WorldWideScience

Sample records for raytheon services nevada

  1. Raytheon's next generation compact inline cryocooler architecture

    International Nuclear Information System (INIS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  2. Raytheon's next generation compact inline cryocooler architecture

    Science.gov (United States)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  3. Raytheon's next generation compact inline cryocooler architecture

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. [Raytheon Space and Airborne Systems, 2000 E. El Segundo Blvd., El Segundo, CA 90245 (United States)

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  4. Raytheon Stirling/pulse Tube Cryocooler Development

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  5. Socioeconomic profile of Clark County, Nevada: Community services inventory

    International Nuclear Information System (INIS)

    1986-09-01

    The Nevada Nuclear Waste Storage Investigations Project is preparing socioeconomic profiles of Clark County, Nevada, and communities in Clark County that could be affected by siting, construction, operation, and decommissioning of a high-level nuclear waste repository at Yucca Mountain, located in Nye County. These profiles serve as a data base for evaluating local community service impacts; store existing socioeconomic data in a uniform, readily accessible format; identify the need for additional data; and assist in developing a plan for monitoring and mitigating any significant adverse impacts that may be associated with site characterization and potential repository development. This element of the socioeconomic profiles contains an inventory of community services provided by local, county, and state agencies and volunteer organizations to residents of Las Vegas, North Las Vegas, Henderson, Boulder City, Indian Springs, and unincorporated areas of the county. Services inventoried include housing, growth management, general government, education, police protection, transportation networks, public clinics, private health personnel, parks and recreation, social services, libraries, ambulances, electric power, natural gas, water, sewers and wastewater treatment, solid waste, and fire protection. The report includes a summary overview of service providers in Clark County, discussions of the services provided to residents of communities in Clark County that may be affected by Project activities, and a description of service providers whose service areas are not limited to the incorporated areas of Clark County. Data presented in this profile were collected through March of 1985. Data collection efforts are ongoing and this profile will be updated periodically

  6. Socioeconomic profile of Nye County, Nevada: Community services inventory

    International Nuclear Information System (INIS)

    1986-09-01

    The Nevada Nuclear Waste Storage Investigations Project is preparing socioeconomic profiles of Nye County, Nevada, and communities in Nye County that could be affected by siting, construction, operation, and decommissioning of a high-level nuclear waste repository at Yucca Mountain, located in Nye County. These profiles serve as a data base for evaluating local community service impacts; store existing socioeconomic data in a uniform, readily accessible format; identify the need for additional data; and assist in developing a plan for monitoring and mitigating any significant adverse impacts that may be associated with site characterization and potential repository development. This element of the socioeconomic profiles contains an inventory of community services provided by local, county, and state agencies and volunteer organizations to residents of Amargosa Valley, Beatty, and Pahrump. Services inventoried for each community include housing, growth management, general government, education, police protection, transportation networks, public clinics, private health personnel, parks and recreation, social services, libraries, ambulances, electric power, heating fuel, water, sewers and wastewater treatment, solid waste, and fire protection. The report includes a summary overview of service providers in Nye County, discussions of services provided to residents of the three communities, and summary tables. Data presented in this profile were collected through early 1985. Data collection efforts are ongoing and this profile will be updated periodically

  7. Nevada

    International Nuclear Information System (INIS)

    Noble, D.C.; Plouff, D.; Close, T.J.; Bergquist, J.R.; Neumann, T.R.

    1987-01-01

    The part of the High Rock Late Wilderness Study Area, requested for mineral surveys by the Bureau of Land Management, encompasses 14,000 acres in the northern part of the Calico Mountains, Northwest Nevada. No resources were identified in the study area; however, there is low potential throughout the study area for volcanic-hosted deposits of mercury, uranium, and disseminated gold. The northern part of the study area has low potential for geothermal energy

  8. Science, engineering and technical service capabilities of Nevada higher education organizations

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The objective of this document is to increase the current dialogue between members of Nevada`s higher education system and the leadership of the federal scientific community in Nevada in order to start and expand collaborative relationships. This section provides introductory material on Nevada institutions of higher education and research together with background information on the need for increased federal collaboration with Nevada higher education institutions.

  9. IEEE Computer Society/Software Engineering Institute Watts S. Humphrey Software Process Achievement Award 2016: Raytheon Integrated Defense Systems Design for Six Sigma Team

    Science.gov (United States)

    2017-04-01

    worldwide • $23 billion in sales for 2015 Raytheon Integrated Defense Systems (IDS) is one of five businesses within Raytheon Company and is headquartered...Raytheon Integrated Defense Systems DFSS team has developed and implemented numerous leading-edge improvement and optimization methodologies resulting in...our software systems . In this section, we explain the first methodology, the application of statistical test optimization (STO) using Design of

  10. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    Science.gov (United States)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  11. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for

  12. Post-test geologic observations made at the non-proliferation experiment site, N-tunnel, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D.R.; Bradford, R.P.; Hopkins, S.P. [Raytheon Services Nevada, Mercury, NV (United States)] [and others

    1994-12-31

    Qualitative evaluations of damage resulting from an underground explosion can provide valuable information concerning the size of the charge, as well as the location of a clandestine detonation. However, caution must be exercised during the appraisal because the effects of an explosion are a function of many factors in addition to yield. Construction techniques, the physical properties of the surrounding rock, and the depth of burial are all important considerations when evaluating the effects of an underground detonation. Raytheon Services Nevada geologists documented underground and surface effects of the Non-Proliferation Experiment, as they have for all recent underground weapons-effects tests conducted by the Defense Nuclear Agency. Underground, the extent of the visible damage decreased rapidly from severe at the closest inspection point 100 m from the Working Point, to insignificant 300 m from the Working Point. The severity of damage correlates in some instances with the orientation of the drift with respect to the shock-wave propagation direction. No evidence of the Non-Proliferation explosion was visible on the mesa surface 389 m above the Working Point the day after the explosion.

  13. Nevada Operations overview

    International Nuclear Information System (INIS)

    Church, B.W.

    1981-01-01

    A brief overview is given of weapon test site decontamination activities carried out by Nevada Operations Office. Tabulated data is given of event name, date, location, year of cleanup, and radioisotopes that were present, activity levels, and cost of cleanup

  14. Special Nevada report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-23

    This report is submitted to Congress by the Secretary of the Air Force, the Secretary of the Navy, and the Secretary of the Interior pursuant to Section 6 of the Military Lands Withdrawal Act of 1986. It contains an analysis and evaluation of the effects on public health and safety resulting from DOD and Department of Energy (DOE) military and defense-related uses on withdrawn public lands in the State of Nevada and in airspace overlying the State. This report describes the cumulative impacts of those activities on public and private property in Nevada and on plants, fish and wildlife, cultural, historic, scientific, recreational, wilderness and other resources of the public lands of Nevada. An analysis and evaluation of possible measures to mitigate the cumulative effects of the withdrawal of lands and the use of airspace in Nevada for defense-related purposes was conducted, and those considered practical are listed.

  15. Nevada state revenues analysis

    International Nuclear Information System (INIS)

    1988-06-01

    This report analyzes the major sources of revenue to the Nevada State General Fund for purposes of estimating impacts associated with the siting of a nuclear waste repository at Yucca Mountain in Nye County, Nevada. Each major revenue source is analyzed to identify relationships among the economic or demographic base, the revenue base, and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each revenue source to allow impact estimation

  16. Nevada Isostatic Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Isostatic anomaly grid for the state of Nevada. Number of columns is 269 and number of rows is 394. The order of the data is from the lower left to the...

  17. Estimates of carbon stored in harvested wood products from United States Forest Service's Sierra Nevada Bio-Regional Assessment Area of the Pacific Southwest Region, 1909-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  18. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  19. Sierra Nevada Subregional Boundary - Sierra Nevada Conservancy [ds542

    Data.gov (United States)

    California Natural Resource Agency — Sierra Nevada Conservancy (SNC) boundary. The boundary was mapped to correspond with statute AB 2600 (2004) and as re-defined in AB 1201 (2005). Work on the boundary...

  20. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  1. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  2. Nevada`s role in the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Vaeth, T. [Dept. of Energy, Las Vegas, NV (United States)

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  3. Nevada Thickness of Cenozoic Deposits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study of gravity data from Nevada is part of a statewide analysis of mineral resources. The main objective of the gravity study were: 1) to infer the structure...

  4. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  5. Micrometeorological Observations in a Sierra Nevada Meadow

    Science.gov (United States)

    Blackburn, D. A.; Oliphant, A. J.

    2016-12-01

    Mountain meadows play important roles on watershed and ecosystem services, including improving water quality, moderating runoff and providing biodiversity hotspots. In the Sierra Nevada, mountain meadows are an integral part of the mountain ecosystem and watersheds that impact more than 20 million people. Grazing, logging and other forms of anthropogenic land use in the Sierra Nevada have degraded the functioning of meadows, by altering the morphology, hydrology and vegetation. Existing meandering stream networks become incised and straightened by increased runoff, which effectively lowers the water table and completely alters the ecosystem from moist meadow sedges, grasses, and herbs to dryland grass and shrubs. Given the large growth cycle in healthy meadows, it is also expected that they sequester a significant amount of carbon and enhance atmospheric humidity through evapotranspiration, but relatively little work has been done on the bio-micrometeorology of meadows. The purpose of this study is to assess the growing season carbon, water and energy budgets of a partly degraded meadow in the northern Sierra Nevada. Loney Meadow, located at nearly 2,000 m in the Tahoe National Forest, has been identified as a degraded meadow and is scheduled to undergo restoration work to raise the water table in 2017. A micrometeorological tower with eddy covariance instruments was deployed at the site for most of the snow-free period from May to October 2016. The measurements include: fluxes of CO2, water vapor, surface radiation and energy budget components; ancillary meteorological and soil data; and an automated camera capturing daily images of the meadow surface. The poster will present diurnal and seasonal CO2 on a daily basis with a very rapid increase at the onset of the growing season.

  6. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  7. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  9. Nevada local government revenues analysis

    International Nuclear Information System (INIS)

    1988-06-01

    This report analyzes the major sources of revenue for Nevada local government for purposes of estimating the impacts associated with the siting of a nuclear waste repository at Yucca Mountain. Each major revenue source is analyzed separately to identify relationships between the economic or demographic base, the revenue base and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each component to allow impact estimation. This report is a companion to the report Nevada State Revenues Analysis

  10. An overview of the Southern Nevada Agency Partnership science and research synthesis: Chapter 1 in The Southern Nevada Agency Partnership science and research synthesis: science to support land management in southern Nevada

    Science.gov (United States)

    Chambers, Jeanne C.; Brooks, Matthew L.; Turner, Kent; Raish, Carol B.; Ostoja, Steven M.

    2013-01-01

    Maintaining and restoring the diverse ecosystems and resources that occur in southern Nevada in the face of rapid socio-economic and ecological change presents numerous challenged to Federal land managers. Rapid population growth since the 1980s, the land uses associated with that growth, and the interactions of those uses with the generally dry and highly variable climate result in numerous stresses to ecosystems, species, and cultural resource. In addition, climate models predict that the rate of temperature increase and, thus, changes in ecological processes, will be highest for ecosystems like the Mojave Desert. The Southern Nevada Agency Partnership (SNAP; http:www.SNAP.gov) was established in 1999 to address common issues pertaining to public lands in southern Nevada. Partners include the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service and they work with each other, the local community, and other partners. SNAP agencies manage more than seven million acres of public lands in southern Nevada (95% of the land area). Federal land includes two national recreation areas, two national conservation area, four national wildlife refuges, 18 congressionally designated wilderness areas, five wilderness study areas, and 22 areas of critical environmental concern. The partnership's activities are mainly centered in Southern Nevada's Clark County (fig. 1.1), but lands managed by SNAP partner agencies also include portions of Lake Mead National Recreation Area in Mohave County, Arizona, U.S. Fish and Wildlife Service, and USDA Forest Service-managed lands in Lincoln and Nye Counties, Nevada, and all lands and activities managed by the Southern Nevada District Office of the Bureau of Land Management. These lands encompass nine distinct ecosystem types (fig. 1.2), support multiple species of management concern an 17 listed species, and are rich in cultural and historic resource. This introductory executive summary

  11. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    Science.gov (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  13. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  14. Nevada may lose nuclear waste funds

    International Nuclear Information System (INIS)

    Marshall, E.

    1988-01-01

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE's work and would limit the ability of Nevada to go out an collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE

  15. 76 FR 3926 - Notice and Request for Comments: LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant...

    Science.gov (United States)

    2011-01-21

    ... Dakota, and Wyoming Migrant Service Areas Beginning April 1, 2011 AGENCY: Legal Services Corporation. ACTION: Notice and Request for Comments--LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant... Wyoming migrant service areas: MNV, MSD, and MWY, effective April 1, 2011, because any eligible migrant...

  16. Managing Sierra Nevada forests

    Science.gov (United States)

    Malcolm North

    2012-01-01

    There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...

  17. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  18. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    International Nuclear Information System (INIS)

    Sweeney, Robin L.; Lechel, David J.

    2003-01-01

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada

  19. Nevada, the Great Recession, and Education

    Science.gov (United States)

    Verstegen, Deborah A.

    2013-01-01

    The impact of the Great Recession and its aftermath has been devastating in Nevada, especially for public education. This article discusses the budget shortfalls and the impact of the economic crisis in Nevada using case study methodology. It provides a review of documents, including Governor Gibbon's proposals for the public K-12 education system…

  20. Helping Nevada School Children Become Sun Smart

    Centers for Disease Control (CDC) Podcasts

    This podcast features Christine Thompson, Community Programs Manager at the Nevada Cancer Coalition, and author of a recent study detailing a school-based program to help Nevada school children establish healthy sun safety habits and decrease UV exposure. Christine answers questions about her research and what impact her what impact the program had on children's skin health.

  1. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 2

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank release sites within various areas of the Nevada Test Site. This report contains remedial verification of the soil sample analytical results for the following: Area 11 Tweezer facility; Area 12 boiler house; Area 12 service station; Area 23 bypass yard; Area 23 service station; Area 25 power house; Area 25 tech. services building; Area 25 tech. operations building; Area 26 power house; and Area 27 boiler house

  2. Nevada commercial spent nuclear fuel transportation experience

    International Nuclear Information System (INIS)

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed

  3. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  4. Role of oaks in fisher habitat quality in the Sierra Nevada mountains at multiple spatial scales

    Science.gov (United States)

    Craig M. Thompson; Kathryn Purcell; Rebecca Green; Richard. Sweitzer

    2015-01-01

    Fishers (Pekania pennanti) occur in ponderosa pine, mixed conifer, and mixed hardwood conifer habitats in the southern Sierra Nevada at elevations from approximately 1400 to 2300 m. They are a candidate species for listing under both the Federal and California Endangered Species Acts. Since 2007, the U.S. Department of Agriculture, Forest Service (...

  5. Nevada Photo-Based Inventory Pilot (NPIP) resource estimates (2004-2005)

    Science.gov (United States)

    Tracey S. Frescino; Gretchen G. Moisen; Paul L. Patterson; Elizabeth A. Freeman; James Menlove

    2016-01-01

    The complex nature of broad-scale, strategic-level inventories, such as the Forest Inventory and Analysis program (FIA) of the USDA Forest Service, demands constant evolution and evaluation of methods to get the best information possible while continuously increasing efficiency. The State of Nevada is predominantly comprised of nonforested Federal lands with a small...

  6. Rural migration in southern Nevada

    International Nuclear Information System (INIS)

    Mosser, D.; Soden, D.L.

    1993-01-01

    This study reviews the history of migration in two rural counties in Southern Nevada. It is part of a larger study about the impact of a proposed high-level nuclear waste repository on, in and out-migration patterns in the state. The historical record suggests a boom and bust economic cycle has predominated in the region for the past century creating conditions that should be taken into account, by decision makers, when ascertaining the long-term impacts of the proposed repository

  7. Quaternary environments in Sierra Nevada

    OpenAIRE

    Oliva, Marc; Gómez Ortiz, Antonio; Palacios Estremera, David; Salvador Franch, Ferran; Salvà Catarineu, Monserrat

    2016-01-01

    El conocimiento relativo a la evolución ambiental cuaternaria en las montañas de la Península Ibérica ha avanzado sustancialmente en las últimas décadas. Particularmente significativos son los progresos realizados en el macizo de Sierra Nevada, en el sur peninsular. En este caso, los investigadores se han servido de registros naturales y fuentes documentales para reconstruir la dinámica ambiental desde la Última Glaciación y posterior deglaciación del macizo hasta su evolución reciente. Los c...

  8. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  9. Atmospheric overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bowen, J.L.; Egami, R.T.

    1983-11-01

    This report discusses atmospheric considerations for a nuclear waste repository at NTS. It presents the climatology of Nevada, and NTS in particular, including paleoclimatology for past climatic changes, present climatology for mean meterological conditions, feature climatological expectations, and occurrence of extreme weather. It discusses air quality aspects including an estimation of present air quality and possible dispersion conditions on NTS. It briefly assesses noise problems. It outlines a plan for an Environmental Impact Statement and covers the federal and state regulations for air quality. It identifies data for climatology and air quality and evaluates their applicability to nuclear waste repository

  10. Nevada Applied Ecology Information Center: a prototype

    International Nuclear Information System (INIS)

    Pfuderer, H.A.

