz (Austria); Kaliatka, A., E-mail: algirdas.kaliatka@lei.lt [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas (Lithuania)

    2015-11-15

    Highlights: • Proposed solution of heat transfer model from a hollow cylinder to a fluid through narrow duct. • Thermal conductance of annular gaps, filled by two component gas was discussed. • Xenon transient preceding the Chernobyl Accident was analyzed. • Reactivity balance during power manoeuvres and potenrial causes of the accident were discussed. - Abstract: Conductive and combined radiative/conductive gap conductance models are presented and discussed in great detail. The heat resistance concept and an exact solution to the one dimensional heat conduction equation for a 3-region composite hollow cylinder are used to calculate gap conductance in function of gap gas composition and fuel burn up. The study includes the back calculation of a reactor experiment performed at the Ignalina NPP Unit-1 which provides some insight in the function of the RBMK nitrogen supply and regulating device and an investigation of the role the graphite temperature played during the power manoeuvres preceding the Chernobyl Accident.

  5. Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2008-01-01

    Full Text Available In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.

  6. Current state and perspectives of spent fuel storage in Russia

    International Nuclear Information System (INIS)

    Kurnosov, V.A.; Tichonov, N.S.; Makarchuk, T.F.

    1999-01-01

    Twenty-nine power units at nine nuclear power plants, having a total installed capacity of 22 GW(e), are now in operation in the Russian Federation. They produce approximately 12% of the generated electricity in the country. The annual spent fuel arising is approximately 790 tU. The concept of the closed fuel cycle was adopted as the basis for nuclear power development in the Russian Federation, but until now this concept is only implemented for the fuel cycles of WWER-440 and BN-600 reactors. The WWER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed. It is meant to be stored in intermediate storage facilities at the NPP sites. The status of the spent fuel (SF) stored in the storage facilities is given in the paper. The principal characteristics of the fuel cycles of the Russian NPPs in the period up to 2015 is also given in the report. The key variant of the current spent fuel management at RBMK-1000 NPPs is storage in at-reactor and in away-from-reactor wet storage facilities at the power plant site with a capacity of 2,000 W. The storage capacity at the operating RBMKs (including the increase due to denser fuel assembly arrangement) will provide SF reception from the NPPs only up to 2005. For RBMK spent fuel, intermediate dry storage is foreseen at power plant sites in metallic concrete casks and thereafter transportation to the central storage facility at the RT-2 plant for long-term storage. The SF will be reprocessing after completion of the reprocessing plant at RT-2. In the Programme of Nuclear Power Development in the Russian Federation for the period 1998 to 2005 and for the period until 2010 year, provisions are made for the construction of a central dry storage facility before 2010. The facility will have a design capacity of 30,000 tU for WWER-1000 and RBMK-1000 spent fuel and is part of the reprocessing plant RT-2. The paper considers

  7. Safety assessment of proposed improvements to RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of this report is to summarize the findings and recommendations of a Consultants Meeting convened by the IAEA in Vienna (27 October - 5 November 1992) to review new design features and modifications proposed or already implemented for RBMK reactors. This information was provided in four technical areas, namely: Core Monitoring and Control, Pressure Boundary Integrity, Accident Mitigation and Electric Power Supply. The report also presents the status of the modifications at the plants as given by the RBMK specialists. The limited information available and the time constraints did not allow the review to be conducted at the level of a peer review, and the findings and recommendations made reflect the limited scope of the review. More detailed reviews and analysis focusing on selected safety issues are required and should be conducted on a generic and plant specific basis as appropriate. In Chapters 2-5 of the report the main findings and recommendations for the four topical areas reviewed are summarized. Appendices I-IV reflect the results of the discussions held at the meeting and provide more detailed information on the review. 17 refs, 27 figs, 17 tabs

  8. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  9. Gas release from pressurized closed pores in nuclear fuels

    International Nuclear Information System (INIS)

    Bailey, P.; Donnelly, S.E.; Armour, D.G.; Matzke, H.

    1988-01-01

    Gas release from the nuclear fuels UO 2 and UN out of pressurized closed pores produced by autoclave anneals has been studied by Thermal Desorption Spectrometry (TDS). Investigation of gas release during heating and cooling has indicated stress related mechanical effects leading to gas release. This release occurred in a narrow temperature range between about 1000 and 1500 K for UO 2 , but it continued down to ambient temperature for UN. No burst release was observed above 1500 K for UO 2 . (orig.)

  10. RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhanced safety and availability. IEC technical report of type 3. Working material

    International Nuclear Information System (INIS)

    1995-01-01

    The present material presents a CD+V draft report ''RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhance safety and availability'' prepared by the Joint IEC/IAEA team during 1993-1995. Experience has demonstrated the need to improve the safety instrumentation of the RBMK type reactors using well proven modern technology. The working group identified the upgrades and changes of the highest priority based on the evaluation of the RBMK systems and the events where the instrumentation was found to be inadequate for safe operation. The subjects discussed in this document were not selected on a systematic basis but were selected by the IEC and IAEA experts as considered to be appropriate to the activities of the IEC and for which technical experience was available. The items identified therefore do not reflect any ranking of the safety issues or any priority or impact on safety of any of the measures were they to be implemented. Many important safety issued and areas where physical measures are required to improve safety have been omitted and indeed not even acknowledged in this document. The recommendations presented in the document differ from those normally produced by the IEC in the form of standards as they are of a transitory nature and some have already been overtaken by the continuing process of improvements to plant safety. Figs and tabs

  11. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  12. Design, construction and commissioning of an interim spent fuel store for the decommissioning of Ignalina NPP, Lithuania

    International Nuclear Information System (INIS)

    Rainer Goehring; Martin Beverungen; Phil Smith

    2006-01-01

    The contract for the design, construction and commissioning (turn-key) of an interim spent fuel store facility (ISFSF) has been awarded to a Consortium of GNS Gesellschaft fuer Nuklear Service and RWE NUKEM GmbH under the lead of RWE NUKEM. The contract was signed on the 12.01.2005. The Interim Spent Fuel Storage Facility (ISFSF) is financed by the Ignalina Decommissioning Support Fund which is managed by EBRD. All spent fuel assemblies, currently stored in the spent fuel pits at the reactors plus future arising (about 18000 in total) will be loaded in the CONSTOR R RBMK1500/M2 containers, which are stored in the new facility. The initial contract has been awarded for 3500 spent fuel assemblies. (authors)

  13. About water chemistry influence on equipment reliability of NPP with RBMK-1000

    International Nuclear Information System (INIS)

    Berezina, I.G.; Styazhkin, P.S.; Kritskij, V.G.

    2001-01-01

    In the paper the experience of a quantitative valuation of coolant quality influence on a reliability of some equipment elements of NPP with RBMK-1000 is offered. The choice is made of coolant quality integral parameter. The connection between indices values of coolant quality and reliability of major elements of circulation circuit equipment (including fuel claddings) is established. The reliability improvement of equipment elements operation is supported by high water chemistry quality. (orig.)

  14. Safety of RBMK reactors: Setting the technical framework

    International Nuclear Information System (INIS)

    Lederman, L.

    1996-01-01

    This article reviews major efforts for improving the safety of RBMK reactors through a co-operative IAEA programme initiated in 1992. Specifically covered are technical findings of safety reviews related to the design and operation of the plants, and the documentation of findings through an Agency database intended to facilitate the technical co-ordination of ongoing national and international efforts for improving RBMK safety

  15. Uncertainty Analysis of RBMK-Related Experimental Data

    International Nuclear Information System (INIS)

    Urbonas, Rolandas; Kaliatka, Algirdas; Liaukonis, Mindaugas

    2002-01-01

    An attempt to validate state-of-the-art thermal hydraulic code ATHLET (GRS, Germany) on the basis of E-108 test facility was made. Originally this code was developed and validated for different type reactors than RBMK. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors, further codes' implementation and validation is required. The phenomena associated with channel type flow instabilities and CHF were found to be an important step in the frame of the overall effort of state-of-the-art validation and application for RBMK reactors. In the paper one-channel approach analysis is presented. Thus, the oscillatory behaviour of the system was not detected. The results show dependence on the nodalization used in the heated channels, initial and boundary conditions and code selected models. It is shown that the code is able to predict a sudden heat structure temperature excursion, when critical heat flux is approached. GRS developed uncertainty and sensitivity methodology was employed in the analysis. (authors)

  16. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  17. Leak detection system for RBMK coolant circuit

    International Nuclear Information System (INIS)

    Cherkashov, Ju.M.; Strelkov, B.P.; Korolev, Yu.V.; Eperin, A.P.; Kozlov, E.P.; Belyanin, L.A.; Vanukov, V.N.

    1996-01-01

    In report the description of an object of the control is submitted, requests to control of leak-tightness and functioning of system are formulated, analysis of a current status on NPP with RBMK is submitted, review of methods of the leak-tightness monitoring, their advantage and defects with reference to conditions and features of a design RBMK is indicated, some results of tests and operation of various monitoring methods are submitted, requests on interaction of operative staff, leak-tightness monitoring system and protection system of reactor are submitted. (author). 11 figs, 1 tab

  18. Leak detection system for RBMK coolant circuit

    Energy Technology Data Exchange (ETDEWEB)

    Cherkashov, Ju M; Strelkov, B P; Korolev, Yu V; Eperin, A P; Kozlov, E P; Belyanin, L A; Vanukov, V N [Leningrad Nuclear Power Plant, Leningrad (Russian Federation). Research and Development Inst. of Power Engineering

    1997-12-31

    In report the description of an object of the control is submitted, requests to control of leak-tightness and functioning of system are formulated, analysis of a current status on NPP with RBMK is submitted, review of methods of the leak-tightness monitoring, their advantage and defects with reference to conditions and features of a design RBMK is indicated, some results of tests and operation of various monitoring methods are submitted, requests on interaction of operative staff, leak-tightness monitoring system and protection system of reactor are submitted. (author). 11 figs, 1 tab.

  19. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  20. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  1. Soil-structural interaction analysis of RBMK type NPP for seismic event. Progress report. From 1 July 1998 - 30 June 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The objective of the project is to assess the structural behavior and safety capacity of a RBMK-1000 MW Main Building Complex under critical combination of loads including seismic events. This project is part of the Coordinated Research Program carried out by International Atomic Energy Agency on safety of RBMK Type Nuclear Power Plants (NPP) in Relation to External Events. The nuclear power plant considered for this study is the Sosnovy Bor NPP, located near St.Petersburg, Russia. The Soviet standard design RBMK-1000 MW type units installed in Sosnovy Bor NPP were originally designed for a Safe Shutdown Earthquake (SSE) with a peak ground acceleration (PGA) of 0.1 g. The relevant response spectra are not available for reference and assessment. The new international requirements for nuclear power plants in operation require site specific seismic hazard studies as a basis for the definition of a Review Level Earthquake (RLE) for reassessment of the structures and safety related equipment Ell - As the RLE site specific seismic data is still not available, the RLE earthquake spectra for Kozloduy NPP scaled to PGA=0.1 g were used in this study. This value is intentionally chosen for comparison purposes. The Russian design requirements (if design floor response spectra are available) will be compared with the international regulations. The scope of the study is to perform a Soil-Structure Interaction (SSI) seismic response analysis of the referenced RBMK-11000 MW. Main Building Complex to evaluate the effect on the structural response of a greater than design earthquake. The analysis is focused on a realistic assessment of the structural response to a potentially higher earthquake level instead of a conservative design type analysis. Special attention is paid on the seismic response of the sub-structures in the safe shutdown path, as well as on the locations of the heavy equipment

  2. Experiences from the LNPP-P and DSA review. Lessons learned from RBMK safety studies

    International Nuclear Information System (INIS)

    Mankamo, T.; Marttila, J.; Reponen, H.

