WorldWideScience

Sample records for rayleigh-benard-marangoni convection induced

  1. Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows

    Science.gov (United States)

    Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.

    1999-01-01

    A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.

  2. Laser induced ponderomotive convection in water

    CERN Document Server

    Shneider, M N

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing polar liquid is described theoretically. The numerical simulations performed using the developed model show that the ponderomotive force produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of gravitational acceleration (upward). The theoretical estimates and the numerical simulations predict fluid dynamics that is similar to the observed in the previous experiments.

  3. Convective Induced Turbulence (CIT) Detection via Total Lightning Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We proposes to build a prototype Convective-Induced Turbulence (CIT) hazard detection system based on total lightning sensing as an indicator of the location and...

  4. Evidence of convective heat transfer enhancement induced by spinodal decomposition.

    Science.gov (United States)

    Poesio, P; Lezzi, A M; Beretta, G P

    2007-06-01

    Spinodal decomposition can be driven by either diffusion or self-induced convection; the importance of convection relative to diffusion depends on the Péclet number, defined as the ratio between convective and diffusive mass fluxes. Diffusion is the dominating mechanism of phase segregation when the Péclet number is small - i.e., when viscosity and diffusivity are large - or when the domain characteristic size is small. For low-viscosity mixtures, convection is the dominating process and the segregation is very rapid as it takes a few seconds compared to the hours needed in the case of pure diffusion. In such cases, strong convective motion of the phase segregating domains is generated even in small-size systems and is almost independent of the temperature difference as long as it is below the transition value. We study experimentally the enhancement of heat transfer in a 1-mm -thick cell. A water-acetonitrile-toulene mixture is quenched into a two-phase region so as to induce convection-driven spinodal decomposition. The heat transfer rate is measured and compared to that obtained in the absence of convective motion. A substantial reduction in the cooling time obtains in the case of spinodal decomposition. The heat transfer enhancement induced by this self-induced, disordered but effectively convective effect may be exploited in the cooling or heating of small-scale systems whereby forced convection cannot be achieved because of the small sizes involved. A scaling analysis of the data based on the diffuse interface H model for a symmetric mixture near the equilibrium point yields very encouraging agreement and insights.

  5. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  6. Timescale of asteroid resurfacing by regolith convection resulting from the impact-induced global seismic shaking

    CERN Document Server

    Yamada, Tomoya M; Morota, Tomokatsu; Katsuragi, Hiroaki

    2015-01-01

    A model for the asteroid resurfacing by regolith convection is built to estimate its timescale. In the model, regolith convection is driven by the impact-induced global seismic shaking. The model consists of three steps: (i) intermittent impact of meteors, (ii) impact-induced global vibration (seismic shaking), and (iii) vibration-induced regolith convection. In order to assess the feasibility of the resurfacing process driven by the regolith convection, we estimate the resurfacing timescale as a function of the size of a target asteroid. According to the estimated result, the regolith-convection-based resurfacing timescale is sufficiently shorter than the mean collisional lifetime for the main belt asteroids. This means that the regolith convection is a possible mechanism for the asteroid resurfacing process. However, the timescale depends on various uncertain parameters such as seismic efficiency and convective roll size. To clarify the parameter dependences, we develop an approximated scaling form for the ...

  7. Convective and Diffusive Energetic Particle Losses Induced by Shear Alfven Waves in the ASDEX Upgrade Tokamak

    NARCIS (Netherlands)

    Garcia-Munoz, M.; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.

    2010-01-01

    We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process

  8. Probability distribution of surface wind speed induced by convective adjustment on Venus

    Science.gov (United States)

    Yamamoto, Masaru

    2017-03-01

    The influence of convective adjustment on the spatial structure of Venusian surface wind and probability distribution of its wind speed is investigated using an idealized weather research and forecasting model. When the initially uniform wind is much weaker than the convective wind, patches of both prograde and retrograde winds with scales of a few kilometers are formed during active convective adjustment. After the active convective adjustment, because the small-scale convective cells and their related vertical momentum fluxes dissipate quickly, the large-scale (>4 km) prograde and retrograde wind patches remain on the surface and in the longitude-height cross-section. This suggests the coexistence of local prograde and retrograde flows, which may correspond to those observed by Pioneer Venus below 10 km altitude. The probability distributions of surface wind speed V during the convective adjustment have a similar form in different simulations, with a sharp peak around ∼0.1 m s-1 and a bulge developing on the flank of the probability distribution. This flank bulge is associated with the most active convection, which has a probability distribution with a peak at the wind speed 1.5-times greater than the Weibull fitting parameter c during the convective adjustment. The Weibull distribution P(> V) (= exp[-(V/c)k]) with best-estimate coefficients of Lorenz (2016) is reproduced during convective adjustments induced by a potential energy of ∼7 × 107 J m-2, which is calculated from the difference in total potential energy between initially unstable and neutral states. The maximum vertical convective heat flux magnitude is proportional to the potential energy of the convective adjustment in the experiments with the initial unstable-layer thickness altered. The present work suggests that convective adjustment is a promising process for producing the wind structure with occasionally generating surface winds of ∼1 m s-1 and retrograde wind patches.

  9. Intraseasonal Variations in Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  10. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  11. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.; Pruess, K.

    2009-09-01

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.

  12. The Induced Dimension Reduction method applied to convection-diffusion-reaction problems

    NARCIS (Netherlands)

    Astudillo, R.; Van Gijzen, M.B.

    2016-01-01

    Discretization of (linearized) convection-diffusion-reaction problems yields a large and sparse non symmetric linear system of equations, Ax = b. (1) In this work, we compare the computational behavior of the Induced Dimension Reduction method (IDR(s)) [10], with other short-recurrences Krylov met

  13. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  14. Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field.

    Science.gov (United States)

    Sarveshanand; Singh, A K

    2015-01-01

    In this paper, the steady two-dimensional hydromagnetic free convective flow of an incompressible viscous and electrically conducting fluid between two parallel vertical porous plates has been considered. The effect of induced magnetic field arising due to the motion of an electrically conducting fluid is taken into account. The governing equations of the motion are a set of simultaneous ordinary differential equations and their analytical solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expression for the induced current density has been also obtained. The effects of various non-dimensional parameters on the velocity profile, the induced magnetic field profile, the temperature profile and the induced current density profile have been shown in the graphs. It is found that the effect of suction parameter is to decrease the velocity field and induced current density while it has increasing effect on the induced magnetic field.

  15. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Leping, E-mail: lpzhou@ncepu.edu.cn [North China Electric Power University, Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy, Power and Mechanical Engineering (China); Peterson, George P.; Yoda, Minani [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering (United States); Wang Buxuan [Tsinghua University, Department of Thermal Engineering (China)

    2012-03-15

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  16. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  17. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating

    Institute of Scientific and Technical Information of China (English)

    MALIK Pravin; KADOLI Ravikiran; GANESAN N.

    2007-01-01

    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.

  18. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-01-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. In contrast, even small human-induced perturbations in cloud coverage, lifetime, height or optical properties can change the instantaneous radiative energy flux by hundreds of watts per unit area, and this forcing can be either warming or cooling. Clouds and aerosols form a complex coupled system that, unlike greenhouse gases, have relatively short lifetime (hours to days and inhomogeneous distribution. This and the inherent complexity of cloud microphysics and dynamics, and the strong coupling with meteorology explain why the estimation of the overall effect of aerosol on climate is so challenging.

    Here we focus on the effect of aerosol on cloud top properties of deep convective clouds over the tropical Atlantic. The tops of these vertically developed clouds consist of mostly ice and can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    This study demonstrates the deep link between cloud shape and aerosol loading and that the overall aerosol effect in regions of deep convective clouds might be warming. Moreover we show how averaging the cloud height and optical properties over large regions may lead to a false cooling estimation.

  19. Effect of induced magnetic field on natural convection in vertical concentric annuli

    Institute of Scientific and Technical Information of China (English)

    R. K. Singh; A. K. Singh

    2012-01-01

    In the present paper,we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a radial magnetic field.The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account.The transport equations concerned with the considered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity,induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylinder of concentric annuli.The effects of the various physical parameters appearing into the model are demonstrated through graphs and tables.It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap between the cylinders is less or equal to 1.70 times the radius of inner cylinder,while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder.These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases.It is also found that as the Hartmann number increases,there is a flattening tendency for both the velocity and the induced magnetic field.The influence of the induced magnetic field is to increase the velocity profiles.

  20. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.

  1. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmad Izani Md

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.

  2. Application of Laser Induced Fluorescence in experimental analysis of convection phenomena

    Science.gov (United States)

    Jaszczur, M.; Pyrda, L.

    2016-09-01

    One of the most promising technique for temperature measurement is the Laser Induced Fluorescence (LIF) which utilize basic concept of optical, non-intrusive measurements and give possibility to visualize the temperature distribution in the whole two-dimensional plane at once. A major problem of a LIF is it still unsatisfactory accuracy for temperature gradient and heat transfer measurement. The LIF fluorescent re-emission is a function of temperature but, in all measurements a lot of imperfection follow the image recording: background noises, light intensity variation, non uniformity and shadowgraph effect near the non-isothermal walls. In the present paper the influence of all key effect on the temperature measurement will be verified in order to obtain the method uncertainty. To evaluate that experimental measurement of convection phenomenon using LIF and thermocouples focussing on heat transfer measurement will be presented. Results show that all processing steps (pre-processing, processing and post-processing) are crucial for reducing the error related to the temperature measurement.

  3. Core flows and heat transfer induced by inhomogeneous cooling with sub- and supercritical convection

    CERN Document Server

    Dietrich, Wieland; Wicht, Johannes

    2016-01-01

    The amount and spatial pattern of heat extracted from cores of terrestrial planets is ultimately controlled by the thermal structure of the lower rocky mantle. Using the most common model to tackle this problem, a rapidly rotating and differentially cooled spherical shell containing an incompressible and viscous liquid is numerically investigated. To gain the physical basics, we consider a simple, equatorial symmetric perturbation of the CMB heat flux shaped as a spherical harmonic $Y_{11}$. The thermodynamic properties of the induced flows mainly depend on the degree of nonlinearity parametrised by a horizontal Rayleigh number $Ra_h=q^\\ast Ra$, where $q^\\ast$ is the relative CMB heat flux anomaly amplitude and $Ra$ is the Rayleigh number which controls radial buoyancy-driven convection. Depending on $Ra_h$ we characterise three flow regimes through their spatial patterns, heat transport and flow speed scalings: in the linear conductive regime the radial inward flow is found to be phase shifted $90^\\circ$ eas...

  4. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.

    Science.gov (United States)

    Loh, Byoung-Gook; Hyun, Sinjae; Ro, Paul I; Kleinstreuer, Clement

    2002-02-01

    Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborg's formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 degrees C with a vibration amplitude of 25 microm at 28.4 kHz is experimentally achieved.

  5. Convection onset induced by a density stratification whose unstable part is infinitely thin

    CERN Document Server

    Aljahdaly, N H

    2016-01-01

    We consider a vertical cavity composed of two chambers separated by a retractable thermally insulated thin membrane. The upper and lower chambers are filled with an incompressible Boussinesq fluid and maintained at temperatures $T_2$ and $T_1>T_2$, respectively by two separate heaters. Upon retraction of the membrane, the two fluid masses form an unstably stratified configuration with cold and heavy fluid overlying a warmer and lighter fluid and separated by a non-free interface across which there is a jump in the density. The aim of this paper is to determine the threshold conditions for convection onset and associated fluid flow patterns induced by this discontinuous density stratification. We find that the discontinuity of the density profile leads to the appearance of temperature perturbation iso-contours that have a lens shape instead of the classical oval shape and that the mixing is confined to near the location of the density jump with stagnant and isothermal fluid away from the discontinuity. We deri...

  6. Effects of void-induced convection on interface morphology and segregation during low-g solidification

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, S.; Alexander, J.I.D. [Case Western Reserve University, Cleveland, OH (United States). Dept. of Mechanical Engineering; Kassemi, M. [NASA Glenn Research Center, Cleveland, OH (United States). National Center for Microgravity Research

    2004-11-01

    Recent microgravity experiments have been hampered by convection caused by unwanted voids and/or bubbles in the melt. In this work, a numerical model is developed to describe how thermocapillary convection generated by a void can affect a typical Bridgman solidification process in microgravity. The model is based on the quasi-steady Navier-Stokes equations for a Newtonian fluid coupled with the conservation equations for transport of energy and species. Numerical solutions for a variety of operating conditions indicate that void-generated thermocapillary convection can have a drastic effect on both interface morphology and solutal transport. (author)

  7. The Convective and Orographically Induced Precipitation Study (COPS): The Scientific Strategy, the Field Phase, and Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Wulfmeyer, Volker; Behrendt, Andreas; Kottmeir, Christoph; Corsmeier, Ulrich; Barthlott, Christian; Craig, George C.; Hagen, Martin; Althausen, Dietrich; Aoshima, Fumiko; Arpagaus, Marco; Bauer, Hans-Stefan; Bennett, Lindsay; Blyth, Alan; Brandau, Christine; Champollion, Cedric; Crewell, Susanne; Dick, Galina; di Girolamo, Paolo; Dorninger, Manfred; Dufournet, Yann; Eigenmann, Rafael; Engelmann, Ronny; Flamant, C.; Foken, Thomas; Gorgas, Theresa; Grzeschik, Matthias; Handwerker, Jan; Hauck, Christian; Holler, Hartmut; Junkermann, W.; Kalthoff, Norbert; Kiemle, Christoph; Klink, Stefan; Konig, Marianne; Krauss, Liane; Long, Charles N.; Madonna, Fabio; Mobbs, S.; Neininger, Bruno; Pal, Sandip; Peters, Gerhard; Pigeon, Gregoire; Richard, Evelyne; Rotach, Mathias W.; Russchenberg, Herman; Schwitalla, Thomas; Smith, Victoria; Steinacker, Reinhold; Trentman, Jorg; Turner, David D.; van Baelen, Joel; Vogt, Siegfried; Volkert, Hans; Weckwerth, Tammy; Wernli, Heini; Wieser, Andreas; Wirth, Martin

    2011-02-24

    Within the frame of the international field campaign COPS (Convective and Orographically-induced Precipitation Study), a large suite of state-of-the-art meteorological instrumentation was operated, partially combined for the first time. The COPS field phase was performed from 01 June - 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges Mountains, the Rhine valley and the Black Forest Mountains. The collected data set covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase up to their decay. 18 Intensive Operation Periods (IOPs) with 34 operation days and 8 additional Special Observation Periods (SOPs) were performed providing a comprehensive data set covering different forcing conditions. In this paper an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Some highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS provided new insight in key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of QPF by the assimilation of new observations, and in the performance of ensembles of convection permitting models in complex terrain.

  8. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  9. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  10. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    Science.gov (United States)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  11. Plate-like convection induced by symmetries in fluids with temperature-dependent viscosity

    CERN Document Server

    Curbelo, Jezabel

    2014-01-01

    The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena models the melting and solidification of a magma ocean and thus is suitable for representing a lithosphere over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value by a factor 400 within a narrow temperature gap at which magma melts. We perform a study which combines bifurcation analysis and time dependent simulations. Solutions such as limit cycles are found that are fundamentally related to the presence of symmetry. Sporadically during these cycles, through abrupt bursts, spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime emerge. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time dependent regimes w...

  12. An Automated System to Quantify Convectively induced Aircraft encounters with Turbulence over Europe and North Atlantic

    Science.gov (United States)

    Meneguz, Elena; Turp, Debi; Wells, Helen

    2015-04-01

    It is well known that encounters with moderate or severe turbulence can lead to passenger injuries and incur high costs for airlines from compensation and litigation. As one of two World Area Forecast Centres (WAFCs), the Met Office has responsibility for forecasting en-route weather hazards worldwide for aviation above a height of 10,000 ft. Observations from commercial aircraft provide a basis for gaining a better understanding of turbulence and for improving turbulence forecasts through verification. However there is currently a lack of information regarding the possible cause of the observed turbulence, or whether the turbulence occurred within cloud. Such information would be invaluable for the development of forecasting techniques for particular types of turbulence and for forecast verification. Of all the possible sources of turbulence, convective activity is believed to be a major cause of turbulence. Its relative importance over the Europe and North Atlantic area has not been yet quantified in a systematic way: in this study, a new approach is developed to automate identification of turbulent encounters in the proximity of convective clouds. Observations of convection are provided from two independent sources: a surface based lightning network and satellite imagery. Lightning observations are taken from the Met Office Arrival Time Detections network (ATDnet). ATDnet has been designed to identify cloud-to-ground flashes over Europe but also detects (a smaller fraction of) strikes over the North Atlantic. Meteosat Second Generation (MSG) satellite products are used to identify convective clouds by applying a brightness temperature filtering technique. The morphological features of cold cloud tops are also investigated. The system is run for all in situ turbulence reports received from airlines for a total of 12 months during summer 2013 and 2014 for the domain of interest. Results of this preliminary short term climatological study show significant intra

  13. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  14. Detection and optical imaging of induced convection under the action of static gradient magnetic field in a non-conducting diamagnetic fluid

    CERN Document Server

    Morarka, Amit R

    2016-01-01

    The report elaborates experimental observations of magnetically induced convection in a non- conducting diamagnetic fluid. Suspension of Deionized (DI) water and Lycopodium pollen grains was used as the fluid in a test tube. Permanent magnets having field strength of 0.12T each were used to provide the static gradient magnetic field. The convections were visually observed and recorded using travelling microscope attached with a web camera. Various geometrical configurations of magnets in the vicinity of test tube were used which provided different types of orientation of convective flows in the test tube. Convections were observed over a range of fluid volumes from 0.2ml-10ml. The experimentally observed results provide proof of concept that irrespective of the weak interactions of diamagnetic fluids with magnetic fields, these effects can be easily observed and recorded with the use of low tech laboratory equipments.

  15. Role of Induced Magnetic Field on Transient Natural Convection Flow in a Vertical Channel: The Riemann Sum Approximation Approach

    Directory of Open Access Journals (Sweden)

    Jha B.K.

    2015-02-01

    Full Text Available This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.

  16. Urban effects of Chennai on sea breeze induced convection and precipitation

    Indian Academy of Sciences (India)

    Matthew Simpson; Sethu Raman; R Suresh; U C Mohanty

    2008-12-01

    Doppler radar derived wind speed and direction profiles showed a well developed sea breeze circulation over the Chennai, India region on 28 June, 2003. Rainfall totals in excess of 100 mm resulted from convection along the sea breeze front. Inland propagation of the sea breeze front was observed in radar reflectivity imagery. High-resolution MM5 simulations were used to investigate the influence of Chennai urban land use on sea breeze initiated convection and precipitation. A comparison of observed and simulated 10 m wind speed and direction over Chennai showed that the model was able to simulate the timing and strength of the sea breeze. Urban effects are shown to increase the near surface air temperature over Chennai by 3.0 K during the early morning hours. The larger surface temperature gradient along the coast due to urban effects increased onshore flow by 4.0m s−1. Model sensitivity study revealed that precipitation totals were enhanced by 25 mm over a large region 150 km west of Chennai due to urban effects. Deficiency in model physics related to night-time forecasts are addressed.

  17. Influence of Induced Magnetic Field on Free Convection of Nanofluid Considering Koo-Kleinstreuer-Li (KKL Correlation

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2016-11-01

    Full Text Available In this paper, the influence of induced magnetic field on free convection of Al2O3-water nanofluid on permeable plate by means of Koo-Kleinstreuer-Li (KKL model is reported. Impact of Brownian motion, along with the properties of nanofluid, are also taken into account. The resulting equations are solved utilizing Runge-Kutta integration method. Obtained results are examined for innumerable energetic parameters, namely Al2O3 volume fraction, suction parameter, and Hartmann and magnetic Prandtl numbers. Results indicate that the velocity profile reduces with rise of the suction parameter and magnetic Prandtl and Hartmann numbers but it increases with addition of nanoparticles. Shear stress enhances with rise of suction parameter, magnetic Prandtl and Hartmann numbers. Temperature gradient improves with augment of suction parameter.

  18. Noise-induced Input Dependence in a Convective Unstable Dynamical System

    CERN Document Server

    Fujimoto, K; Fujimoto, Koichi; Kaneko, Kunihiko

    1998-01-01

    Unidirectionally coupled dynamical system is studied by focusing on the input (or boundary) dependence. Due to convective instability, noise at an up-flow is spatially amplified to form an oscillation. The response, given by the down-flow dynamics, shows both analogue and digital changes, where the former is represented by oscillation frequency and the latter by different type of dynamics. The underlying universal mechanism for these changes is clarified by the spatial change of the co-moving Lyapunov exponent, with which the condition for the input dependence is formulated. The mechanism has a remarkable dependence on the noise strength, and works only within its medium range. Relevance of our mechanism to intra-cellular signal dynamics is discussed, by making our dynamics correspond to the auto-catalytic biochemical reaction for the chemical concentration, and the input to the external signal, and the noise to the concentration fluctuation of chemicals.

  19. Heat transfer enhancement induced by wall inclination in turbulent thermal convection.

    Science.gov (United States)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (10(6)≤Ra≤10(9)) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ"- and "V"-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  20. Melting-induced stratification above the Earth's inner core due to convective translation.

    Science.gov (United States)

    Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël

    2010-08-05

    In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo.

  1. Melting-induced stratification above the Earth's inner core due to convective translation

    CERN Document Server

    Alboussiere, Thierry; Melzani, Mickael; 10.1038/nature09257

    2012-01-01

    In addition to its global North-South anisotropy(1), there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres(2-6) and the presence of a layer of reduced seismic velocity at the base of the outer core(6-12). This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements(13). Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one...

  2. Effect of convective disturbances induced by g-jitter on the periodic precipitation of lysozyme.

    Science.gov (United States)

    Lappa, M; Carotenuto, L

    2003-01-01

    Numerical simulations are carried out to investigate the crystallization process of a protein macromolecular substance under two different conditions: pure diffusive regime and microgravity conditions present on space laboratories. The configuration under investigation consists of a protein reactor and a salt chamber separated by an "interface". The interface is strictly related to the presence of agarose gel in one of the two chambers. Sedimentation and convection under normal gravity conditions are prevented by the use of gel in the protein chamber (pure diffusive regime). Under microgravity conditions periodic time-dependent accelerations (g-jitter) are taken into account. Novel mathematical models are introduced to simulate the complex phenomena related to protein nucleation and further precipitation (or resolution) according to the concentration distribution and in particular to simulate the motion of the crystals due to g-litter in the microgravity environment. The numerical results show that gellified lysozyme (crystals "locked"on the matrix of agarose gel) precipitates to produce "spaced deposits". The crystal formation results modulated in time and in space (Liesegang patterns), due to the non-linear interplay among transport, crystal nucleation and growth. The propagation of the nucleation front is characterized by a wave-like behavior. In microgravity conditions (without gel), g-jitter effects act modifying the phenomena with respect to the on ground gellified configuration. The role played by the direction of the applied sinusoidal acceleration with respect to the imposed concentration gradient (parallel or perpendicular) is investigated. It has a strong influence on the dynamic behaviour of the depletion zones and on the spatial distribution of the crystals. Accordingly the possibility to obtain better crystals for diffraction analyses is discussed.

  3. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  4. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  5. Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

    Energy Technology Data Exchange (ETDEWEB)

    KEARNEY,SEAN P.; REYES,FELIPE V.

    2000-12-13

    In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

  6. Mixed Convection Peristaltic Flow of Third Order Nanofluid with an Induced Magnetic Field

    OpenAIRE

    Saima Noreen

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quant...