    1978-01-01

    The Nevada Applied Ecology Group (NAEG) was exceptionally farsighted in establishing the Nevada Applied Ecology Information Center in January 1972, not long after the Nevada Test Site research programs began. Since its inception, the Data Base on the Environmental Aspects of the Transuranics has been proven to be a useful tool to a wide range of researchers and planners, both nationally and internationally, in addition to those associated with the NAEG. Because of its versatility and ease of access, the Data Base on the Environmental Aspects of the Transuranics has played a major role in the development of new projects by the Ecological Sciences Information Center

  11. Annotated bibliography for biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1981-12-01

    This annotated bibliography was compiled to accompany the Biologic Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, EG and G, Santa Barbara Operations Report No. EGG 1183-2443, which documents and synthesizes important biotic information related to Nevada Nuclear Waste Storage Investigations (NNWSI). As such, it is an important part of the NNWSI screening process that was designed to include a systematic, traceable, defensible, and documented basis for a decision to proceed or not with site-specific phases on NTS. Included are all published, and available but unpublished, baseline information on life histories, habitat requirements, distributions, and ecological relationships of the flora and fauna of the region. Special effort was made to include information on endangered, threatened, or sensitive species. 131 references

  12. Science-based management of public lands in southern Nevada [Chapter 11] (Executive Summary)

    Science.gov (United States)

    Matthew L. Brooks; Jeanne C. Chambers

    2013-01-01

    Landmark legislation provides guiding principles for land management planning in southern Nevada and the rest of the United States. Such legislation includes, but is not limited to, the Forest Service Organic Administration Act of 1897 (16 U.S.C. 473-478, 479-482 and 551), National Park Service Organic Act of 1916 (U.S.C. Title 16, Secs. 1-4), Wilderness Act 1964 (P.L....

  13. Nevada Isostatic Residual Gravity Over Basement

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study of gravity data from Nevada is part of a statewide analysis of mineral resources. The main objective of the gravity study were: 1) to infer the structure...

  14. Gravity Data for the State of Nevada

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are presented. About 80,000 gravity stations were compiled primarily...

  15. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  16. Nevada National Security Site Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wills, C.

    2014-09-09

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) (formerly designated as the Nevada Site Office [NNSA/NSO]). The new field office designation occurred in March 2013. Published reports cited in this 2013 report, therefore, may bear the name or authorship of NNSA/NSO. This and previous years’ reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NFO website at http://www.nv.energy.gov/library/publications/aser.aspx.

  17. Swimming Upstream: Tobacco Policy Making in Nevada

    OpenAIRE

    Tung, Gregory MPH; Glantz, Stanton A. Ph.D.

    2008-01-01

    The tobacco industry is a major political force in Nevada. The industry dominated state politics through a combination of strategic alliances with the hospitality and gaming industries and campaign contributions. From 1990-2006 the tobacco industry contributed $552,111 to the state political parties and individuals running for state office. In 1975, health groups in Nevada attempted to pass a legislative proposal, AB 17, that would have required smoking and non-smoking sections in al...

  18. Services

    International Nuclear Information System (INIS)

    Hardeman, F.

    1998-01-01

    The objectives of the services section is (1) to offer complete services in health-physics measurements according to international quality standards, (2) to improve continuously these measurement techniques and to follow up international recommendations and legislation concerning the surveillance of workers, (3) to support and advise nuclear and non-nuclear industry on problems of radioactive contamination. Achievements related to gamma spectrometry, whole-body counting, beta and alpha spectrometry, dosimetry, radon measurements, calibration, instrumentation, and neutron activation analysis are described

  19. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  20. EnergyFit Nevada (formerly known as the Nevada Retrofit Initiative) final report and technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Carvill, Anna; Bushman, Kate; Ellsworth, Amy

    2014-06-17

    The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with an average energy reduction of 32% per home. Other achievements included: Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 Achieved an overall conversation rate of 38.1%2 7,089,089 kWh of modeled energy savings3 Total annual homeowner energy savings of approximately $525,7523 Efficiency upgrades completed on 1,100,484 square feet of homes3 $139,992 granted in loans to homeowners for energy-efficiency upgrades 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 40 contractors trained in Nevada 37 contractors with Building Performance Institute (BPI) certification in Nevada 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.

  1. Biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations project study area includes five major vegetation associations characteristic of the transition between the northern extent of the Mojave Desert and the southern extent of the Great Basin Desert. A total of 32 species of reptiles, 66 species of birds, and 46 species of mammals are known to occur within these associations elsewhere on the Nevada Test Site. Ten species of plants, and the mule deer, wild horse, feral burro, and desert tortoise were defined as possible sensitive species because they are protected by federal and state regulations, or are being considered for such protection. The major agricultural resources of southern Nye County included 737,000 acres of public grazing land managed by the Bureau of Land Management, and 9500 acres of irrigated crop land located in the Beatty/Oasis valleys, the Amargosa Valley, and Ash Meadows. Range lands are of poor quality. Alfalfa and cotton are the major crops along with small amounts of grains, Sudan grass, turf, fruits, and melons. The largest impacts to known ecosystems are expected to result from: extensive disturbances associated with construction of roads, seismic lines, drilling pads, and surface facilities; storage and leaching of mined spoils; disposal of water; off-road vehicle travel; and, over several hundred years, elevated soil temperatures. Significant impacts to off-site areas such as Ash Meadows are anticipated if new residential developments are built there to accommodate an increased work force. Several species of concern and their essential habitats are located at Ash Meadows. Available literature contained sufficient baseline information to assess potential impacts of the proposed project on an area-wide basis. It was inadequate to support analysis of potential impacts on specific locations selected for site characterization studies, mining an exploratory shaft, or the siting and operation of a repository

  2. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  3. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  4. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  5. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  6. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  7. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air pollution emergency plan. Section 6.1.5 of...

  8. Ecosystem stressors in southern Nevada [Chapter 2] (Executive Summary)

    Science.gov (United States)

    Burton K. Pendleton; Jeanne C. Chambers; Matthew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems are subject to a number of stressors that range in scope from local to regional to global. At the regional scale, human population growth and related activities constitute a major stressor. Nevada has undergone significant change due to unprecedented population growth and ongoing global change processes. Nevada’s growth rate has been the...

  9. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.

    1990-01-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  10. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  11. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  12. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada

    Science.gov (United States)

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  13. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada - Executive Summary

    Science.gov (United States)

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  14. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  15. Emphasis/Nevada STDEM : user's guide : version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, David Bruce; Coats, Rebecca Sue; Pasik, Michael Francis

    2005-04-01

    STDEM is the structured mesh time-domain electromagnetic and plasma physics component of Emphasis/Nevada. This report provides a guide on using STDEM. Emphasis, the electromagnetic physics analysis system, is a suite of codes for the simulation of electromagnetic and plasma physics phenomena. The time-dependent components of Emphasis have been implemented using the Nevada framework [1]. The notation Emphasis/Nevada is used to highlight this relationship and/or distinguish the time-dependent components of Emphasis. In theory the underlying framework should have little influence on the user's interaction with the application. In practice the framework tends to be more invasive as it provides key services such as input parsing and defines fundamental concepts and terminology. While the framework offers many technological advancements from a software development point of view, from a user's perspective the key benefits of the underlying framework are the common interface for all framework physics modules as well as the ability to perform coupled physics simulations. STDEM is the structured time-domain electromagnetic and plasma physics component of Emphasis/Nevada. STDEM provides for the full-wave solution to Maxwell's equations on multi-block three-dimensional structured grids using finite-difference time-domain (FDTD) algorithms. Additionally STDEM provides for the fully relativistic, self-consistent simulation of charged particles using particle-in-cell (PIC) algorithms.

  16. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  17. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  18. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  19. Nevada State plan; final approval determination. Occupational Safety and Health Administration (OSHA), U.S. Department of Labor. Final State plan approval--Nevada.

    Science.gov (United States)

    2000-04-18

    This document amends OSHA's regulations to reflect the Assistant Secretary's decision granting final approval to the Nevada State plan. As a result of this affirmative determination under section 18(e) of the Occupational Safety and Health Act of 1970, Federal OSHA's standards and enforcement authority no longer apply to occupational safety and health issues covered by the Nevada plan, and authority for Federal concurrent jurisdiction is relinquished. Federal enforcement jurisdiction is retained over any private sector maritime employment, private sector employers on Indian land, and any contractors or subcontractors on any Federal establishment where the land is exclusive Federal jurisdiction. Federal jurisdiction remains in effect with respect to Federal government employers and employees. Federal OSHA will also retain authority for coverage of the United States Postal Service (USPS), including USPS employees, contract employees, and contractor-operated facilities engaged in USPS mail operations.

  20. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  1. Helping Nevada School Children Become Sun Smart

    Centers for Disease Control (CDC) Podcasts

    2017-11-28

    This podcast features Christine Thompson, Community Programs Manager at the Nevada Cancer Coalition, and author of a recent study detailing a school-based program to help Nevada school children establish healthy sun safety habits and decrease UV exposure. Christine answers questions about her research and what impact her what impact the program had on children’s skin health.  Created: 11/28/2017 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 11/28/2017.

  2. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  3. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  4. Colloid research for the Nevada Test Site

    International Nuclear Information System (INIS)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  5. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  6. Bibliography with abstracts of geological literature pertaining to southern Nevada with particular reference to the Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Hicks, R.T.; Emmanuel, K.M.; Cappon, J.P.; Sinnock, S.

    1983-05-01

    This bibliography (with abstracts) of geological literature pertains to the Nevada Test Site and its southern Nevada environs. Its purpose is to provide a convenient, general reference document for published geological information potentially useful for radioactive waste studies conducted by the Nevada Nuclear Waste Storage Investigation project at the Nevada Test Site. It is organized so that users of geological information about southern Nevada may find subject matter in their areas or topics of interest. The most current published literature included is dated 1980

  7. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  8. Nevada Administrative Code for Special Education Programs.

    Science.gov (United States)

    Nevada State Dept. of Education, Carson City. Special Education Branch.

    This document presents excerpts from Chapter 388 of the Nevada Administrative Code, which concerns definitions, eligibility, and programs for students who are disabled or gifted/talented. The first section gathers together 36 relevant definitions from the Code for such concepts as "adaptive behavior,""autism,""gifted and…

  9. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  10. The Nevada initiative: A risk communication Fiasco

    International Nuclear Information System (INIS)

    Flynn, J.; Solvic, P.; Mertz, C.K.

    1993-01-01

    The U.S. Congress has designated Yucca Mountain, Nevada as the only potential site to be studied for the nation's first high-level nuclear waste repository. People in Nevada strongly oppose the program, managed by the U.S. Department of Energy. Survey research shows that the public believes there are great risks from a repository program, in contrast to a majority of scientists who feel the risks are acceptably small. Delays in the repository program resulting in part from public opposition in Nevada have concerned the nuclear power industry, which collects the fees for the federal repository program and believes it needs the repository as a final disposal facility for its high-level nuclear wastes. To assist the repository program, the American Nuclear Energy Council (ANEC), an industry group, sponsored a massive advertising campaign in Nevada. The campaign attempted to assure people that the risks of a repository were small and that the repository studies should proceed. The campaign failed because its managers misunderstood the issues underlying the controversy, attempted a covert manipulation of public opinion that was revealed, and most importantly, lacked the public trust that was necessary to communicate credibly about the risks of a nuclear waste facility. This article describes the advertising campaign and its effects. The manner in which the ANEC campaign itself became a controversial public issue is reviewed. The advertising campaign is discussed as it relates to risk assessment and communication. 29 refs., 2 tabs

  11. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  12. Nevada Kids Count Data Book, 1997.

    Science.gov (United States)

    We Can, Inc., Las Vegas, NV.

    This Kids Count data book is the first to examine statewide indicators of the well being of Nevada's children. The statistical portrait is based on 15 indicators of child well being: (1) percent low birth-weight babies; (2) infant mortality rate; (3) percent of children in poverty; (4) percent of children in single-parent families; (5) percent of…

  13. Invasive species in southern Nevada [Chapter 4

    Science.gov (United States)

    Mathew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity (Chapter 1), but they also provide opportunities for a wide range of invasive species...

  14. Nevada National Security Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Managers' Council, Radiological Control

    2018-03-12

    This is a shared document required by 10 CFR 835 for all contractors conducting radiological work at the Nevada National Security Site. Please record the Author as "Radiological Control Managers' Council" for consistency with previous RPPs and Rad Con Manuals.

  15. Southern Nevada ecosystem stressors [Chapter 2

    Science.gov (United States)

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  16. Nevada National Security Site Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wills, Cathy

    2013-09-11

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) (formerly designated as the Nevada Site Office [NNSA/NSO]). The new field office designation occurred in March 2013. Published reports cited in this 2012 report, therefore, may bear the name or authorship of NNSA/NSO. This and previous years’ reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NFO website at http://www.nv.energy.gov/library/publications/aser.aspx. This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NFO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2012 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). Through a Memorandum of Agreement, NNSA/NFO is

  17. GIS for Nevada railroads: 1993 report

    International Nuclear Information System (INIS)

    Carr, J.R.

    1993-12-01

    This is an interim report on a task within a large, ongoing study by the University of Nevada, Reno to examine the safety of Nevada railroads. The overall goal, of which this year's research is a middle stage, is to develop models based on the use of geographic information systems (GIS). These models are to enable the selection of the best and safest railway routes for the transport of high-level nuclear waste across Nevada to the proposed repository at Yucca Mountain. Last year's research concluded that the databases are adequate and that GIS are feasible and desirable for displaying the multi-layered data required to reach decisions about safety. It developed several database layers. This report deals with work during 1993 on the use of geographic information systems (GIS) for rail-route selection. The goal was to identify and assemble many of the databases necessary for the models. In particular, the research aimed to identify (a) any problems with developing database layers; and (b) the level of effort required. This year's effort developed database layers for two Nevada counties: Clark and Lincoln. The layers dealt with: topographic information, geologic information, and land ownership. These are among the most important database layers. The database layers were successfully created. No significant problems arose in developing them. The level of effort did not exceed the expected level. The most effective approach is by means of digital, shaded relief maps. (Sample maps appear in plates.) Therefore, future database development will be straightforward. Research may proceed on the full development of shaded relief elevation maps for Elko, White Pine, Nye and Eureka counties and with actual modeling for the selection of a route or routes between the UP/SP line in northern Nevada and Yucca Mountain

  18. Nevada National Security Site Environmental Report 2011

    International Nuclear Information System (INIS)

    Wills, Cathy

    2012-01-01

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NSO website at http://www.nv.energy.gov/library/publications/aser.aspx. This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, 'Environment, Safety and Health Reporting.' Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2011 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory-Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  19. Nevada National Security Site Environmental Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed

    2012-09-12

    This report was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years reports, called Annual Site Environmental Reports (ASERs), Nevada Test Site Environmental Reports (NTSERs), and, beginning in 2010, Nevada National Security Site Environmental Reports (NNSSERs), are posted on the NNSA/NSO website at http://www.nv.energy.gov/library/publications/aser.aspx. This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, 'Environment, Safety and Health Reporting.' Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2011 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory-Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  20. Recreation use on federal lands in southern Nevada [Chapter 10

    Science.gov (United States)

    Alice M. McSweeney

    2013-01-01

    Providing for appropriate, diverse, and high quality recreational use of southern Nevada’s lands and ensuring responsible visitor use is an ongoing challenge for the Federal agencies that manage the majority of the area (fig. 1.1). Over 87 percent (61,548,000 acres out of Nevada’s 70,275,000) of Nevada’s lands are administered by the Federal government, which is the...

  1. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  2. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  3. Nevada National Security Site Environmental Report 2016

    Energy Technology Data Exchange (ETDEWEB)

    Wills (editor), Cathy [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-09-07

    This Nevada National Security Site Environmental Report (NNSSER) was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2016 at the Nevada National Security Site (NNSS) and its two Nevada-based support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). NNSA/NFO directs the management and operation of the NNSS and six sites across the nation. In addition to the NNSA itself, the six sites include two in Nevada (NLVF and RSL-Nellis) and four in other states (RSL-Andrews in Maryland, Livermore Operations in California, Los Alamos Operations in New Mexico, and Special Technologies Laboratory in California). Los Alamos, Lawrence Livermore, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear weapons programs at the NNSS. National Security Technologies, LLC (NSTec), is the current Management and Operating contractor accountable for the successful execution of work and ensuring that work is performed in compliance with environmental regulations. The six sites all provide support to enhance the NNSS as a location for its multiple

  4. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  5. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  6. Hydrology and water resources overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada: annotated bibliography

    International Nuclear Information System (INIS)

    French, R.H.; Elzeftawy, A.; Elliot, B.

    1984-06-01

    The literature available regarding hydrology and utilization of water resources in the southwestern Nevada Test Site area is reviewed. In the context of this annotated bibliography, hydrology is defined to include hydrometeorology, surface water resources, and groundwater resources. Water utilization includes water supply, demand and use; future supply, demand and use; and wastewater treatment and disposal. The bibliography is arranged in alphabetical order and indexed with both technical key words and geographical key words

  7. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  8. Wildlife on the Nevada National Security Site

    Science.gov (United States)

    Longshore, Kathleen M.; Wessells, Stephen M.

    2017-09-05

    Mountain lions, desert bighorn sheep, mule deer, and a variety of other wildlife live on and pass through the Nevada National Security Site each day. It is a highly restricted area that is free of hunting and has surprisingly pristine areas. This 22-minute program highlights an extraordinary study on how mountain lions interact with their prey. It shows how the scientists use helicopters and classical lion tracking to check on these animals' health, follow their movements, and fit them with GPS collars. Results from this work provide impressive insight into how these animals survive. The video is also available at the following YouTube link: Wildlife on the Nevada National Security Site.

  9. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  10. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  11. Central Nevada Test Area Monitoring Report

    International Nuclear Information System (INIS)

    Brad Lyles; Jenny Chapman; John Healey; David Gillespie

    2006-01-01

    Water level measurements were performed and water samples collected from the Central Nevada Test Area model validation wells in September 2006. Hydraulic head measurements were compared to previous observations; the MV wells showed slight recovery from the drilling and testing operation in 2005. No radioisotopes exceeded limits set in the Corrective Action Decision Document/Corrective Action Plan, and no significant trends were observed when compared to previous analyses

  12. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  13. Groundwater quality in the Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.

  14. Nevada National Security Site Radiological Control Manual

    International Nuclear Information System (INIS)

    2012-01-01

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of

  15. Nevada National Security Site Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of

  16. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  17. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  18. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  19. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  20. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  1. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  2. A comprehensive landscape approach for monitoring bats on the Nevada Test Site in south-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.