    2000-09-01

    RBMK is the Russian acronym for 'Channelized Large Power Reactor'. The Soviet-designed RBMK plants deviate substantially from typical Western BWR or PWR plants. The safety of the RBMK plants has raised severe concerns since the major accident at Chernobyl Unit 4 in 1986. In addition, a fire destroyed the turbine hall of Chernobyl Unit 2 in 1991 resulting in a near-accident: the reactor cooling could only be maintained through improvised measures. Another well-known fire event is the control cable room fire at Ignalina Unit 2 in 1989, which led to a partial loss of the main control room functions. After the collapse of Soviet Union several multilateral safety programs were started to evaluate and improve the safety of the RBMK plants. A Probabilistic and Deterministic Safety Assessment (P and DSA) of the Leningrad Nuclear Power Plant (LNPP) Unit 2 was started in 1996. Phase 2 of the project was completed in January 1999. A Peer Review was performed by Russian and Western experts. This report describes the insights from the RBMK risk studies, especially from the LNPP P and DSA with emphasis on the deeper understanding of the risk-important design factors and identification of possible ways to increase safety. LNPP P and DSA has meant a significant progress in this respect. Despite of its certain limitations P and DSA Phase 2 could point out short-term measures, which substantially reduced the risk of identified weaknesses, mostly related to the reliability of the emergency feedwater function and its support systems. The findings of LNPP P and DSA and the review recommendations emphasise the extensions needed to the analysis scope. The spreading and other influences of fires and floods between connected spaces should be analysed because of incomplete separation and protection in these regards in the 16st generation RBMK plants. High priority should be given to the analysis of external hazards, which were found important at the Loviisa NPP on the Northern side of the

  3. Experiences from the LNPP-P and DSA review. Lessons learned from RBMK safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, T. [Avaplan Oy (Finland); Marttila, J.; Reponen, H. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2000-09-01

    RBMK is the Russian acronym for 'Channelized Large Power Reactor'. The Soviet-designed RBMK plants deviate substantially from typical Western BWR or PWR plants. The safety of the RBMK plants has raised severe concerns since the major accident at Chernobyl Unit 4 in 1986. In addition, a fire destroyed the turbine hall of Chernobyl Unit 2 in 1991 resulting in a near-accident: the reactor cooling could only be maintained through improvised measures. Another well-known fire event is the control cable room fire at Ignalina Unit 2 in 1989, which led to a partial loss of the main control room functions. After the collapse of Soviet Union several multilateral safety programs were started to evaluate and improve the safety of the RBMK plants. A Probabilistic and Deterministic Safety Assessment (P and DSA) of the Leningrad Nuclear Power Plant (LNPP) Unit 2 was started in 1996. Phase 2 of the project was completed in January 1999. A Peer Review was performed by Russian and Western experts. This report describes the insights from the RBMK risk studies, especially from the LNPP P and DSA with emphasis on the deeper understanding of the risk-important design factors and identification of possible ways to increase safety. LNPP P and DSA has meant a significant progress in this respect. Despite of its certain limitations P and DSA Phase 2 could point out short-term measures, which substantially reduced the risk of identified weaknesses, mostly related to the reliability of the emergency feedwater function and its support systems. The findings of LNPP P and DSA and the review recommendations emphasise the extensions needed to the analysis scope. The spreading and other influences of fires and floods between connected spaces should be analysed because of incomplete separation and protection in these regards in the 16st generation RBMK plants. High priority should be given to the analysis of external hazards, which were found important at the Loviisa NPP on the Northern

  4. ABB engagement in efforts to improve the safety of RBMK reactors

    International Nuclear Information System (INIS)

    Tiren, L.I.; Bioere, S.; Molin, J.

    1993-01-01

    ABB Atom is engaged in safety analysis for the Ignalinsk (RBMK) nuclear power plant. The analysis is done within the framework of two different initiatives of the Swedish Nuclear Power Inspectorate, namely: probabilistic safety assessment, i.e. the BARSELINA project, and analysis of containment safety issues. The aim is to enable decisions to be made for specific hardware modifications. The following items were considered by the Swedish Nuclear Power Inspectorate to be the most significant with regard to safety and were thus selected for further study or action: nondestructive testing of primary system components, fire and flooding protection, pressure relief from the reactor cavity in certain accident sequences, Accident Localization System improvements, and a separate auxiliary feedwater system. (Z.S.) 1 fig

  5. The safety of WWER and RBMK nuclear power plants. Progress report on the IAEA extrabudgetary programme on the safety of WWER and RBMK nuclear power plants, 1992-1994

    International Nuclear Information System (INIS)

    1994-11-01

    This report, prepared by the IAEA secretariat, provides an overview of the IAEA Extrabudgetary Programme activities and results from 1992 until June 1994. The report describes the scope, the current status of the implementation and major findings and recommendations of the Programme. Though this report concentrates on the results of the Extrabudgetary Programme, it also refers to the significant related activities carried out under IAEA Technical Co-operation projects, as well as other international activities relevant to the safety of WWER and RBMK reactors. 13 figs, 9 tabs

  6. Multimedia system for the visitors' centre at the Ignalina NPP

    International Nuclear Information System (INIS)

    Alvers, Margareta

    1999-01-01

    The contents illustrated with video clips, animations, photographs, show the follwing: History of Ignalina NPP (INPP) growing; Visaginas - how the town came into being; Lake Druksiai; Development of nuclear power; Technical data of INPP; Description of INPP; Characteristic features of RBMK reactors; Reactor design; Technical parametres of RBMK-1500 reactor; Nuclear reaction and nuclear fission; Types of nuclear reactors; Circuits and systems; Radiation safety; Safety systems at the INPP; Upgrading nuclear safety at INPP following the Chernobyl accident; Safety problems at MP; Radioactive waste management in the world; RW Management at MP; Energy in Lithuania (thermal power stations, cogeneration plants, producing biogas from organic waste)

  7. Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas; Kaliatka, Algirdas; Uspuras, Eudenijus; Vaisnoras, Mindaugas [Lithuanian Energy Institute, Kaunas (Lithuania); Mochizuki, Hiroyasu; Rooijen, W.F.G. van [Fukui Univ. (Japan). Research Inst. of Nuclear Engineering

    2017-05-15

    Because of the uncertainties associated with the definition of Critical Heat Flux (CHF), the best estimate approach should be used. In this paper the application of best-estimate approach for the analysis of CHF phenomenon in the boiling water reactors is presented. At first, the nodalization of RBMK-1500, BWR-5 and ABWR fuel assemblies were developed using RELAP5 code. Using developed models the CHF and Critical Heat Flux Ratio (CHFR) for different types of reactors were evaluated. The calculation results of CHF were compared with the well-known experimental data for light water reactors. The uncertainty and sensitivity analysis of ABWR 8 x 8 fuel assembly CHFR calculation result was performed using the GRS (Germany) methodology with the SUSA tool. Finally, the values of Minimum Critical Power Ratio (MCPR) were calculated for RBMK-1500, BWR-5 and ABWR fuel assemblies. The paper demonstrate how, using the results of sensitivity analysis, to receive the MCPR values, which covers all uncertainties and remains best estimated.

  8. Assessments of the stresses and deformations in an RBMK graphite moderator brick

    International Nuclear Information System (INIS)

    Jones, C.J.; Davies, M.A.; Marsden, B.J.; Bougaenko, S.E.; Baldin, V.D.; Demintievski, V.N.; Rodtchenkov, B.S.; Sinitsyn, E.N.

    1996-01-01

    The RBMK reactors, designed by RDIPE (Moscow), are graphite moderated and cooled by light water. Graphite dimensions and thermo-mechanical properties change significantly in a complex manner during reactor life due to fast neutron damage and these changes have implications on the safe operation of all graphite moderated reactors. A joint programme of work is being carried out between AEA Technology (UK) and RDIPE (Russia) to assess the life of the RBMK graphite stack under normal operating conditions. The programme has included the modelling of graphite dimensional changes due to irradiation through reactor life and the assessment of the implications of these changes on the stresses and deformations in the graphite stack. Calculations have been carried out to assess the deformations of a moderator brick over a period from start of life up to 30 years of operation. The assessment have also included an analysis of the stresses in the bricks so that the time to brick failure could be determined. This paper describes the RBMK core design, the data and assessment methodology used in the analysis of the RBMK core and presents some results from analyses of the Leningrad Unit 1 RBMK reactor. (author). 2 refs, 8 figs

  9. The IAEA extrabudgetary programme on the safety of WWER and RBMK plants

    International Nuclear Information System (INIS)

    Havel, R.

    1995-01-01

    Data on WWER-440/213, WWER-440/230, WWER-1000 and RBMK reactors in operation are presented. Organizational chart for the IAEA extrabudgetary programme on the safety of WWER and RBMK plants, general programme objectives and main components are outlined

  10. Identification of fast power reactivity effect in nuclear power reactor

    International Nuclear Information System (INIS)

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  11. PSA Level 2 activities for RBMK reactors

    International Nuclear Information System (INIS)

    Gubler, R.

    1998-01-01

    Probabilistic safety analyses (PSAs) of the boiling water graphite moderated pressure tube reactors (RBMKs) have been developed only recently and they are limited to Level 1. Activities at the IAEA were first motivated because of the difficulties to characterize core damage for RBMK reactors. Core damage probability is used in documents of the IAEA as a convenient single valued measure, for example for probabilistic safety criteria. The limited number of PSAs that have been completed for the RBMK reactors have shown that several special features of these channel type reactors necessitate revisiting of the characterization of core damage for these reactors. Furthermore, it has become increasingly evident that detailed deterministic analysis of DBAs and beyond design basis accidents reveal considerable insights into RBMK response to various accident conditions. These analyses can also help in better characterizing the outstanding phenomenological uncertainties, improved EOPs and AM strategies, including potential risk-beneficial accident negative backfits. The deterministic efforts should be focused first on elucidating accident progression processes and phenomena, and second on finding, qualifying and implementing procedures to minimize the risk of severe accident states The IAEA PSA procedures were mainly developed in New of vessel type LWRs, and would therefore require extensions to make them directly applicable. to channel type reactors. (author) (author)

  12. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors. Refs, figs, tabs.