  7. Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow

    Science.gov (United States)

    Li, Xin-Jun; Zhang, Jing-zhou; Tan, Xiao-ming

    2017-09-01

    Experimental tests are carried out to investigate the convective heat transfer performances on a flat surface around the vibration envelope of a vertically-oriented piezoelectric fan in the presence of cross flow. Distinct behaviors of convective heat transfer are illustrated under the present conditions of piezoelectric-fan excitation voltage ( U = 50, 150, 250 V) or characteristic velocity ( u PF = 0.83, 1.67, 2.34 m/s) fan tip-to-heated surface gap ( G = 3, 5, 7 mm) and cross flow velocity ( u CH = 0.94, 1.56 m/s). In addition, three-dimensional flow field simulations are conducted to illustrate the instantaneous flow fields around the vibrating fan. By comparing with the pure piezoelectric fan, the vortex induced by the vibrating fan is pushed downward by the cross flow and a series of vortices are displayed down the vibrating fan. It is confirmed that the presence of cross flow is contributive to the improvement of convective heat transfer in the rear zone downstream fan vibration envelope. The impingement role of streaming flow induced by piezoelectric fan is reduced by the presence of cross flow in the fan vibration envelope. On the other hand, the oscillating movement of the piezoelectric fan promotes the disturbance intensity of cross flow passing through the fan vibration envelope. These two aspects make the conjugated convective heat transfer in the vicinity of fan vibration envelope complicated. In general, the convective heat transfer in the vicinity of fan vibration envelope is mostly improved by the combined action of fan-excited steaming flow and cross flow in the situation where the piezoelectric fan is placed very close to the heated surface.

  8. Subcritical convection in an internally heated layer

    Science.gov (United States)

    Xiang, Linyan; Zikanov, Oleg

    2017-06-01

    Thermal convection in a horizontal layer with uniform internal heating and stress-free constant-temperature boundaries is analyzed numerically. The work is motivated by the questions arising in the development of liquid metal batteries, in which convection is induced by the Joule heating of electrolyte. It is demonstrated that three-dimensional convection cells exist at subcritical Rayleigh numbers.

  9. Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization.

    Science.gov (United States)

    Knutson, Thomas R.; Tuleya, Robert E.

    2004-09-01

    Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s-1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments— atmospheric temperature and moisture profiles and SSTs—are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr-1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity

  10. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    Energy Technology Data Exchange (ETDEWEB)

    Zemskova, Varvara [Department of Marine Sciences, University of North Carolina at Chapel Hill, 3202 Venable Hall, CB 3300, Chapel Hill, NC 27599-3300 (United States); Garaud, Pascale [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Deal, Morgan; Vauclair, Sylvie [Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, Université de Toulouse, F-31400-Toulouse (France)

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  11. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    Science.gov (United States)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  12. Onset and non-linear regimes of Soret-induced convection in binary mixtures heated from above.

    Science.gov (United States)

    Lyubimova, T; Zubova, N; Shevtsova, V

    2017-03-01

    The paper deals with the investigation of the onset and non-linear regimes of convection of liquid binary mixtures with negative Soret effect heated from above. The linear stability of a convectionless state in a horizontal layer is studied by the numerical solution of the linearized problem on the temporal evolution of small perturbations of the unsteady base state. Non-linear regimes of convection are investigated by the numerical solution of the non-linear unsteady equations for a horizontally elongated rectangular cavity. The calculations are performed for water-ethanol and water-isopropanol liquid mixtures and for colloidal suspensions. The dependences of the instability onset time and wave number of the most dangerous perturbations on the solutal Rayleigh number (gravity level) obtained by a linear stability analysis and non-linear calculations are found to be in a very good agreement. A favorable comparison with the existing experimental and numerical data is presented.

  13. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    Science.gov (United States)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  14. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  15. Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls

    Directory of Open Access Journals (Sweden)

    Rasoul Nikbakhti

    2016-03-01

    Full Text Available This paper deals with a numerical investigation of double-diffusive natural convective heat and mass transfer in a cavity filled with Newtonian fluid. The active parts of two vertical walls of the cavity are maintained at fixed but different temperatures and concentrations, while the other two walls, as well as inactive areas of the sidewalls, are considered to be adiabatic and impermeable to mass transfer. The length of the thermally active part equals half of the height. The non-dimensional forms of governing transport equations that describe double-diffusive natural convection for two-dimensional incompressible flow are functions of temperature or energy, concentration, vorticity, and stream-function. The coupled differential equations are discretized via FDM (Finite Difference Method. The Successive-Over-Relaxation (SOR method is used in the solution of the stream function equation. The analysis has been done for an enclosure with different aspect ratios ranging from 0.5 to 11 for three different combinations of partially active sections. The results are presented graphically in terms of streamlines, isotherms and isoconcentrations. In addition, the heat and mass transfer rate in the cavity is measured in terms of the average Nusselt and Sherwood numbers for various parameters including thermal Grashof number, Lewis number, buoyancy ratio and aspect ratio. It is revealed that the placement order of partially thermally active walls and the buoyancy ratio influence significantly the flow pattern and the corresponding heat and mass transfer performance in the cavity.

  16. Boundary layer Slip Flow and Heat Transfer of Nanofluid Induced by a Permeable Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    A. Malvandi

    2015-01-01

    Full Text Available The objective of this paper is to consider both effects of slip and convective heat boundary conditions on steady two-dimensional boundary layer flow of a nanofluid over a stretching sheet in the presence of blowing/suction simultaneously. Flow meets the Navier's slip condition at the surface and Biot number is also used to consider the effects of convective heat transfer. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of nanoparticle migration owing to Brownian motion and thermophoresis. The basic partial boundary layer equations have been transformed into a two-point boundary value problem via similarity variables. Results for impermeable isothermal surface and also no-slip boundary condition were in best agreements with those existing in literatures. Effects of governing parameters such as Biot number (Bi, slip parameter (λ, thermophoresis (Nt, Prandtl number (Pr, Lewis number (Le, Brownian motion (Nb and blowing/suction (S on reduced Nusselt and Sherwood numbers are analyzed and discussed in details. The obtained results indicate that unlike heat transfer rate, concentration rate is very sensitive to all parameters among which Le, S and Pr are the most effective ones.

  17. Simulation of thermos-solutal convection induced macrosegregation in a Sn-10%Pb alloy benchmark during columnar solidification

    Science.gov (United States)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-03-01

    In order to investigate the effect of thermo-solutal convection on the formation of macrosegregation during columnar solidification, simulations with a liquid-columnar two phase model were carried out on a 2D rectangular benchmark of Sn-10%Pb alloy. The solidification direction in the benchmark is unidirectional: (') downwards from top to bottom or (2) upwards from bottom to top. Thermal expansion coefficient, solutal expansion coefficient and liquid diffusion coefficient of the melt are found to be key factors influencing the final macrosegregation. The segregation range and distribution are also strongly influenced by the benchmark configurations, e.g. the solidifying direction (upwards or downwards) and boundary conditions, et al. The global macrosegregation range increases with the velocity magnitude of the melt during the process of solidification.

  18. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan

    Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.

  19. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    Science.gov (United States)

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  20. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  1. Numerical simulation of precipitation formation in the case orographically induced convective cloud: Comparison of the results of bin and bulk microphysical schemes

    Science.gov (United States)

    Sarkadi, N.; Geresdi, I.; Thompson, G.

    2016-11-01

    In this study, results of bulk and bin microphysical schemes are compared in the case of idealized simulations of pre-frontal orographic clouds with enhanced embedded convection. The description graupel formation by intensive riming of snowflakes was improved compared to prior versions of each scheme. Two methods of graupel melting coincident with collisions with water drops were considered: (1) all simulated melting and collected water drops increase the amount of melted water on the surface of graupel particles with no shedding permitted; (2) also no shedding permitted due to melting, but the collision with the water drops can induce shedding from the surface of the graupel particles. The results of the numerical experiments show: (i) The bin schemes generate graupel particles more efficiently by riming than the bulk scheme does; the intense riming of snowflakes was the most dominant process for the graupel formation. (ii) The collision-induced shedding significantly affects the evolution of the size distribution of graupel particles and water drops below the melting level. (iii) The three microphysical schemes gave similar values for the domain integrated surface precipitation, but the patterns reveal meaningful differences. (iv) Sensitivity tests using the bulk scheme show that the depth of the melting layer is sensitive to the description of the terminal velocity of the melting snow. (v) Comparisons against Convair-580 flight measurements suggest that the bin schemes simulate well the evolution of the pristine ice particles and liquid drops, while some inaccuracy can occur in the description of snowflakes riming. (vi) The bin scheme with collision-induced shedding reproduced well the quantitative characteristics of the observed bright band.

  2. Modelling of the ICRF induced E  ×  B convection in the scrape-off-layer of ASDEX Upgrade

    Science.gov (United States)

    Zhang, W.; Feng, Y.; Noterdaeme, J.-M.; Bobkov, V.; Colas, L.; Coster, D.; Lunt, T.; Bilato, R.; Jacquot, J.; Ochoukov, R.; Van Eester, D.; Křivská, A.; Jacquet, P.; Guimarais, L.; the ASDEX Upgrade Team

    2016-09-01

    In magnetic controlled fusion devices, plasma heating with radio-frequency (RF) waves in the ion cyclotron (IC) range of frequency relies on the electric field of the fast wave to heat the plasma. However, the slow wave can be generated parasitically. The electric field of the slow wave can induce large biased plasma potential (DC potential) through sheath rectification. The rapid variation of the rectified potential across the equilibrium magnetic field can cause significant convective transport (E  ×  B drifts) in the scrape-off layer (SOL). In order to understand this phenomenon and reproduce the experiments, 3D realistic simulations are carried out with the 3D edge plasma fluid and kinetic neutral code EMC3-Eirene in ASDEX Upgrade. For this, we have added the prescribed drift terms to the EMC3 equations and verified the 3D code results against the analytical ones in cylindrical geometry. The edge plasma potential derived from the experiments is used to calculate the drift velocities, which are then treated as input fields in the code to obtain the final density distributions. Our simulation results are in good agreement with the experiments.

  3. Fingering Convection in Red Giants Revisited

    CERN Document Server

    Wachlin, F C; Althaus, L G

    2014-01-01

    Fingering (thermohaline) convection has been invoked for several years as a possible extra-mixing which could occur in Red Giant stars due to the modification of the chemical composition induced by nuclear reactions in the hydrogen burning zone. Recent studies show however that this mixing is not sufficient to account for the needed surface abundances. A new prescription for fingering convection, based on 3D numerical simulations has recently been proposed (BGS). The resulting mixing coefficient is larger than the ones previously given in the literature. We compute models using this new coefficient and compare them to previous studies. We use the LPCODE stellar evolution code with the GNA generalized version of the mixing length theory to compute Red Giant models and we introduce fingering convection using the BGS prescription. The results show that, although the fingering zone now reaches the outer dynamical convective zone, the efficiency of the mixing is not enough to account for the observations. The fing...

  4. Stochastic Convection Parameterizations

    Science.gov (United States)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  5. Convection and oscillations

    CERN Document Server

    Houdek, G

    2010-01-01

    In this short review on stellar convection dynamics I address the following, currently very topical, issues: (1) the surface effects of the Reynolds stresses and nonadiabaticity on solar-like pulsation frequencies, and (2) oscillation mode lifetimes of stochastically excited oscillations in red giants computed with different time-dependent convection formulations.

  6. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-06-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  7. Pulsation driving and convection

    Science.gov (United States)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  8. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  9. Thermo-electro-hydrodynamic convection under microgravity: a review

    Science.gov (United States)

    Mutabazi, Innocent; Yoshikawa, Harunori N.; Tadie Fogaing, Mireille; Travnikov, Vadim; Crumeyrolle, Olivier; Futterer, Birgit; Egbers, Christoph

    2016-12-01

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS).

  10. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  11. Transparent electric convection heater

    OpenAIRE

    Khalid, A.; Luck, J.L.

    2001-01-01

    An optically transparent electrically heated convection heater for use as a space heater in homes, offices, shops. Typically, said convection heater consists of a transparent layer 1 upon which is deposited a layer of a transparent electrically conductive material 2 such as indium-tin-oxide, electrodes 3 and 3a are formed on opposite edges of the transparent electrically conductive layer 2 and electrical wires 4 and 4a are connected to the electrodes. The transparent electrically conductive l...

  12. Thermal convection in a liquid metal battery

    CERN Document Server

    Shen, Yuxin

    2015-01-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few cm in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  13. Thermal convection in a liquid metal battery

    Science.gov (United States)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  14. Anomalously Weak Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  15. Scaling of granular convective velocity and timescale of asteroidal resurfacing

    Science.gov (United States)

    Yamada, Tomoya; Ando, Kousuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    Granular convection is one of the well-known phenomena observed in a vertically vibrated granular bed. Recently, the possbile relation between granular convection and asteroidal surface processes has been discussed. The granular convection on the surface of small asteroids might be induced by seismic vibration resulting from meteorite impacts. To quantitatively evaluate the timescale of asteroidal resurfacing by granular convection, the granular convective velocity under various conditions must be revealed. As a first step to approach this problem, we experimentally study the velocity scaling of granular convection using a vertically vibrated glass-beads layer. By systematic experiments, a scaling form of granular convective velocity has been obtained. The obtained scaling form implies that the granular convective velocity can be written by a power-law product of two characteristic velocity components: vibrational and gravitational velocities. In addition, the system size dependence is also scaled. According to the scaling form, the granular convective velocity is almost proportional to gravitatinal acceleration. Using this scaling form, we have estimated the resurfacing timescale on small asteroid surface.

  16. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  17. The influence of convection parameterisations under alternate climate conditions

    Science.gov (United States)

    Rybka, Harald; Tost, Holger

    2013-04-01

    In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated precipitation patterns due to the parameterisation assumptions and formulations, e.g. the simplified treatment of the cloud microphysics. Additionally, the simulated transport of short-lived trace gases strongly depends on the chosen convection parameterisation due to the differences in the vertical redistribution of mass. Furthermore, other meteorological parameters like the temperature or the specific humidity show substantial differences in convectively active regions. This study presents uncertainties of climate change scenarios caused by different convection parameterisations. For this analysis two experiments (reference simulation with a CO2 concentration of 348 ppm; 2xCO2-simulation with a CO2 concentration of 696 ppm) are calculated with the ECHAM/MESSy atmospheric chemistry (EMAC) model applying four different convection schemes (Tiedtke, ECMWF, Emanuel and Zhang-McFarlane - Hack) and two resolutions (T42 and T63), respectively. The results indicate that the equilibrium climate sensitivity is independent of the chosen convection parameterisation. However, the regional temperature increase, induced by a doubling of the carbon dioxide concentration, demonstrates differences of up to a few Kelvin at the surface as well as in the UTLS for the ITCZ region depending on the selected convection parameterisation. The interaction between cloud and convection parameterisations results in a large disagreement of precipitation patterns. Although every 2xCO2 -experiment simulates an increase in global mean precipitation rates, the change of regional precipitation patterns differ widely. Finally, analysing

  18. Spontaneous Pattern Formation Induced by Bénard-Marangoni Convection for Sol-Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility.

    Science.gov (United States)

    Uchiyama, Hiroaki; Matsui, Tadayuki; Kozuka, Hiromitsu

    2015-11-17

    Evaporation-driven surface tension gradient in the liquid layer often causes the convective flow, i.e., Bénard-Marangoni convection, resulting in the formation of cell-like patterns on the surface. Here, we prepared sol-gel-derived titania films from Ti(OC3H7(i))4 solutions by dip coating and discussed the effect of the addition of co-solvents with a high surface tension and low volatility on the spontaneous pattern formation induced by Bénard-Marangoni convection. Propylene glycol (PG, with a surface tension of 38.6 mN m(-1)) and dipropylene glycol (DPG, with a surface tension of 33.9 mN m(-1)) were added to the coating solutions containing 2-propanol (2-Pr, with a surface tension of 22.9 mN m(-1)) for controlling the evaporation-driven surface tension gradient in the coating layer on a substrate. During dip coating at a substrate withdrawal speed of 50 cm min(-1) in a thermostatic oven at 60 °C, linearly arranged cell-like patterns on a micrometer scale were spontaneously formed on the titania gel films, irrespective of the composition of coating solutions. Such surface patterns remained even after the heat treatment at 200 and 600 °C, where the densification and crystallization of the titania films progressed. The width and height of the cell-like patterns increased with increasing PG and DPG contents in the coating solutions, where the addition of PG resulted in the formation of cells with a larger height than DPG.

  19. Granular convection and its application to asteroidal resurfacing timescale

    Science.gov (United States)

    Yamada, Tomoya; Ando, Kosuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    2016-04-01

    A model for the asteroid resurfacing resulting from regolith convection is built to estimate its timescale. The regolith convection by impact-induced global seismic shaking could be a possible reason for regolith migration and resultant segregated terrain which were found on the asteroids Itokawa [1]. Some recent studies [2, 3] experimentally investigated the convective velocity of the vibrated granular bed to discuss the feasibility of regolith convection under the microgravity condition such as small asteroids. These studies found that the granular convective velocity is almost proportional to the gravitational acceleration [2, 3]. Namely, the granular (regolith) convective velocity would be very low under the microgravity condition. Therefore, the timescale of resurfacing by regolith convection would become very long. In order to examine the feasibility of the resurfacing by regolith convection on asteroids, its timescale have to be compared with the surface age or the lifetime of asteroids. In this study, we aim at developing a model of asteroid resurfacing process induced by regolith convection. The model allows us to estimate the resurfacing timescale for various-sized asteroids covered with regolith. In the model, regolith convection is driven by the impact-induced global seismic shaking. The model consists of three phases, (i) Impact phase: An impactor intermittently collides with a target asteroid [4], (ii) Vibration phase: The collision results in a global seismic shaking [5], (iii) Convection phase: The global seismic shaking induces the regolith convection on the asteroid [3]. For the feasibility assessment of the resurfacing process driven by regolith convection, we estimate the regolith-convection-based resurfacing timescale T as a function of the size of a target asteroid Da. According to the estimated result, the resurfacing time scale is 40 Myr for the Itokawa-sized asteroid, and this value is shorter than the mean collisional lifetime of Itokawa

  20. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  1. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  2. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  3. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  4. Internal Wave Generation by Convection

    OpenAIRE

    Lecoanet, Daniel

    2016-01-01

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liq...

  5. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  6. Transient Free Convection Development in Hot-Wire Experiments

    Science.gov (United States)

    Giaretto, Valter

    The transient behavior of free convection along the vertical wire of a hot-wire apparatus has been experimentally investigated at room temperature and ambient pressure, using water and propylene glycol. The development of free convection has been studied using an ad hoc apparatus, in order to obtain the best agreement between the vertical direction and the wire. The measurements were corrected for radiation influences, and the effects induced by free convection were detected at the wire-fluid interface. The convection outcomes have been correlated to fluid properties and test conditions. A suitable time scale has been introduced, which is defined by the modified Fourier and a proper definition of the local Grashof number. The obtained correlation has been applied to data found in the literature. The possibility of describing the free convection development at the wire-fluid interface could enable the fluid properties related to momentum diffusion to be investigated by the hot-wire technique.

  7. Mechanisms initiating deep convection over complex terrain during COPS

    Directory of Open Access Journals (Sweden)

    Christoph Kottmeier

    2008-12-01

    Full Text Available Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i surface heating and low-level flow convergence; (ii surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analysed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line

  8. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  9. The Solar Convection Spectrum

    Science.gov (United States)

    Bachmann, Kurt T.

    2000-01-01

    I helped to complete a research project with NASA scientists Dr. David Hathaway (my mentor), Rick Bogart, and John Beck from the SOHO/SOI collaboration. Our published paper in 'Solar Physics' was titled 'The Solar Convection Spectrum' (April 2000). Two of my undergraduate students were named on the paper--Gavrav Khutri and Josh Petitto. Gavrav also wrote a short paper for the National Conference of Undergraduate Research Proceedings in 1998 using a preliminary result. Our main result was that we show no evidence of a scale of convection named 'mesogranulation'. Instead, we see only direct evidence for the well-known scales of convection known as graduation and supergranulation. We are also completing work on vertical versus horizontal flow fluxes at the solar surface. I continue to work on phase relationships of solar activity indicators, but I have not yet written a paper with my students on this topic. Along with my research results, I have developed and augmented undergraduate courses at Birmingham-Southern College by myself and with other faculty. We have included new labs and observations, speakers from NASA and elsewhere, new subject material related to NASA and space science. I have done a great deal of work in outreach, mostly as President and other offices in the Birmingham Astronomical Society. My work includes speaking, attracting speakers, giving workshops, and governing.

  10. Thermal Vibrational Convection

    Science.gov (United States)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  11. Laser Measurement Of Convective-Heat-Transfer Coefficient

    Science.gov (United States)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  12. Thermocapillary flow and gaseous convection in microgravity: Results from GAS payload G-0518

    Science.gov (United States)

    Thomas, S.

    1986-01-01

    Thermocapillary flow and gaseous convection in microgravity were investigated in GAS payload G-0518 during Space Shuttle Mission 41-D. A cylinder of paraffin was supported and heated differentially from its ends to induce a melt from solid to liquid and drive thermocapillary flow in the resulting liquid phase. Laminar thermocapillary flow was observed in the liquid paraffin and found to show a transition to time-dependent oscillatory motion at a Marangoni number of about Ma = 34000 with a period of approximately T = 8 seconds. In addition, free convection in a gas in microgravity was observed for the first time. The gaseous convection was caused by the thermal and/or velocity boundary layers present at the heater-liquid interface. Oscillation occurred in the gaseous convection simultaneously with those in the liquid, implying the two are strongly coupled. The gaseous convection may be driven by coupled thermocapillary flow/thermal expansion convection or microgravity bouyancy convection.

  13. Titan Balloon Convection Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  14. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  15. Zoned mantle convection.

    Science.gov (United States)

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  16. Observation of dendritic growth under the influence of forced convection

    Science.gov (United States)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  17. Mesoscale characteristics of monsoonal convection and associated stratiform precipitation

    Science.gov (United States)

    Keenan, Thomas D.; Rutledge, Steven A.

    1993-01-01

    Observations undertaken on 12 January 1990 at Darwin (Australia) are used to document the structure of a monsoonal rainband in a low convective available potential energy low-shear tropical environment. Dual-Doppler radar analyses are employed to investigate the structure and kinematics of the convective and stratiform regions. A system with the characteristics of a relatively short-lived squall line in which warm rain processes play a significant role in the production of precipitation is evident. Planetary boundary layer cold-pool production is important in the organization and motion of the system. A trailing stratiform region is evident with a mean updraft-downdraft circulation, but is composed of in situ decaying convective cells. A storm-relative mesoscale cyclonic circulation is also observed within the stratiform cloud. This vortex was maintained by thermodynamically induced midlevel convergence, convectively generated storm-scale circulations, and their interaction with the background monsoon flow.

  18. Numerical simulations on convective heat transfer characteristics of laminar flow with longitudinal vortex induced by winglets%翼片诱导纵向涡强化层流对流传热数值模拟

    Institute of Scientific and Technical Information of China (English)

    车翠翠; 田茂诚; 冷学礼

    2013-01-01

    3-D numerical simulations were presented for studying the flow structures and convective heat transfer charac-teristics in a cylinder tube embedded with wing-finned vortex generators.In the numerical simulation, the winglet was upstream placed at an angle of 45 to the tube wall and 1/6 of channel was selected for studying due to symmetry.The results showed that two counter-rotating longitudinal vortices were induced downstream the winglet, forming a symmet-ric vortex pair.The flow inner vortex pair was towards the wall while the flow outer vortex pair was backwards the wall.The longitudinal vortex could improve the magnitude of velocity in the radial direction, and the maximum value in near wall region reached 80% of the average mainstream velocity downstream the winglet.As a result, the winglet booted the disturbance of the velocity boundary layer.The improved velocity field could make the temperature field in the tube more uniform.Compared with the smooth tube, the temperature gradient near the wall could improve approxi-mately an order of magnitude.The flow induced by the longitudinal vortex rushed to the wall, which strengthened the convective heat transfer significantly.The maximum value of the local Nu on the wall surface could reach 50 times of the smooth tube.The improved convective heat transfer performance lead by longitudinal vortex enhanced with the Reynolds numbers increasing.%利用三维数值模拟,分析了圆管内添加翼片后流体的流动结构和对流传热特性。模拟中,翼片与壁面呈45°倾斜放置,选取包含1个翼片的1/6通道进行研究。结果表明,翼片可在下游诱导产生2个旋转方向相反的纵向涡,形成对称的涡偶,涡偶外侧为背壁流,内侧为向壁流。纵向涡结构提高了流体在径向上的速度波动,在翼片下游靠近管壁处,最大速度可达到主流平均速度的80%,增强了对速度边界层的扰动。流场的改善使通道内的温度场分布

  19. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  20. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  1. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  2. Convective drying of sludge cake

    Science.gov (United States)

    Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping

    2002-08-01

    This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.