    2000-01-01

    The Nevada Test Site (NTS) is located in south-central Nevada and encompasses approximately 3,497 square kilometers (1,350 square miles). It straddles both the Mojave and Great Basin Deserts and includes a distinct transition region between these two deserts. Because of its geographical location, a great level of vegetative and physiographic diversity exists on the NTS. Also, numerous mines and tunnels are found on the NTS which are potential roost sites for bats. Multiple technqiues are being used to inventory and monitor the bat fauna on the NTS. These techniques include mistnetting at water sources with concurrent use of the Anabat II bat detection system, conducting road surveys with the Anabat II system, and conducting exit surveys at mine and tunnel entrances using the Anabat II system. To date, a total of 13 species of bats has been documented on the NTS, of which six are considered species of concern by the US Fish and Wildlife Service. These include Townsend's big-eared bat (Corynorhinus townsendii), spotted bat (Euderma maculatum), small-footed myotis (Myotis ciliolabrum), long-eared myotis (M. evotis), fringed myotis (M. thysanodes), and long-legged myotis (M. volans). Results from mistnet and Anabat surveys reveal that all bat species of concern except for the long-legged myotis are found exclusively in the Great Basin Desert portion of the NTS. The long-legged myotis is found throughout the NTS. The Anabat II system has greatly facilitated the monitoring of bats on the NTS, and allowed biologists to cost effectively survey large areas for bat activity. Information obtained from bat monitoring will be used to develop and update guidelines for managing bats on the NTS.

  3. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  4. Biosphere and atmosphere interactions in Sierra Nevada forests

    Science.gov (United States)

    Allen H. Goldstein

    2004-01-01

    In the Sierra Nevada, studies are being conducted to assess the impacts of both anthropogenic and biogenic hydrocarbon emissions on regional tropospheric ozone and fine aerosol production. Impacts of ozone deposition and management practices on ecosystem health are also being studied. Human-induced changes in regional air quality have consequences for Sierra Nevada...

  5. 78 FR 72139 - Nevada Gold Corp.; Order of Suspension of Trading

    Science.gov (United States)

    2013-12-02

    ... current and accurate information concerning the securities of Nevada Gold Corp. (``Nevada Gold'') because of questions regarding the accuracy of assertions by Nevada Gold, and by others, to investors in..., and financial condition. Nevada Gold is a Delaware corporation based in Del Mar, California. The...

  6. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  7. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The 'Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204

  8. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  9. I Am Nevada: A Basic Informational Guide in Nevada History and Geography.

    Science.gov (United States)

    Dunn, Helen M.

    The booklet presents information on Nevada's history and geography which can be incorporated into social studies or history courses on the elementary or junior high level. There are eight chapters. Chapter I discusses symbolism in the state's emblems, (its seal, flag, flower, bird, and song). Maps and brief histories of each of the state's 17…

  10. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  11. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada

  12. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  13. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  14. Nevada Test Site Radiological Control Manual, Revision 1

    International Nuclear Information System (INIS)

    2010-01-01

    Management. The NTS has been the primary location for testing nuclear explosives in the continental United States since 1951. The topographical and geological characteristics of the NTS afford some protection to the inhabitants of the surrounding areas from potential radiation exposure as a result of release of radioactivity or contamination from nuclear testing operations. Historically, testing programs at the NTS have included atmospheric testing in the 1950s and early 1960s; underground testing in drilled, vertical holes and horizontal tunnels; earth-cratering experiments; and open air nuclear reactor and engine testing. Current activities include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures. The Tenant Organizations (TOs) that are responsible for conducting operations, according to this manual, include National Security Technologies, LLC (NSTec), Defense Threat Reduction Agency, Desert Research Institute, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Navarro Nevada Environmental Services, LLC, Sandia National Laboratories, and WSI. These organizations operate under this manual only when they are performing activities under the purview of NNSA/NSO. To ensure that the appropriate procedures

  15. United States Department of Energy Nevada Operations Office Environmental Compliance Handbook. Third edition

    International Nuclear Information System (INIS)

    1998-03-01

    The Environment, Safety and Health Division (ESHD) of the Nevada Operations Office has prepared this Environmental Compliance Handbook for all users of the Nevada Test Site (NTS) and other US Department of Energy, Nevada Operations Office (DOE/NV) facilities. The Handbook gives an overview of the important environmental laws and regulations that apply to the activities conducted by the Nevada Operations Office and other users of DOE/NV facilities in Nevada

  16. United States Department of Energy Nevada Operations Office Environmental Compliance Handbook. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Environment, Safety & Health Division (ESHD) of the Nevada Operations Office has prepared this Environmental Compliance Handbook for all users of the Nevada Test Site (NTS) and other US Department of Energy, Nevada Operations Office (DOE/NV) facilities. The Handbook gives an overview of the important environmental laws and regulations that apply to the activities conducted by the Nevada Operations Office and other users of DOE/NV facilities in Nevada.

  17. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  18. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  19. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  20. Record of Technical Change No.2 for ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada''

    International Nuclear Information System (INIS)

    1999-01-01

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada.''

  1. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  2. A lineament analysis of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, J.J.

    1988-01-01

    The Nuclear Waste Policy Act of 1982 was signed into law on January 7, 1983. It specifies procedures for the Department of Energy in the selection of a high level nuclear waste repository. Federal Environmental Protection Agency standards require adequate isolation of waste from the biosphere for 10,000 years. The law considers such geologic factors as tectonic stability, igneous activity, hydrologic conditions and natural resources to be of primary concern. Yucca Mountain in southern Nevada is one of three sites selected for further consideration in the site characterization process. The Nuclear Waste Project Office (NWPO) within the Agency for Nuclear Projects of the State of Nevada is conducting an independent scientific assessment of the proposed site. The remote sensing technical assessment is one of seven task groups conducting review and research into the suitability of Yucca Mountain. The study undertaken by the Remote Sensing Group was that of a lineament analysis with regard to the site's structural relationship within a regional tectonic framework. Lineaments mapped from synoptic imagery may prove to represent structural zones of weakness. These zones may provide pathways for the infiltration of groundwater, conduits for the extrusion of magma or be reactivated as stress conditions change. This paper describes the methodology for a lineament analysis of the Yucca Mountain area

  3. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  4. Nevada National Security Site Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    C. Wills, ed.

    2011-09-13

    This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2010 at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  5. Algal-Based Renewable Energy for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fritsen, Christian [Desert Research Institute, Las Vegas, NV (United States)

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons- where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.

  6. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  7. Transportation of radioactive materials routing analysis: The Nevada experience

    International Nuclear Information System (INIS)

    Ardila-Coulson, M.V.

    1991-01-01

    In 1987, the Nevada State Legislature passed a Bill requiring the Nevada Dept. of Transportation to develop and enforce a plan for highway routing of highway route controlled quantity shipments of radioactive materials and high-level radioactive waste. A large network with all the major highways in Nevada was created and used in a computer model developed by Sandia National Labs. Twenty-eight highway parameters that included geometrics, traffic characteristics, environment and special facilities were collected. Alternative routes were identified by minimizing primary parameters (population density and accident rates). An analysis using the US DOT Guidelines were performed to identify a preferred route from the alternative routes

  8. Tritium activities in selected wells on the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.

    1993-05-01

    Literature and data were reviewed related to radionuclides in groundwater on and near the Nevada Test Site. No elevated tritium activities have been reported outside of the major testing regions of the Nevada Test Site. Three wells were identified as having water with above-background (>50 pCi/l) tritium activities: UE-15d Water Well; USGS Water Well A; and USGS Test Well B Ex. Although none of these wells have tritium activities greater than the Nevada State Drinking Water standard (20,000 pCi/l), their time-series tritium trends may be indicative to potential on-site radionuclide migration

  9. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    Mike Murphy

    2008-01-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  10. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: (1) Removing and disposing of a shack and its contents; (2) Disposing of debris from within the shack and in the vicinity of the tunnel entrance; (3) Verifying that the tunnel is empty; (4) Welding screened covers over tunnel vent holes to limit access and allow ventilation; and (5) Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  11. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  12. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  13. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the 'Federal Facility Agreement and Consent Order' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions

  14. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  15. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats

  16. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  17. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  18. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  19. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  20. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: (sm b ullet) CAS 06-07-01, Decon Pad (sm b ullet) CAS 15-01-03, Aboveground Storage Tank (sm b ullet) CAS 15-04-01, Septic Tank (sm b ullet) CAS 15-05-01, Leachfield (sm b ullet) CAS 15-08-01, Liquid Manure Tank (sm b ullet) CAS 15-23-01, Underground Radioactive Material Area (sm b ullet) CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs

  1. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  2. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  3. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ''NEPA Compliance Program.'' The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives

  4. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  5. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  6. Final Environmental Assessment for solid waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-08-01

    New solid waste regulations require that the existing Nevada Test Site (NTS) municipal landfills, which receive less than 20 tons of waste per day, be permitted or closed by October 9, 1995. In order to be permitted, the existing landfills must meet specific location, groundwater monitoring, design, operation, and closure requirements. The issuance of these regulations has resulted in the need of the Department of Energy (DOE) to provide a practical, cost-effective, environmentally sound means of solid waste disposal at the NTS that is in compliance with all applicable federal, state, and local regulations. The current landfills in Areas 9 and 23 on the Nevada Test Site do not meet design requirements specified in new state and federal regulations. The DOE Nevada Operations Office prepared an environmental assessment (EA) to evaluate the potential impacts of the proposal to modify the Area 23 landfill to comply with the new regulations and to close the Area 9 landfill and reopen it as Construction and Demolition debris landfill. Based on information and analyses presented in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Therefore, an environmental impact statement (EIS) is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  7. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  8. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  9. Optimization Review: Carson River Mercury Superfund Site, Carson City, Nevada

    Science.gov (United States)

    The Carson River Mercury Site (CRMS) (Figure 1) is located in northwest Nevada and was designated a Superfund site in 1990 because of elevated mercury concentrations observed in surface water, sediments and biota inhabiting the site.

  10. Nevada Peer Exchange : Reno, NV, September 23-25, 2009

    Science.gov (United States)

    2009-09-01

    The Nevada Department of Transportation (NDOT) hosted a Peer Exchange of its Highway Safety Improvement Program (HSIP) on September 23-25, 2009. NDOT is updating their State HSIP Manual and initiated a peer exchange to share information and experienc...

  11. On the benefits of an integrated nuclear complex for Nevada

    International Nuclear Information System (INIS)

    Blink, J.A.; Halsey, W.G.

    1994-01-01

    An integrated nuclear complex is proposed for location at the Nevada Test Site. In addition to solving the nuclear waste disposal problem, this complex would tremendously enhance the southern Nevada economy, and it would provide low cost electricity to each resident and business in the affected counties. Nuclear industry and the national economy would benefit because the complex would demonstrate the new generation of safer nuclear power plants and revitalize the industry. Many spin-offs of the complex would be possible, including research into nuclear fusion and a world class medical facility for southern Nevada. For such a complex to become a reality, the cycle of distrust between the federal government and the State of Nevada must be broken. The paper concludes with a discussion of implementation through a public process led by state officials and culminating in a voter referendum

  12. Western Red-tailed Skink Distribution in Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D. B. and Gergor, P. D.

    2011-11-01

    This slide show reports a study to: determine Western Red-tailed Skink (WRTS) distribution on Nevada National Security Site (NNSS); identify habitat where WRTS occur; learn more about WRTS natural history; and document distribution of other species.

  13. Development of a Nevada Statewide Database for Safety Analyst Software

    Science.gov (United States)

    2017-02-02

    Safety Analyst is a software package developed by the Federal Highway Administration (FHWA) and twenty-seven participating state and local agencies including the Nevada Department of Transportation (NDOT). The software package implemented many of the...

  14. 75 FR 19656 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2010-04-15

    ... and local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates... the dependent resurvey of the Fourth Standard Parallel North, through a portion of Range 63 East, a...

  15. 75 FR 4582 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2010-01-28

    ... local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates: Filing is... Parallel North through a portion of Range 32 East, the east and west boundaries, and a portion of the...

  16. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  17. Proposed Operational Base Site, Steptoe Valley, Ely Area, Nevada.

    Science.gov (United States)

    1980-03-31

    1629, respectively (White Pine Chamber of Commerce , WPCC, 1980). The city of Ely is incorporated; the suburb of East Ely is not. For purposes of this...Site SAF Security Alert Facility WPCC White Pine Chamber of Commerce WPPP White Pine Power Project IL__ _ FN-TR-35 38 BIBLIOGRAPHY Cardinalli, J., 1979...Nevada Forecasts for the Future--Agriculture, State Engineer’s Office, Carson City, Nevada. *1 White Pine Chamber of Commerce , 1980, Oral

  18. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  19. METHODOLOGY, ASSUMPTIONS, AND BASELINE DATA FOR THE REPOSITORY DESIGN AND OPERATION, RAIL CORRIDORS, AND HEAVY TRUCK ROUTES, CLARK COUNTY, NEVADA, LINCOLN COUNTY, NEVADA, NYE COUNTY, NEVADA, ''REST OF NEVADA'', STATE OF NEVADA

    International Nuclear Information System (INIS)

    2002-01-01

    This document was prepared in support of the ''Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain; Nye County, Nevada''. Specifically, the document evaluates potential socioeconomic impacts resulting from the various rail corridor and heavy haul truck route implementing alternatives, one of which would be selected to transport the nation's commercial and defense spent nuclear fuel and high-level radioactive waste to the proposed repository

  20. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  1. Geophysical Investigations at Pahute Mesa, Nevada.

    Science.gov (United States)

    1987-08-12

    be azimuth dependent (Lynnes and Lay, 1984). The body wave magnitude anomalies observed by Alewine are plotted in Figure 1 along with the Bouguer ...of this type can be used to test the seismic Figure 1. The body wave magnitude anomaly is plotted on a map of the Bouguer gravity for Pahute Mesa...Nevada. 370 22’ 30" 370 7’ 300 116 30’ 1160 15’ 0 KILOMTERS 10 BOUGUER GRAVITY 2 mgal CONTOURS AMb o 0.2O 0.1- 0.2 0 0.0- 0.1 -0.1 - 0.0 X -0.2 - -0.1X

  2. Rural migration in Nevada: Lincoln County

    International Nuclear Information System (INIS)

    Soden, D.L.; Carns, D.E.; Mosser, D.; Conary, J.S.; Ansell, J.P.

    1993-01-01

    The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ''affected'' by the proposed repository program. The findings suggest that a serious out-migration problem in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future

  3. Geomagnetic Polarity Epochs: Sierra Nevada II.

    Science.gov (United States)

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  4. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  5. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  6. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  7. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  8. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  9. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  10. Nevada National Security Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nevada. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Nevada.

  12. 75 FR 7291 - Northeastern Great Basin Resource Advisory Council Meetings, Nevada

    Science.gov (United States)

    2010-02-18

    ...., Elko, Nevada; June 17 and 18 at the Eureka Opera House, 31 S. Main St., Eureka, Nevada; and September...; September 30 (Ely)--minerals, grazing, energy, and sustainable development Managers' reports of field office...

  13. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    International Nuclear Information System (INIS)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy's (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, open-quotes Corrective Action Strategyclose quotes (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles

  14. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  15. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): (sm b ullet) CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  16. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  17. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C

  18. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): (sm b ullet) CAS 03-59-01, Bldg 3C-36 Septic System (sm b ullet) CAS 03-59-02, Bldg 3C-45 Septic System (sm b ullet) CAS 06-51-01, Sump and Piping (sm b ullet) CAS 06-51-02, Clay Pipe and Debris (sm b ullet) CAS 06-51-03, Clean Out Box and Piping (sm b ullet) CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work

  19. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  20. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  1. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  2. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  3. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  4. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): (sm b ullet) CAS 23-21-03, Bldg 750 Surface Discharge (sm b ullet) CAS 23-25-02, Bldg 750 Outfall (sm b ullet) CAS 23-25-03, Bldg 751 Outfall (sm b ullet) CAS 25-60-01, Bldg 3113A Outfall (sm b ullet) CAS 25-60-02, Bldg 3901 Outfall (sm b ullet) CAS 25-62-01, Bldg 3124 Contaminated Soil (sm b ullet) CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH

  5. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  6. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  7. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  8. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  9. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  10. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd 3 of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd 3 of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd 3 of universal waste in the form of

  11. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  12. Digital geologic map database of the Nevada Test Site area, Nevada

    Science.gov (United States)

    Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.

    1997-01-01

    Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.

  13. Review of soil moisture flux studies at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Tyler, S.W.

    1987-04-01

    This report documents almost 30 years of research on soil moisture movement and recharge at the Department of Energy, Nevada Test Site. Although data is scarce, three distinct topographic zones are represented: alluvial valleys, inundated terrains, and upland terrain. Recharge in alluvial valleys was found to be very small or negligible. Ponded areas such as playas and subsidence craters showed significant amounts of recharge. Data in the upland terrains is very scarce but one area, Rainier Mesa, shows active recharge of up to three percent of the annual average precipitation in fractured volcanic tuff. The report summarizes the results

  14. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  15. 75 FR 75492 - Notice of Availability of the Final Environmental Impact Statement for the One Nevada...

    Science.gov (United States)

    2010-12-03

    ... Library, 950 Campton Street, Ely, Nevada BLM Nevada State Office, 1340 Financial Blvd., Reno, Nevada BLM... of an existing 345 kV transmission line at the new substation; an expansion of one existing... 2009. Nineteen comments were received and taken into consideration in the preparation of the Final EIS...

  16. 76 FR 76155 - Nevada Hydro Company, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2011-12-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-14227-000] Nevada Hydro..., Motions To Intervene, and Competing Applications On July 14, 2011, the Nevada Hydro Company (Nevada Hydro... Diego Gas & Electric Company transmission line located to the south. Applicant Contact: Arnold B...

  17. 77 FR 21765 - Nevada Hydro Company, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-14227-000] Nevada Hydro..., Motions To Intervene, and Competing Applications On July 14, 2011, the Nevada Hydro Company (Nevada Hydro... California Edison located north of the proposed project and to an existing San Diego Gas & Electric Company...