  13. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors

  14. Russian RBMK reactor design information

    International Nuclear Information System (INIS)

    1993-11-01

    This document concerns the systems, design, and operations of the graphite-moderated, boiling, water-cooled, channel-type (RBMK) reactors located in the former Soviet Union (FSU). The Russian Academy of Sciences Nuclear Safety Institute (NSI) in Moscow, Russia, researched specific technical questions that were formulated by the Pacific Northwest Laboratory (PNL) and provided detailed technical answers to those questions. The Russian response was prepared in English by NSI in a question-and-answer format. This report presents the results of that technical exchange in the context they were received from the NSI organization. Pacific Northwest Laboratory is generating this document to support the US Department of Energy (DOE) community in responding to requests from FSU states, which are seeking Western technological and financial assistance to improve the safety systems of the Russian-designed reactors. This report expands upon information that was previously available to the United States through bilateral information exchanges, international nuclear society meetings, International Atomic Energy Agency (IAEA) reactor safety programs, and Research and Development Institute of Power Engineering (RDIPE) reports. The response to the PNL questions have not been edited or reviewed for technical consistency or accuracy by PNL staff or other US organizations, but are provided for use by the DOE community in the form they were received

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  16. RELAP5-3D code validation for RBMK phenomena

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1999-01-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena

  17. Performance of CASTOR {sup registered} HAW cask cold trials for loading, Transport and storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany)

    2009-07-01

    With over 30 years of experience in the design, manufacturing, assembly and loading of CASTOR {sup registered} casks, GNS is one of the worldwide leading suppliers of casks for the transport and storage of spent fuel assemblies as well as for canisters with vitrified high active wastes (meanwhile over 1.000 casks loaded and stored and more than 1.500 ordered). GNS's products are used at around 30 sites worldwide for a wide range of inventories from pressurised and boiling water reactor fuels (PWR, VVER and BWR, RBMK), thorium high-temperature reactor fuels (THTR) and research reactor fuels (MTR) to vitrified high active wastes (HAW) from reprocessing plants. GNS is responsible for all nuclear wastes resulting from German Nuclear Power Plants and assists and/or performs in the loading and dispatch of CASTOR {sup registered} casks as well as their transport to and storage at central interim storage facilities and local interim storage areas. (orig.)

  18. Current state of spent fuel management in the Russian Federation

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Spichev, V.V.; Tikhonov, N.S.; Simanovsky, V.M.; Tokarenko, A.I.; Bespalov, V.N.

    1998-01-01

    Twenty nine power units of nine nuclear power plants of total installed capacity 22 GW(e) are now in operation in the Russian Federation. They produce approximately 12% of electric power in the country. The annual spent fuel arising is about 790 tU. The spent fuel from VVER-440 and BN-600 is reprocessed at the RT-1 plant near Chelyabinsk. The VVER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed because of its low fissile content. It is meant to be stored in intermediate storage facilities at the NPP sites and in a centralized storage facility during a period not less than 50 years and then to be disposed of in geological formations. State of the art of spent fuel reprocessing, storage and transportation is considered in the paper. Problems of nuclear fuel cycle back-end in Russia are taken into account. (author)

  19. Seismic response analyses of turbine hall and electrical building of RBMK-1000 MW type NPP

    International Nuclear Information System (INIS)

    Jordanov, M.J.; Karparov, K.T.

    2003-01-01

    This paper addresses results obtained during the study of turbine hall and electrical building of RBMK-1000 MW pair units at Leningradskaya NPP (LNPP) for seismic event. The study was performed in the frame of the Coordinated Research Program of the International Atomic Agency (IAEA) on Safety of RBMK type Nuclear Power Plants (NPP) in Relation of External Events. A 3-D finite element model of Main Building Complex was developed and seismic response analyses were performed taking into account the soil-structure interaction (SSI). The standard mode superposition method was used for evaluation of dynamic response of structure in time domain. The structure was assumed surface founded at the basemat level. Seismic response analyses were carried out considering shear wave propagation pattern for the input motion. The in-structure time histories and response spectra were generated in referenced locations. Conclusions are drawn for the reliability of the structural response evaluation considering the soil-structure interaction effects. (author)

  20. Fuel development for reactors of new generation in Ukraine

    International Nuclear Information System (INIS)

    Odeychuk, N.P.

    2006-01-01

    Full text: On the background of critical situation in traditional power engineering due to deficiency of organic fuel, physical and moral ageing of the of thermal power stations equipment and their harmful influence on the ecology of environment, the nuclear engineering works stably enough and, by keeping all safety measures, is the most non-polluting energy source. In Ukraine the atomic engineering became one of main sources of energy production and is the important factor of guarantee the power engineering independence of the state. The main center on development of the components of nuclear reactors active zones is the National scientific center K harkov institute of Physics and Technology . The significant place in institutes' investigations was occupied with works on creation the constructional materials and nuclear fuel for heavy water reactors E-circumflexS-150, OR-1000, OR-2000, light water reactors WWER-1000 and RBMK-1500, high-temperature gas cooled reactors ABTU and HTGR, gas reactors on fast neutrons BGR and BRGD, and also the reactor - converter ROMASHKA and other special reactors of special assignment. Radiation tests and post-irradiation research confirm intended material-study, technological and design decisions and fuel elements capacity work on the whole. Nevertheless, by the present conditions, it is necessary to pay special attention to development of the new, safe guaranteed nuclear energy sources. In Ukraine proceed works on research and development of new safe nuclear reactors: basing the underground nuclear thermal power stations; development the reactors with managed chain reaction of nucleus division in an active zone with the help of an external source of neutrons; power thermonuclear installations; high-temperature helium reactors which are especially actual now from the point of view of the hydrogen production; the advanced pressure water reactors, heavy water reactors. In the paper also discussed the state of works in Ukraine on fuel

  1. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Postnikov, V.V.; Volod'ko, Yu.I.

    1980-01-01

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  2. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  3. Screening of external hazards for NPP with bank type reactor. Modeling of safety related systems and equipment for RBMK. Probabilistic assessment of NPP safety on aircraft impact. Progress report

    International Nuclear Information System (INIS)

    Kostarev, V.

    1999-01-01

    This progress report was produced within the frame of IAEA research project on screening the hazards for NPP with bank type reactor. It covers the following tasks; development of the model for the primary loop system of RBMK; developing the models for safety related equipment of RBMK; developing of models for safety related models of EGP-6 type reactor (Bilibinskaya Nuclear Co-generated heat and Power Plant); and probabilistic assessment of NPP safety on aircraft impact

  4. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  5. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  6. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  7. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  8. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given

  9. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given. (author)

  10. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  13. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project

  14. A reference regional nuclear fuel centre

    International Nuclear Information System (INIS)

    1978-01-01

    A nuclear fuel centre groups the facilities for spent fuel reprocessing, plutonium fuel fabrication, waste conditioning, and interim storage on a single site. The technical aspects of safety and protection, and the socio-economic consequences of two types of centre have been studied. The reference centre has an initial reprocessing capacity of 1500 tonnes. This capacity is quadrupled by the construction of two new units in 15 years. The other centre considered is a quarter of this size. A description is given of the processes used, the personal and capital requirements for construction and operation of the plant, the transport of radioactive waste and products, and the quantities involved. The local radiological impact is low and could be further reduced to a level well below that of natural radioactivity. The resulting increase in economic activity, employment, income redistribution and the new infrastructure requirements are estimated for a rural or semi-rural region. Measures to prevent tension are proposed. The impact of the host country's balance of payments, finances, employment situation and technological knowhow is evaluated. The original centre is compared with equivalent facilities scattered geographically

  15. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  17. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  18. Ignalina RBMK-1500 building capability in retaining radioactive releases

    International Nuclear Information System (INIS)

    Nilsson, Lars; Johansson, K.

    1993-01-01

    The Ignalina reactor building structures are capable of retaining substantial fractions of radioactive emissions from the fuel core, in those accident sequences where pressurization failure of structures can be averted by pressure relief arrangements. In stage 1 of the IBBA project it was demonstrated that enhanced retention of radioactive fission products within the plant can be achieved if natural convection is facilitated in the upper building compartments. In this report of stage 2 is discussed for which accident sequences the introduction of natural convection in combination with the existing forced convection ventilation and the accident localization system can improve the total safety of Ignalina 1-2. The purpose of this stage is to provide a basis for further review and more detailed studies of the natural convection concept, its benefits and disadvantages, and of the feasability to introduce the concept in existing plants

  19. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  20. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  1. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  2. Constor steel concrete sandwich cask concept for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diersch, R.; Dreier, G.; Gluschke, K.; Zubkov, A.; Danilin, B.; Fromzel, V.

    1998-01-01

    A spent nuclear fuel transport and storage sandwich cask concept has been developed together with the Russian company CKTI. Special consideration was given to an economical and effective way of manufacturing by using conventional mechanical engineering technologies and common materials. The main objective of this development was to fabricate these casks in countries not having highly specialized industries. Nevertheless, this sandwich cask concept fulfills both the internationally valid IAEA criteria for transportation and the German criteria for long-term intermediate storage. The basic cask concept has been designed for adaptation to different spent fuel specifications as well as handling conditions in the NPP. Recently, adaptations have been made for spent fuel from the RBMK and VVER reactors, and also for BWR spent fuel. The analyses of nuclear and thermal behaviour as well as of strength according to IAEA examination requirements (9-m-drop, 1-m-pin drop, 800 deg. C-fire test) and of the behaviour during accident scenarios at the storage site (drop, fire, gas cloud explosion, side impact) were carried out by means of recognized calculation methods and programmes. In a special experimental programme, the mechanical and thermodynamic properties of heavy concrete were examined and the reference values required for safety analyses were determined. The results of the safety analysis after drop tests according to IAEA-regulations as well as after 1 m-drops at the storage site were confirmed by means of a test programme using a scale model. The fabrication technology has been tested with help of a half scale cask model. The model has been prefabricated in Russia and completed in Germany. It has been shown that the CONSTOR cask can be fabricated in an effective and economic way. (authors)

  3. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  4. Seismic verification methods for structures and equipment of VVER-type and RBMK-type NPPs (summary of experiences)

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    The main verification methods for structures and equipment of already existing VVER-type and RBMK-type NPPs are briefly described. The following aspects are discussed: fundamental seismic safety assessment principles for VVER/RBMK-type NPPs (seismic safety assessment procedure, typical work plan for seismic safety assessment of existing NPPs, SMA (HCLPF) calculations, modified GIP (GIP-VVER) procedure, similarity of VVER/RBMK equipment to that included in the SQUG databases and seismic interactions

  5. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  6. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  7. Insights from the U.S. department of Energy plant safety evaluation program of VVER and RBMK reactors

    International Nuclear Information System (INIS)

    Petri, M.C.; Binder, J.L.; Pasedag, W.F.

    2001-01-01

    Throughout the years 1990 the U.S. Department of Energy has worked build capability in countries of the former Soviet Union to assess the safety of their VVER and RBMK reactors. Through this Plant Safety Evaluation Program, deterministic and probabilistic analyses have been used to provide a documented plant risk profile to support safe plant operation and to set priorities for safety upgrades. Work has been sponsored at thirteen nuclear power plant sites in eight countries. The Plant Safety Evaluation Program has resulted in immediate and long-term safety benefits for the Soviet-designed nuclear plants. (author)

  8. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  9. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  10. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  11. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  12. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  13. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  14. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  15. New challenges in energy future of Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.; Ziedelis, S.; Adomavicius, A.