  3. Interaction of Mesoscale Convection and Frontogenesis

    Institute of Scientific and Technical Information of China (English)

    彭加毅; 方娟; 伍荣生

    2004-01-01

    On the basis of the MM5 simulation data of the severe storm that occurred over the southeastern part of Hubei province on 21 July 1998, the interaction of mesoscale convection and frontogenesis is dealt with using the thermodynamical equation and frontogenetical function. The results show that the outbreak of the severe storm is closely related to the local frontogenesis. In fact, the interaction between the shearing instability of the low-level jet (LLJ) and the topographic forcing generates an gravity-inertia wave as well as local frontogenesis (the first front), which consequently induce the onset of the severe storm. From then on, owing to the horizontal and vertical advection of the potential temperature, the new frontogenesis (the second front) is formed to the northeast side of the severe storm, which initiates the second rain belt.Meanwhile, a two-front structure emerges over the southeastern part of Hubei province. Accompanied with the further intensification of the convection, the rain droplets evaporation cooling strengthens the first front and weakens the second front, resulting in single front structure over the southeastern part of Hubei province in the period of the strong convection.

  4. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.S.

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.

  5. Convection in Type 2 supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas Scott [Univ. of California, Davis, CA (United States)

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  6. Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames

    CERN Document Server

    Lecoanet, Daniel; Quataert, Eliot; Bildsten, Lars; Timmes, F X; Burns, Keaton J; Vasil, Geoffrey M; Oishi, Jeffrey S; Brown, Benjamin P

    2016-01-01

    It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudospectral code Dedalus. Because the flame propagation timescale is $\\sim 10^5$ times longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a turbulent chemical diffusivity produced by the convection as a function of height, $D_t(z)$. Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, $D_t$, is shorter than the flame propagation timescale, set by the thermal diffusivity, $\\kappa$, i.e., when $D_t>\\kappa$. However, we find $D_t<\\kappa$ for most of the flame because convective plumes are not dense enoug...

  7. Electro-convective versus electroosmotic instability in concentration polarization.

    Science.gov (United States)

    Rubinstein, Isaak; Zaltzman, Boris

    2007-10-31

    Electro-convection is reviewed as a mechanism of mixing in the diffusion layer of a strong electrolyte adjacent to a charge-selective solid, such as an ion exchange (electrodialysis) membrane or an electrode. Two types of electro-convection in strong electrolytes may be distinguished: bulk electro-convection, due to the action of the electric field upon the residual space charge of a quasi-electro-neutral bulk solution, and convection induced by electroosmotic slip, due to electric forces acting in the thin electric double layer of either quasi-equilibrium or non-equilibrium type near the solid/liquid interface. According to recent studies, the latter appears to be the likely source of mixing in the diffusion layer, leading to 'over-limiting' conductance in electrodialysis. Electro-convection near a planar uniform charge selective solid/liquid interface sets on as a result of hydrodynamic instability of one-dimensional steady state electric conduction through such an interface. We compare the results of linear stability analysis obtained for instabilities of this kind appearing in the full electro-convective and limiting non-equilibrium electroosmotic formulations. The short- and long-wave aspects of these instabilities are discussed along with the wave number selection principles.

  8. Internally heated convection and Rayleigh-Bénard convection

    CERN Document Server

    Goluskin, David

    2016-01-01

    This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.

  9. Inclined layer convection in a colloidal suspension with negative Soret coefficient at large solutal Rayleigh numbers.

    Science.gov (United States)

    Italia, Matteo; Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto

    2014-10-01

    Convection in an inclined layer of fluid is affected by the presence of a component of the acceleration of gravity perpendicular to the density gradient that drives the convective motion. In this work we investigate the solutal convection of a colloidal suspension characterized by a negative Soret coefficient. Convection is induced by heating the suspension from above, and at large solutal Rayleigh numbers (of the order of 10(7)-10(8)) convective spoke patterns form. We show that in the presence of a marginal inclination of the cell as small as 19 mrad the isotropy of the spoke pattern is broken and the convective patterns tend to align in the direction of the inclination. At intermediate inclinations of the order of 33 mrad ordered square patterns are obtained, while at inclination of the order of 67 mrad the strong shear flow determined by the inclination gives rise to ascending and descending sheets of fluid aligned parallel to the direction of inclination.

  10. Plumes in stellar convection zones

    CERN Document Server

    Zahn, J P

    1999-01-01

    All numerical simulations of compressible convection reveal the presence of strong downwards directed flows. Thanks to helioseismology, such plumes have now been detected also at the top of the solar convection zone, on super- granular scales. Their properties may be crudely described by adopting Taylor's turbulent entrainment hypothesis, whose validity is well established under various conditions. Using this model, one finds that the strong density stratification does not prevent the plumes from traversing the whole convection zone, and that they carry upwards a net energy flux (Rieutord & Zahn 1995). They penetrate to some extent in the adjacent stable region, where they establish a nearly adiabatic stratification. These plumes have a strong impact on the dynamics of stellar convection zones, and they play probably a key role in the dynamo mechanism.

  11. Convective cooling of photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, E.; Gibbons, C. [Energy Engineering Group, Mechanical Engineering Department, Cork Institute of Technology, Bishopstown, Cork (Ireland)

    2004-07-01

    Most solar cells presently on the market are based on silicon wafers, the so-called first generation technology. As this technology has matured costs have become increasingly dominated by material costs. In the last ten years, continuous work has brought the efficiency of standard cells to the 25% region. A switch to second generation or thin film technology cells now seems imminent. Thin film technology eliminates the silicon wafer and offer the prospect of reducing material and manufacturing costs, but they exhibit lower efficiencies of around 10% for a commercial device. Third generation or tandem cells are currently at a 'proof of concept' research level, with a theoretical conversion rate of 86.8% being asserted Whatever the material construction and manufacturing method of cells, the thermal effect of overheating will prevail in the semiconductor and it is accepted that a lowered temperature will bring about an increase in conversion efficiency. The aim of this project is to improve the efficiency of PV electrical output, by convectively cooling the cells through perforations in them. As the cells heat up they lose efficiency. As the panel heats up a loss in efficiency of 0.5% per C increase in temperature has been recorded. (orig.)

  12. Observation of deep convection initiation from shallow convection environment

    Science.gov (United States)

    Lothon, Marie; Couvreux, Fleur; Guichard, Françoise; Campistron, Bernard; Chong, Michel; Rio, Catherine; Williams, Earle

    2010-05-01

    In the afternoon of 10 July 2006, deep convective cells initiated right in the field of view of the Massachusetts Institute Technology (MIT) C-band Doppler radar. This radar, with its 3D exploration at 10 min temporal resolution and 250 m radial resolution, allows us to track the deep convective cells and also provides clear air observations of the boundary layer structure prior to deep convection initiation. Several other observational platforms were operating then which allow us to thoroughly analyse this case: Vertically pointing aerosol lidar, W-band radar and ceilometer from the ARM Mobile Facility, along with radiosoundings and surface measurements enable us to describe the environment, from before their initiation to after the propagation of of one propagating cell that generated a circular gust front very nicely caught by the MIT radar. The systems considered here differ from the mesoscale convective systems which are often associated with African Easterly Waves, increasing CAPE and decreasing CIN. The former have smaller size, and initiate more locally, but there are numerous and still play a large role in the atmospheric circulation and scalar transport. Though, they remain a challenge to model. (See the presentation by Guichard et al. in the same session, for a model set up based on the same case, with joint single-column model and Large Eddy Simulation, which aims at better understanding and improving the parametrisation of deep convection initiation.) Based on the analysis of the observations mentioned above, we consider here the possible sources of deep convection initiation that day, which showed a typical boundary-layer growth in semi-arid environment, with isolated deep convective events.

  13. MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    NARCIS (Netherlands)

    HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW

    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble

  14. Steady thermal convection in multiple liquid layers

    Science.gov (United States)

    Prakash, Ajay

    1993-03-01

    Convective flow in multiple liquid layers confined in a rectangular cavity is investigated using analytical, numerical, and experimental techniques. The cavity is subjected to differential heating, either parallel to or perpendicular to the interfaces between liquid layers. Thermal convection in the liquid layers results from buoyancy and from temperature induced changes in interfacial tension. Since the genesis of buoyancy is gravity, buoyancy effects are significantly reduced in a low-gravity environment. Definition of a space flight experiment aboard the upcoming IML-2 mission along with validation of fluid dynamical models with ground based experimentation are the objectives of this investigation. Flow in shallow cavities subjected to differential heating parallel to the interfaces is analytically investigated using the method of matched asymptotic expansions. Natural convection, without the influence of thermocapillary forces, is investigated in two and three layer systems. In low-gravity environments, thermocapillary convection with deformable interfaces is also studied. Ground based experiments to visualize the flow field are conducted. Particle streak line photography is used to visualize the flow. Particle displacement tracking is used to evaluate the velocity vector field, and holographic interferometry is used to visualize the temperature field. Numerical simulation is performed with the computer code FIDAP. Convection due to differential heating perpendicular to the interfaces is investigated using a linear stability analysis. Two and three layers of infinite horizontal extent are considered. Ground based experiments are conducted to visualize the temperature field in two and three layer systems confined in a box. Fluid dynamical models relying on mechanical coupling are experimentally validated for certain fluid combinations, while for other fluid combinations significant disparity is observed. An immobile interface is observed in the experiments

  15. Natural convection in polygonal enclosures with inner circular cylinder

    Directory of Open Access Journals (Sweden)

    Habibis Saleh

    2015-12-01

    Full Text Available This study investigates the natural convection induced by a temperature difference between cold outer polygonal enclosure and hot inner circular cylinder. The governing equations are solved numerically using built-in finite element method of COMSOL. The governing parameters considered are the number of polygonal sides, aspect ratio, radiation parameter, and Rayleigh number. We found that the number of contra-rotative cells depended on polygonal shapes. The convection heat transfer becomes constant at L / D > 0 . 77 and the polygonal shapes are no longer sensitive to the Nusselt number profile.

  16. Complex dynamics of evaporation-driven convection in liquid layers

    CERN Document Server

    Chauvet, F; Colinet, P

    2010-01-01

    The spontaneous convective patterns induced by evaporation of a pure liquid layer are studied experimentally. A volatile liquid layer placed in a cylindrical container is left free to evaporate into air at rest under ambient conditions. The liquid/gas interface of the evaporating liquid layer is visualized using an infrared (IR) camera. The phenomenology of the observed convective patterns is qualitatively analysed, showing in particular that the latter can be quite complex especially at moderate liquid thicknesses. Attention is also paid to the influence of the container diameter on the observed patterns sequence.

  17. Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

    CERN Document Server

    Cegla, H M; Shelyag, S; Mathioudakis, M

    2014-01-01

    To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.

  18. Modelling isolated deep convection: A case study from COPS

    Directory of Open Access Journals (Sweden)

    Ralph R. Burton

    2013-08-01

    Full Text Available This study aims to determine the important physical processes which need to be well represented in a model simulation of the deep convective cloud which occurred on the 15th July 2007 during the Convective and Orographically-induced Precipitation Study (COPS. During the afternoon of 15th July 2007, an isolated, deep convective cloud developed, reaching heights of 12 km above ground level. Previous studies have shown that numerical weather prediction models struggle to simulate realistically this particular cloud. In the present study, it is found that a reservoir of moist air developed, providing necessary energy ready to be released via a suitable trigger (the arrival of a convergence line. A series of tests of the Weather Research and Forecasting (WRF model is employed to find the modelled sensitivities to boundary-layer and land-surface specification, and the combinations of these necessary to provide the reservoir of moist air.

  19. Convection in Binary Fluid Mixtures; 2, Localized Traveling Waves

    CERN Document Server

    Barten, W; Kamps, M; Schmitz, R

    1995-01-01

    Nonlinear, spatially localized structures of traveling convection rolls are investigated in quantitative detail as a function of Rayleigh number for two different Soret coupling strengths (separation ratios) with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difference method was used to solve the full hydrodynamic field equations numerically. Structure and dynamics of these localized traveling waves (LTW) are dominated by the concentration field. Like in the spatially extended convective states ( cf. accompanying paper), the Soret-induced concentration variations strongly influence, via density changes, the buoyancy forces that drive convection. The spatio-temporal properties of this feed-back mechanism, involving boundary layers and concentration plumes, show that LTW's are strongly nonlinear states. Light intensity distributions are determined that can be observed in side-view shadowgraphs. Detailed analyses of all fields are made using colour-coded isoplots, among others. In th...

  20. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  1. A new model for mixing by double-diffusive convection (semi-convection): I. The conditions for layer formation

    CERN Document Server

    Mirouh, Giovanni M; Stellmach, Stephan; Traxler, Adrienne L; Wood, Toby S

    2011-01-01

    The process referred to as "semi-convection" in astrophysics and "double-diffusive convection in the diffusive regime" in Earth and planetary sciences, occurs in stellar and planetary interiors in regions which are stable according to the Ledoux criterion but unstable according to the Schwarzschild criterion. In this series of papers, we analyze the results of an extensive suite of 3D numerical simulations of the process, and ultimately propose a new 1D prescription for heat and compositional transport in this regime which can be used in stellar or planetary structure and evolution models. In a preliminary study of the phenomenon, Rosenblum et al. (2011) showed that, after saturation of the primary instability, a system can evolve in one of two possible ways: the induced turbulence either remains homogeneous, with very weak transport properties, or transitions into a thermo-compositional staircase where the transport rate is much larger (albeit still smaller than in standard convection). In this paper, we sho...

  2. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  3. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    OpenAIRE

    Meunier, N.; Lagrange, A. -M.; Kabuiku, L. Mbemba; Alex, M; Mignon, L.; Borgniet, S.

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this ...

  4. ENVIRONMENTAL ASPECTS OF THE INTENSIFICATION CONVECTIVE DRYING

    Directory of Open Access Journals (Sweden)

    A. M. Gavrilenkov

    2012-01-01

    Full Text Available Identified and analyzed the relationship of the intensity convective drying and air pollution emissions of heat. The ways to reduce the thermal pollution of the atmosphere at convective drying.

  5. Convection in stellar envelopes a changing paradigm

    CERN Document Server

    Spruit, H C

    1996-01-01

    Progress in the theory of stellar convection over the past decade is reviewed. The similarities and differences between convection in stellar envelopes and laboratory convection at high Rayleigh numbers are discussed. Direct numerical simulation of the solar surface layers, with no other input than atomic physics, the equations of hydrodynamics and radiative transfer is now capable of reproducing the observed heat flux, convection velocities, granulation patterns and line profiles with remarkably accuracy. These results show that convection in stellar envelopes is an essentially non-local process, being driven by cooling at the surface. This differs distinctly from the traditional view of stellar convection in terms of local concepts such as cascades of eddies in a mean superadiabatic gradient. The consequences this has for our physical picture of processes in the convective envelope are illustrated with the problems of sunspot heat flux blocking, the eruption of magnetic flux from the base of the convection ...

  6. Vertical Slot Convection: A linear study

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, A. [Tokyo Univ. (Japan); Steinolfson, R. [Southwest Research Inst., San Antonio, TX (United States); Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1992-11-01

    The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and {alpha} are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr {approximately} 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size.

  7. Vertical Slot Convection: A linear study

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, A. (Tokyo Univ. (Japan)); Steinolfson, R. (Southwest Research Inst., San Antonio, TX (United States)); Tajima, T. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)

    1992-11-01

    The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and [alpha] are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr [approximately] 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size.

  8. How stratified is mantle convection?

    Science.gov (United States)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (SƒUniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.

  9. Natural convection from circular cylinders

    CERN Document Server

    Boetcher, Sandra K S

    2014-01-01

    This book presents a concise, yet thorough, reference for all heat transfer coefficient correlations and data for all types of cylinders: vertical, horizontal, and inclined. This book covers all natural convection heat transfer laws for vertical and inclined cylinders and is an excellent resource for engineers working in the area of heat transfer engineering.

  10. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  11. Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves

    Science.gov (United States)

    Wang, Lu; Li, Tim

    2017-04-01

    Mechanisms for an in-phase relationship between convection and low-level zonal wind and the slow propagation of the convectively coupled Kelvin wave (CCKW) are investigated by analyzing satellite-based brightness temperature and reanalysis data and by constructing a simple theoretical model. Observational data analysis reveals an eastward shift of the low-level convergence and moisture relative to the CCKW convective center. The composite vertical structures show that the low-level convergence lies in the planetary boundary layer (PBL) (below 800 hPa), and is induced by the pressure trough above the top of PBL through an Ekman-pumping process. A traditional view of a slower eastward propagation speed compared to the dry Kelvin waves is attributed to the reduction of atmospheric static stability in mid-troposphere due to the convective heating effect. The authors' quantitative assessment of the heating effect shows that this effect alone cannot explain the observed CCKW phase speed. We hypothesize that additional slowing process arises from the effect of zonally asymmetric PBL moisture. A simple theoretical model is constructed to understand the relative role of the heating induced effective static stability effect and the PBL moisture effect. The result demonstrates the important role of the both effects. Thus, PBL-free atmosphere interaction is important in explaining the observed structure and propagation of CCKW.

  12. Influence of dissolved oxygen convection on well sampling

    Science.gov (United States)

    Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.

    2007-01-01

    Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.

  13. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  14. Convective heat transport in compressible fluids.

    Science.gov (United States)

    Furukawa, Akira; Onuki, Akira

    2002-07-01

    We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.

  15. Generalized Convective Quasi-Equilibrium Closure

    Science.gov (United States)

    Yano, Jun-Ichi; Plant, Robert

    2016-04-01

    Arakawa and Schubert proposed convective quasi-equilibrium as a basic principle for closing their spectrum mass-flux convection parameterization. In deriving this principle, they show that the cloud work function is a key variable that controls the growth of convection. Thus, this closure hypothesis imposes a steadiness of the cloud work function tendency. This presentation shows how this principle can be generalized so that it can also encompasses both the CAPE and the moisture-convergence closures. Note that the majority of the current mass-flux convection parameterization invokes a CAPE closure, whereas the moisture-convergence closure was extremely popular historically. This generalization, in turn, includes both closures as special cases of convective quasi-equilibrium. This generalization further suggests wide range of alternative possibilities for convective closure. In general, a vertical integral of any function depending on both large-scale and convective-scale variables can be adopted as an alternative closure variables, leading to an analogous formulation as Arakawa and Schubert's convective quasi-equilibrium formulation. Among those, probably the most fascinating possibility is to take a vertical integral of the convective-scale moisture for the closure. Use of a convective-scale variable for closure has a particular appeal by not suffering from a loss of predictability of any large-scale variables. That is a main problem with any of the current convective closures, not only for the moisture-convergence based closure as often asserted.

  16. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  17. A data-driven method for the stochastic parametrisation of subgrid-scale tropical convective area fraction

    CERN Document Server

    Gottwald, Georg A; Davies, Laura

    2015-01-01

    Observations of tropical convection from precipitation radar and the concurring large-scale atmospheric state at two locations (Darwin and Kwajalein) are used to establish effective stochastic models to parameterise subgrid-scale tropical convective activity. Two approaches are presented which rely on the assumption that tropical convection induces a stationary equilibrium distribution. In the first approach we parameterise convection variables such as convective area fraction as an instantaneous random realisation conditioned on the large-scale vertical velocities according to a probability density function estimated from the observations. In the second approach convection variables are generated in a Markov process conditioned on the large-scale vertical velocity, allowing for non-trivial temporal correlations. Despite the different prevalent atmospheric and oceanic regimes at the two locations, with Kwajalein being exposed to a purely oceanic weather regime and Darwin exhibiting land-sea interaction, we es...

  18. Stability Analysis of Convection in the Intracluster Medium

    CERN Document Server

    Gupta, Himanshu; Pessah, Martin E; Chakraborty, Sagar

    2016-01-01

    We use the machinery usually employed for studying the onset of Rayleigh--B\\'enard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two `plates' on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability...

  19. Experimental investigation of horizontal convection

    OpenAIRE

    Muñoz Córdoba, Lucía

    2015-01-01

    Fluid circulation driven by buoyancy forces due to a thermal gradient on a horizontal boundary, known as horizontal convection, is experimentally studied. For that purpose, a methacrylate box with inner dimensions 300x150x150 mm3 (LxWxH) whose bottom is composed by a heat exchanger and a printed circuit board is lled with water. The heat exchanger provides a uniform temperature boundary condition while the printed circuit board provides a boundary condition of uniform heat ...

  20. Ice Nucleation in Deep Convection

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  1. Stability of Unsteady Mixed Convection in a Horizontal Concentric Annulus

    Directory of Open Access Journals (Sweden)

    Kamil Kahveci

    2016-01-01

    Full Text Available In this study, stability of unsteady mixed convection in a horizontal annulus between two concentric cylinders was investigated numerically. The surfaces of the cylinders were considered to be at fixed temperatures and it was assumed that the hot inner cylinder is rotating at a constant angular velocity. The buoyancy forces were formulated utilizing the Boussinesq approximation. The governing equations of fluid flow and heat transfer in the annulus were solved with a finite element method for different values of the geometric (radius ratio and transport parameters (Rayleigh number and Reynolds number. Development of the convective flow and heat transfer was expressed by the average Nusselt number for the outer cylinder. The results show that, for a narrow gap annulus, convective flow induces flow bifurcation and becomes unstable for high values of the Rayleigh number. Flow becomes more unstable with an increase in the Reynolds number. For a wide gap annulus, flow is stable for all values of the Rayleigh number if the rotation effects are small. On the other hand, convective flow becomes unstable for the modest and high values of the Ra number with an increase in the Re number.

  2. A possible theory for the interaction between convective activities and vortical flows

    Directory of Open Access Journals (Sweden)

    N. Zhao

    2011-10-01

    Full Text Available Theoretical studies usually attribute convections to the developments of instabilities such as the static or symmetric instabilities of the basic flows. However, the following three facts make the validities of these basic theories unconvincing. First, it seems that in most cases the basic flow with balance property cannot exist as the exact solution, so one cannot formulate appropriate problems of stability. Second, neither linear nor nonlinear theories of dynamical instability are able to describe a two-way interaction between convection and its background, because the basic state which must be an exact solution of the nonlinear equations of motion is prescribed in these issues. And third, the dynamical instability needs some extra initial disturbance to trigger it, which is usually another point of uncertainty. The present study suggests that convective activities can be recognized in the perspective of the interaction of convection with vortical flow. It is demonstrated that convective activities can be regarded as the superposition of free modes of convection and the response to the forcing induced by the imbalance of the unstably stratified vortical flow. An imbalanced vortical flow provides not only an initial condition from which unstable free modes of convection can develop but also a forcing on the convection. So, convection is more appropriately to be regarded as a spontaneous phenomenon rather than a disturbance-triggered phenomenon which is indicated by any theory of dynamical instability. Meanwhile, convection, particularly the forced part, has also a reaction on the basic flow by preventing the imbalance of the vortical flow from further increase and maintaining an approximately balanced flow.