  18. Virgin Valley opal district, Humboldt County, Nevada

    Science.gov (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  19. Raytheon, Estonia agree to cyber pact / Zachary Fryer-Biggs

    Index Scriptorium Estoniae

    Fryer-Biggs, Zachary

    2015-01-01

    USA ettevõte on valmis tegema Eestiga koostööd kübervõimekuse arendamisel. Kaitseministeeriumi asekantsleri Mikk Marrani sõnul on Eesti ja USA kaitsetööstuselane koostöö Eesti strateegilistes huvides

  20. Nevada potential repository preliminary transportation strategy: Study 1

    International Nuclear Information System (INIS)

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated

  1. Nevada potential repository preliminary transportation strategy: Study 1

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

  2. Overview of the National Cancer Institute's activities related to exposure of the public to fallout from the Nevada Test Site

    International Nuclear Information System (INIS)

    Wachholz, B.W.

    1990-01-01

    The Department of Health and Human Services (DHHS) was directed by Congress to assess the risk of thyroid cancer from 131I associated with fallout from the atmospheric testing of nuclear weapons at the Nevada Test Site. The National Cancer Institute (NCI) was requested by DHHS to address Public Law 97-414, Section 7 (a), which directs DHHS to (1) conduct scientific research and prepare analyses necessary to develop valid and credible assessments of the risks of thyroid cancer that are associated with thyroid doses of Iodine 131; (2)...develop...methods to estimate the thyroid doses of Iodine 131 that are received by individuals from nuclear bomb fallout; (and) (3)...develop...assessments of the exposure to Iodine 131 that the American people received from the Nevada atmospheric nuclear bomb tests. In addition, the University of Utah, under contract with the NCI, is carrying out a study to determine if the incidence of thyroid disease and leukemia among identified populations in Utah may be related to exposure from fallout originating at the Nevada Test Site

  3. Pediatric neurobehavioral diseases in Nevada counties with respect to perchlorate in drinking water: an ecological inquiry.

    Science.gov (United States)

    Chang, Soju; Crothers, Carol; Lai, Shenghan; Lamm, Steven

    2003-10-01

    Contamination of drinking water with perchlorate, a known thyrotropic agent, has been demonstrated in areas in the western United States. The health consequences of that exposure have been studied, particularly in the State of Nevada. Previous studies in Nevada, comparing the area with perchlorate in the drinking water and the areas without perchlorate in the drinking water, have found no difference in neonatal thyroxine (T(4)) or thyrotropin (TSH) levels, or in the prevalences of thyroid diseases and thyroid cancer. This same study design has now been applied to the major neurobehavioral diseases of childhood (i.e., attention deficit-hyperactivity disorder (ADHD) and autism) and to school performance in order to determine whether those conditions are more frequent in the area with perchlorate-contaminated water. Medical services data on ADHD and autism were obtained from the Nevada Medicaid system for the period of January 1, 1996, to December 31, 2000, with county of residence used as the basis for residential information. Analyses of fourth-grade school performance results for two recent time periods came from the state government. Perchlorate concentrations in drinking water had been determined by local water authorities. ADHD and autism rates for the area with perchlorate in the drinking water (Clark County) were calculated and compared with the rates for the other areas in the state, as were fourth-grade school performances. Analysis of the data from the Nevada Medicaid program shows that the rates for ADHD and for autism in the area where perchlorate was in the drinking water did not exceed the rates in those areas where there was no perchlorate contamination in the drinking water. Fourth-grade standardized test results for students in Clark County were not different from those of the remainder of the state. This ecological study of children in the exposure area did not find evidence of an increased risk of either ADHD or of autism caused by perchlorate

  4. Climate Resiliency Planning: Making Extreme Event Science Useful for Managers and Planners in Northern Nevada

    Science.gov (United States)

    McCarthy, M.; Kenneston, A.; Wall, T. U.; Brown, T. J.; Redmond, K. T.

    2014-12-01

    Effective climate resiliency planning at the regional level requires extensive interactive dialogue among climate scientists, emergency managers, public health officials, urban planners, social scientists, and policy makers. Engaging federal, tribal, state, local governments and private sector business and infrastructure owners/operators in defining, assessing and characterizing the impacts of extreme events allows communities to understand how different events "break the system" forcing local communities to seek support and resources from state/federal governments and/or the private sector and what actions can be taken proactively to mitigate consequences and accelerate recovery. The Washoe County Regional Resiliency Study was prepared in response to potential climate variability related impacts specific to the Northern Nevada Region. The last several decades have seen dramatic growth in the region, coupled with increased resource demands that have forced local governments to consider how those impacts will affect the region and may, in turn, impact the region's ability to provide essential services. The Western Regional Climate Center of the Desert Research Institute provided a synthesis of climate studies with predictions regarding plausible changes in the local climate of Northern California and Nevada for the next 50 years. In general, these predictions indicate that the region's climate is undergoing a gradual shift, which will primarily affect the frequency, amount, and form of precipitation in the Sierra Nevada and Great Basin. Changes in water availability and other extreme events may have serious and long lasting effects in the Northern Nevada Region, and create a variety of social, environmental and economic concerns. A range of extreme events were considered including Adverse Air Quality, Droughts, Floods, Heat Waves, High Wind, Structure Fires, Wildland Fires, and Major Winter Storms. Due to the complexity of our climate systems, and the difficulty in

  5. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    PM Daling; SB Ross; BM Biwer

    1999-01-01

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  6. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  7. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  8. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    Jackson, J. P.; Pastor, R. S.

    2002-01-01

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex

  9. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  10. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern

  11. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008)

  12. Closure Report for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister and Patrick Matthews

    2012-11-01

    The corrective action sites (CASs) within CAU 465 are located within Areas 6 and 27 of the NNSS. CAU 465 comprises the following CASs: • 00-23-01, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie site. • 00-23-02, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Dog site. • 00-23-03, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie Prime and Anja sites. • 06-99-01, Hydronuclear, located in Area 6 of the NNSS and known as the Trailer 13 site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 465 were met. From September 2011 through July 2012, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 465: Hydronuclear, Nevada National Security Site, Nevada.

  13. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  14. 1984 Biotic Studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.

    1985-02-01

    A portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a possible location for a national high-level radioactive waste repository. The geologic and environmental characteristics of the site are being investigated to determine its suitability for further characterization. Goals of biotic studies were to identify species of concern, describe major floral and faunal associations, determine exposure levels of external background radiation, and assess possible impacts of characterization and operational activities. The species composition of dominant small mammals inhabiting major vegetation associations in 1984 varied little compared with results of similar surveys conducted in 1982 and 1983. Total captures were lower and reproduction was apparently curtailed. Merriam's kangaroo rat and the long tailed pocket mouse continued to be the most abundant species. Diversity of resident species did not differ significantly between the trapping lines. The composition and relative abundance of associated species was more variable. Western harvest mice were trapped for the first time, but pinyon mice, which were present in prior years, were not trapped. Five desert tortoises were observed during surveys of possible sites for repository surface facilities. 25 refs., 4 figs., 5 tabs

  15. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008).

  16. The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.

    1992-01-01

    Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned

  17. Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    Preemptive reviews (PERs) of Underground Test Area (UGTA) Activity corrective action unit (CAU) studies are an important and long-maintained quality improvement process. The CAU-specific PER committees provide internal technical review of ongoing work throughout the CAU lifecycle. The reviews, identified in the UGTA Quality Assurance Plan (QAP) (Sections 1.3.5.1 and 3.2), assure work is comprehensive, accurate, in keeping with the state of the art, and consistent with CAU goals. PER committees review various products, including data, documents, software/codes, analyses, and models. PER committees may also review technical briefings including Federal Facility Agreement and Consent Order (FFACO)-required presentations to the Nevada Division of Environmental Protection (NDEP) and presentations supporting key technical decisions (e.g., investigation plans and approaches). PER committees provide technical recommendations to support regulatory decisions that are the responsibility of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and NDEP.

  18. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  19. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  20. A Cold War Battlefield: Frenchman Flat Historic District, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Gray [DRI; Holz, Barbara A [DRI; Jones, Robert [DRI

    2000-08-01

    This report provides the U.S. Department of Energy, Nevada Operations Office with the documentation necessary to establish the Frenchman Flat Historic District on the Nevada Test Site (NTS). It includes a list of historic properties that contribute to the eligibility of the district for inclusion in the National Register of Historic Places (NRHP) and provides contextual information establishing its significance. The list focuses on buildings, structures and features associated with the period of atmospheric testing of nuclear weapons on the NTS between 1951 and 1962. A total of 157 locations of buildings and structures were recorded of which 115 are considered to be eligible for the NRHP. Of these, 28 have one or more associated features which include instrumentation supports, foundations, etc. The large majority of contributing structures are buildings built to study the blast effects of nuclear weaponry. This has resulted in a peculiar accumulation of deteriorated structures that, unlike most historic districts, is best represented by those that are the most damaged. Limitations by radiological control areas, surface exposure and a focus on the concentration of accessible properties on the dry lake bed indicate additional properties exist which could be added to the district on a case-by-case basis.

  1. Two-mica granites of northeastern Nevada.

    Science.gov (United States)

    Lee, D.E.; Kistler, R.W.; Friedman, I.; Van Loenen, R. E.

    1981-01-01

    The field settings are described and analytical data are presented for six two-mica granites from NE Nevada. High delta 18O and 87Sr/86Sr values indicate that all are S-type granite, derived from continental crust. The major element chemistry and accessory mineral contents of these rocks also are characteristic of S-type granites. Chemical, X ray, and other data are presented for the micas recovered from these granites. The muscovites are notably high in Fe2O3, FeO, and MgO. Except for one hydrobiotite, each of the biotites has an MgO content near 6.0 wt%. Two different types of two-mica granites are recognized in the area of this study. One type is distinguished by the presence of many biotite euhedra within muscovite phenocrysts and by an unusual suite of accessory minerals completely devoid of opaque oxides. This type probably resulted from anatexis of late Precambrian argillites under conditions of relatively low oxygen fugacity, along a line that roughly coincides with the westward disappearance of continental basement. In the other textural type of two-mica granite the micas are equigranular and there is a greater variety of accessory minerals. The magmatic evolution of this type also appears to reflect the influence of late Precambrian argillites; there may be age differences between the two types of two-mica granites.-Author

  2. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  3. Closure Report for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada. CAU 573 comprises the two corrective action sites (CASs): 05-23-02-GMX Alpha Contaminated Are-Closure in Place and 05-45-01-Atmospheric Test Site - Hamilton- Clean Closure. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 573 based on the implementation of the corrective actions. Corrective action activities were performed at Hamilton from May 25 through June 30, 2016; and at GMX from May 25 to October 27, 2016, as set forth in the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit 573: Alpha Contaminated Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. Verification sample results were evaluated against data quality objective criteria developed by stakeholders that included representatives from the Nevada Division of Environmental Protection and the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) during the corrective action alternative (CAA) meeting held on November 24, 2015. Radiological doses exceeding the final action level were assumed to be present within the high contamination areas associated with CAS 05-23-02, thus requiring corrective action. It was also assumed that radionuclides were present at levels that require corrective action within the soil/debris pile associated with CAS 05-45-01. During the CAU 573 CAA meeting, the CAA of closure in place with a use restriction (UR) was selected by the stakeholders as the preferred corrective action of the high contamination areas at CAS 05-23-02 (GMX), which contain high levels of removable contamination; and the CAA of clean closure was selected by the

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  5. Closure Report for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Al Wickline

    2007-01-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 553 are located within Areas 19 and 20 of the Nevada Test Site. Corrective Action Unit 553 is comprised of the following CASs: 19-99-01, Mud Spill 19-99-11, Mud Spill 20-09-09, Mud Spill 20-99-03, Mud Spill. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 553 were met. To achieve this, the following actions were or will be performed: Review the current site conditions including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document the Notice of Completion and closure of CAU 553 to be issued by Nevada Division of Environmental Protection

  6. Nevada Applied Ecology Group procedures handbook for environmental transuranics

    International Nuclear Information System (INIS)

    White, M.G.; Dunaway, P.B.

    1976-10-01

    The activities of the Nevada Applied Ecology Group (NAEG) integrated research studies of environmental plutonium and other transuranics at the Nevada Test Site have required many standardized field and laboratory procedures. These include sampling techniques, collection and preparation, radiochemical and wet chemistry analysis, data bank storage and reporting, and statistical considerations for environmental samples of soil, vegetation, resuspended particles, animals, and other biological material. This document, printed in two volumes, includes most of the Nevada Applied Ecology Group standard procedures, with explanations as to the specific applications involved in the environmental studies. Where there is more than one document concerning a procedure, it has been included to indicate special studies or applications more complex than the routine standard sampling procedures utilized

  7. Nevada Applied Ecology Group procedures handbook for environmental transuranics

    International Nuclear Information System (INIS)

    White, M.G.; Dunaway, P.B.

    1976-10-01

    The activities of the Nevada Applied Ecology Group (NAEG) integrated research studies of environmental plutonium and other transuranics at the Nevada Test Site have required many standardized field and laboratory procedures. These include sampling techniques, collection and preparation, radiochemical and wet chemistry analysis, data bank storage and reporting, and statistical considerations for environmental samples of soil, vegetation, resuspended particles, animals, and others. This document, printed in two volumes, includes most of the Nevada Applied Ecology Group standard procedures, with explanations as to the specific applications involved in the environmental studies. Where there is more than one document concerning a procedure, it has been included to indicate special studies or applications perhaps more complex than the routine standard sampling procedures utilized

  8. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from sixteen boreholes drilled under the guidance of the US Geological Survey to help identify the area's water table. The sixteen boreholes were drilled between April 1983 and November 1983 in Area 25, Nevada Test Site land and in Bureau of Land Management land adjacent to the Nevada Test Site. Data presented in the hole histories include all locations, daily activities, review of hole conditions, geophysical log lists, video tape lists, and microfiche copies of the geophysical logs run by the Fenix and Scisson, Inc. subcontractor

  9. U.S. Department of Energy, Nevada Operations Office, environmental data report for the Nevada Test Site -- 1995

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.; Kinnison, R.R.

    1997-10-01

    The US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` establishes environmental protection program requirements, authorities, and responsibilities for DOE operations. These mandates require compliance with applicable federal, state, and local environmental protection regulations. During calendar year (CY) 1995 environmental protection and monitoring programs were conducted at the Nevada Test Site (NTS) and other DOE Nevada Operations Office (DOE/NV) managed sites in Nevada and across the United States. A detailed discussion of these environmental protection and monitoring programs, and summary data and assessments for environmental monitoring results at these sites in CY 1995 are provided in the DOE/NV, Annual Site Environmental Report--1995, (ASER) DOE/NV/11718-037. A brief description of the scope of this environmental monitoring is provided below, categorized by ``on-NTS`` and ``off-NTS`` monitoring.

  10. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Mark Burmeister

    2007-01-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs)

  11. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  12. Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    US Department of Energy Nevada Operations Office

    1999-01-01

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Offices's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada. This corrective action investigation was conducted in accordance with the Corrective Action Investigation Plan for CAU 240 as developed under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 240 is comprised of three Corrective Action Sites (CASs): 25-07-01, Vehicle Washdown Area (Propellant Pad); 25-07-02, Vehicle Washdown Area (F and J Roads Pad); and 25-07-03, Vehicle Washdown Station (RADSAFE Pad). In March 1999, the corrective action investigation was performed to detect and evaluate analyte concentrations against preliminary action levels (PALs) to determine contaminants of concern (COCs). There were no COCs identified at CAS 25-07-01 or CAS 25-07-03; therefore, there was no need for corrective action at these two CASs. At CAS 25-07-02, diesel-range organics and radionuclide concentrations in soil samples from F and J Roads Pad exceeded PALs. Based on this result, potential CAAs were identified and evaluated to ensure worker, public, and environmental protection against potential exposure to COCs in accordance with Nevada Administrative Code 445A. Following a review of potential exposure pathways, existing data, and future and current operations in Area 25, two CAAs were identified for CAU 240 (CAS 25-07-02): Alternative 1 - No Further Action and Alternative 2 - Clean Closure by Excavation and Disposal. Alternative 2 was identified as the preferred alternative. This alternative was judged to meet all requirements for the technical components evaluated, compliance with all applicable state and federal regulations for closure of the site, as well as minimizing potential future exposure

  13. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  14. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  15. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  16. Contaminant studies in the Sierra Nevadas

    Science.gov (United States)

    Sparling, D.W.; Fellers, G.

    2002-01-01

    full text: Several species of anuran amphibians (frogs and toads) are experiencing severe population declines in even seemingly pristine areas of the Sierra Mountains of California. Among the most severely depressed species are the redlegged frog, the foothill and mountain yellow-legged frogs, the Yosemite toad, and the Cascades frog. Several factors, such as habitat fragmentation, introduced predators (especially fish), and disease, have been linked to these declines. But recent evidence from a USGS-led study shows that contaminants are a primary factor. During the past three years, researchers from the USGS Patuxent Wildlife Research Center, the Western Ecology Research Center, the USDA Beltsville Agriculture Research Center, and the Texas A&M University have teamed up to conduct an extensive study on airborne pesticides and their effects on amphibian populations in the Sierra Nevada Mountains. Previous work on environmental chemistry demonstrated that pesticides from the intensely agricultural Central Valley of California are being blown into the more pristine Sierra Nevada Mountains, especially around Sequoia and Yosemite National Parks. Several pesticides, including diazinon, chlorpyrifos, malathion and endosulfan, can be measured in snow, rainfall, and pond waters in these national parks. With the exception of endosulfan, these pesticides affect and even kill both invertebrates and vertebrate species by inhibiting cholinesterase, an enzyme essential to proper nervous system functioning. In the summer of 2001, we published a paper showing that these same pesticides are now found in adults and the tadpoles of Pacific treefrogs. The results of this landmark study showed that more than 50 percent of the tadpoles and adults sampled in Yosemite and Sequoia National Parks had detectable levels of diazinon or chlorpyrifos and that 86 percent of the Pacific treefrogs sampled in the Lake Tahoe region had detectable levels of endosulfan. In contrast, frogs that were

  17. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  18. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  19. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the period October 2000-July 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 2000--July 2001 monitoring period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in July 2001. There has been no subsidence at any of the markers since monitoring began eight years ago. Precipitation for the period October 2000 through July 2001 was 9.42 centimeters (cm) (3.71 inches [in]) (U.S. National Weather Service, 2001). The prior year annual rainfall (January 2000 through December 2000) was 10.44 cm (4.1 1 in.). The recorded average annual rainfall for this site from 1972 to January 2000 is 14.91 cm (5.87 in.). The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that may be indicative of moisture movement at a point located directly beneath each trench. All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches

  20. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Remortel, R. D. Van; Lee, Y. J.; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  1. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  2. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lee, Y. J.; Remortel, R. D. Van; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  3. Nevada Applied Ecology Information Center: a review of technical information support provided to the Nevada Applied Ecology Group

    International Nuclear Information System (INIS)

    Fore, C.S.; Pfuderer, H.A.