    2004-01-01

    serious economical, ecological, and social problems. Trying to evaluate these problems, an attempt was made to foresee trends of further economy development and energy demand for next 20 years. The econometric models, comparative analysis and analytical expertise evaluation methods were used. Three different scenarios of future energy consumption growth were analysed. Results of the performed analysis show, that in the year 2020 energy demand should be about 15,3 - 22,1Twh in cases of the slow or very fast growth scenario (3197 MW and 4484 MW respectively, taking into account necessary reserves). This leads to a shortage of Lithuania's power generating capacity already by 2010. In 2020 this shortage can increase to 556 MW in case of the slow growth scenario and 1843 MW in case of the very fast growth scenario. Three possible ways to compensate this shortage increasing the share of power plants using fossil fuel, broadening the exploitation of renewable energy resources, and nuclear option are analysed. Both economical and ecological problems, including the price dynamics of main imported energy resources, especially of oil and natural gas, are taken into account. It is pointed out that according to Energy Strategy of Russia average contract price of gas can reach 119 - 138 USD/10 3 m 3 in 2020 (growth of price 138 - 160% compared to 86 USD/10 3 m 3 in the year 2000). The unreliability of fuel supply from single supplier (Russia) is emphasized. Analysis and assessment of positive and negative aspects of different energy generation means shows that perhaps the best solution in perspective for Lithuania is the nuclear option. It can be realised by following means: a) extension of exploitation of the second unit of Ignalina NPP after the year 2010, b) replacement of existing RBMK-1500 reactors by modern BWR or PWR reactors, using existing turbines and infrastructure, and c) construction of new nuclear power unit or plant. Results of this study illustrate, that all nuclear

  16. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  17. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  18. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  20. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  1. RBMK full scope simulator gets virtual refuelling machine

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2006-01-01

    The paper describes a continuation of efforts of an international Russian-Norwegian joint team to drastically increase operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding stage of the project a display-based simulator was extended with VR models of the real Refueling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly and to take major part in developing basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refueling Machine. At the given 2nd stage the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by a training program and simulator model upgrade. (author)

  2. Some problems of software development for the plant-level automated control system of NPPs with the RBMK reactors

    International Nuclear Information System (INIS)

    Gorbunov, V.P.; Egorov, A.K.; Isaev, N.V.; Saprykin, E.M.

    1987-01-01

    Problems on development and operation of automated control system (ACS) software of NPPs with the RBMK reactors are discussed. The ES computer with large on-line storage (not less than 1 Mbite) and fast response (not less than 300.000 of operations per a second) should enter the ACS composition. Several program complexes are used in the NPP ACS. The programs collected into the EhNERGIYa library are used to provide central control system operation. The information-retrival system called the Fuel file is used to automate NPP fuel motion account, as well as to estimate efficiency of fuel application, to carry out calculations of a fuel component of electric and heat energy production cost. The automated information system for unit operation efficiency analysis, which solves both plant and unit-level problems, including engineering and economical factors and complexing of operation parameter bank, is under trial operation

  3. Deterministic Safety Technology for RBMK Reactors

    Directory of Open Access Journals (Sweden)

    F. D'Auria

    2008-01-01

    The paper summarizes the activities performed at NIKIET in Moscow and at University of Pisa (UNIPI in Pisa. A top-down approach is pursued in structuring the executive summary that includes the following sections: (i the safety needed for the RBMK NPP, (ii the roadmap, (iii\tthe adopted computational tools, (iv\tkey findings, (v\tEmphasis is given to the multiple pressure tube rupture (MPTR issue and the individual channel monitoring (ICM proposal.

  4. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  5. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  6. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  7. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  8. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  9. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  11. Neutron field control cybernetics model of RBMK reactor operator

    International Nuclear Information System (INIS)

    Polyakov, V.V.; Postnikov, V.V.; Sviridenkov, A.N.

    1992-01-01

    Results on parameter optimization for cybernetics model of RBMK reactor operator by power release control function are presented. Convolutions of various criteria applied previously in algorithms of the program 'Adviser to reactor operator' formed the basis of the model. 7 refs.; 4 figs

  12. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  13. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  14. Current status and prospects on Rokkasho nuclear fuel cycle project

    International Nuclear Information System (INIS)

    Suzuki, Mitsuo

    2003-01-01

    JNFL has been established aiming at fulfillment of Nuclear Fuel Cycle, as well as to contribute to the long-term and stable supply of nuclear power in Japan. 'Uranium Enrichment Plant' with its production of 1,050 SWU/y and planned to be expand to 1,500 SWU/y, 'Low Level Radioactive Waste Disposal Center' with 150,000/200 l drums stored, out of its 400,000 drums capacity, and 'Vitrified Waste Storage Center' with 760 canisters stored, out of its 1440 canisters capacity, are already in its operation. It is now preparing for the operation of '800 t/y Reprocessing Plant' and construction of '130t HM/y MOX Fuel Fabrication Plant'. As for the Reprocessing Plant, 780t of spent fuels has been already received and stored in the storage pools. Main plant is now in the course of test operation and planned to start the commercial operation by July 2006. Due to some defects found during the course of its construction, JNFL is now reviewing the Total Quality Assurance Structure to improve and reinforce its system. And for the MOX Fuel Fabrication Plant, activities towards obtaining the local autonomy's agreement for the construction are being made energetically. It is essential to obtain the good understanding of the public community to promote these projects successfully; JNFL is putting its best efforts to dispatch all the necessary information to the public in a timely manner. (author)

  15. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  16. Technical and economical conditions of nuclear energy usage continuation in Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.; Ziedelis, S.; Klevas, V.

    2005-01-01

    The main producer of electric energy in Lithuania is Ignalina NPP with its two RBMK-1500 type reactors. It covers up to 86% of total annual electricity production. The compulsory premature closure of Ignalina NPP due to the decision of EU authorities will decrease maximum power generating capacity to 3273 MW in the year 2010 (slump of 42% in respect to 5698 MW of the year 2000) and it will cause a complex of serious technical, economical, ecological, and social consequences. The most important ones for energy sector are the negative power balance and the shortage of power generating capacity which can emerge straight after closure of the second unit of Ignalina NPP. An attempt has been taken to prove, that the most realistic way for replacement of lost power generating capacities is the construction of new nuclear or combined cycle gas turbine power plants. The results of the comparative analysis of their effectiveness and competitiveness are presented in the paper. Estimating the basic prevailing technical and economical factors and three possible scenarios of economy growth, the changes of power balance and levelised cost of produced electricity are compared. It is demonstrated that a new modern nuclear power plant would be competitive and it would be even a more favourable option in respect to a combined cycle gas turbine power plant due to the relatively lower energy production cost, especially when estimating the possible future growth of price for fossil fuel. (authors)

  17. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  18. Coordinated research programme on safety of RBMK type NPPs in relation to external events. V. 1. Working material

    International Nuclear Information System (INIS)

    1999-01-01

    The present volume is a collection of progress reports which have been submitted within the scope of the CRP on safety of RBMK type NPPs in relation to external events including seismic related papers and man-induced events (explosions and airplane crash). It includes papers concerned with experience related to RBMK equipment testing and calculations of seismic resistance, soil-structure interactions analysis, safety assurance, aircraft impact qualification and other external events for RBMK type NPP, seismic stability of NPPs in Eastern Europe, probabilistic assessment of NPP safety under aircraft impact, dynamic analysis of NPPs, screening of external hazards for NPP

  19. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  20. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources which provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another

  1. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  2. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  3. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  4. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  5. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  6. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  7. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  8. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  9. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  10. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  11. Benchmark analysis of three main circulation pump sequential trip event at Ignalina NPP

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.; Urbonas, R.

    2001-01-01

    The Ignalina Nuclear Power Plant is a twin-unit with two RBMK-1500 reactors. The primary circuit consists of two symmetrical loops. Eight Main Circulation Pumps (MCPs) at the Ignalina NPP are employed for the coolant water forced circulation through the reactor core. The MCPs are joined in groups of four pumps for each loop (three for normal operation and one on standby). This paper presents the benchmark analysis of three main circulation pump sequential trip event at RBMK-1500 using RELAP5 code. During this event all three MCPs in one circulation loop at Unit 2 Ignalina NPP were tripped one after another, because of inadvertent activation of the fire protection system. The comparison of calculated and measured parameters led us to establish realistic thermal hydraulic characteristics of different main circulation circuit components and to verify the model of drum separators pressure and water level controllers.(author)

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  13. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  14. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  15. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  17. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  18. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  19. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  20. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  1. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  2. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  3. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  4. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  5. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  6. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  7. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  8. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  9. The nuclear technology development program in the U.S.S.R

    International Nuclear Information System (INIS)

    Lukonin, N.F.

    1987-01-01

    The trend of strategy on the nuclear power generation in USSR is not changed in spite of the accident in Chernobyl Nuclear Power Station. In 1986, the electric power generated by nuclear power generation was 162 billion kWh, and the heat supply by nuclear energy was 29 million Gcal. The development of nuclear power generation in USSR for 30 years proved that the atomic energy is technically omnipotent, and the economical substitution of the demand of fossil fuel with nuclear fuel is possible. As of January 1, 1987, 17 nuclear power stations were in operation in USSR, and the total power output was 31,000 MW. The share of nuclear power generation in the total electric power generation was 1/9. 11 nuclear power stations are under construction. The accelerating development of nuclear power generation is the base of meeting the electric power demand in the European region of USSR together with the power transmission from the eastern region. The nuclear power generation in USSR is based on two types of nuclear reactors, that is, water-water type VVER and water-graphite type RBMK. The accident in Chernobyl Nuclear Power Station and the situation thereafter are reported. The development of nuclear power generation in future is discussed. (Kako, I.)

  10. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  11. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  12. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  13. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  14. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  15. Management of spent fuel from power and research reactors using CASTOR and CONSTOR casks and licensing experience worldwide

    International Nuclear Information System (INIS)

    Becher, D.

    2003-01-01

    An overview of the spent fuel storage in CASTOR and CONSTOR casks during the last 30 years is made. Design characteristics of the both types of casks are presented. CASTOR casks fulfill both the requirements for type B packages according to the IAEA requirements covering different accident situations in storage sites. Analyses of nuclear and thermal behavior and strength are carried out for CONSTOR concept. Special experimental program for verification of mechanical and thermomechanical properties is implemented. Licensing experience of the casks in German storage facilities is presented. Special modifications of CASTOR casks for WWER-440 and RBMK fuel assemblies have been designed for implementation in Eastern Europe. Contracts for GNB spent fuel casks delivery are concluded with Czech Republic, Slovakia, Hungary and Lithuania

  16. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  17. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  18. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  19. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  20. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  1. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  2. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  3. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  4. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  5. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  6. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  7. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  8. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  9. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  10. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Rubin, J. [Los Alamos National Lab., NM (United States); Thompson, M

    2001-07-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  11. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    International Nuclear Information System (INIS)

    Chidester, K.; Rubin, J.; Thompson, M.

    2001-01-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  13. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  14. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  15. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  16. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  17. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  18. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  19. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  20. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  1. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  2. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  3. Safety assessment of proposed modifications of Ignalina nuclear power plant. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1995-09-01

    The objective of the meeting was to further discuss previous findings and recommendations and their application to the particular situation of the Ignalina NPP. Since design information and a series of proposed modifications for INPP had been prepared by the main RBMK designer, Research and Development Institute for Power Engineering (RDIPE), it was considered appropriate to conduct the meeting in two parts, the first from 17 to 22 October 1994, at RDIPE headquarters in Moscow and the second from 24 to 28 October 1994, at the plant site in Lithuania. Twelve international experts and IAEA staff participated in the meetings, together with a large group of RDIPE specialists and plant staff. The review covered five topical areas: core monitoring and control; pressure boundary integrity; accident migration; safety and support systems and instrumentation and control. A summary of the reviews in each technical areas is given in this report. Appendices 1 and 5 present the records of the reviews and detailed findings and recommendations in each topical area. The experts strongly supported the effort to develop a new extended safety analysis report. They also stressed the need for close monitoring of the fuel channel conditions and the need for an integrated approach for the upgrading of the control and safety systems. Refs, figs, tabs

  4. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Baharuddin, B.; Ferdinand, P.