  3. Mechanisms for convection triggering by cold pools

    CERN Document Server

    Torri, Giuseppe; Tian, Yang

    2015-01-01

    Cold pools are fundamental ingredients of deep convection. They contribute to organizing the sub-cloud layer and are considered key elements in triggering convective cells. It was long known that this could happen mechanically, through lifting by the cold pools' fronts. More recently, it has been suggested that convection could also be triggered thermodynamically, by accumulation of moisture around the edges of cold pools. A method based on Lagrangian tracking is here proposed to disentangle the signatures of both forcings and quantify their importance in a given environment. Results from a simulation of radiative-convective equilibrium over the ocean show that parcels reach their level of free convection through a combination of both forcings, each being dominant at different stages of the ascent. Mechanical forcing is an important player in lifting parcels from the surface, whereas thermodynamic forcing reduces the inhibition encountered by parcels before they reach their level of free convection.

  4. On laminar convection in solar type stars

    CERN Document Server

    Bruevich, E A

    2010-01-01

    We present a new model of large-scale multilayer convection in solar type stars. This model allows us to understand such self-similar structures observed at solar surface as granulation, supergranulation and giant cells. We study the slow-rotated hydrogen star without magnetic field with the spherically-symmetric convective zone. The photon's flux comes to the convective zone from the central thermonuclear zone of the star. The interaction of these photons with the fully ionized hydrogen plasma with $T>10^5K$ is carried out by the Tomson scattering of photon flux on protons and electrons. Under these conditions plasma is optically thick relative to the Tomson scattering. This fact is the fundamental one for the multilayer convection formation. We find the stationary solution of the convective zone structure. This solution describes the convective layers responsible to the formation of the structures on the star's surface.

  5. Effect of thermosolutal convection on directional solidification

    Indian Academy of Sciences (India)

    Suresh V Garimella; James E Simpson

    2001-02-01

    The impact of thermosolutal convection during directional solidification is explored via results of numerical investigations. Results from fully transient numerical simulations of directional solidification in a differentially heated cavity under terrestrial conditions and Bridgman crystal growth in space are discussed. The pivotal role of both thermal and solutal convection in the solidification process is illustrated by examining these two cases. In particular, radial and longitudinal macrosegregation resulting from this thermosolutal convection is discussed.

  6. Application of upwind convective finite elements to practical conduction/forced convection thermal analysis

    Science.gov (United States)

    Thornton, E. A.

    1979-01-01

    Three practical problems in conduction/forced convection heat transfer are analyzed using a simplified engineering formulation of convective finite elements. Upwind and conventional finite element solutions are compared for steady-state and transient applications.

  7. The role of radiation in organizing convection in weak temperature gradient simulations

    Science.gov (United States)

    Sessions, Sharon L.; Sentić, Stipo; Herman, Michael J.

    2016-03-01

    Using a cloud system resolving model with the large scale parameterized by the weak temperature gradient approximation, we investigated the influence of interactive versus noninteractive radiation on the characteristics of convection and convective organization. The characteristics of convecting environments are insensitive to whether radiation is interactive compared to when it is not. This is not the case for nonconvecting environments; interactive radiative cooling profiles show strong cooling at the top of the boundary layer which induces a boundary layer circulation that ultimately exports moist entropy (or analogously moist static energy) from dry domains. This upgradient transport is associated with a negative gross moist stability, and it is analogous to boundary layer circulations in radiative convective equilibrium simulations of convective self-aggregation. This only occurs when radiation cools interactively. Whether radiation is static or interactive also affects the existence of multiple equilibria-steady states which either support precipitating convection or which remain completely dry depending on the initial moisture profile. Interactive radiation drastically increases the range of parameters which permit multiple equilibria compared to static radiation; this is consistent with the observation that self-aggregation in radiative-convective equilibrium simulations is more readily attained with interactive radiation. However, the existence of multiple equilibria in absence of interactive radiation suggests that other mechanisms may result in organization.

  8. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  9. Helioseismology challenges models of solar convection

    CERN Document Server

    Gizon, Laurent; 10.1073/pnas.1208875109

    2012-01-01

    Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this issue of PNAS, Hanasoge et al. (2012) employ recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convective velocities in the solar interior. They report an upper limit that is far smaller than predicted by a popular hydrodynamic numerical simulation.

  10. Modeling of heat explosion with convection.

    Science.gov (United States)

    Belk, Michael; Volpert, Vitaly

    2004-06-01

    The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.

  11. A Study of Detrainment from Deep Convection

    Science.gov (United States)

    Glenn, I. B.; Krueger, S. K.

    2014-12-01

    Uncertainty in the results of Global Climate Model simulations has been attributed to errors and simplifications in how parameterizations of convection coarsely represent the processes of entrainment, detrainment, and mixing between convective clouds and their environment. Using simulations of convection we studied these processes at a resolution high enough to explicitly resolve them. Two of several recently developed analysis techniques that allow insight into these processes at their appropriate scale are an Eulerian method of directly measuring entrainment and detrainment, and a Lagrangian method that uses particle trajectories to map convective mass flux over height and a cloud variable of interest. The authors of the Eulerian technique used it to show that the dynamics of shells of cold, humid air that surround shallow convective updrafts have important effects on the properties of air entrained and detrained from the updrafts. There is some evidence for the existence of such shells around deep convective updrafts as well, and that detrainment is more important than entrainment in determining the ultimate effect of the deep convection on the large scale environment. We present results from analyzing a simulation of deep convection through the Eulerian method as well as using Lagrangian particle trajectories to illustrate the role of the shell in the process of detrainment and mixing between deep convection and its environment.

  12. Systematic multiscale models for deep convection on mesoscales

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Rupert [Freie Universitaet Berlin and Potsdam Institute for Climate Impact Research, FB Mathematik and Informatik, Berlin (Germany); Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, New York, NY (United States)

    2006-11-15

    This paper builds on recent developments of a unified asymptotic approach to meteorological modeling [ZAMM, 80: 765-777, 2000, SIAM Proc. App. Math. 116, 227-289, 2004], which was used successfully in the development of Systematic multiscale models for the tropics in Majda and Klein [J. Atmosph. Sci. 60: 393-408, 2003] and Majda and Biello [PNAS, 101: 4736-4741, 2004]. Biello and Majda [J. Atmosph. Sci. 62: 1694-1720, 2005]. Here we account for typical bulk microphysics parameterizations of moist processes within this framework. The key steps are careful nondimensionalization of the bulk microphysics equations and the choice of appropriate distinguished limits for the various nondimensional small parameters that appear. We are then in a position to study scale interactions in the atmosphere involving moist physics. We demonstrate this by developing two systematic multiscale models that are motivated by our interest in mesoscale organized convection. The emphasis here is on multiple length scales but common time scales. The first of these models describes the short-time evolution of slender, deep convective hot towers with horizontal scale {proportional_to}1 km interacting with the linearized momentum balance on length and time scales of (10 km/3 min). We expect this model to describe how convective inhibition may be overcome near the surface, how the onset of deep convection triggers convective-scale gravity waves, and that it will also yield new insight into how such local convective events may conspire to create larger-scale strong storms. The second model addresses the next larger range of length and time scales (10 km, 100 km, and 20 min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation processes induces highly nonlinear dynamics. Besides providing new theoretical insights, the derived models may also serve as a

  13. Irradiated stars with convective envelopes

    CERN Document Server

    Lucy, L B

    2016-01-01

    The structure of low-mass stars irradiated by a close companion is considered. Irradiation modifies the surface boundary conditions and thereby also the adiabatic constants of their outer convection zones. This then changes the models' radii and luminosities. For short-period M dwarf binaries with components of similar mass, the radius inflation due to their mutual irradiation is found to be < 0.4%. This is an order of magnitude too small to explain the anomalous radii found for such binaries. Although stronger irradiation of an M dwarf results in a monotonically increasing radius, a saturation effect limits the inflation to < 5%.

  14. Hyperchaotic Intermittent Convection in a Magnetized Viscous Fluid

    CERN Document Server

    Macek, Wieslaw M

    2014-01-01

    We consider a low-dimensional model of convection in a horizontally magnetized layer of a viscous fluid heated from below. We analyze in detail the stability of hydromagnetic convection for a wide range of two control parameters. Namely, when changing the initially applied temperature difference or magnetic field strength, one can see transitions from regular to irregular long-term behavior of the system, switching between chaotic, periodic, and equilibrium asymptotic solutions. It is worth noting that owing to the induced magnetic field a transition to hyperchaotic dynamics is possible for some parameters of the model. We also reveal new features of the generalized Lorenz model, including both type I and III intermittency.

  15. A convection model to explain anisotropy of the inner core

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, H.-R. [Department of Geology and Geophysics, University of California, Berkeley (United States); Baumgardner, J. R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Lebensohn, R. A. [CONICET, Consejo Nacional de Investigaciones Cientificas y Tecnicas, University of Rosario, Rosario, (Argentina); Tome, C. N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2000-03-10

    Seismic evidence suggests that the solid inner core of the Earth may be anisotropic. Several models have been proposed to explain this anisotropy as the result of preferred orientation of crystals. They range from a large annealed single crystal, growth at the melt interface, to deformation-induced texture. In this study texture development by deformation during inner core convection is explored for {epsilon}-iron (hcp) and {gamma}-iron (fcc). Convection patterns for harmonic degree two were investigated in detail. In the model it is assumed that traces of potassium are uniformly dispersed in the inner core and act as a heat source. Both for fcc and hcp iron, crystal rotations associated with intracrystalline slip during deformation can plausibly explain a 1-3% anisotropy in P waves with faster velocities along the N-S axis and slower ones in the equatorial plane. The effect of single crystal elastic constants is explored. (c) 2000 American Geophysical Union.

  16. Magnetic Helicity Reversals in a Cyclic Convective Dynamo

    CERN Document Server

    Miesch, Mark S; Augustson, Kyle C

    2016-01-01

    We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within the convection zone, with opposite polarities in the northern and southern hemispheres. Throughout most of the cycle, the magnetic helicity in these bands is negative in the northern hemisphere and positive in the southern hemisphere. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroid...

  17. Convective flows of colloidal suspension in an inclined closed cell

    Science.gov (United States)

    Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey

    2016-12-01

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).

  18. Transitions in turbulent rotating convection

    Science.gov (United States)

    Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team

    2015-11-01

    This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.

  19. Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection

    Science.gov (United States)

    Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.

    1999-01-01

    A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.

  20. Float Zone Growth of Alloy Semiconductor Crystals: Influence of Solutocapillary Convection

    Science.gov (United States)

    Dold, P.; Schweizer, M.; Croell, A.; Campbell, T.; Boschert, S.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Growth techniques with large free melt surfaces are affected by convective flows induced by gradients of the surface tension. In the case of dilute semiconductor alloys (in our case: germanium-silicon), the impact of solutocapillary convection (due to the concentration dependence of the surface tension) has to be taken into account in addition to the "normal" thermocapillary convection (due to the temperature dependence of the surface tension). Theoretical considerations, based on experimental temperature profiles, growth geometry, segregation coefficient, and measured values for the temperature and concentration coefficients of the surface tension, lead to the conclusion that for the germanium rich side of the Ge(1-x)Si(x) system, the contribution of solutocapillary convection is, at least in front of the solid-liquid interface, the dominant factor. It results in an additional flow roll with a flow direction opposite to the thermocapillary flow, similar to the ones reported for metal alloys or high Prandtl-number fluids.

  1. Influence of the Dufour effect on convection in binary gas mixtures

    CERN Document Server

    Hollinger, S; Hollinger, St.

    1995-01-01

    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.

  2. Introductory Analysis of Benard-Marangoni Convection

    Science.gov (United States)

    Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…

  3. Spurious multiple equilibria introduced by convective adjustment

    NARCIS (Netherlands)

    den Toom, M.; Dijkstra, H.A.; Wubs, F.W.

    2011-01-01

    The application of bifurcation analysis to ocean climate models is substantially hampered by difficulties associated with the use of convective adjustment, i.e. a parameterisation of convection in which the vertical diffusion of heat and salt is greatly enhanced whenever the water column becomes sta

  4. Convection of Moist Saturated Air: Analytical Study

    Directory of Open Access Journals (Sweden)

    Robert Zakinyan

    2016-01-01

    Full Text Available In the present work, the steady-state stationary thermal convection of moist saturated air in a lower atmosphere has been studied theoretically. Thermal convection was considered without accounting for the Coriolis force, and with only the vertical temperature gradient. The analytical solution of geophysical fluid dynamics equations, which generalizes the formulation of the moist convection problem, is obtained in the two-dimensional case. The stream function is derived in the Boussinesq approximation with velocity divergence taken as zero. It has been shown that the stream function is asymmetrical in vertical direction contrary to the dry and moist unsaturated air convection. It has been demonstrated that the convection in moist atmosphere strongly depends on the vapor mass fraction gradient.

  5. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels

    conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from......The work focuses on applying topology optimisation to forced and natural convection problems in fluid dynamics and conjugate (fluid-structure) heat transfer. To the authors' knowledge, topology optimisation has not yet been applied to natural convection flow problems in the published literature...... and the current work is thus seen as contributing new results to the field. In the literature, most works on the topology optimisation of weakly coupled convection-diffusion problems focus on the temperature distribution of the fluid, but a selection of notable exceptions also focusing on the temperature...

  6. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  7. Convection in Oblate Solar-Type Stars

    CERN Document Server

    Wang, Junfeng; Liang, Chunlei

    2016-01-01

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly-rotating solar-type stars. This has been achieved by exploiting the capabilities of the new Compressible High-ORder Unstructured Spectral difference (CHORUS) code. We consider rotation rates up to 85\\% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17\\% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat flux in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface...

  8. Convection in Condensible-rich Atmospheres

    CERN Document Server

    Ding, Feng

    2016-01-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case-water vapor in Earth's present climate-the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-co...

  9. Marangoni Convection in Binary Mixtures

    CERN Document Server

    Zhang, J; Oron, A; Behringer, Robert P.; Oron, Alexander; Zhang, Jie

    2006-01-01

    Marangoni instabilities in binary mixtures are different from those in pure liquids. In contrast to a large amount of experimental work on Marangoni convection in pure liquids, such experiments in binary mixtures are not available in the literature, to our knowledge. Using binary mixtures of sodium chloride/water, we have systematically investigated the pattern formation for a set of substrate temperatures and solute concentrations in an open system. The flow patterns evolve with time, driven by surface-tension fluctuations due to evaporation and the Soret effect, while the air-liquid interface does not deform. A shadowgraph method is used to follow the pattern formation in time. The patterns are mainly composed of polygons and rolls. The mean pattern size first decreases slightly, and then gradually increases during the evolution. Evaporation affects the pattern formation mainly at the early stage and the local evaporation rate tends to become spatially uniform at the film surface. The Soret effect becomes i...

  10. Natural convection between concentric spheres

    Science.gov (United States)

    Garg, Vijay K.

    1992-01-01

    A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.

  11. Actively convected liquid metal divertor

    Science.gov (United States)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  12. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  13. Convective weather hazards in the Twin Cities Metropolitan Area, MN

    Science.gov (United States)

    Blumenfeld, Kenneth A.

    This dissertation investigates the frequency and intensity of severe convective storms, and their associated hazards, in the Twin Cities Metropolitan Area (TCMA), Minnesota. Using public severe weather reports databases and high spatial density rain gauge data, annual frequencies and return-periods are calculated for tornadoes, damaging winds, large hail, and flood-inducing rainfall. The hypothesis that severe thunderstorms and tornadoes are less likely in the central TCMA than in surrounding areas also is examined, and techniques for estimating 100-year rainfall amounts are developed and discussed. This research finds that: (i) storms capable of significant damage somewhere within the TCMA recur annually (sometimes multiple times per year), while storms virtually certain to cause such damage recur every 2-3 years; (ii) though severe weather reports data are not amenable to classical comparative statistical testing, careful treatment of them suggests all types and intensity categories of severe convective weather have been and should continue to be approximately as common in the central TCMA as in surrounding areas; and (iii) applications of Generalized Extreme Value (GEV) statistics and areal analyses of rainfall data lead to significantly larger (25-50%) estimates of 100-year rainfall amounts in the TCMA and parts of Minnesota than those currently published and used for precipitation design. The growth of the TCMA, the popular sentiment that downtown areas somehow deter severe storms and tornadoes, and the prior underestimation of extreme rainfall thresholds for precipitation design, all act to enhance local susceptibility to hazards from severe convective storms.

  14. Internal Gravity Wave Excitation by Turbulent Convection

    CERN Document Server

    Lecoanet, Daniel

    2012-01-01

    We calculate the flux of internal gravity waves (IGWs) generated by turbulent convection in stars. We solve for the IGW eigenfunctions analytically near the radiative-convective interface in a local, Boussinesq, and cartesian domain. We consider both discontinuous and smooth transitions between the radiative and convective regions and derive Green's functions to solve for the IGWs in the radiative region. We find that if the radiative-convective transition is smooth, the IGW flux ~ F_conv (d/H), where F_conv is the flux carried by the convective motions, d is the width of the transition region, and H is the pressure scale height. This can be much larger than the standard result in the literature for a discontinuous radiative-convective transition, which gives a wave flux ~ F_conv M, where M is the convective Mach number. However, in the smooth transition case, the most efficiently excited perturbations will break immediately when they enter the radiative region. The flux of IGWs which do not break and are abl...

  15. Application of a Theory and Simulation based Convective Boundary Mixing model for AGB Star Evolution and Nucleosynthesis

    CERN Document Server

    Battino, U; Ritter, C; Herwig, F; Denisenkov, P; Hartogh, J W Den; Trappitsch, R; Hirschi, R; Freytag, B; Thielemann, F; Paxton, B

    2016-01-01

    The s-process nucleosynthesis in Asymptotic Giant Branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up where the 13C pocket for the s process in AGB stars forms. In this work we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M = 3M?, and with initial metal content Z = 0:01 and Z = 0:02. As reported previously, the He-intershell abundance of 12C and 16O are increased by CBM at the bottom of pulse-driven convection zone. This mixing is affecting the 22Ne(alph...

  16. Multicloud convective parametrizations with crude vertical structure

    Energy Technology Data Exchange (ETDEWEB)

    Khouider, Boualem [University of Victoria, Mathematics and Statistics, PO BOX 3045 STN CSC, Victoria, BC (Canada); Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere/Ocean Sciences, Courant Institute, New York, NY (United States)

    2006-11-15

    Recent observational analysis reveals the central role of three multi-cloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating two-day waves, and the Madden-Julian oscillation. The authors have recently developed a systematic model convective parametrization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low level heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and a nonlinear switch which favors either deep or congestus convection depending on whether the troposphere is moist or dry. Here several new facets of these multi-cloud models are discussed including all the relevant time scales in the models and the links with simpler parametrizations involving only a single baroclinic mode in various limiting regimes. One of the new phenomena in the multi-cloud models is the existence of suitable unstable radiative convective equilibria (RCE) involving a larger fraction of congestus clouds and a smaller fraction of deep convective clouds. Novel aspects of the linear and nonlinear stability of such unstable RCE's are studied here. They include new modes of linear instability including mesoscale second baroclinic moist gravity waves, slow moving mesoscale modes resembling squall lines, and large scale standing modes. The nonlinear instability of unstable RCE's to homogeneous perturbations is studied with three different types of nonlinear dynamics occurring which involve adjustment to a steady deep convective RCE, periodic oscillation, and even heteroclinic chaos in

  17. Variable permeability effect on convection in binary mixtures saturating a porous layer

    Energy Technology Data Exchange (ETDEWEB)

    Alloui, Z.; Vasseur, P. [University of Montreal, Ecole Polytechnique de Montreal, Montreal, QC (Canada); Bennacer, R. [LEEVAM, University of Cergy, Neuville sur Oise (France)

    2009-06-15

    The Darcy Model with the Boussinesq approximation is used to study natural convection in a shallow porous layer, with variable permeability, filled with a binary fluid. The permeability of the medium is assumed to vary exponentially with the depth of the layer. The two horizontal walls of the cavity are subject to constant fluxes of heat and solute while the two vertical ones are impermeable and adiabatic. The governing parameters for the problem are the thermal Rayleigh number, R{sub T}, the Lewis number, Le, the buoyancy ratio, {phi}, the aspect ratio of the cavity, A, the normalized porosity, {epsilon}, the variable permeability constant, c, and parameter a defining double-diffusive convection (a=0) or Soret induced convection (a=1). For convection in an infinite layer, an analytical solution of the steady form of the governing equations is obtained on the basis of the parallel flow approximation. The onset of supercritical convection, R{sub T}C{sup sub}, or subcritical, R{sub T}C{sup sub}, convection are predicted by the present theory. A linear stability analysis of the parallel flow model is conducted and the critical Rayleigh number for the onset of Hopf's bifurcation is predicted numerically. Numerical solutions of the full governing equations are found to be in excellent agreement with the analytical predictions. (orig.)

  18. Laboratory experiments on diffusive convection layer thickness and its oceanographic implications

    Science.gov (United States)

    Guo, Shuang-Xi; Zhou, Sheng-Qi; Qu, Ling; Lu, Yuan-Zheng

    2016-10-01

    We studied the thickness of diffusive convective layers that form when a linearly stratified fluid is subjected to heating from below in the laboratory. The thickness of the bottom convecting layer is much larger than subsequent layers. These thicknesses are systematically identified and used to examine the available convecting layer thickness parameterizations, which are consisted of the measured heat flux F (or thermal buoyancy flux qT), initial stratification N, density ratio Rρ, thermal diffusivity κT, etc. Parameterization with an intrinsic length scale >(qT3κ/TN8)1/4 is shown to be superior. Including the present laboratory convecting layer thicknesses and those observed in oceans and lakes, where layer thickness ranges from 0.01 to 1000 m, the parameterization is updated as H=C>(Rρ-1>)2>(qT3κ/TN8)1/4, where C = 38.3 for the bottom convective layer and 10.8 for the subsequent layers. Different prefactors are proposed to be attributed to different convective instabilities induced by different boundary conditions.

  19. Scaling and universality in turbulent convection.

    Science.gov (United States)

    Celani, Antonio; Matsumoto, Takeshi; Mazzino, Andrea; Vergassola, Massimo

    2002-02-01

    Anomalous correlation functions of the temperature field in two-dimensional turbulent convection are shown to be universal with respect to the choice of external sources. Moreover, they are equal to the anomalous correlations of the concentration field of a passive tracer advected by the convective flow itself. The statistics of velocity differences is found to be universal, self-similar, and close to Gaussian. These results point to the conclusion that temperature intermittency in two-dimensional turbulent convection may be traced back to the existence of statistically preserved structures, as it is in passive scalar turbulence.

  20. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  1. Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography

    Science.gov (United States)

    Kumar, Manoj; Shakher, Chandra

    2016-04-01

    In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.

  2. Modeling the Interaction between Quasi-Geostrophic Vertical Motion and Convection in a Single Column

    Science.gov (United States)

    Nie, J.

    2015-12-01

    A single-column modeling approach is proposed to study interaction between convection and large-scale dynamics using the quasi-geostrophic (QG) framework. Vertical motion is represented by the QG omega equation with the diabatic heating term included. This approach extends the notion of ``parameterization of large scale dynamics", previously applied in the tropics using the weak temperature gradient approximation and other comparable methods, to the extratropics, where balanced adiabatic dynamics plays a larger role in inducing large-scale vertical motion. The diabatic heating term in the QG-omega equation represents the feedback from convection, coupling the convection and large-scale vertical motion. The strength of the coupling depends on the characteristic wavelength of the large-scale disturbances, a free parameter in the system. This approach is demonstrated using two representations of convection: a single- column model with a convective parameterization, and linear response functions derived by Z. Kuang from a large set of cloud-resolving simulations. The results are qualitatively similar in both cases, though the linear response functions allow for a more thorough analysis of the system dynamics. The behavior of convection that is strongly coupled to large-scale vertical motion is significantly different from that in the uncoupled case in which large-scale dynamics is not present. The positive feedback of the diabatic heating on the large-scale vertical motion reduces the stability of the system, extends the decay time scale after initial perturbations, and increases the amplitude of the convective response to transient large-scale perturbations or imposed forcings. The diabatic feedback of convection on vertical motion is strongest for horizontal wavelengths roughly between 2000 km and 1000 km.