    1983-01-01

    The Nevada Applied Ecology Information Center (NAEIC) was established in January 1972 to serve the needs of the Nevada Applied Ecology Group (NAEG) by identifying, collecting, analyzing, and disseminating technical information relevant to NAEG programs. Since its inception, the NAEIC has been active in providing specialized information support to NAEG staff in the following research areas: (1) environmental aspects of the transuranics; (2) historic literature (pre-1962) on plutonium and uranium; (3) cleanup and treatment of radioactively contaminated land; (4) bioenvironmental aspects of europium and rhodium; (5) NAEG contractor reports; and (6) uptake of radioactivity by food crops

  4. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  5. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    Science.gov (United States)

    Ebel, Brian A.; Nimmo, John R.

    2010-01-01

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

  6. Demographic survey centered around the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Richard-Haggard, K.

    1983-03-01

    Demographic data were gathered for several small population centers on and around the Nevada Test Site (NTS). Population projections were made for the three townships that include most of the major population centers in the study area, based on the share approach. These townships were Alamo Township (Lincoln County), Beatty and Pahrump townships (Nye County). It was estimated that the total population of these three townships, plus Clark County, would reach a maximum of 934,000 people by the year 2000. It was assumed that the on-site population of the NTS would continue to be a function of activity at the site, and that this would, if anything, aid in the attainment of site objectives

  7. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  8. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2010-01-01

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Septic Systems' and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: (1) CAS 03-04-02, Area 3 Subdock Septic Tank; (2) CAS 03-59-05, Area 3 Subdock Cesspool; (3) CAS 12-59-01, Drilling/Welding Shop Septic Tanks; and (4) CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  9. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  10. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  11. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  12. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    International Nuclear Information System (INIS)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all

  13. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  14. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  15. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  16. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  17. Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Tim Echelard

    2006-01-01

    A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites, Corrective Action Unit 443'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first phase involved the gathering and interpretation of geologic and hydrogeologic data, and inputting the data into a three-dimensional numerical model to depict groundwater flow. The output from the groundwater flow model was used in a transport model to simulate the migration of a radionuclide release (Pohlmann et al., 2000). The second phase of modeling (known as a Data Decision Analysis [DDA]) occurred after NDEP reviewed the first model. This phase was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third phase of modeling updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003). Corrective action alternatives were evaluated and an alternative was submitted in the ''Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface'' (NNSA/NSO, 2004). Based on the results of this evaluation, the preferred alternative for CAU 443 is Proof-of-Concept and Monitoring with Institutional Controls. This alternative was judged to meet all requirements for the technical components evaluated and will control inadvertent exposure to contaminated groundwater at CAU 443

  18. Structural geology of the French Peak accommodation zone, Nevada Test Site, southwestern Nevada

    International Nuclear Information System (INIS)

    Hudson, M.R.

    1997-01-01

    The French Peak accommodation zone (FPAZ) forms an east-trending bedrock structural high in the Nevada Test Site region of southwestern Nevada that formed during Cenozoic Basin and Range extension. The zone separates areas of opposing directions of tilt and downthrow on faults in the Yucca Flat and Frenchman Flat areas. Paleomagnetic data show that rocks within the accommodation zone adjacent to Yucca Flat were not strongly affected by vertical-axis rotation and thus that the transverse strikes of fault and strata formed near their present orientation. Both normal- and oblique strike-slip faulting in the FPAZ largely occurred under a normal-fault stress regime, with least principal stress oriented west-northwest. The normal and sinistral faults in the Puddle Peka segment transfers extension between the Plutonium Valley normal fault zone and the Cane Spring sinistral fault. Recognition of sinistral shear across the Puddle Peak segment allows the Frenchman Flat basin to be interpreted as an asymmetric pull-apart basin developed between the FPAZ and a zone of east-northeast-striking faults to the south that include the Rock Valley fault. The FPAZ has the potential to influence ground-water flow in the region in several ways. Fracture density and thus probably fracture conductivity is high within the FPAZ due to the abundant fault splays present. Moreover,, fractures oriented transversely to the general southward flow of ground water through Yucca Flat area are significant and have potential to laterally divert ground water. Finally, the FPAZ forms a faulted structural high whose northern and southern flanks may permit intermixing of ground waters from different aquifer levels, namely the lower carbonate, welded tuff, and alluvial aquifers. 42 refs

  19. Community-monitoring program surrounding the Nevada Test Site: one year of experience

    International Nuclear Information System (INIS)

    Douglas, G.S.

    1983-05-01

    Since 1954, the US Public Health Service and later the US Environmental Protection Agency Laboratory in Las Vegas, Nevada, have been responsible for conducting a program of environmental radiation monitoring and public radiation safety associated with nuclear weapons tests conducted by the United States. A recent major innovation in this long-term program has been the establishment of a network of Community Monitoring Stations in 15 offsite communities. The new network supplements existing networks operated for nearly three decades in these and other offsite communities. It differs from other networks in the continuing offsite radiation monitoring and public safety program in that it incorporates Federal, State, and local Government participation. This report reviews the history of offsite radiation surveillance leading to institution of the new network and describes the first year of experience with its equipment, methodology, and management as well as its impact on citizens of the communities involved

  20. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  1. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  2. Nest trees of northern flying squirrels in the Sierra Nevada

    Science.gov (United States)

    Marc D. Meyer; Douglas A. Kelt; Malcolm P. North

    2005-01-01

    We examined the nest-tree preferences of northern flying squirrels (Glaucomys sabrinus) in an old-growth, mixed-conifer and red fir (Abies magnifica) forest of the southern Sierra Nevada of California. We tracked 27 individuals to 122 nest trees during 3 summers. Flying squirrels selected nest trees that were larger in diameter and...

  3. The Nevada Proficiency Examination Program: Evaluating the Writing Samples.

    Science.gov (United States)

    Howard, Edward H.

    Writing tests are part of the mandated statewide proficiency examination in Nevada. The ninth-grade screening test and the eleventh-grade diploma-certifying test require that a student write a paragraph and a business letter, each on an assigned topic and each at an acceptable level of proficiency. Pilot tests, extended discussion, and statistical…

  4. Legislators' beliefs on tobacco control policies in Nevada.

    Science.gov (United States)

    York, Nancy L; Pritsos, Chris A; Gutierrez, Antonio P

    2012-02-01

    The purpose of this study was to identify Nevada legislators' views on comprehensive smoke-free (SF) policy development. The Nevada Clean Indoor Air Act (NCIAA) is a weak law that prohibits smoking in most indoor public places, excluding stand-alone bars and casino gaming areas. Nevada's state senators and assembly members were contacted to participate in the study. A literature review guided modifications of an instrument previously used to measure county-level officials' policy views in Kentucky. Descriptive statistics were conducted for selected variables, while independent t tests and one-way analysis of variance were used to examine differences between various groups. 23 of 63 legislators participated. Even though the majority of officials recognized smoking as a health hazard and nicotine as addictive, there was not overwhelming support for strengthening the NCIAA, raising cigarette excise taxes or providing cessation benefits to citizens. Officials believed that the NCIAA was having a negative economic impact on smaller gaming businesses, but not on the casino industry. Democrats were more likely than Republicans to agree that raising the excise tax by $1 is important for needed state revenues. 63% of legislators believed that they would be persuaded to strengthen the NCIAA regardless of its financial impact on small businesses, if their constituents supported such a move. No other state relies on gaming revenues as much as Nevada. Given that legislators are strongly influenced by their constituents' views, policy advocates need to establish grassroots support for strengthening the current NCIAA and also tobacco control laws in general.

  5. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  6. Fire history, effects and management in southern Nevada [Chapter 5

    Science.gov (United States)

    Mathew L. Brooks; Jeanne C. Chambers; Randy A. McKinley

    2013-01-01

    Fire can be both an ecosystem stressor (Chapter 2) and a critical ecosystem process, depending on when, where, and under what conditions it occurs on the southern Nevada landscape. Fire can also pose hazards to human life and property, particularly in the wildland/urban interface (WUI). The challenge faced by land managers is to prevent fires from occurring where they...

  7. Digital Learning Compass: Distance Education State Almanac 2017. Nevada

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Nevada. The sample for this analysis is comprised of all active, degree-granting…

  8. Genetic sampling of Palmer's chipmunks in the Spring Mountains, Nevada

    Science.gov (United States)

    Kevin S. McKelvey; Jennifer E. Ramirez; Kristine L. Pilgrim; Samuel A. Cushman; Michael K. Schwartz

    2013-01-01

    Palmer's chipmunk (Neotamias palmeri) is a medium-sized chipmunk whose range is limited to the higher-elevation areas of the Spring Mountain Range, Nevada. A second chipmunk species, the Panamint chipmunk (Neotamias panamintinus), is more broadly distributed and lives in lower-elevation, primarily pinyon-juniper (Pinus monophylla-Juniperus osteosperma) habitat...

  9. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  10. Maintaining and restoring sustainable ecosystems in southern Nevada [Chapter 7

    Science.gov (United States)

    Jeanne C. Chambers; Burton K. Pendleton; Donald W. Sada; Steven M. Ostoja; Matthew L. Brooks

    2013-01-01

    Managers in southern Nevada are challenged with determining appropriate goals and objectives and developing viable approaches for maintaining and restoring sustainable ecosystems in a time of rapid socio-ecological and environmental change. Sustainable or “healthy” ecosystems supply clean air, water and habitat for a diverse array of plants and animals. As described in...

  11. Health. Nevada Competency-Based Adult High School Diploma Project.

    Science.gov (United States)

    Nevada Univ., Las Vegas. Coll. of Education.

    This document is one of ten curriculum guides developed by the Nevada Competency-Based Adult High School Diploma (CBAHSD) Project. This curriculum guide on health is divided into ten topics. The topics included are Nutrition, Reproduction, Menstruation, Contraception, Alcohol Abuse, Tobacco, Immunization, Disease, Accident Prevention, and…

  12. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  13. Nevada Test Site Radiological Control Manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  14. 76 FR 19787 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2011-04-08

    ... and local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates..., representing the dependent resurvey of the Fourth Standard Parallel North through a portion of Range 63 East, a... resurvey of the Second Standard Parallel South, through portions of Ranges 61 and 62 East; and a dependent...

  15. 77 FR 24218 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2012-04-23

    ... and local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates... Fourth Standard Parallel South through a portion of Range 49 East and a portion of the subdivisional... nine sheets, represents the dependent resurvey of the Second Standard Parallel South, through a portion...

  16. 76 FR 41820 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2011-07-15

    ... and local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates... Standard Parallel South, through a portion of Range 54 East and a portion of the subdivisional lines, and... Parallel South through a portion of Range 70 East, portions of the east boundary and a portion of the...

  17. Invasive species in southern Nevada [Chapter 4] (Executive Summary)

    Science.gov (United States)

    Matthew L. Brooks; Steven M. Ostoja; Jeanne C.. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones that are emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity, but they also provide opportunities for a wide range of invasive species. In...

  18. Water and water use in southern Nevada [Chapter 3

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and groundwaters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for the study area.

  19. Nevada Risk Assessment/Management Program scientific peer review

    International Nuclear Information System (INIS)

    Bentz, E.J. Jr.; Bentz, C.B.; O'Hora, T.D.; Chen, S.Y.

    1997-01-01

    The 1,350 square-mile Nevada Test Site and additional sites in Nevada served as the continental sites for US nuclear weapons testing from 1951 to 1992. The Nevada Risk Assessment/Management Program (NRAMP) is a currently on-going effort of the Harry Reid Center for Environmental Studies at the University of Nevada, Las Vegas (UNLV) and the firm of E. J. Bentz and Associates, Inc., in cooperation with the US Department of Energy (DOE) Environmental Management Program. Argonne National Laboratory is one of several public and private organizations supporting personnel appointed by the NRAMP to the NRAMP Scientific Peer Review Panel. The NRAMP is part of a national effort by the DOE to develop new sources of information and approaches to risk assessment, risk management, risk communication, and public outreach relevant to the ecological and human health effects of radioactive and hazardous materials management and site remediation activities. This paper describes the development, conduct, and current results of the scientific peer review process which supports the goals of the NRAMP

  20. Use of thermal data to estimate infiltration, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    LeCain, Gary D.; Kurzmack, Mark

    2001-01-01

    Temperature and pressure monitoring in a vertical borehole in Pagany Wash, Yucca Mountain, Nevada, measured disruptions of the natural gradients associated with the February, 1998, El Nino precipitation events. The temperature and pressure disruptions indicated infiltration and percolation through the 12.1 m of Pagany Wash alluvium and deep percolation to greater than 35.2 m into the Yucca Mountain Tuff

  1. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  2. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  3. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Area 25 and Area 26 Railroad Tracks, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 539, Areas 25 and 26 Railroad Tracks, as identified in the Federal Facility Agreement and Consent Order (FFACO). A modification to the FFACOwas approved in May 2010 to transfer the two Railroad Tracks corrective action sites (CASs) from CAU 114 into CAU539. The two CASs are located in Areas 25 and 26 of the Nevada Test Site: • 25-99-21, Area 25 Railroad Tracks • 26-99-05, Area 26 Railroad Tracks This plan provides the methodology for field activities needed to gather the necessary information for closing the two CASs. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of the CAU 539 Railroad Tracks CASs using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation should support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place with use restrictions. This will be presented in a closure report that will be prepared and submitted to the NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on December 14, 2009, by representatives of U.S.Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Navarro Nevada Environmental Services, LLC (NNES); and National Security Technologies

  4. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  5. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-04-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204.

  6. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  7. Final Environmental Impact Statement for the Nevada Test Site and off- site locations in the state of Nevada: Reader's guide

    International Nuclear Information System (INIS)

    1996-08-01

    This Reader's Guide is designed to help you find information in the US Departments of Energy's Nevada Test Site Environmental Impact Statement (NTS EIS). This Guide is divided into four sections: an introduction to the NTS EIS, specific topics, number conversions and scientific notations and public reading room locations

  8. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  9. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITY NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada

  10. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    David Strand

    2006-01-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  11. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of

  12. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  13. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  14. Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

  15. Information services directory

    International Nuclear Information System (INIS)

    1991-01-01

    Congress passed the Nuclear Waste Policy Act of 1982 (NWPA) and its amendments establishing the National policy for safely storing, transporting and disposing of spent nuclear fuel and high-level radioactive waste in a geologic repository. This legislation created the Office of Civilian Radioactive Waste Management (OCRWM) within the US Department of Energy (DOE) to develop an integrated system for the safe and efficient disposal of high-level radioactive waste. The NWPA, as amended, directs DOE to study in detail the Yucca Mountain site in Nevada as the only candidate site for the Nation's geologic repository. In Nevada, the DOE/OCRWM Yucca Mountain Site Characterization Project Office (YMPO) manages scientific investigations to determine the suitability of Yucca Mountain for effectively isolating radioactive waste from the public and the environment. This Information Services Directory is intended to facilitate dissemination of information. The Directory is produced by the Education and Information Division of OCRWM's Office of External Relations and will be updated periodically. This is the third such update since its issuance in August 1986. It is a reference document that lists the sources of program information available to States, Indian Tribes and the public

  16. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  17. Status of the flora and fauna on the Nevada Test Site, 1992

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ''General Environmental Protection Program.'' These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992

  18. Statement of work for architect-engineer services, initial pretreatment module

    International Nuclear Information System (INIS)

    Sowa, K.B.

    1994-01-01

    This Statement of Work describes the Architect-Engineer services to be provided by Raytheon/BNFL in providing a conceptual design (Contract TGW-SVV-063869) for the Initial Pretreatment Module (IPM), Project W-236B, at the Hanford site, Richland, Washington. The IPM Project, a radiochemical process facility, will be designed and constructed for an initial phase of waste pretreatment, which will be for the removal of cesium from supernatant wastes to produce a Low-level waste (LLW) stream to a vitrification facility. The design shall also accommodate side streams of High-Level Waste (HLW) fractions that will be directed to suitable, existing storage tanks where they will be recombined with an additional high-activity waste fraction generated from pretreatment of the tank waste sludges and solids. This combined high-activity waste fraction will be immobilized as glass and disposed in a geological repository

  19. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune

  20. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)

    2014-01-01

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  1. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)

    2014-01-09

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  2. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  3. Flood potential of Fortymile Wash and its principal southwestern tributaries, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Squires, R.R.; Young, R.L.