    2014-01-01

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  5. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  6. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  7. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  8. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  9. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  10. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  11. Romanian nuclear fuel program: past, present and future

    International Nuclear Information System (INIS)

    Budan, O.; Rotaru, I.; Galeriu, C.A.

    1997-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. In this paper the word 'past' refers to the period before 1990 and 'present' to the 1990-1997 period. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. - ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified

  12. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  13. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  14. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  15. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  16. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  17. AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING

    International Nuclear Information System (INIS)

    Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

    2010-01-01

    The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

  18. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  19. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  20. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  1. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  2. Study of possibility using LANL PSA-methodology for accident probability RBMK researches

    International Nuclear Information System (INIS)

    Petrin, S.V.; Yuferev, V.Y.; Zlobin, A.M.

    1995-01-01

    The reactor facility probabilistic safety analysis methodologies are considered which are used at U.S. LANL and RF NIKIET. The methodologies are compared in order to reveal their similarity and differences, determine possibilities of using the LANL technique for RBMK type reactor safety analysis. It is found that at the PSA-1 level the methodologies practically do not differ. At LANL the PHA, HAZOP hazards analysis methods are used for more complete specification of the accounted initial event list which can be also useful at performance of PSA for RBMK. Exchange of information regarding the methodology of detection of dependent faults and consideration of human factor impact on reactor safety is reasonable. It is accepted as useful to make a comparative study result analysis for test problems or PSA fragments using various computer programs employed at NIKIET and LANL

  3. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  4. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  5. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  6. Co-operation of the CMEA member countries in the developing power reactors of various types, including some aspects of their nuclear fuel cycles

    International Nuclear Information System (INIS)

    Barbur, I.; Barchenkov, A.; Molnar, L; Panasenkov, A.; Tolpygo, V.; Hake, V.; Shcherbinin, B.

    1977-01-01

    The report gives an account of the problems of projected development of atomic power and evaluates its role in the fuel and power complex and long-range development of interconnected power systems of the CMEA member countries. The report emphasizes the importance of scientific and technical co-operation in the creation of power reactors on thermal and fast neutrons with 1000-1500 MW unit electric capacity as well as in the elaboration of nuclear plants for heating services. It notes the positive experience of the International scientific and research group of scientists of the CMEA member countries carrying out reactor-physical studies on the critical assembly and its contribution to the elaboration of power reactors. The report contains basic conclusions from the development forecast for nuclear power of the CMEA member countries up to 1990 including forecasting methodology; role of nuclear power plants in saving natural and enriched uranium for a projected period; impact of nuclear power development rates on its structure (thermal and fast reactor ratio); relation between the beginning of mass commissioning of nuclear power plants with fast reactors and the integral demand for nuclear fuel; scale of required capacities of fuel cycle services; time dependence of fuel cycle on nuclear fuel requirements. It examines the problems and lists the results of scientific and technical co-operation of the CMEA member countries in the field of fuel cycle, including the transport of spent nuclear fuel, its recovery, reprocessing and radioactive waste disposal. Particular questions of co-operation of the CMEA member countries to secure radiation safety of nuclear power plants and environmental protection are analyzed. The report notes the role of international economic associations - ''Interatomenergo'' and ''Interatominstrument'' - in the accelerated development of nuclear power on the basis of cooperation and specialization in the manufacture of equipment for nuclear power

  7. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  8. On a possibility to ground a reliable and safe disposing of a spent nuclear fuel from nuclear reactors RBMK in deep boreholes

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.

    1998-01-01

    In order to isolate a spent nuclear fuel (SNF), it is proposed to dispose it, after 30 years keeping on the day surface, in boreholes of up to 4 km depth and 350-1020 mm diameter drilled in low permeable platform basement crystalline rocks, that allows one to localize SNF radionuclides till their full decay. It is shown that the method requires relatively low investments and enables the volume of a burial being increased during wastes income. Along with consideration and assessment of hydrodynamic, geological and hydrogeological parameters of a rock massive and rocks preferable for the new method, engineering solutions for the borehole design and hermetizing structure and assessments of the technogeneous influence on the environment are given. The questions are also considered of a possible shortening of the terms of keeping SNF in a surface storage before their burying, that enables one to decrease expenses for surface storage constructions and to promote the cleaning of the sphere of human habitation from the most active and dangerous wastes

  9. Chernobyl and the safety of nuclear reactors in OECD countries

    International Nuclear Information System (INIS)

    1987-01-01

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  10. Features of adsorbed chemical elements and their isotopes distribution in iodine air filters AU-1500 of nuclear power plant

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Dovbnya, A.N.; Dikiy, N.P.; Ledenyov, O.P.; Lyashko, Yu.V.

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the forced-exhaust ventilation at the nuclear power plant. The ?-activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU-1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU-1500 iodine air filter, which was exposed by the irradiation of bremsstrahlung gamma-quantum producing by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127 I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT-3, in the AU-1500 iodine air filter are also researched. The possible influences by the standing wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

  11. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  12. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  13. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  14. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  15. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  17. Crushing method for nuclear fuel powder

    International Nuclear Information System (INIS)

    Hasegawa, Shin-ichi; Tsuchiya, Haruo.

    1997-01-01

    A crushing medium is contained in mill pots disposed at the circumferential periphery of a main axis. The diameter of each mill pot is determined such that powdery nuclear fuels containing aggregated powders and ground and mixed powders do not reach criticality. A plurality of mill pots are revolved in the direction of the main axis while each pots rotating on its axis. Powdery nuclear fuels containing aggregated powders are conveyed to a supply portion of the moll pot, and an inert gas is supplied to the supply portion. The powdery nuclear fuels are supplied from the supply portion to the inside of the mill pots, and the powdery nuclear fuels containing aggregated powders are crushed by centrifugal force caused by the rotation and the revolving of the mill pots by means of the crushing medium. UO 2 powder in uranium oxide fuels can be crushed continuously. PuO 2 powder and UO 2 powder in MOX fuels can be crushed and mixed continuously. (I.N.)

  18. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  19. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  20. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  1. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  2. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  3. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  4. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  5. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  6. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  7. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  8. Highlights of 50 years of nuclear fuels developments

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel cycle costs and reliable performance in the fuel elements are discussed in the historical context

  9. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  10. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  11. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  12. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  13. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  14. Highlights of 50 years of nuclear fuel development

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel-cycle costs and reliable performance in the fuel elements are discussed in the historical context. 10 refs

  15. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  16. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  17. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  18. Main problems of increasing labour productivity in the power plant construction

    International Nuclear Information System (INIS)

    Falaleev, P.P.

    1984-01-01

    The reserve for labour productivity growth in power-, industrial- and civil engineering in the USSR Minenergo system are discussed. Such reserve comprises: introduction of effective designs, increase of technological readiness of structures; a higher mechanization level in construction, improvement of industrial organization, economical and social aspects. Decrease of labour inputs in NPP construction will be attained by using unified designs of serial WWER-1000, RBMK-1000- and RBMK-1500 reactors as well as by developing nuclear power construction complexes-industrial-construction enterprises for manufacturing and transport of special structures as well as for performing civil engineering and installation work on the ground part of the reactor building and special structure. Other potentialities for increasing labour productivity in NPP construction are considered

  19. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  20. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  1. Proceedings of the 2006 International Meeting on LWR fuel performance 'Nuclear Fuel: Addressing the future' - TopFuel 2006 Transactions

    International Nuclear Information System (INIS)

    2006-01-01

    From 22-26 October, 340 researchers, nuclear engineers and scientists from across Europe and beyond congregated in the ancient university city of Salamanca, Spain, to discuss the challenges facing the developers and manufacturers of new high-performance nuclear fuels-fuels that will help meet current and future energy demand and reduce man's over dependence upon CO 2 -emitting fossil fuels. TopFuel is an annual topical meeting organised by ENS, the American Nuclear Society and the Atomic Energy Society of Japan. This year it was co-sponsored by the IAEA, the OECD/NEA and the Spanish Nuclear Society (SNE). TopFuel's primary objective was to bring together leading specialists in the field from around the world to analyse advances in nuclear fuel management technology and to use the findings of the latest cutting-edge research to help manufacture the high performance nuclear fuels of today and tomorrow. The TopFuel 2006 agenda revolved around ten technical sessions dedicated to priority issues such as security of supply, new fuel and reactor core designs, fuel cycle strategies and spent fuel management. Among the many topics under discussion were new developments in fuel performance modelling, advanced fuel assembly design and the improved conditioning and processing of spent fuel. During the week, a poster exhibition also gave delegates the opportunity to display and discuss the results of their latest work and to network with fellow professionals. One important statement to emerge from TopFuel 2006 was that the world has enough reserves of uranium to support the large-scale and long-term production of nuclear energy. The OECD/NEA and the IAEA recently published a report entitled Uranium 2005: Resources, Production and Demand (the Red Book). The report, which makes a comprehensive assessment of uranium supplies and projected demand up until the year 2025, concludes by saying 'the uranium resource base is adequate to meet projected future requirements'. With the

  2. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  3. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  4. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  5. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  6. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  8. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  9. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  10. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  11. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  13. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  14. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  15. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  16. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  17. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Kitts, F.G.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations is presented in Appendix A and ORNL-4992. (U.S.)

  18. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  19. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  20. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  1. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  2. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  3. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  4. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  5. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  6. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  7. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  8. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  9. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  10. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  11. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  12. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  13. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy working group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of the policy paper presented is to recommend the actions deemed necessary to assure that future US and other non-Communist countries' nuclear fuels supply will be adequate to meet future energy demand. Taken together, the recommended decisions and actions form a nuclear fuels supply policy for the United States Government and for the private sector, and new areas of responsibility for the appropriate international organizations in which the US participates. The principal conclusions and recommendations are that the US and the other industrialized non-Communist countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends upon the security of supply of energy resources and the ability to substitute one form of fuel for another. The substitutability and efficient use of energy resources are enhanced by accelerating the supply and use of electricity

  14. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  15. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  16. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  17. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  18. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  19. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  20. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  1. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  2. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  3. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  4. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  5. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  6. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  7. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  8. Back-end nuclear fuel cycle strategy: The approaches in Ukraine

    International Nuclear Information System (INIS)

    Afnasyev, A.; Medun, V.; Trehub, Yu.