  3. Parametrization of orographic thermal effect on the deep convection triggering in Global Model

    Science.gov (United States)

    Jingmei, Y.; Jean-Yves, G.; Alain, L.

    2013-05-01

    The work is based on the hypothesis that anabatic winds (or valley breeze) is an important mechanism of deep convection triggering. Induced by the temperature difference between the mountain surface and the environmental air, anabatic winds own a kinetic energy which may eventually overcome the Planet Boundary Layer inhibition (CIN, Convective Inhibition) and allows the associated convection to develop into the free troposphere. This sub-grid scale phenomenon needs a special parametrization in general circulation models (GCMs). Its lack of representation in present GCM versions is thought of being the cause of the deficit of deep convection systems genesis observed in certain orographical zones, as Mount Cameroun in West Africa for example. A valley breeze parametrization has been designed and built in a GCM (LMDZ). The model computes kinetic energy of the valley breeze in relation to the sub-grid scale orographical characteristics (elevation, slope, orientation). It consists of a grid slim layer along the mountain surface. It is coupled with a multi-layers conductive-capacitive soil model. The coupling is accomplished by using the energy budget at the surface of the mountain. The model was tested in the dynamical mode by systematic sensitivity analysis to the principal parameters and to the environmental conditions. It has then been implemented in the 1D version of the GCM (SCM, Single Column Model), coupled with the Emanuel deep convection scheme, and tested against a radiative-convective equilibrium case and the Hapex campaign case. The stationnary solution of the aeraulic part of the model has been adopted for the GCM. The parametrization finally has been introduced in the 3D version of the GCM, in the diagnostic mode (without coupling to the convection process). It gives a spatial distribution of the triggering frequency of deep convection in coherence with that of the satellite image observation in the West Africa region, during the West African Monsoon

  4. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations.

    Science.gov (United States)

    Talebi, Maryam; Setareh, Milad; Saffar-Avval, Majid; Hosseini Abardeh, Reza

    2017-04-01

    Application of ultrasonic waves for heat transfer augmentation has been proposed in the last few decades. Due to limited researches on acoustic streaming induced by ultrasonic oscillation, the effect of ultrasonic waves on natural convection heat transfer is the main purpose of this paper. At first, natural convection on up-ward-facing heating surface in a cylindrical enclosure filled with air is investigated numerically by the finite difference method, then the effect of upper surface oscillation on convection heat transfer is considered. The conservation equations in Lagrangian approach and compressible fluid are assumed for the numerical simulation. Results show that acoustic pressure will become steady after some milliseconds also pressure oscillation amplitude and acoustic velocity components will be constant therefore steady state velocity is used for solving energy equation. Results show that Enhancement of heat transfer coefficient can be up to 175% by induced ultrasonic waves. In addition, the effect of different parameters on acoustic streaming and heat transfer has been studied.

  5. Influence of through-flow on linear pattern formation properties in binary mixture convection

    CERN Document Server

    Jung, C; Büchel, P; Jung, Ch.

    1996-01-01

    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.2...

  6. Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season

    Science.gov (United States)

    Chen, Xingchao; Zhao, Kun; Xue, Ming; Zhou, Bowen; Huang, Xuanxuan; Xu, Weixin

    2015-12-01

    Using operational Doppler radar and regional reanalysis data from 2007-2009, the climatology and physical mechanisms of the diurnal cycle and propagation of convection over the Pearl River Delta (PRD) region of China during the Mei-Yu seasons are investigated. Analyses reveal two hot spots for convection: one along the south coastline of PRD and the other on the windward slope of mountains in the northeastern part of PRD. Overall, convection occurs most frequently during the afternoon over PRD due to solar heating. On the windward slope of the mountains, convection occurrence frequency exhibits two daily peaks, with the primary peak in the afternoon and the secondary peak from midnight to early morning. The nighttime peak is shown to be closely related to the nocturnal acceleration and enhanced lifting on the windward slope of southwesterly boundary layer flow, in the form of boundary layer low-level jet. Along the coastline, nighttime convection is induced by the convergence between the prevailing onshore wind and the thermally induced land breeze in the early morning. Convection on the windward slope of the mountainous area is more or less stationary. Convection initiated near the coastline along the land breeze front tends to propagate inland from early morning to early afternoon when land breeze cedes to sea breeze and the prevailing onshore flow.

  7. Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump

    Science.gov (United States)

    Rocha, C.

    2000-02-01

    Vertical temperature profiles during exposure and flooding of a sandy tidal flat were investigated at a single site in the Sado estuary (Portugal), and compared with the change in benthic nitrogen pools. Data from April 1994 (night and day flood periods), July and November 1994 were analysed in order to study possible convective transport induced by the changing thermal regime on a tidal time scale. An ecological consequence of the flooding of warm, permeable sediment beds by cool water was the reversal of porewater density gradients, leading to a quick exchange of porewater for flood water, in what constitutes a rapid, powerful pathway for benthic solute removal in tidal ecosystems. The matrix-averaged interstitial velocity of up- and down-draught plumes of water ranged between 10 -7 and 10 -6 m s -1 over a depth scale of 6-10 cm. The Peclet number ranged from 1.4 to 28 in heavily bioturbated environments ( DBs for N solutes=5×10 -9 m2 s-1), and from 70 to 1400 in non-bioturbated environments ( DBs for N solutes ≈10 -10 m 2 s -1). The results indicate that convective turnover of porewaters in permeable tidal flats is abrupt, may occur with daily frequency, and may have three orders of magnitude more impact on sediment-water fluxes than diffusion alone. Convective flow is a major component of sediment-water fluxes in tidal areas and crucial to accurate budget studies on the sandy intertidal. On the basis of these results and recent literature, the potential ecological importance of the Convective Turnover Pump is discussed, showing it to be a very powerful potential accelerator of organic matter diagenesis in tidal systems due to its frequency and range of action.

  8. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  9. NUMERICAL STUDY ON MIXED CONVECTIVE FLOW IN A SOLAR COLLECTOR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In a solar energy heat collector forced convection and free convection will occur concurrently. In this paper, the mixed convective flow was investigated. The dimensionless equation was derived and the results was verified by experiments. The numerical solution shows that error is less than 5% if the effect of free convection is ignored.

  10. Topology optimisation for natural convection problems

    CERN Document Server

    Alexandersen, Joe; Andreasen, Casper Schousboe; Sigmund, Ole

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.

  11. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  12. Internal Wave Generation by Turbulent Convection

    Science.gov (United States)

    Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.

    2015-12-01

    Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.

  13. Layer Formation in Sedimentary Fingering Convection

    CERN Document Server

    Reali, J F; Alsinan, A; Meiburg, E

    2016-01-01

    When particles settle through a stable temperature or salinity gradient they can drive an instability known as sedimentary fingering convection. This phenomenon is thought to occur beneath sediment-rich river plumes in lakes and oceans, in the context of marine snow where decaying organic materials serve as the suspended particles, or in the atmosphere in the presence of aerosols or volcanic ash. Laboratory experiments of Houk and Green (1973) and Green (1987) have shown sedimentary fingering convection to be similar to the more commonly known thermohaline fingering convection in many ways. Here, we study the phenomenon using 3D direct numerical simulations. We find evidence for layer formation in sedimentary fingering convection in regions of parameter space where it does not occur for non-sedimentary systems. This is due to two complementary effects. Sedimentation affects the turbulent fluxes and broadens the region of parameter space unstable to the $\\gamma$-instability (Radko 2003) to include systems at l...

  14. An Observational Investigation of Penetrative Convection

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Lenschow, D. H.

    1978-01-01

    Data taken during the Air Mass Transformation Experiment (AMTEX) by the NCAR Electra aircraft have proven useful for investigating the structure of thermals penetrating into the turbulent inversion layer which caps the convective mixed layer. Variances, covariances, spectra and cospectra...

  15. Destabilization of free convection by weak rotation

    CERN Document Server

    Gelfgat, Alexander

    2011-01-01

    This study offers an explanation of a recently observed effect of destabilization of free convective flows by weak rotation. After studying several models where flows are driven by a simultaneous action of convection and rotation, it is concluded that the destabilization is observed in the cases where centrifugal force acts against main convective circulation. At relatively low Prandtl numbers this counter action can split the main vortex into two counter rotating vortices, where the interaction leads to instability. At larger Prandtl numbers, the counter action of the centrifugal force steepens an unstable thermal stratification, which triggers Rayleigh-B\\'enard instability mechanism. Both cases can be enhanced by advection of azimuthal velocity disturbances towards the axis, where they grow and excite perturbations of the radial velocity. The effect was studied considering a combined convective/rotating flow in a cylinder with a rotating lid and a parabolic temperature profile at the sidewall. Next, explana...

  16. Eye Formation in Rotating Convection

    CERN Document Server

    Oruba, L; Dormy, E

    2016-01-01

    We consider rotating convection in a shallow, cylindrical domain. We examine the conditions under which the resulting vortex develops an eye at its core; that is, a region where the poloidal flow reverses and the angular momentum is low. For simplicity, we restrict ourselves to steady, axisymmetric flows in a Boussinesq fluid. Our numerical experiments show that, in such systems, an eye forms as a passive response to the development of a so-called eyewall, a conical annulus of intense, negative azimuthal vorticity that can form near the axis and separates the eye from the primary vortex. We also observe that the vorticity in the eyewall comes from the lower boundary layer, and relies on the fact the poloidal flow strips negative vorticity out of the boundary layer and carries it up into the fluid above as it turns upward near the axis. This process is effective only if the Reynolds number is sufficiently high for the advection of vorticity to dominate over diffusion. Finally we observe that, in the vicinity o...

  17. Eye formation in rotating convection

    Science.gov (United States)

    Oruba, L.; Davidson, P. A.; Dormy, E.

    2017-02-01

    We consider rotating convection in a shallow, cylindrical domain. We examine the conditions under which the resulting vortex develops an eye at its core; that is, a region where the poloidal flow reverses and the angular momentum is low. For simplicity, we restrict ourselves to steady, axisymmetric flows in a Boussinesq fluid. Our numerical experiments show that, in such systems, an eye forms as a passive response to the development of a so-called eyewall, a conical annulus of intense, negative azimuthal vorticity that can form near the axis and separates the eye from the primary vortex. We also observe that the vorticity in the eyewall comes from the lower boundary layer, and relies on the fact the poloidal flow strips negative vorticity out of the boundary layer and carries it up into the fluid above as it turns upward near the axis. This process is effective only if the Reynolds number is sufficiently high for the advection of vorticity to dominate over diffusion. Finally we observe that, in the vicinity of the eye and the eyewall, the buoyancy and Coriolis forces are negligible, and so although these forces are crucial to driving and shaping the primary vortex, they play no direct role in eye formation in a Boussinesq fluid.

  18. Convection in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, J-C; Creyssels, M; Gibert, M; Castaing, B; Chilla, F, E-mail: Francesca.Chilla@ens-lyon.f [Universite de Lyon, ENS Lyon, UMR 5672 CNRS, 46 Allee d' Italie, 69364 Lyon Cedex 7 (France)

    2010-07-15

    The flow generated by heat convection in a long, vertical channel is studied by means of particle imagery velocimetry techniques, with the help of the thermal measurements from a previous paper (Gibert et al 2009 Phys. Fluids 21 035109). We analyse the mean velocity profiles and the Reynolds stresses, and compare the present results with the previous ones obtained in a larger cell and at a larger Reynolds number. We calculate the horizontal temperature profile and the related horizontal heat flux. The pertinence of effective turbulent diffusivity and viscosity is confirmed by the low value of the associated mixing length. We study the one-point and two-point statistics of both velocity components. We show how the concept of turbulent viscosity explains the relations between the local probability density functions (pdf) of fluctuations for temperature, vertical and horizontal velocity components. Despite the low Reynolds number values explored, some conclusions can be drawn about the small scale velocity differences and the related energy cascade.

  19. Convection in horizontally shaken granular material

    OpenAIRE

    Saluena, Clara; Poeschel, Thorsten

    1998-01-01

    In horizontally shaken granular material different types of pattern formation have been reported. We want to deal with the convection instability which has been observed in experiments and which recently has been investigated numerically. Using two dimensional molecular dynamics we show that the convection pattern depends crucial on the inelastic properties of the material. The concept of restitution coefficient provides arguments for the change of the behaviour with variing inelasticity.

  20. Uncertainties in stellar evolution models: convective overshoot

    CERN Document Server

    Bressan, Alessandro; Marigo, Paola; Rosenfield, Philip; Tang, Jing

    2014-01-01

    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.

  1. Uncertainties in Stellar Evolution Models: Convective Overshoot

    Science.gov (United States)

    Bressan, Alessandro; Girardi, Léo; Marigo, Paola; Rosenfield, Philip; Tang, Jing

    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.

  2. Convective Heat Transfer for Ship Propulsion.

    Science.gov (United States)

    1982-04-01

    RD-A124 Wi CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION (U) ARIZONA 112 UNIV TUCSON ENGINEERING EXPERIMENT STATION PARK ET AL. 01 APR 82 1248-9 N814...395 CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval Research Code 431 Arlington, Virginia Prepared by J. S. Park, M. F...FOR SHIP PROPULSION By J. S. Park, M. F. Taylor and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson

  3. Seismic Sounding of Convection in the Sun

    CERN Document Server

    Hanasoge, Shravan; Sreenivasan, Katepalli R

    2015-01-01

    Our Sun, primarily composed of ionized hydrogen and helium, has a surface temperature of 5777~K and a radius $R_\\odot \\approx 696,000$ km. In the outer $R_\\odot/3$, energy transport is accomplished primarily by convection. Using typical convective velocities $u\\sim100\\,\\rm{m\\,s^{-1}}$ and kinematic viscosities of order $10^{-4}$ m$^{2}$s$^{-1}$, we obtain a Reynolds number $Re \\sim 10^{14}$. Convection is thus turbulent, causing a vast range of scales to be excited. The Prandtl number, $Pr$, of the convecting fluid is very low, of order $10^{-7}$\\,--\\,$10^{-4}$, so that the Rayleigh number ($\\sim Re^2 Pr$) is on the order of $10^{21}\\,-\\,10^{24}$. Solar convection thus lies in extraordinary regime of dynamical parameters, highly untypical of fluid flows on Earth. Convective processes in the Sun drive global fluid circulations and magnetic fields, which in turn affect its visible outer layers ("solar activity") and, more broadly, the heliosphere ("space weather"). The precise determination of the depth of sola...

  4. Convection in Condensible-rich Atmospheres

    Science.gov (United States)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  5. Convective overshoot at stiffly stable interfaces

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey

    2016-11-01

    Convective overshoot is an important non-local mixing and transport process in stars, extending the influence of turbulent stellar convection beyond the unstable portions of the atmosphere. In the Sun, overshoot into the tachocline at the base of the convection zone has been ascribed a major role in the storage and organization of the global-scale magnetic fields within the solar dynamo. In massive stars, overshooting convection plays an important role in setting the lifespan of the star by mixing fuel into the nuclear burning core. Here we narrowly consider the properties of convective overshoot across very stiff interfaces within fully compressible dynamics across convection zones with significant stratification. We conduct these studies using the Dedalus pseudospectral framework. We extend prior studies of overshoot substantially and find that the depth of overshoot in DNS simulations of a typical plume is well-predicted by a simple buoyancy equilibration model. The implications of this model, extended into the stellar regime, are that very little overshoot should occur under solar conditions. This would seem to sharply limit the role of the tachocline within the global solar dynamo.

  6. Archimedean Proof of the Physical Impossibility of Earth Mantle Convection

    CERN Document Server

    Herndon, J Marvin

    2010-01-01

    Eight decades ago, Arthur Holmes introducted the idea of mantle convection as a mechanism for continental drift. Five decades ago, continental drift was modified to become plate tectonics theory, which included mantle convection as an absolutely critical component. Using the submarine design and operation concept of "neutral buoyancy", which follows from Archimedes' discoveries, the concept of mantle convection is proven to be incorrect, concomitantly refuting plate tectonics, refuting all mantle convection models, and refuting all models that depend upon mantle convection.

  7. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis

    Science.gov (United States)

    Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J. W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; Paxton, B.

    2016-08-01

    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the {}13{{C}} pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M=3 {M}⊙ , and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of {}12{{C}} and {}16{{O}} are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the {}22{Ne}(α, n){}25{Mg} activation and the s-process efficiency in the {}13{{C}}-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the {}13{{C}}-pocket with a mass of ≈ {10}-4 {M}⊙ . The final s-process abundances are characterized by 0.36\\lt [{{s}}/{Fe}]\\lt 0.78 and the heavy-to-light s-process ratio is -0.23\\lt [{hs}/{ls}]\\lt 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.

  8. Differences in deep convective transport characteristics between quasi-isolated strong convection and mesoscale convective systems using seasonal WRF simulations

    Science.gov (United States)

    Bigelbach, B. C.; Mullendore, G. L.; Starzec, M.

    2014-10-01

    We utilize the Weather Research and Forecasting (WRF) model with chemistry to simulate mass transport during the 2007 convective season in the U.S. Southern Great Plains at convection-allowing scale. Resolved storms are classified using an object-based classification scheme. This scheme uses model-derived radar reflectivity to classify storm type as quasi-isolated strong convection (QISC) or mesoscale convective system (MCS). Differences between QISCs and MCSs are investigated by analysis of two transport parameters for each convective object: the level of maximum detrainment (LMD) and the detrainment mass flux. Analysis of the mean LMD showed differences between the two regimes is statistically significantly different in May, as the mean QISC LMD is 440 m higher than the mean MCS LMD in May, and statistically insignificant in July where the mean QISC LMD is only 350 m higher. The detrainment flux per deeply convective object showed statistically significant differences between the two regimes in both May (MCS 4.8 times greater than QISC) and July (MCS 6.8 times greater than QISC). Over the entire study period, MCS storms accounted for 72% of the total mass detrainment, even though QISCs were twice as common as MCSs. However, differences in the detrainment flux per unit area of deep convection showed that QISCs exhibited stronger flux (1.1 times greater) than MCSs in both months. Analysis of tropopause-relative LMDs showed that QISCs detrained the maximum amount of mass closer to the tropopause altitude than MCSs for both months. However, only in May is the difference statistically significant (430 m closer).

  9. Regimes of dry convection above wildfires: Idealized numerical simulations and dimensional analysis

    Science.gov (United States)

    Michael T. Kiefer; Matthew D. Parker; Joseph J. Charney

    2009-01-01

    Wildfires are capable of inducing atmospheric circulations that result predominantly from large temperature anomalies produced by the fire. The fundamental dynamics through which a forest fire and the atmosphere interact to yield different convective regimes is still not well understood. This study uses the Advanced Regional Prediction System (ARPS) model to...

  10. Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, Bernard J.; Kunnen, Rudie P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong

  11. Entropy Production in Convective Hydrothermal Systems

    Science.gov (United States)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  12. Stability analysis of convection in the intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H., E-mail: hiugupta@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Rathor, S.K., E-mail: skrathor@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Pessah, M.E., E-mail: mpessah@nbi.dk [Niels Bohr International Academy, Niels Bohr Institute, 2100, Copenhagen Ø (Denmark); Chakraborty, S., E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Mechanics & Applied Mathematics Group, Indian Institute of Technology Kanpur, U.P. 208016 (India)

    2016-07-15

    We use the machinery usually employed for studying the onset of Rayleigh–Bénard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two ‘plates’ on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability, oscillatory marginal stable states are possible. - Highlights: • Stability analysis of the HBI and the MTI are presented taking into account the boundary conditions employed in the simulations. • It has been shown that the HBI doesn't set in as an oscillatory marginal state whereas the MTI can do so. • The HBI and the MTI criteria have been modified to include the affects of the magnetic tension.

  13. Heat flow control in thermo-magnetic convective systems using engineered magnetic fields

    Science.gov (United States)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2012-09-01

    We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.

  14. Deciphering Core Collapse Supernovae Is Convection the Key?; 1, prompt convection

    CERN Document Server

    Mezzacappa, A; Bruenn, S W; Blondin, J M; Guidry, M W; Strayer, M R; Umar, A S

    1996-01-01

    We couple two-dimensional hydrodynamics to detailed one-dimensional multigroup flux-limited diffusion neutrino transport to investigate prompt convection in core collapse supernovae. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion neutrino transport and one-dimensional hydrodynamics. The development and evolution of prompt convection and its ramifications for the shock dynamics are investigated for both 15 and 25 solar mass models, representative of the two classes of stars with compact and extended iron cores, respectively. In the absence of neutrino transport, prompt convection develops and dissipates on a time scale $\\sim$15 ms for both models. Prompt convection seeds convection behind the shock, which causes distortions in the shock's sphericity, but on the average, the shock radius is not boosted significan...

  15. Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations

    Science.gov (United States)

    Wong, Teresa; Solomatov, Viatcheslav S.

    2015-12-01

    The strongly temperature-dependent viscosity of rocks leads to the formation of nearly rigid lithospheric plates. Previous studies showed that a very low yield stress might be necessary to weaken and mobilize the plates, for example, due to water. However, the magnitude of the yield stress remains poorly understood. While the convective stresses below the lithosphere are relatively small, sublithospheric convection can induce large stresses in the lithosphere indirectly, through thermal thinning of the lithosphere. The magnitude of the thermal thinning, the stresses associated with it, and the critical yield stress to initiate subduction depend on several factors including the viscosity law, the Rayleigh number, and the aspect ratio of the convective cells. We conduct a systematic numerical analysis of lithospheric stresses and other convective parameters for single steady-state convection cells. Such cells can be considered as part of a multi-cell, time-dependent convective system. This allows us a better control of convective solutions and a relatively simple scaling analysis. We find that subduction initiation depends much stronger on the aspect ratio than in previous studies and speculate that plate tectonics initiation may not necessarily require significant weakening and can, at least in principle, start if a sufficiently long cell develops during planetary evolution.

  16. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    Science.gov (United States)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  17. Regional Bowen ratio controls on afternoon moist convection: A large eddy simulation study

    Science.gov (United States)

    Kang, Song-Lak

    2016-12-01

    This study examines the effect of the regional Bowen ratio β, the ratio of the domain-averaged surface sensible heat flux (SHF) to latent heat flux (LHF), on afternoon moist convection. With a temporally evolving but spatially uniform surface available energy over a mesoscale domain under a weak capping inversion, we run large eddy simulation of the afternoon convective boundary layer (CBL). We first prescribe a small β of 0.56 (a wet surface) and then the reversed large β of 1.80 (a dry surface) by switching the SHF and LHF fields. The perturbation fields of the fluxes are prescribed with the Fourier spectra of κ- 3 (κ is horizontal wave number; strong mesoscale heterogeneity) and κ0 (homogeneity). The large β cases have strong vertical buoyancy fluxes and produce more vigorous updrafts. In the heterogeneous, large β surface case, with the removal of convective inhibition over a mesoscale subdomain of large SHF, deep convection develops. In the heterogeneous, small β surface case, convective clouds develop but do not progress into precipitating convection. In the homogeneous surface cases, randomly distributed shallow clouds develop with significantly more and thicker clouds in the large β case. (Co)spectral analyses confirm the more vigorous turbulent thermals in the large β cases and reveal that the moisture advection by the surface heterogeneity-induced mesoscale flows makes the correlation between mesoscale temperature and moisture perturbations change from negative to positive, which facilitates the mesoscale pool of high relative humidity air just above the CBL top, a necessary condition for deep convection.