    1984-01-01

    Flood hazards for a 9-mile reach of Fortymile Wash and its principal southwestern tributaries - Busted Butte, Drill Hole, and Yucca Washes - were evaluated to aid in determining possible sites for the storage of high-level radioactive wastes on the Nevada Test Site. Data from 12 peak-flow gaging stations adjacent to the Test Site were used to develop regression relations that would permit an estimation of the magnitude of the 100- and 500-year flood peaks (Q 100 and Q 500 ), in cubic feet per second. The resulting equations are: Q 100 = 482A 0 565 and Q 500 = 2200A 0 571 , where A is the tributary drainage area, in square miles. The estimate of the regional maximum flood was based on data from extreme floods elsewhere in Nevada and in surrounding states. Among seven cross sections on Fortymile Wash, the estimated maximum depths of the 100-year, 500-year, and regional maximum floods are 8, 11, and 29 feet, respectively. At these depths, flood water would remain within the deeply incised channel of the wash. Mean flow velocities would be as great as 9, 14, and 28 feet per second for the three respective flood magnitudes. The study shows that Busted Butte and Drill Hole Washes (9 and 11 cross sections, respectively) would have water depths of up to at least 4 feet and mean flow velocities of up to at least 8 feet per second during a 100-year flood. A 500-year flood would exceed stream-channel capacities at several places, with depths to 10 feet and mean flow velocities to 11 feet per second. The regional maximum flood would inundate sizeable areas in central parts of the two watersheds. At Yucca Wash (5 cross sections), the 100-year, 500-year, and regional maximum floods would remain within the stream channel. Maximum flood depths would be about 5, 9, and 23 feet and mean velocities about 9, 12, and 22 feet per second, respectively, for the three floods

  4. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  5. Closure report for CAU 339: Area 12 Fleet Operations steam-cleaning discharge area, Nevada Test Site

    International Nuclear Information System (INIS)

    1997-12-01

    This Closure Report (CR) provides documentation of the completed corrective action at the Area 12 Fleet Operations site located in the southeast portion of the Area 12 Camp at the Nevada Test Site (NTS). Field work was performed in July 1997 as outlined in the Corrective Action Plan (CAP). The CAP was approved by the Nevada Division of Environmental Protection (NDEP) in June 1997. This site is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Site (CAS) Number 12-19-01 and is the only CAS in Corrective Action Unit (CAU) 339. The former Area 12 Fleet Operations Building 12-16 functioned as a maintenance facility for light- and heavy-duty vehicles from approximately 1965 to January 1993. Services performed at the site included steam-cleaning, tire service, and preventative maintenance on vehicles and equipment. Past activities impacted the former steam-cleaning discharge area with volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil

  6. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with

  7. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  8. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  9. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  10. Gravity and magnetic data of Fortymile Wash, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Kohrn, S.B.; Waddell, S.

    1992-01-01

    Gravity and ground magnetic data collected along six traverses across Fortymile Wash, in the southwest quadrant of the Nevada Test Site suggest that there are no significant vertical offsets below Fortymile Wash. The largest gravity and magnetic anomaly, in the vicinity of Fortymile Wash, is produced by the Paintbrush fault, on the west flank of Fran Ridge. Inferred vertical offset is about 250 ± 60 m (800 ± 200 ft). Geophysical data indicate that the fault is about 300 m (1,000 ft) east of its mapped, but concealed location. North of Busted Butte, near Fran Ridge, geophysical data do not preclude the existence of small vertical offsets bounding Fortymile Wash. However, gravity and magnetic profiles south of Busted Butte show little correlation to those to the north and suggest that vertical offsets, comparable in size to the Paintbrush fault, are not present. Density profiling, a technique used to determine the average density of small topographic features, suggests that the density of near-surface material in the vicinity of Fortymile Wash is 1.80 to 2.00 g/cm 3

  11. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  12. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  13. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  14. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Russell, G.M.; Locke, G.L.

    1997-01-01

    Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the US Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation. The purpose of this report is to present existing information and results from a coordinated investigation of tritium occurrence. The objectives of the overall investigation include: (1) determination of the type and concentration of contamination; (2) identification of the source and mechanism of contamination; (3) estimation of the extent of radiological contamination; (4) initiation of appropriate monitoring of the contamination; and (5) reporting of investigation results. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water quality data

  15. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  16. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization

  17. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  18. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  19. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    K. B. Campbell email = campbek@nv.doe.gov

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  20. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  1. Fruit and vegetable radioactivity survey, Nevada Test Site environs

    International Nuclear Information System (INIS)

    Andrews, V.E.; Vandervort, J.C.

    1978-04-01

    During the 1974 growing season, the Environmental Monitoring and Support Laboratory-Las Vegas, of the U.S. Environmental Protection Agency, collected samples of fruits and vegetables grown in the off-site area surrounding the Nevada Test Site. The objective was to estimate the potential radiological dose to off-site residents from consumption of locally grown foodstuffs. Irrigation water and soil were collected from the gardens and orchards sampled. Soil concentrations of cesium-137 and plutonium-239 reflected the effects of close-in fallout from nuclear testing at the Nevada Test Site. The only radionuclide measured in fruit and vegetable samples which might be related to such fallout was strontium-90, for which the first year estimated dose to bone marrow of an adult with an assumed rate of consumption of the food would be 0.14 millirad

  2. Nevada Test Site fallout in the area of Enterprise, Utah

    International Nuclear Information System (INIS)

    Krey, P.W.; Hardy, E.P.; Heit, M.

    1980-04-01

    The analysis of a sediment core from the Enterprise reservoir in southwestern Utah has provided a record of fallout in the area dating to 1945. Assming that all the 137 Cs fallout that occurred at Enterprise reservoir between 1951 and 1957 came exclusively from the Nevada tests, an upper limit of the integrated deposit from this source is 18 mCi/km 2 of 137 Cs decay corrected to 1979 out of a total of 101 measured in 1979. The maximum infinity dose from the external radiation caused by this Nevada Test Site fallout is estimated to be 1700 mrad. This maximum dose is only a factor of two higher than the cumulative estimated dose in Enterprise derived from the radiological surveys conducted after each test. This indicates that the region around Enterprise reservoir did not experience an intrusion of fallout from NTS greatly in excess of what had been deduced from the post-shot external radiation surveys

  3. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  4. Nevada Nuclear Waste Storage Investigations, 1986--1987

    International Nuclear Information System (INIS)

    Tamura, A.T.; Lorenz, J.J.

    1988-07-01

    This bibliography contains information on the Nevada Nuclear Waste Storage Investigations (NNWSI) that was added to the DOE Energy Data Base from January 1986 through December 1987. It is a supplement to the first bibliography, Nevada Nuclear Waste Storage Investigations, 1977--1985 (DOE/TIC-3406), and includes all information in the preceding two updates, DOE/TIC-3406(Add.1) and DOE/TIC-3406(Add.2). The bibliography is categorized by principal NNWSI Project participant organizations. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's bibliography list and are listed in chronological order. The following indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation, and Key Word in Context

  5. Relative abundance of desert tortoises on the Nevada Test Site

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; O'Farrell, T.P.

    1993-01-01

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  6. Report of the State of Nevada Commission on Nuclear Projects

    International Nuclear Information System (INIS)

    1988-11-01

    Chapter One of the report presents a brief overview of the commission's functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposal issue since the last Commission report was published. This chapter summarizes the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), which significantly modified federal waste disposal policy and identified Nevada's Yucca Mountain as the only site to be evaluated for suitability as a nuclear waste repository. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and state nuclear waste program efforts. Chapter Three of the report presents recommendations which the Commission is making to the 1989 Nevada Legislature, the governor, and others concerned with matters surrounding the proposed high-level nuclear waste repository at Yucca Mountain and with repository-related activities, such as the transportation of radioactive materials

  7. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  8. Biodiversity Analysis of Vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed

  9. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  10. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  11. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  12. Stratigraphic and structural framework of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Fox, K.F. Jr.

    1988-01-01

    Yucca Mountain is located within the southwestern Nevada volcanic field, ∼140 km northwest of Las Vegas, Nevada, and 50 km northeast of Death Valley, California. The mountain consist of a series of long, linear, north-trending volcanic ridges that approach an 1800-m maximum elevation near The Prow. The broad intermontane alluviated valleys of Crater Flat, the Amargosa Desert, and Jackass Flats, averaging 800 to 1100 m in elevation, form the western, southern, and eastern margins of Yucca Mountain, respectively. North of The Prow, Yucca Mountain merges with other volcanic highlands that flank the southern rim of the Timber Mountain-Oasis Valley caldera complex. The stratigraphy and structure of the area are discussed. Future geologic studies will attempt to determine if faults extend beneath Yucca Mountain, and, if present, their potential effects on the hydrologic and tectonic regimes

  13. Nevada Nuclear Waste Storage Investigations. FY 1979 project plan

    International Nuclear Information System (INIS)

    1979-03-01

    This document presents the management and cost for the Nevada Nuclear Waste Storage Investigations (disposal of high-level wastes at Nevada Test Site) and provides a complete description of the overall project, management structure, technical approach, and work breakdown structure. The document is organized into five major sections. Section I summarizes the history of the project and indicates a potential future course of action. FY 1979 project work is briefly described in Section II. Section III outlines the delegated responsibilities of all project management functions. A list of critical questions that guide the technical approach of the project are presented in Section IV. Section V contains subtask work plans which outline the work in detail for this fiscal year

  14. A new Lower Triassic ichthyopterygian assemblage from Fossil Hill, Nevada

    Directory of Open Access Journals (Sweden)

    Neil P. Kelley

    2016-01-01

    Full Text Available We report a new ichthyopterygian assemblage from Lower Triassic horizons of the Prida Formation at Fossil Hill in central Nevada. Although fragmentary, the specimens collected so far document a diverse fauna. One partial jaw exhibits isodont dentition with blunt tipped, mesiodistally compressed crowns and striated enamel. These features are shared with the Early Triassic genus Utatsusaurus known from coeval deposits in Japan and British Columbia. An additional specimen exhibits a different dentition characterized by relatively small, rounded posterior teeth resembling other Early Triassic ichthyopterygians, particularly Grippia. This Nevada assemblage marks a southward latitudinal extension for Early Triassic ichthyopterygians along the eastern margin of Panthalassa and indicates repeated trans-hemispheric dispersal events in Early Triassic ichthyopterygians.

  15. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste. The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B permit application, pertinent DOE guidelines governing waste acceptance criteria and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with ALARA precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  16. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  17. Seismic induced architectural damage to masonry structures at Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J. F., Jr.

    1966-06-01

    Selected masonry structures in Mercury, Nevada, were inspected for cracking before and after certain nuclear detonations and during periods of no significant nuclear activity. Detonations gave peak particle velocities whose magnitudes approached those experienced in Mississippi during the Salmon event. Findings include evidence that peak particle velocities of 0. 1 to 0. 3 cm/sec caused more cracking than normal; however, cracks at these low levels of motion are not more severe than those occurring naturally.

  18. NNWSI [Nevada Nuclear Waste Storage Investigations] 51 seismic hole histories

    International Nuclear Information System (INIS)

    1987-09-01

    This report is a compilation of data from fifty-one shallow boreholes drilled within the Nevada Test Site (NTS) and the adjacent Bureau of Land Management (BLM) lands. The boreholes were drilled to determine the alluvial thickness and subsurface structure. Once drilled the boreholes were used to emplace explosive charges of three seismic refraction surveys conducted in 1981, 1983 and 1984. The information presented in this report includes location maps, daily activities and reviews of hole condition

  19. Geomechanics of the Climax mine-by, Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-03-01

    A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by

  20. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  1. Groundwater quality in the Southern Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  2. Groundwater quality in the Central Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.

  3. 2003 Nevada Test Site Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for the Nevada Test Site. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  4. A perspective on atomspheric nuclear tests in Nevada fact book

    International Nuclear Information System (INIS)

    Friesen, H.N.

    1992-04-01

    This Fact Book provides historical background and perspective on the nuclear testing program at the Nevada Test Site (NTS). Nuclear tests contributing to the off-site deposition of radioactive fallout are identified, and the concept of cumulative estimated exposure is explained. The difficulty of associating health effects with radiation is presented also. The status of litigation against the government and legislation (as of December 1991) are summarized

  5. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  6. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  7. Nevada National Security Site Environmental Report 2011 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed

    2012-09-12

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada National Security Site (NNSS). NNSA/NSO prepares the Nevada National Security Site Environmental Report (NNSSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NNSS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NNSSER is a comprehensive report of environmental activities performed at the NNSS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NNSSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NNSS environment, or all environmental program activities performed throughout the year. The NNSS is currently the nation's unique site for ongoing national security-related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access, as well as by lands that are open to public entry.

  8. Summary of the Nevada Applied Ecology Group and correlative programs

    International Nuclear Information System (INIS)

    Friesen, H.N.

    1992-10-01

    This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex. The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8

  9. Technical evaluation of available state of Nevada survey instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Argonne National Laboratory (ANL) is reviewing the survey research studies completed by Mountain West Research (1987-1989) for the state of Nevada`s Nuclear Waste Project Office. In this research, 14 survey instruments were used to seek data on whether perceptions of risk could be associated with the possible siting of a high-level radioactive waste repository in Nevada and could be a dominant source of potential, significant, adverse economic impacts. This report presents results from phase 1 of the review, in which ANL contracted with the National Opinion Research Center (NORC) at the University of Chicago to evaluate the technical merits of the nine survey instruments that ANL had been able to acquire. The scope of NORC`s work was limited to rating the questions and stating their strengths and weaknesses. NORC concluded that the surveys could provide valuable data about risk perceptions and potential behavioral responses. NORC identified a few minor problems with a number of questions and the calculated response rates but claimed these problems would probably not have any major biasing effect. The NORC evaluation would have been more complete if the terms used in the questionnaires had been defined, all survey instruments had been acquired, and all data had been made available to the public.

  10. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  11. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  12. Nevada National Security Site Environmental Report 2011 Summary

    International Nuclear Information System (INIS)

    Wills, Cathy

    2012-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada National Security Site (NNSS). NNSA/NSO prepares the Nevada National Security Site Environmental Report (NNSSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NNSS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NNSSER is a comprehensive report of environmental activities performed at the NNSS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NNSSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NNSS environment, or all environmental program activities performed throughout the year. The NNSS is currently the nation's unique site for ongoing national security-related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access, as well as by lands that are open to public entry.

  13. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  14. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  15. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-01-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site

  16. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  17. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  18. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  19. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    International Nuclear Information System (INIS)

    Farnham, Irene

    2016-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  1. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  2. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    International Nuclear Information System (INIS)

    Pastor, Laura

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI

  3. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  4. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  5. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gustafason, D.L.

    2001-01-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential

  6. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document

  7. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada: Revision 0, Including Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-01

    This Corrective Action Decision Document identifies the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's corrective action alternative recommendation for each of the corrective action sites (CASs) within Corrective Action Unit (CAU) 204: Storage Bunkers, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. An evaluation of analytical data from the corrective action investigation, review of current and future operations at each CAS, and a detailed comparative analysis of potential corrective action alternatives were used to determine the appropriate corrective action for each CAS. There are six CASs in CAU 204, which are all located between Areas 1, 2, 3, and 5 on the NTS. The No Further Action alternative was recommended for CASs 01-34-01, 02-34-01, 03-34-01, and 05-99-02; and a Closure in Place with Administrative Controls recommendation was the preferred corrective action for CASs 05-18-02 and 05-33-01. These alternatives were judged to meet all requirements for the technical components evaluated as well as applicable state and federal regulations for closure of the sites and will eliminate potential future exposure pathways to the contaminated media at CAU 204.

  8. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  9. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  10. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  11. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    Contaminants introduced into the subsurface of Pahute Mesa, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas at Pahute Mesa and into the accessible environment is greatest by groundwater transport through fractured volcanic rocks. The 12.9 Ma (mega-annums, million years) Calico Hills Formation, which consists of a mixture of rhyolite lava flows and intercalated nonwelded and bedded tuff and pyroclastic flow deposits, occurs in two areas of the Nevada National Security Site. One area is north of the Rainier Mesa caldera, buried beneath Pahute Mesa, and serves as a heterogeneous volcanic-rock aquifer but is only available to study through drilling and is not described in this report. A second accumulation of the formation is south of the Rainier Mesa caldera and is exposed in outcrop along the western boundary of the Nevada National Security Site at the Calico Hills near Yucca Mountain. These outcrops expose in three dimensions an interlayered sequence of tuff and lava flows similar to those intercepted in the subsurface beneath Pahute Mesa. Field description and geologic mapping of these exposures described lithostratigraphic variations within lava flows and assisted in, or at least corroborated, conceptualization of the rhyolite lava-bearing parts of the formation.

  12. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  13. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  14. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  15. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  16. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  17. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd 3 of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft 3 of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and

  18. Geology of the Nevada Test Site and nearby areas, southern Nevada

    International Nuclear Information System (INIS)

    Sinnock, S.

    1982-10-01

    The Department of Energy's Nevada Test Site (NTS) lies in the southern part of the Great Basin Section of the Basin and Range Physiographic Province. This report addresses the geological setting of the NTS in the context of the current waste isolation policy. The intent is to provide a synthesis of geological conditions at the NTS and nearby areas so that a general background of information is available for assessing the possible role of geology in providing protections for humans from buried radioactive wastes. The NTS is characterized by alluvium-filled, topgraphically closed valleys surrounded by ranges composed of Paleozoic sedimentary rocks and Tertiary volcanic tuffs and lavas. The Paleozoic rocks are a miogeosynclinal sequence of about 13,000 ft of pre-Cambrian to Cambrian clastic deposits (predominantly quartzites) overlain by about 14,000 ft of Cambrian through Devonian carbonates, 8000 ft of Mississippian argillites and quartzites, and 3000 ft of Pennsylvanian to Permian limestones. Tertiary volcanic rocks are predominatly silicic composition and were extruded from numerous eruptive centers during Miocene and Pliocene epochs. Within eruptive caldera depressions, volcanic deposits accumulated to perhaps 10,000 ft in total thickness, thinning to extinction outward from the calderas. Extrusion of minor amounts of basalts accompanied Pliocene and Pleistocene filling of structural basins with detritus from the ranges. Regional compressional and extensional structures as well as local volcanic structures occur in the NTS region. Normal extensional faulting coincided with the outbreak of volcanism during the Miocene and was superimposed on existing Mesozoic structures. Continued extensional deformation may be occurring at the present time

  19. Engineered covers for mud pit closures Central Nevada Test Area, Nevada

    International Nuclear Information System (INIS)

    Madsen, D.D.