    2002-01-01

    Ukraine has 14 nuclear units in operation and 4 units more under construction. Now in Ukraine a share of installed nuclear capacity in total installed capacity is essential and it is planned to increase it further. In this connection a spent nuclear fuel management in Ukraine for the current period and future is becoming important in a nuclear fuel cycle. A current situation in relation to the spent nuclear fuel management in Ukraine is described in the paper. It is reviewed: legislative basis for a spent nuclear fuel management strategy; an assessment for a spent fuel growth; the national possibilities for the spent fuel management; an organization chart for a spent nuclear fuel management, etc. Some factors that can determine a long-term spent fuel management strategy in Ukraine are in the conclusion. (author)

  9. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  10. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  11. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  12. Aircraft impact qualification of RBMK systems and components. Technical report. Rev. 00, May 1999

    International Nuclear Information System (INIS)

    1999-01-01

    In the present report, the problem of qualification procedures of electrical equipment with respect to the dynamic excitation subsequent to an aircraft impact (ACC) on a Nuclear Power Plant (NPP) is approached, within the context of IAEA Benchmark on vulnerability of equipment and structures of RBMK-type NPP against the aircraft impact. After a short description of the main objectives of the work and the relevant area of concern (Chapter 1), the safety related equipment more commonly installed in a NPP are grouped in few classes, according to widely accepted classification criteria and the relevant failure modes are described (Chapter 2). Taking as reference a deeply studied RBMK reactor (Ignalina NPP), an overview of its main characteristics and of the equipment ensemble housed in is given in Chapter 3. An overview of the worldwide most used qualification standards for safety related equipment for NPPs is reported in Chapter 4, and a comparison of the practices used in Europe for the qualification of safety related electrical and I and C equipment is described with special attention to seismic and impact qualification (Chapter 5). In the hypothesis that the equipment to qualify against impact excitation has been already qualified against seismic excitation, the problems relevant to the different nature of earthquake and shock phenomena are listed, together with the main criteria to implement a procedure which, based on standardized shock pulses, could be applied for ACC qualification purposes (Chapter 6). Consequently, a possible ACC qualification procedure is outlined (Chapter 7) and the interface data (data coming from numerical analysis and seismic qualification, to be used for ACC qualification purposes) are listed (Chapter 8). Finally, the main conclusions of the work are described (Chapter 9). The main references are listed in Chapter 10. (author)

  13. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  14. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  15. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  16. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  17. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  18. Nuclear fuel assurance: origins, trends, and policy issues

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-02-01

    The economic, technical and political issues which bear on the security of nuclear fuel supply internationally are addressed. The structure of international markets for nuclear fuel is delineated; this includes an analysis of the political constraints on fuel availability, especially the connection to supplier nonproliferation policies. The historical development of nuclear fuel assurance problems is explored and an assessment is made of future trends in supply and demand and in the political context in which fuel trade will take place in the future. Finally, key events and policies which will affect future assurance are identified

  19. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  20. Probabilistic safety analysis applied to RBMK reactors

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Fernandez Ramos, P.

    1995-01-01

    The project financed by the European Union ''Revision of RBMK Reactor Safety was divided into nine Topic Groups dealing with different aspects of safety. The area covered by Topic Group 9 was Probabilistic Safety Analysis. TG9 will have touched on some of the problems discussed by other groups, although in terms of the systematic quantification of the impact of design characteristics and RBMK reactor operating practices on the risk of core damage. On account of the reduced time scale and the resources available for the project, the analysis was made using a simplified method based on the results of PSAs conducted in Western countries and on the judgement of the group members. The simplifies method is based on the concepts of Qualification, Redundancy and Automatic Actuation of the systems considered. PSA experience shows that systems complying with the above-mentioned concepts have a failure probability of 1.0E-3 when redundancy is simple, ie two similar equipment items capable of carrying out the same function. In general terms, this value can be considered to be dominated by potential common cause failures. The value considered above changes according to factors that have a positive effect upon it, such as an additional redundancy with a different equipment item (eg a turbo pumps and a motor pump), individual trains with good separations, etc, or a negative effect, such as the absence of suitable periodical tests, the need for operators to perform manual operations, etc. Similarly, possible actions required by the operator during accident sequences are assigned failure probability values between 1 and 1.0E-4, according to the complexity of the action (including local actions to be performed outside the control room) and the time available

  1. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  2. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  3. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  4. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  5. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3{Chi}3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from

  6. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  7. 38 CFR 20.1500 - Rule 1500. Expedited Claims Adjudication Initiative.

    Science.gov (United States)

    2010-07-01

    ... Claims Adjudication Initiative. 20.1500 Section 20.1500 Pensions, Bonuses, and Veterans' Relief... Adjudication Initiative-Pilot Program § 20.1500 Rule 1500. Expedited Claims Adjudication Initiative. (a) Purpose. The Expedited Claims Adjudication Initiative is a pilot program designed to streamline the claims...

  8. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  9. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  10. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  11. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  12. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  13. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.).

  14. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.)

  15. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  16. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  17. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  18. Co-operation of the CMEA member countries in the development of different reactor types, including certain aspects of their nuclear fuel cycle

    International Nuclear Information System (INIS)

    Panasenkov, A.; Barbur, I.; Barchenkov, A.; Molnar, L.; Tolpygo, V.; Khake, V.; Shcherbinin, B.

    1977-01-01

    The report gives an account of the problems of the projected development of atomic power and evaluates its role in the fuel and power complex and long-range development of interconnected power systems of the CMEA member countries. The report emphasizes the importance of scientific and technical co-operation in the creation of thermal and fast-neutron power reactors with 1000-1500MW(e) units, and in the elaboration of nuclear plants for heating services. The positive experience of the international scientific and research group of scientists of the CMEA member countries carrying out reactor-physics studies on critical assemblies is mentioned. The report contains basic conclusions from the forecasts for nuclear power in the CMEA member countries up to 1990, including forecasting methodology; the role of nuclear power plants in saving natural and enriched uranium for a projected period; and the impact of nuclear power development rates on its structure (thermal and fast reactor ratio). It lists the impacts of scientific and technical co-operation of the CMEA member countries on the fuel cycle, including the transport of spent nuclear fuel, its recovery, reprocessing and radioactive waste disposal. Particular effects of co-operation of the CMEA member countries on the radiation safety of nuclear power plants and environmental protection are analysed. The report notes the role of the international economic associations Interatomenergo and Interatominstrument in the accelerated development of nuclear power. (author)

  19. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  20. International cooperation in supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    In the face of costlier, decreasingly available oil and a desire to achieve a higher degree of self-sufficiency, nuclear power has become an increasingly important ingredient in the mix of energy options looked to by a growing number of industrialized and developing states. One of the central concerns of states that are placing greater reliance on nuclear energy is the assurance that adequate nuclear fuels will be available on a timely basis and on economically acceptable terms. Greater emphasis on nuclear energy and on self-sufficiency entails greater potential risks as sensitive facilities and technologies associated with the nuclear fuel cycle threaten to proliferate. This paper explores the juxtaposition of the spread of nuclear technology and facilities in support of legitimate desires to achieve greater energy self-sufficiency and economic and social progress, on the one hand, and the implications of widely disseminated nuclear fuel cycle capacity for the objective of non-proliferation, on the other hand. It examines the recent evolution of nuclear fuel cycle activities including the scope of cooperation both among nuclear supplier states and between supplier and non-supplier states; explores the arenas in which common efforts are, can and should be undertaken (e.g., in terms of the nuclear resource base, the provision of essential services such as enrichment, and the management of nuclear waste), and identifies means by which national aspirations and international security concerns can be effectively accommodated. Particular attention is given to the methods by which the dissemination of sensitive technologies at facilities can be controlled without sacrificing the legitimate interests of any state, as well as to methods by which controls over potentially dangerous materials such as plutonium can be strengthened. The paper concludes that there are significant opportunities to achieve a high degree of international cooperation in the arena of fuel cycle

  1. The Chernobyl and Fukushima Daiichi nuclear accidents and their tragic consequences

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    On April 26, 1986, the Unit 4 of the RBMK nuclear power plant of Chernobyl, in Ukraine, went out of control during a test at low-power, leading to an explosion and fire. The reactor building was totally demolished and very large amounts of radiation were released into the atmosphere for several hundred kilometres around the site including the nearby town of Pripyat. The explosion leaving tons of nuclear waste and spent fuel residues without any protection and control totally contaminating the entire area. Several hundred thousand people were affected by the radiation fall out. The radioactive cloud spread across Europe affecting most of the Northern, Central and Eastern European countries. Some areas of southern Switzerland, of northern Italy as well as western France were subject to radioactive contamination. The initiative of the G7 countries to launch and important programme for the closure of some Soviet built nuclear plants was accepted by several donor countries. A team of engineers was established wi...

  2. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  3. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  4. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  5. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  6. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  7. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  9. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  10. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  11. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  12. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  13. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  14. Methodology for qualification of in-service inspection systems for WWER nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1998-03-01

    Program was initiated by IAEA in 1990 with the aim to assist the countries of Central and Eastern Europe and former Soviet Union in evaluating the safety of their first generation WWER-440/230 nuclear power plants. The main objectives were: to identify major design and operational safety issues; to establish international consensus on priorities for safety improvements; and to provide assistance in the review of the competence and and adequacy of safety improvement programs. The scope was extended in 1992 to include RBMK, WWER-440/312 and WWER-1000 plants in operation and under construction. Integrity of primary circuit is fundamental for the safe operation of any nuclear power plant. In-service inspection (ISI) in general terms and in particular, non-destructive tests (NDT) play a key role in maintaining primary circuit integrity. This report provides a methodology for qualification of ISI systems which might be used by WWER operating countries as a commonly accepted basis for further development of the necessary qualification related infrastructures. It also provides several qualification principles defining the administrative framework needed for the practical implementation of the methodology, a description of the process of qualification of an inspection system, specifying its minimum technical and documentation related requirements, as well as specific requirements with regard to the NDT procedures, equipment and personnel to be qualified and the test specimen to be used in practical trials. Finally, the report suggests an appropriate distribution of responsibilities among all the parties involved in a qualification process, based on international practice

  15. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  16. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  17. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  18. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  19. The use of energy analysis and indexes of energy efficiency in nuclear power

    International Nuclear Information System (INIS)

    D'yakonov, E.I.; Ignatenko, E.I.

    1991-01-01

    The results of calculating the indexes of energy efficiency for NPPs with the WWER-1000 and RBMK-1000 reactors, heat and power NPPs with the WWER-1000 and dictrict heating NPPs with the AST-500 reactor in three fuel cycles, namely, the open one and with uranium and plutonium recycles, are considered. Complex account for the quantity and quality of produced and consumed energy provides for objective evaluation of the indexes of energy efficiency during comparative analysis of nuclear power plants with different types of reactors. It is shown that complex use of the energy produced at a NPP provides for increase of indexes of energy efficiency. The highest indexes are obtained for heat and power NPP with the WWER-1000 reactor in the open fuel cycle, with uranium and plutonium recycle and for NPP with the WWER-1000 reactor with plutonium recycle

  20. Improved 1500 MWe Arabelle begins operation

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Two of the first 1500 MWe steam turbine-generator sets, described as the largest in the world, are undergoing commissioning at the Chooz B PWR nuclear power station in France. A number of design improvements have been made over the previous generation of 1350 MWe turbines, a process which will continue. (Author)

  1. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  2. The accident at the Chernobyl' nuclear power plant and its consequences. Pt. 1. General material

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a presentation of the Chernobyl' nuclear power station and of the RBMK-1000 reactor, including its principal physical characteristics, the safety systems and a description of the site and of the surrounding region. After a chronological account of the events which led to the accident and an analysis of the accident using a mathematical model it is concluded that the prime cause of the accident was an extremely improbable combination of violations of instructions and operating rules committed by the staff of the unit. Technical and organizational measures for improving the safety of nuclear power plants with RBMK reactors have been taken. A detailed description of the actions taken to contain the accident and to alleviate its consequences is given and includes the fire fighting at the nuclear power station, the evaluation of the state of the fuel after the accident, the actions taken to limit the consequences of the accident in the core, the measures taken at units 1, 2 and 3 of the nuclear power station, the monitoring and diagnosis of the state of the damaged unit, the decontamination of the site and of the 30 km zone and the long-term entombment of the damaged unit. The measures taken for environmental radioactive contamination monitoring, starting by the assessment of the quantity, composition and dynamics of fission products release from the damaged reactor are described, including the main characteristics of the radioactive contamination of the atmosphere and of the ground, the possible ecological consequences and data on the exposure of plant and emergency service personnel and of the population in the 30 km zone around the plant. The last part of the report presents some recommendations for improving nuclear power safety, including scientific, technical and organizational aspects and international measures. Finally, an overview of the development of nuclear power in the USSR is given

  3. Recent situation of the establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hoshiba, Shizuo

    1982-01-01

    In Japan, the development of nuclear power as principal petroleum substitute is actively pursued. Nuclear power generation now accounts for about 17 % of the total power generation in Japan. The business related to nuclear fuel cycle should be established by private enterprises. The basic policy in the establishment of nuclear fuel cycle is the stabilized supply of natural uranium, raise in domestic production of enriched uranium, dFomestic fuel reprocessing in principle, positive plutonium utilization, and so on. After explaining this basic policy, the present situation and problems in the establishment of nuclear fuel cycle are described: securing of uranium resources, securing of enriched uranium, reprocessing of used fuel, utilization of plutonium, management of radioactive wastes. (Mori, K.)