  18. Convective Regimes in Crystallizing Basaltic Magma Chambers

    Science.gov (United States)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  19. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  20. Properties of convective motions in facular regions

    Science.gov (United States)

    Kostik, R.; Khomenko, E. V.

    2012-09-01

    Aims: We study the properties of solar granulation in a facular region from the photosphere up to the lower chromosphere. Our aim is to investigate the dependence of granular structure on magnetic field strength. Methods: We used observations obtained at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife) using two different instruments: the Triple Etalon SOlar Spectrometer (TESOS) to measure velocity and intensity variations along the photosphere in the Ba ii 4554 Å line; and, simultaneously, the Tenerife Infrared Polarimeter (TIP-II) to the measure Stokes parameters and the magnetic field strength at the lower photosphere in the Fe i 1.56 μm lines. Results: We find that the convective velocities of granules in the facular area decrease with magnetic field while the convective velocities of intergranular lanes increase with the field strength. Similar to the quiet areas, there is a contrast and velocity sign reversal taking place in the middle photosphere. The reversal heights depend on the magnetic field strength and are, on average, about 100 km higher than in the quiet regions. The correlation between convective velocity and intensity decreases with magnetic field at the bottom photosphere, but increases in the upper photosphere. The contrast of intergranular lanes observed close to the disk center is almost independent of the magnetic field strength. Conclusions: The strong magnetic field of the facular area seems to stabilize the convection and to promote more effective energy transfer in the upper layers of the solar atmosphere, since the convective elements reach greater heights.

  1. Nowcasting of convective cells over Italian Peninsula

    Directory of Open Access Journals (Sweden)

    C. M. Medaglia

    2005-01-01

    Full Text Available The aim of the study is the individuation of convective cells over the Italian peninsula with the conjunction use of geostationary satellite data (METEOSAT, MSG satellite in the IR and WV channels and lightning data. We will use GCD (Global Convective Diagnostic algorithm developed at Aviation Weather Centre (AWC of NOAA (National Oceanic and Atmospheric Administration. This algorithm is based on the idea that a deep convective cloud will not have any significant moisture above it. This technique works quite well at identifying active deep convection and can be applied to all the world's geostationary satellites. However it does not always agree with lightning sensors. Low topped convection with lightning will be missed. We will extend the capabilities of GCD using lightning data. The new product will be validate over different cases in the central Italy using the C-band polarimetric radar of ISAC-CNR (Institute of Atmospheric Sciences and Climate-of the Italian National Research Council Rome.

  2. Scaling regimes in spherical shell rotating convection

    CERN Document Server

    Gastine, T; Aubert, J

    2016-01-01

    Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...

  3. Superparameterised convection in the EMAC model

    Science.gov (United States)

    Rybka, Harald; Tost, Holger

    2017-04-01

    Clouds in large-scale circulation models are often not well represented due to the large grid box size of these models. Especially convective clouds with a typical extension of a few kilometres only are subgrid-scale compared to the grid box size of the host models. To overcome this scale discrepancy in the chemistry climate model EMAC, a superparameterisation has been implemented, i.e. a cloud resolving model handling both large-scale as well as convective clouds. The gain for the substantial increase in computational costs is an increase in performance for the global precipitation distribution, especially in the tropics. Furthermore, the diurnal cycle of convective activity is much better represented by the superparameterisation compared to traditional convection schemes. We also provide results on the total water budget, e.g. integrated liquid and ice water as well as the partitioning between the two phases, which substantially differs between parameterised and superparameterised convection due to the explicit treatment of cloud microphysical processes in the latter scheme. Especially, this partitioning has implications for the atmospheric radiation budget and consequently also surface temperatures.

  4. Numerical Study of a Cold Particle Submitted to Mixed Convection

    Science.gov (United States)

    Le Bot, Cédric

    2011-05-01

    During material forming process (metal, glass, polymer), one stage is the solidification of the material, from a bulk melt part. Occurrence of solid particles in the melt material may alter the properties of the final product, as aggregation of particles potentially induces a local weakness (bad shape, mechanical or thermal properties, for example). Considering one particle, a wide range of thermal and dynamic phenomena can be observed: a particle settling is mainly due to Archimedes forces. Free convection due to gravity effects can increase the fluid flow (which is defined as an assisting flow) or may limit it (defined as an opposing flow). A high fluid-particle relative velocity also implies forced convection. The competition between the two thermal phenomena (so-called mixed convection) widely influences the particle transport. Many works have studied the fluid velocity field induced by a cylinder or a spherical particle in a isothermal medium, and have highlighted transitions of flow regime (a laminar flow at low velocity, a deviation in the particle transport at a moderate velocity and various flow structures at a high velocity). Some studies have taken into account heat transfer between the particle and the fluid, and focused on the thermal effects upon the particle fluid velocity. Experiments are difficult (or impossible) to lead, since some materials (like metals for example) do not allow visualizing the particle in the melt fluid. We propose in the present study to carry out the numerical 3D-simulation of a cold particle submitted to a fluid flow, in order to link the fluid-particle thermal transfer and the fluid flow properties. A volume of fluid method is used, on a fixed Cartesian grid to determine the particle transport, the fluid flow and heat transfers in both the fluid and the particle. The domain must be large enough to avoid wall effects. The mixed convection is quantified by the Richardson number (Ri). The aim of this paper will consist in

  5. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-01-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. The bulk microphysics scheme incorporates a physically based parameterization of cloud droplet activation as well as homogeneous and heterogeneous freezing in order to explicitly resolve the possible aerosol-induced effects on the cloud microphysics. These parameterizations allow one to segregate the effects of an increase in the aerosol number concentration into enhanced cloud condensation nuclei (CCN and/or ice nuclei (IN concentrations using bulk microphysics. The bin microphysics scheme, with its explicit calculations of cloud particle collisions, is shown to better predict cumulative precipitation. Increases in the CCN number concentration may not have a monotonic influence on the cumulative precipitation resulting from deep convective clouds. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions and in relatively dry environments, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small, but may act to suppress precipitation.

    A comparison of the predictions using the bin and bulk microphysics schemes demonstrate a significant difference between the predicted precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme is shown to be unable to capture the

  6. Organised convection embedded in a large-scale flow

    Science.gov (United States)

    Naumann, Ann Kristin; Stevens, Bjorn; Hohenegger, Cathy

    2017-04-01

    In idealised simulations of radiative convective equilibrium, convection aggregates spontaneously from randomly distributed convective cells into organized mesoscale convection despite homogeneous boundary conditions. Although these simulations apply very idealised setups, the process of self-aggregation is thought to be relevant for the development of tropical convective systems. One feature that idealised simulations usually neglect is the occurrence of a large-scale background flow. In the tropics, organised convection is embedded in a large-scale circulation system, which advects convection in along-wind direction and alters near surface convergence in the convective areas. A large-scale flow also modifies the surface fluxes, which are expected to be enhanced upwind of the convective area if a large-scale flow is applied. Convective clusters that are embedded in a large-scale flow therefore experience an asymmetric component of the surface fluxes, which influences the development and the pathway of a convective cluster. In this study, we use numerical simulations with explicit convection and add a large-scale flow to the established setup of radiative convective equilibrium. We then analyse how aggregated convection evolves when being exposed to wind forcing. The simulations suggest that convective line structures are more prevalent if a large-scale flow is present and that convective clusters move considerably slower than advection by the large-scale flow would suggest. We also study the asymmetric component of convective aggregation due to enhanced surface fluxes, and discuss the pathway and speed of convective clusters as a function of the large-scale wind speed.

  7. Tropical convection and climate sensitivity

    Science.gov (United States)

    Williams, Ian Nobuo

    Surface temperature has become a popular measure of climate change, but it does not provide the most critical test of climate models. This thesis presents new methods to evaluate climate models based on processes determining the climate sensitivity to radiative forcing from atmospheric greenhouse gases. Cloud radiative feedbacks depend on temperature and relative humidity profiles in addition to surface temperature, through the dependence of cloud type on boundary layer buoyancy. Buoyancy provides a reference to which the onset of deep convection is invariant, and gives a compact description of sea surface temperature changes and cloud feedbacks suitable for diagnostics and as a basis for simplified climate models. This thesis also addresses uncertainties in climate sensitivity involving terrestrial ecosystem responses to global warming. Different diagnostics support different conclusions about atmospheric transport model errors that could imply either stronger or weaker northern terrestrial carbon sinks. Equilibrium boundary layer concepts were previously used in idealized tropical climate models, and are extended here to develop a diagnostic of boundary layer trace gas transport and mixing. Hypotheses linking surface temperature to climate and precipitation sensitivity were tested in this thesis using comprehensive and idealized climate model simulations, and observational datasets. The results do not support the thermostat hypothesis that predicts deep cloud cover will increase with radiative forcing and limit sea surface temperatures to the maximum present-day warm pool temperature. Warm pool temperatures increased along with or even faster than the tropical average over the past several decades, while diagnosed deep cloud cover has not significantly increased, in agreement with global warming simulations. Precipitation sensitivity also depends on more than surface temperature alone, including thermodynamic profiles and air-sea temperature differences. The

  8. Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow

    CERN Document Server

    Joshi, Rakshitha U; Bhardwaj, Rajneesh

    2015-01-01

    Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...

  9. One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)

    2012-10-15

    A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

    Directory of Open Access Journals (Sweden)

    Missoum Abdelkrim

    2016-01-01

    Full Text Available This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number and amplitude of temperature on heat transfer rate (Nusselt number on convective structures that appear.

  11. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    Science.gov (United States)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  12. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  13. A new conceptual model of convection

    Energy Technology Data Exchange (ETDEWEB)

    Walcek, C. [State Univ. of New York, Albany, NY (United States)

    1995-09-01

    Classical cumulus parameterizations assume that cumulus clouds are entraining plumes of hot air rising through the atmosphere. However, ample evidence shows that clouds cannot be simulated using this approach. Dr. Walcek suggests that cumulus clouds can be reasonably simulated by assuming that buoyant plumes detrain mass as they rise through the atmosphere. Walcek successfully simulates measurements of tropical convection using this detraining model of cumulus convection. Comparisons with measurements suggest that buoyant plumes encounter resistance to upward movement as they pass through dry layers in the atmosphere. This probably results from turbulent mixing and evaporation of cloud water, which generates negatively buoyant mixtures which detrain from the upward moving plume. This mass flux model of detraining plumes is considerably simpler than existing mass flux models, yet reproduces many of the measured effects associated with convective activity. 1 fig.

  14. Magnetic field generation by intermittent convection

    CERN Document Server

    Chertovskih, R; Chimanski, E V

    2016-01-01

    Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.

  15. Turbulent Convection in the Classical Variable Stars

    CERN Document Server

    Kollath, Z

    1999-01-01

    We give a status report of convective Cepheid and RR Lyrae model pulsations. Some striking successes can be reported, despite the use of a rather simple treatment of turbulent convection with a 1D time-dependent diffusion equation for the turbulent energy. It is now possible to obtain stable double-mode (beat) pulsations in both Cepheid and RR Lyrae models with astrophysical parameters, i.e. periods and amplitude ratios, that are in agreement with observations. The turbulent convective models, however, have difficulties giving global agreement with the observations. In particular, the Magellanic Cloud Cepheids, that have been observed in connection with the microlensing projects have imposed novel observational constraints because of the low metallicity of the MCs.

  16. Basics of lava-lamp convection

    Science.gov (United States)

    Gyüre, Balázs; Jánosi, Imre M.

    2009-10-01

    Laboratory experiments are reported in an immiscible two-fluid system, where thermal convection is initiated by heating at the bottom and cooling at the top. The lava-lamp regime is characterized by a robust periodic exchange process where warm blobs rise from the bottom, attach to the top surface for a while, then cold blobs sink down again. Immiscibility allows to reach real steady (dynamical equilibrium) states which can be sustained for several days. Two modes of lava-lamp convection could be identified by recording and evaluating temperature time series at the bottom and at the top of the container: a “slow” mode is determined by an effective heat transport speed at a given temperature gradient, while a second mode of constant periodicity is viscosity limited. Contrasting of laboratory and geophysical observations yields the conclusion that the frequently suggested lava-lamp analogy fails for the accepted models of mantle convection.

  17. Solar convection and oscillations in magnetic regions

    CERN Document Server

    Jacoutot, L; Wray, A; Mansour, N N

    2008-01-01

    The goal of this research is to investigate how magnetic field affects the dynamics of granular convection and excitation of solar oscillations by means of realistic numerical simulations. We have used a 3D, compressible, non-linear radiative magnetohydrodynamics code developed at the NASA Ames Research Center. This code takes into account several physical phenomena: compressible fluid flow in a highly stratified medium, sub-grid scale turbulence models, radiative energy transfer between the fluid elements, and a real-gas equation of state. We have studied the influence of the magnetic field of various strength on the convective cells and on the excitation mechanisms of the acoustic oscillations by calculating spectral properties of the convective motions and oscillations. The results reveal substantial changes of the granulation structure with increased magnetic field, and a frequency-dependent reduction in the oscillation power in a good agreement with solar observations. These simulations suggest that the ...

  18. Convection and Mixing in Giant Planet Evolution

    CERN Document Server

    Vazan, Allona; Kovetz, Attay; Podolak, Morris

    2015-01-01

    The primordial internal structures of gas giant planets are unknown. Often giant planets are modeled under the assumption that they are adiabatic, convective, and homogeneously mixed, but this is not necessarily correct. In this work, we present the first self-consistent calculation of convective transport of both heat and material as the planets evolve. We examine how planetary evolution depends on the initial composition and its distribution, whether the internal structure changes with time, and if so, how it affects the evolution. We consider various primordial distributions, different compositions, and different mixing efficiencies and follow the distribution of heavy elements in a Jupiter-mass planet as it evolves. We show that a heavy-element core cannot be eroded by convection if there is a sharp compositional change at the core-envelope boundary. If the heavy elements are initially distributed within the planet according to some compositional gradient, mixing occurs in the outer regions resulting in a...

  19. Differential Rotation in Solar Convective Dynamo Simulations

    CERN Document Server

    Fan, Yuhong

    2015-01-01

    We carry out a magneto-hydrodynamic (MHD) simulation of convective dynamo in the rotating solar convective envelope driven by the solar radiative diffusive heat flux. The simulation is similar to that reported in Fan & Fang (2014) but with further reduced viscosity and magnetic diffusion. The resulting convective dynamo produces a large scale mean field that exhibits similar irregular cyclic behavior and polarity reversals, and self-consistently maintains a solar-like differential rotation. The main driver for the solar-like differential rotation (with faster rotating equator) is a net outward transport of angular momentum away from the rotation axis by the Reynolds stress, and we found that this transport is enhanced with reduced viscosity and magnetic diffusion.

  20. Entropy in adiabatic regions of convection simulations

    CERN Document Server

    Tanner, Joel D; Demarque, Pierre

    2016-01-01

    One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this paper we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of og g and log T_{eff} which holds potential for calibrating stellar models in a simple and more general manner.

  1. Amplitude equations for isothermal double diffusive convection

    Energy Technology Data Exchange (ETDEWEB)

    Becerril, R.; Swift, J.B. [Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712 (United States)

    1997-05-01

    Amplitude equations are derived for isothermal double diffusive convection near threshold for both the stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical point for the stationary instability and the codimension-2 point are found. It is shown that these points can be made well separated (in the Rayleigh number R{sub s} of the slow diffusing species) as the Lewis number varies. Hence the behavior near these points should be experimentally accessible. {copyright} {ital 1997} {ital The American Physical Society}

  2. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Yuhong Fan

    2009-12-01

    Full Text Available Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  3. Convective towers detection using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapour mixing ratio and the temperature of the upper troposphere and lower stratosphere. To gain a better understanding of deep convective processes, the study of tropical cyclones could play an import...... (ACES) payload on the International Space Station....... 1194 profiles in a time window of 3 hours and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS RO signal is typically larger than the climatology above the tropopause. Comparisons with co-located radiosondes, climatology of tropopause altitudes...... and GOES analyses will also be shown to support our hypothesis and to corroborate the idea that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space...

  4. On the convective overstability in protoplanetary discs

    CERN Document Server

    Latter, Henrik

    2015-01-01

    This paper explores the driving of low-level hydrodynamical activity in protoplanetary-disc dead zones. A small adverse radial entropy gradient, ordinarily stabilised by rotation, excites oscillatory convection (`convective overstability') when thermal diffusion, or cooling, is neither too strong nor too weak. I revisit the linear theory of the instability, discuss its prevalence in protoplanetary discs, and show that unstable modes are exact nonlinear solutions in the local Boussinesq limit. Overstable modes cannot grow indefinitely, however, as they are subject to a secondary parametric instability that limits their amplitudes to relatively low levels. If parasites set the saturation level of the ensuing turbulence then the convective overstability is probably too weak to drive significant angular momentum transport or to generate vortices. But I also discuss an alternative, and far more vigorous, saturation route that generates radial `layers' or `zonal flows' (witnessed also in semiconvection). Numerical ...

  5. Differential rotation in solar convective dynamo simulations

    Science.gov (United States)

    Fan, Yuhong; Fang, Fang

    2016-10-01

    We carry out a magneto-hydrodynamic (MHD) simulation of convective dynamo in the rotating solar convective envelope driven by the solar radiative diffusive heat flux. The simulation is similar to that reported in Fan and Fang (2014) but with further reduced viscosity and magnetic diffusion. The resulting convective dynamo produces a large scale mean field that exhibits similar irregular cyclic behavior and polarity reversals, and self-consistently maintains a solar-like differential rotation. The main driver for the solar-like differential rotation (with faster rotating equator) is a net outward transport of angular momentum away from the rotation axis by the Reynolds stress, and we found that this transport is enhanced with reduced viscosity and magnetic diffusion.

  6. A convergence zone triggering deep convection over complex terrain: COSMO simulations of a case study from COPS

    Science.gov (United States)

    Barthlott, Ch.; Schipper, J. W.; Kalthoff, N.; Adler, B.; Kottmeier, Ch.

    2009-04-01

    A case study of an isolated deep convective cell from the Convective and Orographically induced Precipitation Study (COPS) is analysed with respect to its representation in the numerical weather prediction model of the Deutscher Wetterdienst COSMO-DE. The international field campaign COPS was performed in southwestern Germany and eastern France in summer 2007 as part of the Priority Programme SPP 1167 of the Deutsche Forschungsgemeinschaft (DFG). The overall goal of COPS was to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. On July 15, deep convection developed in an area east of the Black Forest crest although convective available potential energy (CAPE) was only moderate and convective inhibition (CIN) was high. Data analysis revealed that convection was triggered by the superposition of a synoptically generated eastward moving mesoscale convergence zone and a thermally induced convergence zone along the mountain crests in the northern Black Forest. More in the south, radar observations also showed a convergence line hours before a single cell was initiated. The question if these convergence lines are connected can not be answered by measurements only. In the standard configuration (2.8 km grid resolution), COSMO simulations reveal a near-surface convergence line and the evolution of a line of low clouds northeast of Freiburg in good agreement with radar and satellite observations. In addition, model-derived values of CAPE were high (> 2000 J/kg) accompanied by almost vanishing CIN. However, no deep convective cell developed out of this line of clouds. For an improved representation of orographic effects, simulations with 1 km grid resolution were performed and compared to the results of the standard configuration. Although both simulations did not initiate deep convection, the results suggest hat in a situation with air mass convection without mid

  7. Finding the patterns in mantle convection

    Science.gov (United States)

    Atkins, Suzanne; Rozel, Antoine; Valentine, Andrew; Tackley, Paul; Trampert, Jeannot

    2016-04-01

    Inverting mantle flow for past configurations is one of the great outstanding problems in geodynamics. We demonstrate a new method for probabilistic inversion of present-day Earth observations for mantle properties and history. Convection is a non-linear and chaotic, thwarting most standard inversion methods. Because of its chaotic and unpredictable nature, small errors in initial conditions, parameter selection, and computational precision can all significantly change the results produced by mantle convection simulations. However, some patterns and statistics of convection contain the signature of the parameters used in the simulations over long time-scales. Geodynamical studies often vary these parameters to investigate their effects on the patterns produced. We show that with a large enough set of simulations, we can investigate the relationship between input parameters and convection patterns in a more rigorous way. Probabilistic inversion is the only way to approach highly non-linear problems. We use neural networks to represent the probability density function linking convection simulation input parameters and the patterns they produce. This allows us to find input parameters, whilst taking into account all of the uncertainties that are inherent in the inversion of any Earth system: how well do we understand the physics of the process; what do we already know about the input parameters; and how certain are our observations? We show that the mantle structures produced by 4.5 Gyr of convection simulations contain enough information on yield stress, viscosity coefficients, mantle heating rate, and the initial state of primordial material that we can infer them directly without requiring any other information, such as plate velocity.

  8. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  9. Impacts of Convective Triggering on Convective Variability in a Climate Model

    Science.gov (United States)

    Wang, Y. C.

    2015-12-01

    In this study, we investigated the impacts of the triggering designs of the deep convection scheme on convective variability from diurnal rainfall cycle to intraseasonal rainfall variability by using NCAR CAM5 model. Using single-column simulations at the Southern Great Plains site, we found that the underestimated nighttime rainfall of diurnal cycle can be greatly improved when two convective triggering designs from the Simplified Arakawa-Schubert scheme (SAS) are implemented into the default Zhang-Mcfarlane (ZM) scheme. We further conducted AMIP-type climate simulations with this modified ZM scheme (ZMMOD), and found that improvements can also be seen for the diurnally propagating convection over topographical regions, such as Maritime Continent and the western coast of Columbia. We further examined the rainfall variability from synoptic to intraseasonal scales, and found that using ZMMOD scheme increases rainfall variability of 2-10-day over South America and Africa land regions. However, this improvement does not seem to transfer to the intraseasonal convective organization (20-100 days), such as the MJO. This study demonstrates the importance of convective triggering and its impacts on convective variability. This work is still on-going to understand the physical processes of such impacts and how they might affect climate systems through multiscale interactions.

  10. High Temperature Sodium Thermal Convection Test Loop

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A project for the evaluation of compatibility characteristic of structural materials used in China experimental fast reactor(CEFR) has been in operation. The conditions which these structural materials contact with liquid sodium in reactor can be simulated by the tests in high temperature sodium thermal convection test loop. The main aims of designing and constructing the thermal convection test loop is for the corrosion test of CEFR materials, and the objective is to obtain the corrosion data of domestic materials.The main features of the test loop are shown in Fig.1. The primary components of the loop

  11. Convective dust clouds in a complex plasma

    CERN Document Server

    Mitic, S; Ivlev, A V; Hoefner, H; Thoma, M H; Zhdanov, S; Morfill, G E

    2008-01-01

    The plasma is generated in a low frequency glow discharge within an elongated glass tube oriented vertically. The dust particles added to the plasma are confined above the heater and form counter-rotating clouds close to the tube centre. The shape of the clouds and the velocity field of the conveying dust particles are determined. The forces acting on the particles are calculated. It is shown that convection of the dust is affected by the convective gas motion which is triggered, in turn, by thermal creep of the gas along the inhomogeneously heated walls of the tube.

  12. Convective heat transfer during dendritic growth

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  13. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  14. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    Science.gov (United States)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  15. Contamination of the Convecting Mantle in Eastern Tethyan 'Subduction Factories'

    Science.gov (United States)

    Flower, M. F.; Nguyen, T. H.