    2000-01-01

    Two abandoned drilling mud pits impacted with petroleum hydrocarbons were determined to require closure action at the Central Nevada Test Area. The UC-4 Mud Pit C is approximately 0.12 hectares (0.3 acres) and 1.2 meters (4 feet) in depth. The UC-1 Central Mud Pit (CMP) is approximately 1.54 hectares (3.8 acres) and 2.4 meters (8 feet) in depth. Both mud pits contain bentonite drilling muds with a thin dry crust, low shear strength, low permeability, and high moisture content. The following closure methodologies were evaluated: stabilization by mixing/injection with soil, fly ash, and lime; excavation and disposal; on-site drying; thermal destruction; wick drains; administrative closure (postings and land-use restrictions); and engineered covers. Based upon regulatory closure criteria, implementation, and cost considerations, the selected remedial alternative was the construction of an engineered cover. A multilayered cover with a geo-grid and geo-synthetic clay liner (GCL) was designed and constructed over the UC-4 Mud Pit C to evaluate the constructability and applicability of the design for the CMP cover. The geo-grid provided structural strength for equipment and material loads during cover construction, and the GCL was used as a moisture infiltration barrier. The design was determined to be constructable and applicable. To reduce project costs for the CMP cover, a vegetative cover was designed with drainage toward the center of the cover rather than the perimeter. The vegetative cover with the internal drainage design resulted in a fill volume reduction of approximately 63 percent compared to the multilayered cover design with a GCL

  20. Time-domain electromagnetic soundings at the Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Frischknecht, F.C.; Raab, P.V.

    1984-01-01

    Structural discontinuities and variations in the resistivity of near-surface rocks often seriously distort dc resistivity and frequency-domain electromagnetic (FDEM) depth sounding curves. Reliable interpretation of such curves using one-dimensional (1-D) models is difficult or impossible. Short-offset time-domain electromagnetic (TDEM) sounding methods offer a number of advantages over other common geoelectrical sounding methods when working in laterally heterogeneous areas. In order to test the TDEM method in a geologically complex region, measurements were made on the east flank of Yucca Mountain at the Nevada Test Site (NTS). Coincident, offset coincident, single, and central loop configurations with square transmitting loops, either 305 or 152 m on a side, were used. Measured transient voltages were transformed into apparent resistivity values and then inverted in terms of 1-D models. Good fits to all of the offset coincident and single loop data were obtained using three-layer models. In most of the area, two well-defined interfaces were mapped, one which corresponds closely to a contact between stratigraphic units at a depth of about 400 m and another which corresponds to a transition from relatively unaltered to altered volcanic rocks at a depth of about 1000 m. In comparison with the results of a dipole-dipole resistivity survey, the results of the TDEM survey emphasize changes in the geoelectrical section with depth. Nonetheless, discontinuities in the layering mapped with the TDEM method delineated major faults or fault zones along the survey traverse. 5 refs., 10 figs., 1 tab

  1. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  2. Uranium-thorium dating of quaternary carbonate accumulations in the Nevada Test Site region, southern Nevada

    International Nuclear Information System (INIS)

    Szabo, B.J.; Carr, W.J.; Gottschall, W.C.

    1981-01-01

    A useful way to approach the problem of tectonic activity in an arid region is through study of the history of movement of faults and fractures and of the young alluvial material they displace. Easily datable materials are scarce in these deposits, but carbonates such as caliche, calcrete, travertine, calcite vein, and tufa are common. Several types of these carbonates from the Nevada Test Site area in the southern Great Basin have been collected and dated by the uranium-series method. A variety of geologic settings are represented. The carbonate samples were subjected to a complex treatment process, and the resulting preparations were counted on an alpha spectrometer. Some of the samples from obviously closed systems yielded reasonable ages; others gave only a minimum age for a material or event. Many of the ages obtained agree well with estimates of age determined from dated volcanic units, fault-scarp morphology, and displaced alluvial units. Among the significant ages obtained were three dates of greater than 400,000 years on calcite-filling fractures above and below the water table in an exploratory drill hole for a possible candidate nuclear waste repository site at Yucca Mountain. Another date on calcrete from immediately below the youngest basalt in the region gave an age of 345,000 years, which agrees extremely well with the K-Ar age determined for the basalt of about 300,000 years. Undisturbed travertine that fills faults in several areas gave ages from about 75,000 years to greater than 700,000 years. Soil caliche and calcretes slightly displaced or broken by repeated movement on faults gave minimum ages in the range from more than 5000 to more than about 25,000 years

  3. Uranium in waters and aquifer rocks at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Zielinski, R.A.; Rosholt, J.N.

    1978-01-01

    Previous chemical, geological, and hydrological information describing the physical and chemical environment of the Nevada Test Site has been combined with new radiochemical and isotope data for water and rock samples in order to explain the behavior of uranium during alteration of thick sequences of rhyolitic volcanic rocks and associated volcanielastic sediments. A model is proposed in which uranium mobility is controlled by two competing processes. Uranium is liberated from the volcanic rocks through dissolution of the glassy constituents and is carried in solution as a uranyl carbonate complex. Uranium is subsequently removed from solution by adsorption on secondary oxides of iron, titanium, and manganese, as observed in fission-track maps of aquifer rocks. The model explains the poor correlation of dissolved uranium with depth within tuffaceous sequences in which percolation of ground water is predominantly downward. Good positive correlation of dissolved uranium with dissolved Na, total dissolved solids, and total carbonate supports the glass dissolution model, while inverse correlation of dissolved uranium with 234 U/ 238 U ratios of water implies uranium is being absorbed by a relatively insoluble, surficial phase. Alpha radioactivity of Test Site water is primarily caused by high 234 U contents, and beta activity is highly correlated with dissolved K ( 40 K). Smallamounts of dissolved radium, 216 Pb, and 210 Po are present but no evidence was found for alpha activity sources related to nuclear testing (Pu, 235 U). A filtered but unacidified carbonate solution of uranium was found to be stable (+-10 percent of original U concentration) for years when stored in acid-washed polyethylene bottles. 5 tables, 2 figs

  4. 1982 biotic survey of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1983-02-01

    In 1981 an extensive literature review was conducted to determine the current state of knowledge about the ecological characteristics of the Yucca Mountain study area and to identify what site-specific information was lacking. Based on the findings of the review a field study was initiated in 1982 to gather site-specific information on the ecological characteristics of the project area. The biota observed were representative of either the Mojave or Transition deserts that are widely distributed in southern Nevada and the arid Southwest. No unusual vegetation associations or assemblages of animals were observed. Based on observations of tracks and scats it was concluded that low numbers of both mule deer and feral burros used the area seasonally, and that neither species should be severely threatened by the proposed activities. The Mojave fishhook cactus and desert tortoise, both under consideration for federal protection as threatened species, were found to occur in the study area. The former was distributed in notable densities on the rocky ridgelines of Yucca Mountain in areas that should not be greatly disturbed by site characterization or future repository activities. Evidence of desert tortoise was observed throughout the project area to elevations of 5240 ft; however, relative densities were estimated to be low (less than 20 per square mile). Physical destruction of soils and native vegetation was determined to be the most significant negative effect associated with current and proposed characterization activities. Solution holes in exposed flat rock on ridgelines that served as passive collectors of precipitation and runoff were the only sources of free water observed. While these water supplies were not adequate to support riparian vegetation, there was evidence that they served as an important ephemeral source of water for wildlife

  5. State of Nevada comments on the US Department of Energy consultation draft site characterization plan, Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1988-09-01

    The comments presented here represent a review effort by the Nevada Agency for Nuclear Projects and its Technical Support Contractors and advisors. Part I presents an overview of the comments contained in the document. The overview takes the form of general concerns and comments organized by specific areas of concern. The overview does not follow the format of the CD-SCP. Part II contains specific comments of the Nevada Agency for Nuclear Projects. These comments respond to specifics of the CD-SCP and do so in relation to the organizational format employed in the CD-SCP. Because of the way it is organized, the CD-SCP encouraged a certain degree of redundancy in our response. Part III of this document contains verbatim comments received from the Agency's Technical Contractors and advisors. These comments address issues and contain information not contained in Parts I and II. As such, these comments should be viewed as important in their own right -- not as appendices to the State's comment document

  6. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    D. F. Emer

    2001-03-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the

  7. 40 CFR 81.115 - Northwest Nevada Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.115 Section 81.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.115 Northwest Nevada Intrastate Air Quality Control Region. The Northwest Nevada Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  8. US Department of Energy Nevada Field Office annual site environmental report, 1991

    International Nuclear Information System (INIS)

    Black, S.C.; Latham, A.R.; Townsend, Y.E.

    1992-09-01

    These appendices contain 1991 Nevada Test Site (NTS) onsite and offsite milk environmental monitoring results. The onsite data presented are accompanied by summaries of statistical evaluation of the data. Other offsite data collected by the EPA are available from the US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Las Vegas, Nevada

  9. REECo activities and sample logistics in support of the Nevada Applied Ecology Group

    International Nuclear Information System (INIS)

    Wireman, D.L.; Rosenberry, C.E. Jr.

    1975-01-01

    Activities and sample logistics of Reynolds Electrical and Engineering Co., Inc. (REECo), in support of the Nevada Applied Ecology Group (NAEG), are discussed in this summary report. Activities include the collection, preparation, and shipment of samples of soils, vegetation, and small animals collected at Pu-contaminated areas of the Nevada Test Site and Tonopah Test Range. (CH)

  10. Thorium-230 dating of natural waters at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bakhtiar, S.N.

    1990-01-01

    Radiocarbon determinations have been used in the past to estimate the ages of groundwater from the Paleozoic aquifer underlying the Nevada Test Site and adjacent areas. We measured the concentrations of 230 Th, 232 Th, 234 U and 238 U in several water samples taken from the wells and spring at the Nevada Test Site and calculated the 230 Th ages. 2 refs

  11. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    Science.gov (United States)

    Mark W. Schwartz; Nathalie Butt; Christopher R. Dolanc; Andrew Holguin; Max A. Moritz; Malcolm P. North; Hugh D. Safford; Nathan L. Stephenson; James H. Thorne; Phillip J. van Mantgem

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we...

  12. 75 FR 65310 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-10-22

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada Test Site. The Federal Advisory... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  13. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  14. 77 FR 4027 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  15. 76 FR 80354 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  16. 77 FR 12044 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-02-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  17. Supporting documents for LLL area 27 (410 area) safety analysis reports, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B. N. [comp.

    1977-02-01

    The following appendices are common to the LLL Safety Analysis Reports Nevada Test Site and are included here as supporting documents to those reports: Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations, U. S. Environmental Protection Agency, Las Vegas, Rept. EMSL-LV-539-4 (1976); Selected Census Information Around the Nevada Test Site, U. S. Environmental Protection Agency, Las Vegas, Rept. NERC-LV-539-8 (1973); W. J. Hannon and H. L. McKague, An Examination of the Geology and Seismology Associated with Area 410 at the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-51830 (1975); K. R. Peterson, Diffusion Climatology for Hypothetical Accidents in Area 410 of the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-52074 (1976); J. R. McDonald, J. E. Minor, and K. C. Mehta, Development of a Design Basis Tornado and Structural Design Criteria for the Nevada Test Site, Nevada, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-13668 (1975); A. E. Stevenson, Impact Tests of Wind-Borne Wooden Missiles, Sandia Laboratories, Tonopah, Rept. SAND 76-0407 (1976); and Hydrology of the 410 Area (Area 27) at the Nevada Test Site.

  18. 76 FR 10914 - Notice of Public Meetings: Mojave-Southern Great Basin Resource Advisory Council, Nevada

    Science.gov (United States)

    2011-02-28

    ... Area (NCA) Visitor's Center, Las Vegas, Nevada; July 21, 2011, at the BLM Southern Nevada District... final meeting agenda that will be available two weeks prior to each meeting. FOR FURTHER INFORMATION... be raised by RAC members. The final agendas with any additions/corrections to agenda topics...

  19. Use of Digital Technology and Support Software Programs in the Private Dental Offices in Nevada

    Science.gov (United States)

    Fattore-Bruno, LaDeane

    2009-01-01

    The purpose of this survey research was to determine the diffusion of digital radiography, the electronic oral health record (EOHR), digital intraoral photography, and diagnosis and clinical decision-making support software into the dental offices of Nevada. A cross-sectional survey design was utilized with a random sample of 600 Nevada dentists.…

  20. Identifying the Ethical Challenges Encountered by Information Technology Professionals Working within the Nevada Casino Industry

    Science.gov (United States)

    Essig, Michael R.

    2014-01-01

    A thematic analysis qualitative study was used to identify the unethical challenges encountered by Information Technology (IT) professionals working within the Nevada casino industry. Fourteen current and former IT leaders working or who worked in the Nevada casino industry were interviewed. Using thematic analysis, nine themes regarding ethical…

  1. Nitrogen dynamics of spring-fed wetland ecosystems of the Sierra Nevada foothills oak woodland

    Science.gov (United States)

    Randall D. Jackson; Barbara Allen-Diaz

    2002-01-01

    Spring-fed wetlands are small, highly productive, patchy ecosystems nested within the oak woodland/annual grassland matrix of the Sierra Nevada foothills. In an effort to place these wetlands in a landscape context, we described seasonal variation (1999-2000 growing season) in nitrogen cycling parameters at 6 spring-fed wetland sites of the Sierra Nevada foothill oak...

  2. Maintaining and restoring sustainable ecosystems in southern Nevada [Chapter 7] (Executive Summary)

    Science.gov (United States)

    Jeanne C. Chambers; Burton K. Pendleton; Donald W. Sada; Steven M. Ostoja; Matthew L.. Brooks

    2013-01-01

    Resource managers in southern Nevada are faced with the challenge of determining appropriate goals and objectives and developing viable approaches for maintaining and restoring sustainable ecosystems in the face of rapid socio-ecological and environmental change. Many of southern Nevada’s ecosystems are being subjected to anthropogenic stressors that span global,...

  3. Human interactions with the environment through time in southern Nevada [Chapter 8] (Executive Summary)

    Science.gov (United States)

    Carol B. Raish

    2013-01-01

    Southern Nevada is rich in irreplaceable cultural resources that include archeological remains, historic sites, cultural landscapes, and other areas of significance to Native Americans and other cultural groups. This chapter provides information related to Goal 2 in the SNAP Science Research Strategy, which is to “Provide for responsible use of Southern Nevada’s lands...

  4. Water and water use in southern Nevada [Chapter 3] (Executive Summary)

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and ground waters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for southern Nevada. Chapter 3 outlines...

  5. 75 FR 57493 - Notice of Inventory Completion: Department of Anthropology & Ethnic Studies, University of Nevada...

    Science.gov (United States)

    2010-09-21

    ... Vegas Tribe of Paiute Indians of the Las Vegas Indian Colony, Nevada; Lovelock Paiute Tribe of the Lovelock Indian Colony, Nevada; Paiute-Shoshone Indians of the Bishop Community of the Bishop Colony... 1989, human remains representing a minimum of one individual were collected from Lovelock, Pershing...

  6. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Roberrt C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  7. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst. (DRI), Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst. (DRI), Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-01-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  8. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  9. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Bess, J.; Werner, J.

    2011-01-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  10. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  11. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  12. P- and S-body wave tomography of the state of Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  13. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-08-01

    This Post-Closure Inspection and Monitoring Report provides the results and inspections and monitoring for Corrective Action Unit 110: Area 3 Waste Management Division U-3ax/bl Crater, Nevada Test Site, Nevada. This report includes an analysis and summary of the site inpsections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at Corrective Action Unit 110, for the annual period July 2005 thrugh June 2006.

  14. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    International Nuclear Information System (INIS)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments

  15. Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12

  16. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  17. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hendricks, T.J.; Riedhauser, S.R.

    1999-01-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  18. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  19. Childhood leukemia and fallout from the Nevada nuclear tests

    International Nuclear Information System (INIS)

    Land, C.E.; McKay, F.W.; Machado, S.G.

    1984-01-01

    Cancer mortality data from the National Center for Health Statistics, covering the period 1950 through 1978, were used to test a reported association between childhood leukemia and exposure to radioactive fallout from nuclear weapons tests in Nevada between 1951 and 1958. No pattern of temporal and geographic variation in risk supportive of the reported association was found. Comparison of these results with those presented in support of an association of risk with fallout suggests that the purported association merely reflects an anomalously low leukemia rate in southern Utah during the period 1944 to 1949. 14 references, 4 figures, 7 tables

  20. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  1. Ecological aspects of 'Nevada-Semipalatinsk' movement activity

    International Nuclear Information System (INIS)

    Abishev, M.A.

    2001-01-01

    After the Semipalatinsk test site shutdown a certain work on nuclear explosions consequences study by the 'Nevada-Semipalatinsk' International Antinuclear movement was was fulfilled. Today the Movement mission is concluding in assistance to the suffered lands rehabilitation and a people health recovery. The Movement's Problem Committee 'Radiation, Ecology and Health' was created and is actively operating for these problems solution. The scientific experts are engaging in ecological situation assessment problem. In the first time the radioecological examination was conducted and a map set for STS radiation contamination areas was prepared. A number of areas with the radionuclide permissible limits exceeding is revealed

  2. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  3. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    Science.gov (United States)

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  4. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-01-01

    This paper describes the Western Area Gaining and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  5. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    Science.gov (United States)

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    Audiomagnetotelluric (AMT) data along four profiles in western Snake Valley and the corresponding two-dimensional (2-D) inverse models reveal subsurface structures that may be significant to ground-water investigations in the area. The AMT method is a valuable tool for estimating the electrical resistivity of the earth over depth ranges from a few meters to less than one kilometer. The method has the potential to identify faults and stratigraphy within basins of eastern Nevada, thereby helping define the hydrogeologic framework of the region.

  6. An interim report on the State of Nevada socioeconomic studies

    International Nuclear Information System (INIS)

    1989-06-01

    This Interim Report is a report on work in progress and presents findings from the research to date on the potential consequences of a repository for the citizens of Nevada. The research and findings in the Report have been subjected to rigorous peer review as part of the state's effort to insure independent, objective analysis that meets the highest professional standards. The basic research effort will continue through June 1990 and will enable the state to refine and clarify the findings presented in this Interim Report

  7. Truckee Meadows (Reno-Sparks Metropolitan Area) Nevada. Documentation Report

    Science.gov (United States)

    1983-10-01

    borehole. (10) Borehole No. 7 and borehole Nos. 9 through 14 were not drilled to a depth of 20 feet because gravel was encountered, rendering both...through the Washo and on to the Maidu ( Heizer and Whipple 1917:58). 4. H.[ST0RIC.. B..KGR.UND a. The first non-Ind:i.ans known to visit what is now the...Reno, University of Nevada. 32 pp. Heizer , Robert F. & M. A. Whipply 1971 The California Indians. Berkeley, University of California Press. 619 pp

  8. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  9. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-07-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  10. A forecasting model of gaming revenues in Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A. [Argonne National Lab., IL (United States); Carlson, J.; Meenan, C. [Science Applications International Corp., Las Vegas, NV (United States)

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  11. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  12. Land reclamation on the Nevada Test Site: A field tour

    International Nuclear Information System (INIS)

    Winkel, V.K.; Ostler, W.K.