  4. Multilateral controls of nuclear fuel-cycle in Asia

    International Nuclear Information System (INIS)

    Choi, Jor-Shan

    2010-01-01

    To meet increasing energy demand and climate change issues, nuclear energy is expected to expand during the next decades in both developed and developing countries. This expansion, most visibly in Asian countries would no doubt be accompanied with complex and intractable challenges to global peace and security, notably in the back-end of the nuclear fuel cycle. What to do with the growing stocks of spent fuel in existing nuclear programs? And how to reduce proliferation concerns when spent fuels are generated in less stable regions of the world? The answers to these questions may lie in the possibility of multilateral (or regional) control of nuclear materials and technologies in the back-end of nuclear fuel cycle. One of the areas of interest is technology, e.g., spent fuel treatment (reprocessing) for long term sustainability and environmental-friendly disposal of radioactive wastes, as an alternative to directly disposing spent fuel in geologic repository. The other is to seek for regional centers for centralized interim spent fuel storage which can eventually turn into disposal facilities. Such centers could help facilitate the possibilities of spent fuel take-back/take-away from countries located in less stable regions for fix-period storage. (author)

  5. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  6. Logistics of nuclear fuel production for nuclear submarines

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos

    2000-01-01

    The future acquisition of nuclear attack submarines by Brazilian Navy along next century will imply new requirements on Naval Logistic Support System. These needs will impact all the six logistic functions. Among them, fuel supply could be considered as the one which requires the most important capacitating effort, including not only technological development of processes but also the development of a national industrial basis for effective production of nuclear fuel. This paper presents the technical aspects of the processes involved and an annual production dimensioning for an squadron composed by four units. (author)

  7. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  8. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  9. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  10. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  11. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  12. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  13. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  14. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  15. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  16. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  17. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  18. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  19. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  20. WWER-1000 steam generator integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Programme was initiated by IAEA in 1990 with the aim to assist the countries of Central and Eastern Europe and former Soviet Union in evaluating the safety of their first generation WWER-440/230 nuclear power plants. The main objectives were: to identify major design and operational safety issues; to establish international consensus on priorities for safety improvements; and to provide assistance in the review of the competence and and adequacy of safety improvement programs. The scope was extended in 1992 ro include RBMK, WWER-440/312 and WWER-1000 plants in operation and under construction. Based on the operational experience of more than 90 reactor years of WWER-1000 NPPs having 80 steam generators in operation or under construction the steam generator integrity was recognized as an important issue of high safety concern. The purpose of this report is to integrate available information on the issue of WWER-1000 steam generator integrity with the focus on the steam generator cold collector damage in particular. This information covers the status of stem generators at operating plants, cause analysis of collector cracking, the damage mechanisms involved, operational aspects and corrective measures developed and implemented. Consideration is given to material, design and fabrication related aspects, operational conditions, system solutions, and in-service inspection. Detailed conclusions and recommendations are provided for each of these aspects

  1. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  2. DOE not planning to accept spent nuclear fuel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Samuel K. Skinner, president of Commonwealth Edison Co. (ComEd), said open-quotes The federal government has a clear responsibility to begin accepting spent nuclear fuel in 1988,close quotes citing the Nuclear Waste Policy Act of 1982 before the Senate Energy and Natural Resources Committee. Based in Chicago, ComEd operates 12 nuclear units, making it the nation's largest nuclear utility. open-quotes Since 1983, the consumers who use electricity produced at all nuclear power plants have been paying to fund federal management of spent nuclear fuel. Consumer payments and obligations, with interest, now total more than $10 billion. Electricity consumers have held up their side of the deal. The federal government must do the same,close quotes Skinner added. Skinner represented the Nuclear Energy Institute (NEI) before the committee. NEI is the Washington-based trade association of the nuclear energy industries. For more than 12 years, utility customers have been paying one-tenth of a cent per kWhr to fund a federal spent fuel management program under the Nuclear Waste Policy Act of 1982. Under this act, the federal government assumed responsibility for management of spent fuel from the nation's nuclear power plants. The U.S. Department of Energy (DOE) was assigned to manage the storage and disposal program. DOE committed to begin accepting spent fuel from nuclear power plants by January 31, 1988. DOE has spent almost $5 million studying a site in Nevada, but is about 12 years behind schedule and does not plan to accept spent fuel beginning in 1998. DOE has said a permanent storage site will not be ready until 2010. This poses a major problem for many of the nation's nuclear power plants which supply about 20% of the electricity in the US

  3. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  4. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  5. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  6. PCI resistant light water reactor fuel cladding

    International Nuclear Information System (INIS)

    Foster, J.P.; Sabol, G.P.

    1988-01-01

    A tubular nuclear fuel element cladding tube is described, the fuel element cladding tube forming the entire fuel element cladding and consisting of: a single continuous wall, the single continuous wall consisting of a single alloy selected from the group consisting of zirconium base alloys, A, B, C, D, and E; the single continuous wall characterized by a cold worked and stress relieved microstructure throughout; wherein the zirconium base alloy A contains 0.2 - 0.6 w/o Sn, 0.03 - 0.11 w/o sum of Fe and Cr, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy B contains 0.1 - 0.6 w/oo Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy C contains 1.2 - 1.7 w/o Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities; the zirconium base alloy D contains 0.15 - 0.6 w/o Sn, 0.15 - 0.5 w/o Fe, section 600 ppm O, and section 1500 ppm total impurities; and the zirconium base alloy E contains 0.4 - 0.6 w/o Sn, 0.1 - 0.3 w/o Fe, 0.03 - 0.07 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities

  7. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  8. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  9. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  10. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  11. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.

    1981-01-01

    Nuclear in-core fuel management involves all the physical aspects which allow optimal operation of the nuclear fuel within the reactor core. In most nuclear power reactors, fuel loading patterns which have a minimum power peak are economically desirable to allow the reactors to operate at the highest power density and to minimize the possibility of fuel failure. In this study, perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations, and hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time. The code also has a burnup capability which can be used to check power peaking throughout the core life

  12. Analysis of realization of the water chemistry modes in the NPP with the RBMK-1000 and main directions of their improvement

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Tyapkov, V.F.; Belous, V.N.; Egorova, T.M.; Gost'kov, V.V.; Tishkov, V.M.; Yatsko, O.V.

    2005-01-01

    Paper deals with the analysis of normalization of the RBMK reactor NPP water chemistry conditions. One analyzed the imposed restrictions at deviation of the normalized parameters from the ones recommended for the normal operating conditions. Paper contains data on water chemistry management and describes measures to improve radiation situation near NPP reactor equipment. One studied the reasons of corrosion damage of the RBMK-1000 reactor NPP pipelines and the ways to prevent them via optimization and improvement of water chemistry conditions [ru

  13. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing light-water reactor fuel

    International Nuclear Information System (INIS)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Kitts, F.G.; Moore, R.E.; Witherspoon, J.P.

    1976-10-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term as low as reasonably achievable in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs, and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. This report is a revision of the original study

  15. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  17. Impacts of nuclear fuel cycle costs on nuclear power generating costs

    International Nuclear Information System (INIS)

    Bertel, E.; Naudet, G.

    1989-01-01

    Fuel cycle costs are one of the main parameters to evaluate the competitiveness of various nuclear strategies. The historical analysis based on the French case shows the good performances yet achieved in mastering elementary costs in order to limit global fuel cycle cost escalation. Two contrasted theoretical scenarios of costs evolution in the middle and long term have been determined, based upon market analysis and technological improvements expected. They are used to calculate the global fuel cycle costs for various fuel management options and for three strategies of nuclear deployment. The results illustrate the stability of the expected fuel cycle costs over the long term, to be compared to the high incertainty prevailing for fossil fueled plants. The economic advantages of advanced technologies such as MOX fueled PWRs are underlined

  18. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  19. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  20. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  1. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  2. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  3. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  4. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  5. Fuel fabrication and reprocessing for nuclear fuel cycle with inherent safety demands

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, Andrey Yurevich; Dvoeglazov, Konstantin Nikolaevich; Ivanov, Valentine Borisovich; Volk, Vladimir Ivanovich; Skupov, Mikhail Vladimirovich; Glushenkov, Alexey Evgenevich [Joint Stock Company ' ' The High Technological Research Institute of Inorganic Materials' ' , Moscow (Russian Federation); Troyanov, Vladimir Mihaylovich; Zherebtsov, Alexander Anatolievich [Innovation and Technology Center of Project ' ' PRORYV' ' , State Atomic Energy Corporation ' ' Rosatom' ' , Moscow (Russian Federation)

    2015-06-01

    The strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.

  6. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Topfuel '95: Fuel for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In early 1995, 425 nuclear power stations with an installed capacity of 360 263 MW were in operation in 30 countries of the world, and a total of 60 units with a capacity of 53 580 MWe were being cnstructed in 18 countries. The supply of nuclear fuels to these nuclear power stations was the central issue of the Topfuel '95 - Topical Meeting on Nuclear Fuel. More than 350 experts from 23 countries had been invited to Wuerzburg by the Kerntechnische Gesellschaft (KTG) and the European Nuclear Society (ENS). The conference was accompanied by an exhibition at which twelve inernational fuel cycle enterprises presented their products, processes, and problem solutions. The poster session in the hall of the Cogress Center Wuerzburg exhibited 42 contributions which are be discussed in the second part of the conference report. (orig./UA) [de

  8. On the problems of the fuel cycles of nuclear fuels

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.; Wagner, H.F.

    1976-01-01

    A secured procurement with nuclear energy can be only achieved if a completely closed fuel cycle will be established. In the Federal Republic of Germany efforts are concentrated on the front end as well as on the back end of the fuel cycle. At the front end the main tasks are to secure uranium supply and to establish the necessary enrichment capacity. The German concept for the back end of the fuel cycle will provide for an integrated and co-located system for all necessary facilities including reprocessing, plutonium fuel fabrication, treatment, interim storage and final disposal of the radioactive wastes to be operational in the mid-80's. Responsibilities for establishing this system are shared between government and private industry. Government will provide for final waste disposal, industry will built and operate the other facilities. Another important point for the introduction of nuclear energy is to solve reliably the problems of protection of fissionable material, radioactive waste and nuclear facilities. German government has initiated respective activities and has started appropriate R+D-work. (orig.) [de

  9. Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Piercesare [MOX, Department of Mathematics, Polytechnic of Milan (Italy); Zio, Enrico [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)], E-mail: enrico.zio@polimi.it; Di Maio, Francesco [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)

    2008-12-15

    For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must be presented at the Regulatory Authority with the necessary confidence on the models used to describe the plant safety behavior. In principle, this requires the repetition of a large number of model runs to account for the uncertainties inherent in the model description of the true plant behavior. The present paper propounds the use of bootstrapped Artificial Neural Networks (ANNs) for performing the numerous model output calculations needed for estimating safety margins with appropriate confidence intervals. Account is given both to the uncertainties inherent in the plant model and to those introduced by the ANN regression models used for performing the repeated safety parameter evaluations. The proposed framework of analysis is first illustrated with reference to a simple analytical model and then to the estimation of the safety margin on the maximum fuel cladding temperature reached during a complete group distribution header blockage scenario in a RBMK-1500 nuclear reactor. The results are compared with those obtained by a traditional parametric approach.