    2003-04-01

    Fe- and HFSE-rich MORB and OIB. 3) LILE and, presumably, LREE variation is less constrained by solid-melt equilibria and plausibly attributed to metasomatism. We therefore suggest that refractory mantle wedge sources represent 'pods' of lithospheric mantle rheologically changed by slab-derived, hydrous contamination, and, in response to downward drag from subducting slabs (or slab fragments), incorporated by the convecting asthenosphere. Partial melting at higher pressures of slab-entrained sediment or eclogitized oceanic crust will contribute granitic and adakitic melt fractions, respectively, to convecting slab-contiguous mantle. The combined effects of relative buoyancy and decreased viscosity following pressure-induced dehydration predispose refractory mantle 'pods' to decompression thereby yielding 'low-pressure' primitive magmas with 'inherited' LILE, HFSE, LILE (etc.) attributes. On this basis, we propose a testable model for mantle wedge evolution during the closing stages of a typical Wilson cycle.

  16. Multi-crystalline silicon solidification under controlled forced convection

    Science.gov (United States)

    Cablea, M.; Zaidat, K.; Gagnoud, A.; Nouri, A.; Chichignoud, G.; Delannoy, Y.

    2015-05-01

    Multi-crystalline silicon wafers have a lower production cost compared to mono-crystalline wafers. This comes at the price of reduced quality in terms of electrical properties and as a result the solar cells made from such materials have a reduced efficiency. The presence of different impurities in the bulk material plays an important role during the solidification process. The impurities are related to different defects (dislocations, grain boundaries) encountered in multi-crystalline wafers. Applying an alternative magnetic field during the solidification process has various benefits. Impurities concentration in the final ingot could be reduced, especially metallic species, due to a convective term added in the liquid that reduces the concentration of impurities in the solute boundary layer. Another aspect is the solidification interface shape that is influenced by the electromagnetic stirring. A vertical Bridgman type furnace was used in order to study the solidification process of Si under the influence of a travelling magnetic field able to induce a convective flow in the liquid. The furnace was equipped with a Bitter type three-phase electromagnet that provides the required magnetic field. A numerical model of the furnace was developed in ANSYS Fluent commercial software. This paper presents experimental and numerical results of this approach, where interface markings were performed.

  17. The flow patterning capability of localized natural convection.

    Science.gov (United States)

    Huang, Ling-Ting; Chao, Ling

    2016-09-14

    Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.

  18. Nonlinear Bubbling and Micro-Convection at a Submerged Orifice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The present paper describes the nonlinear behavior of bubble formation from a single submerged orifice and induced liquid motion (micro-convection) surrounding the bubble. The experimental data reveals that departing periods of successive bubbles evolve multiple periods from single to triple periods when the gas flow rate is increased and that the micro-convection evolves bifurcation phenomena similar to the so-called "period doubling" in chaos dynamics. The photographic observation using high-speed video movies and data analysis indicate that the nonlinear features come from the deformation of the bubble and also the interaction between consecutive bubbles. A new comprehensive theoretical model is developed for describing the instantaneous bubble behaviors during formation and ascendance processes and for predicting the departing periods and sizes of successive bubbles for constant flow rate conditions. Owing to the estimation of instantaneous interactions between successive bubbles and the incorporation of the wake effect of previous bubbles, the present model describes the evolution process and mechanisms of bubble departing periods corresponding to different gas flow rate regimes. The theoretical results are in good agreement with experimental results.

  19. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  20. Thermal convection driven by acoustic field under microgravity

    OpenAIRE

    Tanabe, Mitsuaki; 田辺 光昭

    2007-01-01

    Natural convection is suppressed in space environment due to the weightlessness. Only centrifugal force is utilized currently to drive gas-phase thermal convection in space. This paper presents an alternative way to drive thermal convection. From the investigation of combustion oscillation in rocket motors, a new thermal convection had been found in stationary acoustic fields. Analyzing the phenomena, acoustic radiation force is found to be the candidate driving force. With a simplified syste...

  1. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    Science.gov (United States)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  2. Convective mixing in homogeneous porous media flow

    Science.gov (United States)

    Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy

    2017-01-01

    Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.

  3. Vortex statistics in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.

    2010-01-01

    The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×108 are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This criter

  4. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    1987-01-01

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions m

  5. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  6. Multiphase Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Oresta, P.; Fornarelli, F.; Prosperetti, Andrea

    2014-01-01

    Numerical simulations of two-phase Rayleigh-Bénard convection in a cylindrical cell with particles or vapor bubbles suspended in the fluid are described. The particles or bubbles are modeled as points, the Rayleigh number is 2×106 and the fluids considered are air, for the particle case, and

  7. Optimal Heating Strategies for a Convection Oven

    NARCIS (Netherlands)

    Stigter, J.D.; Scheerlinck, N.; Nicolai, B.M.; Impe, van J.F.

    2001-01-01

    In this study classical control theory is applied to a heat conduction model with convective boundary conditions. Optimal heating strategies are obtained through solution of an associated algebraic Riccati equation for a finite horizon linear quadratic regulator (LQR). The large dimensional system

  8. Convective cores in galactic cooling flows

    CERN Document Server

    Kritsuk, A G; Müller, E

    2000-01-01

    We use hydrodynamic simulations with adaptive grid refinement to study the dependence of hot gas flows in X-ray luminous giant elliptical galaxies on the efficiency of heat supply to the gas. We consider a number of potential heating mechanisms including Type Ia supernovae and sporadic nuclear activity of a central supermassive black hole. As a starting point for this research we use an equilibrium hydrostatic recycling model (Kritsuk 1996). We show that a compact cooling inflow develops, if the heating is slightly insufficient to counterbalance radiative cooling of the hot gas in the central few kiloparsecs. An excessive heating in the centre, instead, drives a convectively unstable outflow. We model the onset of the instability and a quasi-steady convective regime in the core of the galaxy in two-dimensions assuming axial symmetry. Provided the power of net energy supply in the core is not too high, the convection remains subsonic. The convective pattern is dominated by buoyancy driven large-scale mushroom-...

  9. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  10. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equation...

  11. Sensitivity of moist convection to environmental humidity

    Science.gov (United States)

    Derbyshire, S. H.; Beau, I.; Bechtold, P.; Grandpeix, J.-Y.; Piriou, J.-M.; Redelsperger, J. L.; Soares, P. M. M.

    2004-10-01

    As part of the EUROCS (EUROpean Cloud Systems study) project, cloud-resolving model (CRM) simulations and parallel single-column model (SCM) tests of the sensitivity of moist atmospheric convection to mid-tropospheric humidity are presented. This sensitivity is broadly supported by observations and some previous model studies, but is still poorly quantified. Mixing between clouds and environment is a key mechanism, central to many of the fundamental differences between convection schemes. Here, we define an idealized quasi-steady 'testbed', in which the large-scale environment is assumed to adjust the local mean profiles on a timescale of one hour. We then test sensitivity to the target profiles at heights above 2 km. Two independent CRMs agree reasonably well in their response to the different background profiles and both show strong deep precipitating convection in the more moist cases, but only shallow convection in the driest case. The CRM results also appear to be numerically robust. All the SCMs, most of which are one-dimensional versions of global climate models (GCMs), show sensitivity to humidity but differ in various ways from the CRMs. Some of the SCMs are improved in the light of these comparisons, with GCM improvements documented elsewhere.

  12. Improved mixing representation in Emanuel's convection scheme

    Science.gov (United States)

    Grandpeix, J. Y.; Phillips, V.; Tailleux, R.

    2004-10-01

    Recent empirical and modelling studies suggest that mid-tropospheric relative humidity (RH) is an important controlling factor of deep atmospheric convection, which appears to be underestimated in present cumulus parametrizations. This indicates the possible presence of shortcomings in the way that entrainment is represented in such parametrizations. This matter was explored in the European Cloud Systems project (EUROCS) by means of an idealized humidity experiment in which the main controlling parameter is RH. In the latter study, cloud-resolving model (CRM) experiments suggested that a shallow/deep convection transition occurs when RH crosses a threshold value that ranges from about RH = 50% to RH = 60%. In this paper, we seek to increase the responsiveness of Emanuel's convection scheme to RH, and to reproduce the threshold behaviour of the idealized humidity case, by replacing the original uniform probability density function (PDF) for mixing fractions by a more flexible two-parameter bell-shaped function that allows a wider range of behaviour. The main result is that the parameters of this PDF can be tuned to allow a regime transition to occur near a threshold value of RH 55%. In contrast to CRM results, however, this transition is between two different regimes of deep convection rather than between a shallow and deep regime. Possible ways to obtain a shallow-to-deep transition with Emanuel's scheme are discussed.

  13. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    1987-01-01

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions m

  14. Forced Convection Heat Transfer in Circular Pipes

    Science.gov (United States)

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  15. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  16. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  17. Theory and simulations of rotating convection

    CERN Document Server

    Barker, Adrian J; Lithwick, Yoram

    2014-01-01

    We study thermal convection in a rotating fluid, with the ultimate goal of explaining the structure of convection zones in rotating stars and planets. We first derive mixing-length theory for rapidly-rotating convection, arriving at the results of Stevenson (1979) via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient; the rms velocity and temperature fluctuations; and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the 4/5th power at fixed flux, and the simulations yield $0.75\\pm 0.06$. We conclude that the mixing length theory is a soli...

  18. Extreme Convective Weather in Future Decades

    Science.gov (United States)

    Gadian, Alan; Burton, Ralph; Groves, James; Blyth, Alan; Warner, James; Holland, Greg; Bruyere, Cindy; Done, James; Thielen, Jutta

    2016-04-01

    WISER (Weather Climate Change Impact Study at Extreme Resolution) is a project designed to analyse changes in extreme weather events in a future climate, using a weather model (WRF) which is able to resolve small scale processes. Use of a weather model is specifically designed to look at convection which is of a scale which cannot be resolved by climate models. The regional meso-scale precipitation events, which are critical in understanding climate change impacts will be analysed. A channel domain outer model, with a resolution of ~ 20km in the outer domain drives an inner domain of ~ 3 km resolution. Results from 1989-1994 and 2020-2024 and 2030-2034 will be presented to show the effects of extreme convective events over Western Europe. This presentation will provide details of the project. It will present data from the 1989-1994 ERA-interim and CCSM driven simulations, with analysis of the future years as defined above. The representation of pdfs of extreme precipitation, Outgoing Longwave Radiation and wind speeds, with preliminary comparison with observations will be discussed. It is also planned to use the output to drive the EFAS (European Flood model) to examine the predicted changes in quantity and frequency of severe and hazardous convective rainfall events and leading to the frequency of flash flooding due to heavy convective precipitation.

  19. Analogy between thermal convective and magnetohydrodynamic instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Valdmanis, Ya.Ya.; Kukainis, O.A.

    1977-01-01

    An examination is made of the analogy between thermo-convective instability and instability produced by various electromagnetic forces both in steady and alternating thermal and electromagnetic fields. An example is given for calculating an assumed bubble instability which could occur in an alternating magnetic field. 17 references.

  20. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    Science.gov (United States)

    Meunier, N.; Lagrange, A.-M.; Mbemba Kabuiku, L.; Alex, M.; Mignon, L.; Borgniet, S.

    2017-01-01

    Context. In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV (radial velocity) variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. Aims: It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. Methods: We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. This criterion is derived from the dependence of the convective blueshift with the intensity at the bottom of a large set of selected spectral lines. Results: We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and on the activity level. This allows us to quantify the dependence of granulation properties on magnetic activity for stars other than the Sun. We are indeed able to derive a significant dependence of the convective blueshift on activity level for all types of stars. The attenuation factor of the convective blueshift appears to be constant over the considered range of spectral types. We derive a convective blueshift which decreases towards lower temperatures, with a trend in close agreement with models for Teff lower than 5800 K, but with a significantly larger global amplitude. Differences also remain to be examined in detail for larger Teff. We finally compare the observed RV variation amplitudes with those that could be derived from our convective blueshift using

  1. EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M

    2003-10-15

    The problem that convection over land is overactive during warm-season daytime in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model CAM2 and its previous version (CCM3) has been found both in its single-column model (SCM) simulations (Xie and Zhang 2000; Ghan et al. 2000; Xie et al. 2002) and in its full general circulation model (GCM) short-range weather forecasts (Phillips et al. 2003) and climate simulations (Dai and Trenberth 2003). These studies showed that this problem is closely related to the convection triggering mechanism used in its deep convection scheme (Zhang and McFarlane 1995), which assumes that convection is triggered whenever there is positive convective available potential energy (CAPE). The positive CAPE triggering mechanism initiates model convection too often during the day because of the strong diurnal variations in the surface isolation and the induced CAPE diurnal change over land in the warm season. To reduce the problem, Xie and Zhang (2000) introduced a dynamic constraint, i.e., a dynamic CAPE generation rate (DCAPE) determined by the large-scale advective tendencies of temperature and moisture, to control the onset of deep convection. They showed that positive DCAPE is closely associated with convection in observations and the dynamic constraint could largely reduce the effect of the strong diurnal variations in the surface fluxes on the initiation of convection. Using the SCM version of CCM3, which has the same deep convection scheme as CAM2, Xie and Zhang (2000) showed that considerable improvements can be obtained in the model simulation of precipitation and other thermodynamic fields when the dynamic constraint was applied to the model triggering function. However, the performance of the improved convection triggering mechanism in the full GCM has not been tested. In this study, we will test the improved convection trigger mechanism in CAM2 under the U.S. Department of Energy's Climate Change

  2. Convection and convective overshooting in stars more massive than 10 $M_\\odot$

    CERN Document Server

    Jie, Jin; Lv, Guoliang

    2015-01-01

    In this paper, four sets of evolutionary models are computed with different values of the mixing length parameter $\\alpha_{\\rm p}$ and the overshooting parameter $\\delta_{\\rm ov}$. The properties of the convective cores and the convective envelopes are studied in the massive stars. We get three conclusions: First, the larger $\\alpha_{\\rm p}$ leads to enhancing the convective mixing, removing the chemical gradient, and increasing the convective heat transfer efficiency. Second, core potential $\\phi_{\\rm c} = M_{\\rm c} / R_{\\rm c}$ describes sufficiently the evolution of a star, whether it is a red or blue supergiant at central helium ignition. Third, the discontinuity of hydrogen profile above the hydrogen burning shell seriously affect the occurrence of blue loops in the Hertzsprung--Russell diagram.

  3. From convection rolls to finger convection in double-diffusive turbulence

    CERN Document Server

    Yang, Yantao; Lohse, Detlef

    2015-01-01

    Double diffusive convection (DDC), which is the buoyancy driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering enviroments. Of great interests are scalers transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large scale convection rolls to well-organised vertically-oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh-B\\'{e}nard convection can be directly applied to DDC flow for a wide range of contro...

  4. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  5. Equatorial cloud level convection on Venus

    Science.gov (United States)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40–60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however

  6. Importance of Marangoni Convection in Laser Full-Penetration Welding

    Institute of Scientific and Technical Information of China (English)

    叶晓虎; 陈熙

    2002-01-01

    We study the effects of welding speed, Marangoni convection and natural convection on heat transfer and melt flow in a laser full-penetration welding using a three-dimensional modelling approach. The computed results demonstrate the importance of considering Marangoni convection. The predicted weld pool profile is favourably compared with experimental observation.

  7. Measurement of the convective heat-transfer coefficient

    CERN Document Server

    Conti, Rosaria; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with its surrounding through convection. We describe the time dependence of the temperature difference of the cooling object and the environment with an exponential decay function. By measuring the thermal constant tau, we determine the convective heat-transfer coefficient, which is a characteristic constant of the convection system.

  8. Probing the transition from shallow to deep convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Zhiming [Harvard Univ., Cambridge, MA (United States); Gentine, Pierre [Columbia Univ., New York, NY (United States)

    2016-05-01

    In this funded project we highlighted the components necessary for the transition from shallow to deep convection. In particular we defined a prototype of shallow to deep convection, which is currently being implemented in the NASA GISS model. We also tried to highlight differences between land and oceanic convection.

  9. Examining the Impact of Prandtl Number and Surface Convection Models on Deep Solar Convection

    Science.gov (United States)

    O'Mara, B. D.; Augustson, K.; Featherstone, N. A.; Miesch, M. S.

    2015-12-01

    Turbulent motions within the solar convection zone play a central role in the generation and maintenance of the Sun's magnetic field. This magnetic field reverses its polarity every 11 years and serves as the source of powerful space weather events, such as solar flares and coronal mass ejections, which can affect artificial satellites and power grids. The structure and inductive properties are linked to the amplitude (i.e. speed) of convective motion. Using the NASA Pleiades supercomputer, a 3D fluids code simulates these processes by evolving the Navier-Stokes equations in time and under an anelastic constraint. This code simulates the fluxes describing heat transport in the sun in a global spherical-shell geometry. Such global models can explicitly capture the large-scale motions in the deep convection zone but heat transport from unresolved small-scale convection in the surface layers must be parameterized. Here we consider two models for heat transport by surface convection, including a conventional turbulent thermal diffusion as well as an imposed flux that carries heat through the surface in a manner that is independent of the deep convection and the entropy stratification it establishes. For both models, we investigate the scaling of convective amplitude with decreasing diffusion (increasing Rayleigh number). If the Prandtl number is fixed, we find that the amplitude of convective motions increases with decreasing diffusion, possibly reaching an asymptotic value in the low diffusion limit. However, if only the thermal diffusion is decreased (keeping the viscosity fixed), we find that the amplitude of convection decreases with decreasing diffusion. Such a high-Prandtl-number, high-Peclet-number limit may be relevant for the Sun if magnetic fields mix momentum, effectively acting as an enhanced viscosity. In this case, our results suggest that the amplitude of large-scale convection in the Sun may be substantially less than in current models that employ an

  10. Effects of thermoelectric-magneto convection on the solidified microstructures of Al-4.5% Cu alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-qiang; SHI Hai-fang; LIU Qing

    2004-01-01

    A magnetic field was used to directional solidification of dendritic Al-Cu alloys.The primary arm spacing of the dendrites is increased with increasing the external magnetic field strength. This microstructural coarsening is related to the thermoelectric current on the I/s interface, which is induced by difference of temperature on the interface. Within a magnetic field Lorentz force may be generated in front of the interface,causing a thermoelectric-magneto convection that makes the microstructure coarsened.This induced convection also leads to structural instability so that the secondary arms are well developed when grown in the external field.

  11. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    OpenAIRE

    M. Ghalambaz; Noghrehabadi,A.; Ghanbarzadeh, A.

    2014-01-01

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis param...

  12. Climatology of convective showers dynamics in a convection-permitting model

    Science.gov (United States)

    Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo

    2017-04-01

    Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.

  13. Multi-day convective-environmental evolution prior to tropical cyclone formation from geostationary satellite measurements

    Science.gov (United States)

    Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook

    2016-04-01

    Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference intensification was driven only after from Day 3 with rapid increase in relative vorticity and abrupt convective burst. There also exist many non-developing cases with mCB (54 %), which appear to candidates of TC formation as gradually increasing their convective area from Day 1 to Day 4. Due to the initially weak large-scale vorticity, they eventually decay on Day 5. For nondeveloping disturbances without mCB (46%), initially weak large-scale vorticity as well as dry atmosphere resulted in one-time deep convection and decay. Thus, this study suggests that the multiple days of convective burst, which initially accompanies strong low- to mid-troposphere large-scale vorticity, is important in TC formation.

  14. Evolution and Mean Properties of Convective Systems in Southwestern Amazonia During TRMM-LBA

    Science.gov (United States)

    Rickenbach, Thomas M.; Ferreira, Rosana Nieto; Halverson, Jeffrey B.; deSilvaDias, Maria A. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    During the wet season TRMM field campaign in Rondonia, Brazil, a variety of convective systems were sampled by radar, sounding, and geostationary satellite for a 60 day period in early 1999. Local variations in the local wind and humidity field have been attributed in part by this study to synoptic scale phenomena, most conspicuously the establishment of stationary frontal systems penetrating into the tropics. These baroclinic systems induced periodic episodes low level moist, westerly flow across Rondonia during the experiment. This flow feature may be an important component of the South American climate system by playing a role in maintaining the South Atlantic Convergence Zone, which was active during these local westerly wind events. It is therefore important to understand the differences in mesoscale properties of convective systems between the westerly wind periods and intervening easterly wind periods. Differences in shear and moisture characteristics (Halverson et al. 2000, this meeting) are compared to structural and life-cycle characteristics of convective systems in Rondonia. Data from ground based radar and geostationary satellite provide a view of the evolution of the vertical structure and horizontal morphology of several large mesoscale convective systems in each regime. Preliminary statistics on the diurnal variation of precipitation intensity, areal coverage, and cloud top area are presented. Results suggest that long-lived, shallow convective systems with a large stratiform component of precipitation are characteristic of the westerly wind periods. A goal of this study is to establish a basis for which to parameterize the mesoscale effects of convection on large scale features of the South American climate system.

  15. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  16. Using Jupiter's gravitational field to probe the Jovian convective dynamo.

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-03-23

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.

  17. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    CERN Document Server

    Meunier, N; Kabuiku, L Mbemba; Alex, M; Mignon, L; Borgniet, S

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and o...

  18. Analysis of flow instabilities in forced-convection steam generator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Because of the practical importance of two-phase instabilities, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics. The purpose of this study is to present a numerical model for the analysis of flow-induced instabilities in forced-convection steam generator. The model is based on the assumption of homogeneous two-phase flow and thermodynamic equilibrium of the phases. The thermal capacity of the heater wall has been included in the analysis. The model is used to analyze the flow instabilities in the steam generator and to study the effects of system pressure, mass flux, inlet temperature and inlet/outlet restriction, gap size, the ratio of do /di, and the ratio of qi/qo on the system behavior.

  19. Complex bifurcations in Bénard-Marangoni convection

    Science.gov (United States)

    Vakulenko, Sergey; Sudakov, Ivan

    2016-10-01

    We study the dynamics of a system defined by the Navier-Stokes equations for a non-compressible fluid with Marangoni boundary conditions in the two-dimensional case. We show that more complicated bifurcations can appear in this system for a certain nonlinear temperature profile as compared to bifurcations in the classical Rayleigh-Bénard and Bénard-Marangoni systems with simple linear vertical temperature profiles. In terms of the Bénard-Marangoni convection, the obtained mathematical results lead to our understanding of complex spatial patterns at a free liquid surface, which can be induced by a complicated profile of temperature or a chemical concentration at that surface. In addition, we discuss some possible applications of the results to turbulence theory and climate science.

  20. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    Science.gov (United States)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  1. Magnetic Control of Convection during Protein Crystallization

    Science.gov (United States)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  2. Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport.

    Science.gov (United States)

    Lattuada, Marco; Morbidelli, Massimo

    2011-03-01

    In this work, we have performed a systematic investigation of the effect of electrostatic repulsive interactions on the aggregation rate of colloidal nanoparticles to from doublets in the presence of a convective transport mechanism. The aggregation rate has been computed by solving numerically the Fuchs-Smoluchowski diffusion-convection equation. Two convective transport mechanisms have been considered: extensional flow field and gravity-induced relative sedimentation. A broad range of conditions commonly encountered in the applications of colloidal dispersions has been analyzed. The relative importance of convective to diffusive contributions has been quantified by using the Peclet number Pe. The simulation results indicate that, in the presence of repulsive interactions, the evolution of the aggregation rate as a function of Pe can always be divided into three distinct regimes, no matter which convective mechanism is considered. At low Pe values the rate of aggregation is independent of convection and is dominated by repulsive interactions. At high Pe values, the rate of aggregation is dominated by convection, and independent of repulsive interactions. At intermediate Pe values, a sharp transition between these two regimes occurs. During this transition, which occurs usually over a 10-100-fold increase in Pe values, the aggregation rate can change by several orders of magnitude. The interval of Pe values where this transition occurs depends upon the nature of the convective transport mechanism, as well as on the height and characteristic lengthscale of the repulsive barrier. A simplified model has been proposed that is capable of quantitatively accounting for the simulations results. The obtained results reveal unexpected features of the effect of ionic strength and particle size on the stability of colloidal suspensions under shear or sedimentation, which have relevant consequences in industrial applications.