    1993-01-01

    An all-day tour to observe and land reclamation on the Nevada Test Site was conducted in conjunction with the 8th Wildland Shrub and Arid Land Restoration Symposium. Tour participants were introduced to the US Department of Energy reclamation programs for Yucca Mountain Site Characterization Project and Treatability Studies for Soil Media (TSSM) Project. The tour consisted of several stops that covered a variety of topics and studies including revegetation by seeding, topsoil stockpile stabilization, erosion control, shrub transplanting, shrub herbivory, irrigation, mulching, water harvesting, and weather monitoring

  13. Geochronology and Geochemistry of a Late Cretaceous Granitoid Suite, Santa Rosa Range, Nevada: Linking Arc Magmatism in Northwestern Nevada to the Sierra Nevada Batholith

    Science.gov (United States)

    Brown, K.; Stuck, R.; Hart, W. K.

    2010-12-01

    Throughout the Mesozoic, an arc-trench system dominated the western margin of North America. One of the principal records of this system’s evolution is a discontinuous alignment of deeply eroded batholiths, which represent the once-active roots of ancient volcanic systems. Although these batholiths extend from Alaska to Mexico, there is a prominent (~500 km) gap located in present-day Nevada that contains scattered plutons that are hypothesized to be similar in age and origin to the larger batholiths. The current understanding of these isolated plutons, however, remains limited to regional isotopic studies aimed at identifying major crustal boundaries and structural studies focused on emplacement mechanisms. Therefore, detailed petrogenetic studies of the plutons exposed within the Santa Rosa Range (SRR) of NW Nevada will better characterize magmatism in this region, placing them within a regional context that explores the hypothesized links between the intrusions of NW Nevada to the Sierra Nevada batholith (SNB). A compilation of published geochronology from this region shows that plutons in the SRR are broadly coeval with the Cathedral Range Intrusive Epoch (~95-83 Ma) and the Shaver Sequence (~118-105 Ma) of the SNB. Preliminary Rb-Sr geochronology from the Granite Peak stock reveals a previously unrecognized period of magmatism (ca. 85.0 Ma) in this region. Therefore, ongoing work will more completely characterize the timing of magmatic pulses in this region and their relationships to the SNB. Preliminary petrographic, geochemical, and isotopic observations suggest that two distinct compositional/textural groups exist: the Santa Rosa/ Andorno group (SRA) and Granite Peak/ Sawtooth group (GPS). The chemical and isotopic variations between the two groups suggest that they were not consanguineous. Whereas the SRA group is generally more mafic (64-72 wt% SiO2) and metaluminous, the GPS group is more felsic (72- 76 wt% SiO2) and peraluminous. This observation is

  14. Report of the investigation of the accident at the MIDAS MYTH/MILAGRO Trailer Park on Rainier Mesa at Nevada Test Site on February 15, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Fourteen persons were injured, one fatally, when the ground upon which they were working collapsed, forming a subsidence crater in the recording trailer park of the MIDAS MYTH/MILAGRO nuclear weapons effects test on Rainier Mesa at the US Department of Energy's Nevada Test Site on February 15, 1984. Those persons injured were contractor and laboratory employees from Reynolds Electrical and Engineering Co., Inc. (REECo), Pan American World Services, Inc. (PANAM), and the Los Alamos National Laboratory (LANL). This report presents the results of an investigation into the causes, effects, and response to the accident. 42 figures

  15. Preliminary results of absolute and high-precision gravity measurements at the Nevada Test Site and vicinity, Nevada

    International Nuclear Information System (INIS)

    Zumberge, M.A.; Harris, R.N.; Oliver, H.W.; Sasagawa, G.S.; Ponce, D.A.

    1988-01-01

    Absolute gravity measurements were made at 4 sites in southern Nevada using the absolute gravity free-fall apparatus. Three of the sites are located on the Nevada Test Site at Mercury, Yucca Pass, and in northern Jackass Flats. The fourth site is at Kyle Canyon ranger station near Charleston Park where observed gravity is 216.19 mGal lower than at Mercury. Although there is an uncertainty of about 0.02 mGal in the absolute measured values, their gravity differences are considered accurate to about 0.03 mGal. Therefore, the absolute measurements should provide local control for the calibration of gravity meters between Mercury and Kyle Canyon ranger station to about 1 to 2 parts in 10,000. The average gravity differences between Mercury and Kyle Canyon obtained using LaCoste and Romberg gravity meters is 216.13 mGal, 0.06 mGal lower, or 3 parts in 10,000 lower than using the absolute gravity meter. Because of the discrepancy between the comparison of the absolute and relative gravity meters, more absolute and relative gravity control in southern Nevada, as well as the Mt. Hamilton area where the LaCoste and Romberg instruments were calibrated, is needed. Multiple gravity meter ties were also made between each of the four absolute stations to nearby base stations located on bedrock. These stations were established to help monitor possible real changes in gravity at the absolute sites that could result from seasonal variations in the depth to the water table or other local mass changes. 8 refs., 16 figs., 7 tabs

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    US Department of Energy Nevada Operations Office

    1999-01-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 232, Area 25 Sewage Lagoons, in accordance with the Federal Facility Agreement and Consent Order. Located at the Nevada Test Site in Nevada, approximately 65 miles northwest of Las Vegas, CAU 232 is comprised of Corrective Action Site 25-03-01, Sewage Lagoon. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary for CAU 232. The Corrective Action Decision Document and Closure Report have been combined into one report because sample data collected during the July 1999 corrective action investigation (CAI) activities disclosed no evidence of contamination at the site. Contaminants of potential concern (COPCs) addressed during the CAI included total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total pesticides, total herbicides, total petroleum hydrocarbons (gasoline and diesel/oil range), polychlorinated biphenyls, isotopic uranium, isotopic plutonium, strontium-90, and gamma-emitting radionuclides. The data confirmed that none of the COPCs identified exceeded preliminary action levels outlined in the CAIP; therefore, no corrective actions were necessary for CAU 232. After the CAI, best management practice activities were completed and included installation of a fence and signs to limit access to the lagoons, cementing Manhole No. 2 and the diverter box, and closing off influent and effluent ends of the sewage lagoon piping. As a result of the CAI, the DOE/NV recommended that: (1) no further actions were required; (2) no Corrective Action Plan would be required; and (3) no use restrictions were required to be placed on the CAU

  17. Flood potential of Topopah Wash and tributaries, eastern part of Jackass Flats, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Christensen, R.C.; Spahr, N.E.

    1980-01-01

    Guidelines for evaluating potential surface facilities to be used for the storage of high-level radioactive wastes on the Nevada Test Site in southern Nevada include the consideration of the potential for flooding. Those floods that are considered to constitute the principal flood hazards for these facilities are the 100- and 500-year floods, and the maximum potential flood. Flood-prone areas for the three floods with present natural-channel conditions were defined for the eastern part of Jackass Flats in the southwestern part of the Nevada Test Site. The 100-year flood-prone areas would closely parallel most stream channels with very few occurrences of out-of-bank flooding between adjacent channels. Out-of-bank flooding would occur at depths of less than 2 feet with mean velocities as much as 7 feet per second. Channel flood depths would range from 1 to 9 feet and mean velocities would range from 3 to 9 feet per second. The 500-year flood would exceed the discharge capacities of all channels except for Topopah Wash and some channels in the upstream reaches of a few tributaries. Out-of-bank flows between adjacent channels would occur at depths as much as 3 feet with mean velocities of more than 7 feet per second. Channel flood depths would range from 1 to 12 feet and mean velocities would range from 3 to 13 feet per second. The maximum potential flood would inundate most of the study area. Excluded areas would be those located immediately east of the upstream reach of Topopah Wash and between upstream channel reaches of some tributaries. Out-of-bank flows between adjacent channels would occur at depths as much as 5 feet with mean velocities as much s 13 feet per second. Channel flood depth would range from 2 to 23 feet and mean velocities would range from 4 to 26 feet per second

  18. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Jones, Robert C. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Bullard, Thomas F. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Ashbaugh, Laurence J. [Southern Nevada Courier Service, NV (United States); Griffin, Wayne R. [Stoller-Navarro Joint Venture, Las Vegas, NV (United States)

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  19. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  20. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  1. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-05-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document.

  2. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-28

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 516: Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 3, 6, and 22 on the NTS, CAU 516 includes six Corrective Action Sites (CASs) consisting of two septic systems, a sump and piping, a clean-out box and piping, dry wells, and a vehicle decontamination area. Corrective action investigation activities were performed from July 22 through August 14, 2003, with supplemental sampling conducted in late 2003 and early 2004. The potential exposure pathways for any contaminants of concern (COCs) identified during the development of the DQOs at CAU 516 gave rise to the following objectives: (1) prevent or mitigate exposure to media containing COCs at concentrations exceeding PALs as defined in the corrective action investigation plan; and (2) prevent the spread of COCs beyond each CAS. The following alternatives have been developed for consideration at CAU 516: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; and Alternative 3 - Closure in Place with Administrative Controls. Alternative 1, No Further Action, is the preferred corrective action for two CASs (06-51-02 and 22-19-04). Alternative 2, Clean Closure, is the preferred corrective action for four CASs (03-59-01, 03-59-02, 06-51-01, and 06-51-03). The selected alternatives were judged to meet all requirements for the technical components evaluated, as well as meeting all applicable state and federal regulations for closure of the site and will further eliminate the contaminated media at CAU 516.

  3. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  4. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  5. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  6. Development of a design basis tornado and structural design criteria for the Nevada Test Site, Nevada. Final report

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-06-01

    In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loads for an example structure are included

  7. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  8. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  9. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by

  10. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs

  11. Nevada Nuclear Waste Storage Investigations: Quality Assurance Plan

    International Nuclear Information System (INIS)

    1980-08-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) were established by DOE/NV to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) and contiguous areas to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Since the results of these evaluations will impact possible risks to public health and safety, a quality assurance program which conforms to the criteria given in the Code of Federal Regulations is needed to control the quality aspects of the work. This Quality Assurance Plan (QAP) describes the general quality assurance program for the overall NNWSI project under which the quality assurance programs of the individual participating organizations and support contractors are to operate. The details of how each of these groups will meet the criteria will differ among participating organizations and support contractors, and those details are given in the QAPP's listed in Appendix A. It is the purpose of this plan to show the commonality of quality assurance programs in effect within the project and to define how each element fits into the entire picture to give total quality assurance coverage for the NNWSI Project

  12. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  13. Radionuclide migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1989-01-01

    The United States government routinely tests nuclear devices at the Nevada Test Site (NTS) in southern Nevada. A significant amount of radioactive material exists underground at the NTS with no containers or engineered barriers to inhibit its subsequent migration. The Department of Energy has sponsored for many years a research program on radionuclide movement in the geologic media at this location. Goals of this research program are to measure the extent of movement of radionuclides away from underground explosion sites and to determine the mechanisms by which such movement occurs. This program has acquired significance in another aspect of nuclear waste management because of the Yucca Mountain Project. Yucca Mountain at the NTS is being intensively studied as the possible site for a mined repository for high level nuclear waste. The NTS provides a unique setting for field studies concerning radionuclide migration; there is the potential for greatly increasing our knowledge of the behavior of radioactive materials in volcanogenic media. This review summarizes some of the significant findings made under this research program at the NTS and identifies reports in which the details of the research may be found. 36 refs., 4 figs

  14. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  15. Nevada v. Herrington: an ineffective check on the DOE

    International Nuclear Information System (INIS)

    Karkut, J.E.

    1988-01-01

    In this decision, the United States Court of Appeals for the Ninth Circuit held that Nevada was entitled to Department of Energy (DOE) funding for certain hydrologic and geologic studies of the Yucca Mountain site. This site is located in Nye County, Nevada and could be selected as America's first high-level nuclear-waste repository. The studies' purpose is to provide independent state examination of the area's repository suitability. The court applied statutory construction principles to the Nuclear Waste Policy Act of 1982 (NWPA) to reach its decision. The decision has significance for its support of states' pre-site characterization funding rights, for the manner in which the court determined that DOE was not acting within the scope of the NWPA, and for underlying concerns left unaddressed. This Note provides background for and analysis of this decision. Factors necessitating the NWPA's passage are outlined, followed by a sketch of the events leading to this lawsuit. The court's review standard and NWPA analysis based on the statute's language and underlying congressional intent are explained. The decision is then analyzed and critiqued. Finally, a perspective viewing DOE as dangerously out of touch with NWPA statutory mandates and unrestrained in the repository selection process is expressed

  16. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  17. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    Science.gov (United States)

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. © 2012 Society for Risk Analysis.

  18. Nevada Test Site Radiation Protection Program - Revision 1

    International Nuclear Information System (INIS)

    Nevada Test Site Radiological Control Managers' Council

    2008-01-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material

  19. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  20. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  1. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-01-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131 I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided

  2. The occurrence and distribution of erionite at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs

  3. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  4. Geologic map of the Bodie Hills, California and Nevada

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.

    2015-01-01

    The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).

  5. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  6. Slingram survey at Yucca Mountain on the Nevada Test Site

    International Nuclear Information System (INIS)

    Flanigan, V.J.

    1981-01-01

    Electromagnetic (EM) data presented in this report is part of study by the US Geological Survey aimed at evaluating the Miocene and Pliocene Yucca Mountain Member of various units of the Paintbrush Tuff in the vicinity of Yucca Mountain as a possible repository for nuclear wastes. The survey area is located about 97 km northwest of Las Vegas, Nevada on the Nevada Test Site. Data contained in this report were taken along the eastern edge of Yucca Mountain. The specific purpose of this survey was to determine with EM methods, whether or not northwest-trending valleys in the Yucca Mountain area were fault controlled. Fault and fracture zones in the tuff units were expected to have a somewhat higher conductivity than the unfractured tuff. This is due to the greater porosity, clay and moisture content expected in the fault zones than in unfaulted rock. Depending upon a number of factors, such as the conductivity contrast between fault zones and unfaulted rock, and the depth and conductivity of the overburden, it may be possible to recognize fault zones from surface EM measurements. Several EM methods were tested to determine which one gave the best results in this environment. The methods tried included slingram, Turam and VLF (very low frequency). Slingram data proved to be most diagnostic in delineating a mapped fault on the east edge of Yucca Mountain, and hence was used in the survey traverses crossing the northwest valleys cutting into Yucca Mountain

  7. A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

    Science.gov (United States)

    Girotto, Manuela; Margulis, Steven; Cortes, Gonzalo; Durand, Michael

    2017-01-01

    This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.

  8. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  9. Technical evaluation of available state of Nevada survey instruments

    International Nuclear Information System (INIS)

    1993-02-01

    Argonne National Laboratory (ANL) is reviewing the survey research studies completed by Mountain West Research (1987-1989) for the state of Nevada's Nuclear Waste Project Office. In this research, 14 survey instruments were used to seek data on whether perceptions of risk could be associated with the possible siting of a high-level radioactive waste repository in Nevada and could be a dominant source of potential, significant, adverse economic impacts. This report presents results from phase 1 of the review, in which ANL contracted with the National Opinion Research Center (NORC) at the University of Chicago to evaluate the technical merits of the nine survey instruments that ANL had been able to acquire. The scope of NORC's work was limited to rating the questions and stating their strengths and weaknesses. NORC concluded that the surveys could provide valuable data about risk perceptions and potential behavioral responses. NORC identified a few minor problems with a number of questions and the calculated response rates but claimed these problems would probably not have any major biasing effect. The NORC evaluation would have been more complete if the terms used in the questionnaires had been defined, all survey instruments had been acquired, and all data had been made available to the public

  10. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  11. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  12. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  13. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  14. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  15. Springs on the Nevada Test Site and their use by wildlife

    International Nuclear Information System (INIS)

    Giles, K.R.

    1976-04-01

    During August 1972, natural springs located on the Nevada Test Site were surveyed to determine the use by wildlife and the effort required for improving flow. Each spring is described and its use by wildlife noted. Methods of improving spring flow are suggested. It is believed that minimal effort at most of the springs would result in a significant improvement of waterflow with resulting benefits to wildlife. The intention of the recommendations in this report is to encourage development of the Nevada Test Site springs and to maintain the wildlife now at the Site. There is no recommendation to bring in or support wildlife outside the Nevada Test Site area

  16. Biological/environmental relationships in desert ecosystems of the Nevada Test Site

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1979-03-01

    Activities covered are: computer and related work (corrections and updating of card decks for Nevada Test Site data, and transfer of data and programs to tapes); publication of shrub (and tree) data for undisturbed Test Site vegetation in 1963 and 1975 (DOE/EV/2307-15); work performed in this contract period on the publications covering the vascular plants of central-southern Nevada (TID-26881); and work and publications in connection with the Endangered and Threatened species of central-southern Nevada

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  18. Annotated bibliography of cultural resources literature for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    1983-11-01

    This annotated bibliography of the cultural resources literature pertinent for the Nevada Nuclear Waste Storage Investigations was assembled in order to (1) identify and evaluate the prehistoric and historic properties previously recorded in the Nevada Nuclear Waste Storage Investigations Project Area of southern Nye County, Nevada, (2) identify and develop research problems that have been and/or could be addressed by the cultural resources of this area, (3) isolate factors that might be important in the selection of a potential locality for a high level nuclear waste repository in the project area, and (4) critically evaluate the adequacy and current status of cultural resources knowledge in the project area. 195 references

  19. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  20. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.