  10. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  11. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    Schlupp, C.

    1986-07-01

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  12. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  13. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  14. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    Important changes concerning nuclear energy are coming to the fore, such as economic competitiveness compared to other energy resources, requirement for severe measures to mitigate man-made greenhouse gas (GHG) emission, due to the rise of energy demand in Central and Eastern Europe and Asia and to the greater public concern with respect to the nuclear safety, particularly related to spent fuel and radioactive waste disposal. Global safety culture, as well as well focused nuclear research and development programs for safer and more efficient nuclear technology manifest themselves in a stronger and effective way. Information and data on nuclear technology and safety are disseminated to the public in timely, accurate and understandable fashion. Nuclear power is an important contributor to the world's electricity needs. In 1999, it supplied roughly one sixth of global electricity. The largest regional percentage of electricity generated through nuclear power last year was in western Europe (30%). The nuclear power shares in France, Belgium and Sweden were 75%, 58% and 47%, respectively. In North America, the nuclear share was 20% for the USA and 12% for Canada. In Asia, the highest figures were 43% for the Republic of Korea and 36% for Japan. In 1998, twenty-three nations produced uranium of which, the ten biggest producers (Australia, Canada, Kazakhstan, Namibia, Niger, the Russian Federation, South Africa, Ukraine, USA and Uzbekistan) supplied over 90% of the world's output. In 1998, world uranium production provided only about 59% of world reactor requirements. In OECD countries, the 1998 production could only satisfy 39% of the demand. The rest of the requirements were satisfied by secondary sources including civilian and military stockpiles, uranium reprocessing and re-enrichment of depleted uranium. With regard to the nuclear fuel industry, an increase in fuel burnup, higher thermal rates, longer fuel cycle and the use of mixed uranium-plutonium oxide (MOX

  15. Fission products in the spent nuclear fuel from czech nuclear power plants

    International Nuclear Information System (INIS)

    Lelek, V.; Mikisek, M.; Marek, T.

    1999-01-01

    The nuclear power is expected to become a supply able to cover a significant part of the world energetic demand in future. But its big disadvantage, the risk of the spent nuclear fuel, has to be solved. The aim of this paper is to make simple estimates of the upper limits of amounts of the most dangerous spent fuel components and their compounds produced in Czech Republic until 2040. Our estimates are independent on particular type reactor (only on its power) and so they can be carried out for any nuclear fuel cycle. (Authors)

  16. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  17. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  18. Nuclear fuel behavior activities at the OECD/NEA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The work programme regarding nuclear fuel behavior issues at OECD/NEA is carried out in two sections. The Nuclear Science and Data Bank Division deals with basic phenomena in fuel behavior under normal operating conditions, while the Safety Division concentrates upon regulation and safety issues in fuel behavior. A new task force addressing these latter issues has been set up and will produce a report providing recommendations in this field. The OECD Nuclear Energy Agency jointly with the International Atomic Energy Agency established an International Fuel Performance Experiments Database which is operated by the NEA Data Bank. (author). 1 tab.

  19. Nuclear fuel behavior activities at the OECD/NEA

    International Nuclear Information System (INIS)

    1997-01-01

    The work programme regarding nuclear fuel behavior issues at OECD/NEA is carried out in two sections. The Nuclear Science and Data Bank Division deals with basic phenomena in fuel behavior under normal operating conditions, while the Safety Division concentrates upon regulation and safety issues in fuel behavior. A new task force addressing these latter issues has been set up and will produce a report providing recommendations in this field. The OECD Nuclear Energy Agency jointly with the International Atomic Energy Agency established an International Fuel Performance Experiments Database which is operated by the NEA Data Bank. (author). 1 tab

  20. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  1. Nuclear energy center site survey: fuel cycle studies

    International Nuclear Information System (INIS)

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  3. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  4. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  5. Utilities' view on the fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Utilities engagement in nuclear power requires an increasing amount of fuel management activities by the utilities in order to meet all tasks involved. These activities comprise essentially two main areas: - activities to secure the procurement of all steps of the fuel cycle from the head to the back end; - activities related to the incore fuel managment. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be realized by the utilities. Starting in the past, today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The scope of utilities' fuel management activities is analyzed with respect to organizational aspects, technical aspects, safeguarding aspects, and financial aspects. Utilities taking active part in the fuel management serves to achieve high availability and flexibility of the nuclear power plant during the whole plant life as well as safe waste isolation. This can be assured by continuous optimization of all fuel management aspects of the power plant or on a larger scale of a power plant system, i.e., utility activities to minimize the effects of fuel cycle on the environment, which includes optimization of fuel behaviour, radiation exposure to public and personnel, and utility technical and economic evaluations of out- and incore fuel management. These activities of nuclear power producing utilities in the field of nuclear fuel cycle are together with a close cooperation with fuel industry as well as national and international authorities a necessary basis for the further utilization of nuclear power

  6. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  7. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  8. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  9. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  10. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  11. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  12. Financial aspects of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    A nuclear power plant has a forward supply of several years as a consequence of the long processing time of the uranium from mining to delivery of fabricated fuel elements and of the long insertion time in the reactor. This leads to a considerable capital requirement although the specific fuel costs for nuclear fuel are considerably lower then for a conventional power plant and present only 15% of the total generating costs. (orig./RW) [de

  13. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  14. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  15. Dynamic model for tritium build-up at NPP with RBMK type reactors and its enviromental beraviour

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Ivanov, E.A.; Stegachev, G.F.; Tolstykh, V.D.

    1982-01-01

    A model of tritium production dynamics for a high power NPP with RBMK type reactors is proposed and investigated. The main ''skeleton'' model structure for forecasting tritium buildup at a NPP and its exchange with the environment has been singled out at a heuristic level. Decomposition and layout of the units have been performed by global functional relations of the investigated objects (NPP and environment). the model accounts for only oxidized tritium forms. Water exchange between the NPP subsystems and environment is the main mechanism for tritium migration. The model does not account for scheduled periodic maintenance work effects, presence of stagnant zones in the station circuits, fuel burn-up, etc. The parametric identification method applied in the model makes the model adaptable to particular situations and considered systems of the NPP and environment. Completing the model with necessary and sufficient experimental data one can pass to certain forecasting problems and to NPP control as a tritium source in the environment

  16. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  17. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  18. Nuclear Fuel Safety Criteria Technical Review - Second edition

    International Nuclear Information System (INIS)

    Beck, Winfried; Blanpain, Patrick; Fuketa, Toyoshi; Gorzel, Andreas; Hozer, Zoltan; Kamimura, Katsuichiro; Koo, Yang-Hyun; Maertens, Dietmar; Nechaeva, Olga; Petit, Marc; Rehacek, Radomir; Rey-Gayo, Jose Maria; Sairanen, Risto; Sonnenburg, Heinz-Guenther; Valach, Mojmir; Waeckel, Nicolas; Yueh, Ken; Zhang, Jinzhao; Voglewede, John

    2012-01-01

    Most of the current nuclear fuel safety criteria were established during the 1960's and early 1970's. Although these criteria were validated against experiments with fuel designs available at that time, a number of tests were based on unirradiated fuels. Additional verification was performed as these designs evolved, but mostly with the aim of showing that the new designs adequately complied with existing criteria, and not to establish new limits. In 1996, the OECD Nuclear Energy Agency (NEA) reviewed existing fuel safety criteria, focusing on new fuel and core designs, new cladding materials and industry manufacturing processes. The results were published in the Nuclear Fuel Safety Criteria Technical Review of 2001. The NEA has since re-examined the criteria. A brief description of each criterion and its rationale are presented in this second edition, which will be of interest to both regulators and industry (fuel vendors, utilities)

  19. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  20. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  1. Determination of the origin of unknown irradiated nuclear fuel.

    Science.gov (United States)

    Nicolaou, G

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions.

  2. Determination of the origin of unknown irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Nicolaou, G.

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions

  3. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulations are established on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the usage of nuclear fuel materials'' in the Enforcement Ordinance of the Law, to enforce such provisions. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaging in works, area for incoming and outgoing of materials, batch, real stocks, effective value and main measuring points. In the applications for the permission to use nuclear fuel materials, the expected period and quantity of usage of each kind of such materials and the other party and the method of selling, lending and returning spent fuel or the process of disposal of such fuel must be written. Explanations concerning the technical ability required for the usage of nuclear fuel materials shall be attached to the applications. Applications shall be filed for the inspection of facilities for use, in which the name and the address of the applicant, the name and the address of the factory or the establishment, the range of the facilities for use, the maximum quantity of nuclear fuel materials to be used or stocked, and the date, the place and the kind of the expected inspection are written. Prescriptions cover the records to be held, safety regulations, the technical standards for usage, the disposal, transport and storage of nuclear fuel materials and the reports to be filed. (Okada, K.)

  4. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  5. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  6. Nuclear fuel resources: enough to last?

    International Nuclear Information System (INIS)

    Price, R.; Blaise, J.R.

    2002-01-01

    The need to meet ever-growing energy demands in an environmentally sustainable manner has turned attention to the potential for nuclear energy to play an expanded role in future energy supply mixes. One of the key aspects in defining the sustainability of any energy source is the availability of fuel resources. This article shows that available nuclear energy fuel resources can meet future needs for hundreds, even thousands, of years

  7. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  8. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  9. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  10. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  11. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  12. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  13. Device for detecting defective nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.

    1976-01-01

    A moisture sensor is provided for a nuclear fuel rod for water-cooled nuclear reactors wherein moisture can be present. The fuel rod has an end cap and a charge of nuclear fuel. The moisture sensor is disposed between the end cap and the charge and serves to detect a leak in the fuel rod. The moisture sensor includes a capsule-like housing having an inner space and having openings through which moisture can pass into the inner space in the event of a leak in the fuel rod. Ferromagnetic material is disposed in the inner space of the housing together with a moisture detector responsive to moisture for altering the diposition of the ferromagnetic material in the inner space. 5 claims, 6 drawing figures

  14. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  15. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  16. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  17. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  18. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  19. Assessment and balancing of nuclear fuels

    International Nuclear Information System (INIS)

    Reinhard, H.

    1982-01-01

    In 1981 nuclear energy had a share of ca. 17% in the electric power supply of the F.R. of Germany. The amount of nuclear fuels required is equal to ca. 15 million tce. In public technical discussions the economic importance which must be assigned to nuclear energy, e.g. with regard to curbing the energy price development or relieving our balance of payments, is discussed in detail. On the other hand, a number of industrial aspects of nuclear energy utilization - problems of commercial or fiscal law - have been little considered in the technical literature. The following contribution is to present the principles of commercial and fiscal law which have taken shape in connection with the assessment and balancing of the single stages of the nuclear fuel cycle. (orig./UA) [de

  20. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.