  3. Penetrative internally heated convection in two and three dimensions

    CERN Document Server

    Goluskin, David

    2015-01-01

    Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.

  4. 3D MHD simulations of subsurface convection in OB stars

    CERN Document Server

    Cantiello, Matteo; Brandenburg, Axel; Del Sordo, Fabio; Käpylä, Petri; Langer, Norbert

    2010-01-01

    During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These p...

  5. Turbulent convection model in the overshooting region: II. Theoretical analysis

    CERN Document Server

    Zhang, S Q

    2012-01-01

    Turbulent convection models are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied in calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of turbulent convection models, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the turbulent convection model in the overshooting region, and find some important properties of the convective overshooting: I. The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations $k$, $\\bar{u_{r}'T'}$, and $\\bar{T'T'}$ are only determined by the ...

  6. Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models.

    Science.gov (United States)

    Neelin, J David; Peters, Ole; Lin, Johnny W-B; Hales, Katrina; Holloway, Christopher E

    2008-07-28

    Convective quasi-equilibrium (QE) has for several decades stood as a key postulate for parametrization of the impacts of moist convection at small scales upon the large-scale flow. Departures from QE have motivated stochastic convective parametrization, which in its early stages may be viewed as a sensitivity study. Introducing plausible stochastic terms to modify the existing convective parametrizations can have substantial impact, but, as for so many aspects of convective parametrization, the results are sensitive to details of the assumed processes. We present observational results aimed at helping to constrain convection schemes, with implications for each of conventional, stochastic or 'superparametrization' schemes. The original vision of QE due to Arakawa fares well as a leading approximation, but with a number of updates. Some, like the imperfect connection between the boundary layer and the free troposphere, and the importance of free-tropospheric moisture to buoyancy, are quantitatively important but lie within the framework of ensemble-average convection slaved to the large scale. Observations of critical phenomena associated with a continuous phase transition for precipitation as a function of water vapour and temperature suggest a more substantial revision. While the system's attraction to the critical point is predicted by QE, several fundamental properties of the transition, including high precipitation variance in the critical region, need to be added to the theory. Long-range correlations imply that this variance does not reduce quickly under spatial averaging; scaling associated with this spatial averaging has potential implications for superparametrization. Long tails of the distribution of water vapour create relatively frequent excursions above criticality with associated strong precipitation events.

  7. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  8. Estimating the gross moist stability in shallow and deep convection

    Science.gov (United States)

    Chen, C. A.; Jong, B. T.; Chou, C.

    2015-12-01

    Gross moist stability has been used to study the link between tropical deep convection and large scale circulation in a moist static energy (MSE) budget. Here we aim to calculate the gross moist stability from more realistic profiles of vertical velocity and extend it beyond deep convection, adding shallow convection. Based on a principal component analysis, we were able to decompose the vertical velocity into two leading modes, which are dominated by deep and shallow convection, respectively. According to the deep and shallow modes, we calculate the gross moist stability for these two modes and discuss the roles of deep and shallow convection in the MSE budget. The gross moist stability of deep convection tends to be positive in the tropics, while that of shallow convection is negative over most areas of the tropics. This implies that deep convection exports MSE to stabilize the atmosphere and shallow convection imports MSE to enhance deep convection and destabilize the atmosphere. Based on the spatial distribution, moisture tends to reduce the gross moist stability of deep convection, while dry static energy has little impact. Deeper deep convection tends to have greater gross moist stability. For shallow convection, on the other hand, the gross moist stability is affected not only by low-level moisture but also mid-level moisture. Both moister low-level and drier mid-level moisture reduce the gross moist stability of shallow convection. Greater low-level dry static energy, which is associated with warmer sea surface temperature, also tends to reduce gross moist stability.

  9. Active convection beneath ridges: a new spin

    Science.gov (United States)

    Katz, R. F.

    2009-12-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, interesting symmetry-breaking behavior is predicted. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  10. Can mantle convection be self-regulated?

    Science.gov (United States)

    Korenaga, Jun

    2016-08-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth.

  11. Natural convection in eccentric spherical annuli

    CERN Document Server

    Gallegos, A D

    2015-01-01

    A fluid between two spheres, concentric or not, at different temperatures will flow in the presence of a constant gravitational force. Although there is no possible hydrostatic state, energy transport is dominated by diffusion if temperature difference between the spheres is small enough. In this conductive regime the average Nusselt number remains approximately constant for all Rayleigh numbers below some critical value. Above the critical Rayleigh number, plumes appear and thermal convection takes place. We study this phenomenon, in particular the case where the inner sphere is displaced from the centre, using a two-component thermal lattice Boltzmann method to characterize the convective instability, the evolution of the flow patterns and the dependence of the Nusselt number on the Rayleigh number beyond the transition.

  12. Internal convection in thermoelectric generator models

    Science.gov (United States)

    Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecæur, Ph

    2012-11-01

    Coupling between heat and electrical currents is at the heart of thermoelectric processes. In a thermoelectric system this may be seen, from a thermal viewpoint, as an additional thermal flux linked to the appearance of an electrical current. Since this additional flux is associated with the global displacement of charge carriers in the system, it can be qualified as convective in opposition to the conductive part related to both phonon transport and heat transport by electrons under open circuit condition as, e.g., in the Wiedemann-Franz relation. In this article we demonstrate that considering the convective part of the thermal flux allows both new insight into the thermoelectric energy conversion and the derivation of the maximum power condition for generators with realistic thermal coupling.

  13. Reducing the convective losses of cavity receivers

    Science.gov (United States)

    Flesch, Robert; Grobbel, Johannes; Stadler, Hannes; Uhlig, Ralf; Hoffschmidt, Bernhard

    2016-05-01

    Convective losses reduce the efficiency of cavity receivers used in solar power towers especially under windy conditions. Therefore, measures should be taken to reduce these losses. In this paper two different measures are analyzed: an air curtain and a partial window which covers one third of the aperture opening. The cavity without modifications and the usage of a partial window were analyzed in a cryogenic wind tunnel at -173°C. The cryogenic environment allows transforming the results from the small model cavity to a large scale receiver with Gr≈3.9.1010. The cavity with the two modifications in the wind tunnel environment was analyzed with a CFD model as well. By comparing the numerical and experimental results the model was validated. Both modifications are capable of reducing the convection losses. In the best case a reduction of about 50 % was achieved.

  14. Diamagnetic pumping in a rotating convection zone

    Science.gov (United States)

    Kitchatinov, L. L.; Nepomnyashchikh, A. A.

    2016-10-01

    Solar dynamo models require some mechanism for magnetic field concentration near the base of the convection zone in order to generate super-kilogauss toroidal fields with sufficiently large (∼ 1024 Mx) magnetic flux. We consider the downward diamagnetic pumping near the base of the convection zone as a possible concentration mechanism and derive the pumping velocities with allowance for the effect of rotation. Transport velocities for poloidal and toroidal fields differ in rotating fluid. The toroidal field is transported downward along the radius only but the pumping velocity for the poloidal field has an equatorward meridional component also. Previous results for cases of slow and rapid rotation are reproduced and the diamagnetic pumping expressions adapted for use in dynamo models are presented.

  15. Diamagnetic pumping in a rotating convection zone

    CERN Document Server

    Kitchatinov, L

    2016-01-01

    Solar dynamo models require some mechanism for magnetic field concentration near the base of the convection zone in order to generate super-kilogauss toroidal fields with sufficiently large (~10^{24} Mx) magnetic flux. We consider the downward diamagnetic pumping near the base of the convection zone as a possible concentration mechanism and derive the pumping velocities with allowance for the effect of rotation. Transport velocities for poloidal and toroidal fields differ in rotating fluid. The toroidal field is transported downward along the radius only but the pumping velocity for the poloidal field has an equatorward meridional component also. Previous results for cases of slow and rapid rotation are reproduced and the diamagnetic pumping expressions adapted for use in dynamo models are presented.

  16. INTERMITTENCY AND SCALING IN TURBULENT CONVECTION

    Institute of Scientific and Technical Information of China (English)

    Emily S. C. CHING

    2003-01-01

    Both the velocity and temperature measurements taken in turbulent Rayleigh-B'enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctuations are intermittent and can be well-described by the She-Leveque hierarchical structure. A positive correlation between the vertical velocity and the temperature differences is found both at the center,near the sidewall and near the bottom of the convection cell, supporting that buoyancy is significant in the Bolgiano regime. Moreover, the intermittent nature of the temperature fluctuations in the Bolgiano regime can be attributed to the variations in the temperature dissipation rate. However, the relations between the velocity and temperature structure functions and their correlations implied by the Bolgiano-Obukhov scaling are not supported by experimental measurements.

  17. Bounds on double-diffusive convection

    Science.gov (United States)

    Balmforth, Neil J.; Ghadge, Shilpa A.; Kettapun, Atichart; Mandre, Shreyas D.

    2006-12-01

    We consider double-diffusive convection between two parallel plates and compute bounds on the flux of the unstably stratified species using the background method. The bound on the heat flux for Rayleigh Bénard convection also serves as a bound on the double-diffusive problem (with the thermal Rayleigh number equal to that of the unstably stratified component). In order to incorporate a dependence of the bound on the stably stratified component, an additional constraint must be included, like that used by Joseph (Stability of Fluid Motion, 1976, Springer) to improve the energy stability analysis of this system. Our bound extends Joseph's result beyond his energy stability boundary. At large Rayleigh number, the bound is found to behave like R_T(1/2) for fixed ratio R_S/R_T, where R_T and R_S are the Rayleigh numbers of the unstably and stably stratified components, respectively.

  18. Acousto-Convective Drying of Pine Nuts

    Science.gov (United States)

    Zhilin, A. A.; Fedorov, A. V.

    2014-07-01

    An experimental investigation of the process of drying pine nut grains has been carried out by three methods: acousto-convective, thermoconvective, and thermal. A qualitative and a quantitative comparison of the dynamics of the processes of moisture extraction from the nut grains for the considered drying methods have been made. To elucidate the mechanism of moisture extraction from the pine nut grains, we carried out a separate investigation of the process of drying the nut shell and the kernel. The obtained experimental data on the acousto-convective drying of nuts are well described by the relaxation model, the data on the thermoconvective drying are well described by the bilinear law, and the data on the thermal drying are well described by the combined method consisting of three time steps characterized by different kinetic regimes of drying.

  19. Computer Simulation of Convective Plasma Cells

    OpenAIRE

    Carboni, Rodrigo; Frutos-Alfaro, Francisco

    2015-01-01

    Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their ow...

  20. Convection in Drying and Freezing Ground

    CERN Document Server

    Faizal, Mir

    2012-01-01

    In this paper we analyse the drying of a soil composed of particles, water and solute impurities, and study the occurrence of convective instabilities during evaporation. We find that the main driving force for instability is the formation of a concentration gradient at the soil surface due to the evaporation of water. A similar phenomenon may occur during the thawing of frozen ground in Arctic regions.

  1. Exact finite elements for conduction and convection

    Science.gov (United States)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  2. Natural thermal convection in fractured porous media

    Science.gov (United States)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50

  3. Natural convective heat transfer from square cylinder

    Science.gov (United States)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  4. Adaptive computation for convection dominated diffusion problems

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhiming; JI Guanghua

    2004-01-01

    We derive sharp L∞(L1) a posteriori error estimate for the convection dominated diffusion equations of the form αu/αt+div(vu)-εΔu=g. The derived estimate is insensitive to the diffusionparameter ε→0. The problem is discretized implicitly in time via the method of characteristics and in space via continuous piecewise linear finite elements. Numerical experiments are reported to show the competitive behavior of the proposed adaptive method.

  5. Use of Thermophysical Properties to Select and Control Convection During Rapid Solidification of Steel Alloys Using Electromagnetic Levitation on the Space Station

    Science.gov (United States)

    Matson, Douglas M.; Xiao, Xiao; Rodriguez, Justin E.; Lee, Jonghyun; Hyers, Robert W.; Shuleshova, Olga; Kaban, Ivan; Schneider, Stephan; Karrasch, Christian; Burggraff, Stefan; Wunderlich, Rainer; Fecht, Hans-Jörg

    2017-08-01

    A major reason to conduct solidification experiments in space is that the unique conditions accessible in reduced-gravity allow investigation of fundamental questions while limiting the influence of sedimentation or buoyancy-induced convection. When processing metallic alloys using containerless electromagnetic levitation, convection may be controlled over a wide range, spanning the laminar-turbulent transition, by proper selection of facility operating conditions. By measuring key thermophysical properties such as density, viscosity, and electrical resistivity on-orbit, the specific sample being processed may be characterized and the results used to update pre-mission magnetohydrodynamic model predictions of induced stirring within the droplet. Thus, convection becomes a controlled experimental parameter that can be applied to an investigation of how stirring influences the metastable-to-stable transformation during rapid solidification of FeCrNi alloys. For these alloys, the incubation or delay time is observed to be a weak function of undercooling and a strong function of applied convection.

  6. Magneto-convective instabilities in horizontal cavities

    Science.gov (United States)

    Mistrangelo, Chiara; Bühler, Leo

    2016-02-01

    A linear stability analysis is performed to investigate the onset of convective motions in a flat cavity filled with liquid metal. A volumetric heat source is uniformly distributed in the fluid and a horizontal magnetic field is imposed. Walls perpendicular to the magnetic field are thermally insulating, and the top wall is isothermal and the bottom adiabatic. When a magnetic field is applied, electromagnetic forces tend to transform 3D convective flow structures into quasi-2D rolls aligned to the magnetic field. By integrating 3D equations along magnetic field lines, a quasi-2D mathematical model has been derived. A dissipation term in the 2D equations accounts for 3D viscous effects in boundary layers at Hartmann walls perpendicular to the magnetic field. The influence of various parameters on flow stability is investigated. The flow is stabilized by increasing the magnetic field intensity or the electric conductance of Hartmann walls and by reducing the aspect ratio of the cavity. Numerical simulations are performed to verify the analytical results and to describe the main convective flow patterns in the non-linear regime.

  7. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  8. Convective Dynamo Simulation with a Grand Minimum

    CERN Document Server

    Augustson, Kyle; Miesch, Mark; Toomre, Juri

    2015-01-01

    The global-scale dynamo action achieved in a simulation of a Sun-like star rotating at thrice the solar rate is assessed. The 3-D MHD Anelastic Spherical Harmonic (ASH) code, augmented with a viscosity minimization scheme, is employed to capture convection and dynamo processes in this G-type star. The simulation is carried out in a spherical shell that encompasses 3.8 density scale heights of the solar convection zone. It is found that dynamo action with a high degree of time variation occurs, with many periodic polarity reversals occurring roughly every 6.2 years. The magnetic energy also rises and falls with a regular period. The magnetic energy cycles arise from a Lorentz-force feedback on the differential rotation, whereas the processes leading to polarity reversals are more complex, appearing to arise from the interaction of convection with the mean toroidal fields. Moreover, an equatorial migration of toroidal field is found, which is linked to the changing differential rotation, and potentially to a no...

  9. On pattern formation in ferrocolloid convection

    Energy Technology Data Exchange (ETDEWEB)

    Bozhko, A [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Putin, G [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Tynjaelae, T [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Meshin, M Dabagh [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Jalali, P [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland)

    2007-04-15

    Experimental studies and numerical simulations of stability of buoyancy-driven flows in a ferrocolloid for the cases of horizontal and inclined vertical orientation of a thin cylindrical cavity are performed. The influence of a homogeneous longitudinal magnetic field on convective instability and spatio-temporal patterns were also investigated. In the case of ferrocolloids the gradients of magnetic permeability may arise due to both temperature and particle concentration gradients. The particle mass flux in a classical form is summarized from the translation diffusion coefficient and the thermal diffusion ratio. However, the explanation for the observed self-oscillation regimes in magnetic fluid for the cavities of sufficiently large thickness is conditioned by the competition of density variations originating from the fluid thermal expansion and barometric sedimentation. The results prove that a uniform longitudinal magnetic field allows to control the stability and the shape of secondary convection motions at inclined orientation of layer. In a ferrocolloid the repeated transients involving localized roll convection and pure shear flow took place. Under action of uniform longitudinal magnetic field orientated perpendicular to flux velocity of shear motion on such long-wave transients can lead to complicated types of chaotic localized states or solitary vortices.

  10. Can convective therapies improve dialysis outcomes?

    Science.gov (United States)

    Locatelli, Francesco; Manzoni, Celestina; Cavalli, Andrea; Di Filippo, Salvatore

    2009-11-01

    Convective treatments are characterized by enhanced removal of middle and large molecular weight solutes, important in the genesis of many complications of hemodialysis, compared with conventional low-flux hemodialysis. The availability of these techniques represented an intriguing innovation and a possible means to improve the still poor prognosis of hemodialysis patients. In this study we will critically review the most important published studies evaluating the impact of convective treatments on dialysis outcomes. The Hemodialysis (HEMO) study showed that greater urea removal nonsignificantly reduces the relative risk of mortality and that also high-flux hemodialysis was associated with a nonsignificant reduction, although a secondary analysis pointed to an advantage for high-flux membranes in subgroups of patients. More recently, the Membrane Permeability Outcome (MPO) study found that survival could be improved by use of high-flux membranes compared with low-flux dialysis in high-risk patients as identified by serum albumin Dialysis Outcomes and Practice Patterns (DOPPS) studies are supporting rationales for the use of convective treatments to improve survival and delay long-term complications of hemodialysis patients.

  11. Probing the energy cascade of convective turbulence.

    Science.gov (United States)

    Kunnen, R P J; Clercx, H J H

    2014-12-01

    The existence of a buoyancy-dominated scaling range in convective turbulence is a longstanding open question. We investigate this issue by considering the scale-by-scale energy budget in direct numerical simulations of Rayleigh-Bénard convection. We try to minimize the so-called Bolgiano length scale, the length scale at which buoyancy becomes dominant for scaling. Therefore, we deliberately choose modest Rayleigh numbers Ra=2.5×10(6) and 2.5×10(7). The budget reveals that buoyant forcing, turbulent energy transfer, and dissipation are contributing significantly over a wide range of scales. Thereby neither Kolmogorov-like (balance of turbulent transfer and dissipation) nor Bolgiano-Obukhov-like scaling (balance of turbulent transfer and buoyancy) is expected in the structure functions, which indeed reveal inconclusive scaling behavior. Furthermore, we consider the calculation of the Bolgiano length scale. To account for correlations between the dissipation rates of kinetic energy and thermal variance we propose to average the Bolgiano length scale directly. This gives an estimate, which is one order of magnitude larger than the previous estimate, and actually larger than the domain itself. Rather than studying the scaling of structure functions, we propose that the use of scale-by-scale energy budgets resolving anisotropic contributions is appropriate to consider the energy cascade mechanisms in turbulent convection.

  12. Magnetic flux concentrations from turbulent stratified convection

    CERN Document Server

    Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I

    2015-01-01

    (abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...

  13. Near isotropic behaviour of turbulent thermal convection

    CERN Document Server

    Nath, Dinesh; Kumar, Abhishek; Verma, Mahendra K

    2016-01-01

    We investigate the anisotropy in turbulent convection in a 3D box using direct numerical simulation. We compute the anisotropic parameter $A = u_\\perp^{2}/(2u_{\\parallel}^{2})$, where $u_{\\perp}$ and $u_{\\parallel}$ are the components of velocity perpendicular and parallel to the buoyancy direction, the shell and ring spectra, and shell-to-shell energy transfers. We observe that the flow is nearly isotropic for the Prandtl number $\\mathrm{Pr} \\approx 1$, but the anisotropy increases with the Prandtl number. For $\\mathrm{Pr}=\\infty$, $A \\approx 0.3$, thus anisotropy is not very significant even in extreme cases. We also observe that $u_{\\parallel}$ feeds energy to $u_{\\perp}$ via pressure. The computation of shell-to-shell energy transfers show that the energy transfer in turbulent convection is local and forward, similar to fluid turbulence. These results are consistent with the Kolmogorov's spectrum observed by Kumar et al.~[Phys. Rev. E {\\bf 90}, 023016 (2014)] for turbulent convection.

  14. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  15. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Directory of Open Access Journals (Sweden)

    M. Ghalambaz

    2014-06-01

    Full Text Available In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb, thermophoresis parameter (Nt and the convective heating parameter (Nc on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc, as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases.

  16. Natural convection inside an irregular porous cavity; Conveccao natural no interior de uma cavidade porosa irregular

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Jorge I. LLagostera; Trevisan, Osvair Vidal [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1990-12-31

    Natural convection flow induced by heating from below in a irregular porous cavity is investigated numerically. The influence of the modified Rayleigh number and geometric ratios on heat transfer and fluid flow is studied. Global and local Nusselt for Rayleigh numbers covering the range 0 - 1600 and for several geometric ratios. The fluid flow and the temperature field are illustrated by contour maps. (author) 6 refs., 10 figs., 7 tabs.

  17. The role of viscosity contrast on plume structure in laboratory modeling of mantle convection

    CERN Document Server

    Prakash, Vivek N; Arakeri, Jaywant H

    2016-01-01

    We have conducted laboratory experiments to model important aspects of plumes in mantle convection. We focus on the role of the viscosity ratio U (between the ambient fluid and the plume fluid) in determining the plume structure and dynamics. In our experiments, we are able to capture geophysical convection regimes relevant to mantle convection both for hot spots (when U > 1) and plate-subduction (when U < 1) regimes. The planar laser induced fluorescence (PLIF) technique is used for flow visualization and characterizing the plume structures. The convection is driven by compositional buoyancy generated by the perfusion of lighter fluid across a permeable mesh and the viscosity ratio U is systematically varied over a range from 1/300 to 2500. The planform, near the bottom boundary for U=1, exhibits a well-known dendritic line plume structure. As the value of U is increased, a progressive morphological transition is observed from the dendritic-plume structure to discrete spherical plumes, accompanied with th...

  18. The Tropical Convective Spectrum. 1; Archetypal Vertical Structures

    Science.gov (United States)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2004-01-01

    A taxonomy of tropical convective vertical structures is constructed through cluster analysis of three years of Tropical Rainfall Measuring Mission [TRMM] Precipitation Radar [PR] vertical profiles, their surface rainfall and associated radar-based classifiers (convective/stratiform and bright band existence). archetypal profile types are identified. These include nine convective types, divided into warm, "just cold", midlevel, deep and deep/wet-growth categories, seven stratiform types, divided into warm, "just cold", midlevel and deep categories, three "mixed" types (deep profiles with low reflectivity aloft), and six fragment types (non-precipitating anvils and sheared deep convective profiles). The taxonomy allows for description of any storm or local Convective spectrum by the nine primary convective and stratiform types, a significant reduction over full three-dimensional radar data which nonetheless retains vertical structure information. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types is presented, demonstrating primary rainfall contribution by midlevel glaciated convection and similar depth decaying/stratiform stages. Close correspondence is found between deep convective profile frequency and annualized lightning production. Passive microwave and lightning properties associated with the profiles are reported, and cases presented illustrating known nonuniqueness problems with 85 and 37 GHz brightness temperature pairs (the same pairs corresponding to both convective and stratiform profiles), and how supplementary lightning information might be used to mitigate these problems.

  19. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  20. Convective Weather Avoidance with Uncertain Weather Forecasts

    Science.gov (United States)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  1. Heat transfer for Marangoni convection over a vapor-liquid interface due to an imposed temperature gradient

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Sheng; Liancun Zheng; Xinxin Zhang

    2008-01-01

    A similarity analysis for Marangoni convection induced flow over a vapor-liquid interface due to an imposed temperature gradient was carried out. The analysis assumes that the surface tension varies linearly with temperature but the temperature variation is a power law function of the location. The similarity solutions are presented numerically and the associated transfer characteristics are discussed.

  2. Influence of Convective Momentum Transport on Tropical Waves

    Science.gov (United States)

    Zhou, L.

    2012-12-01

    Convective momentum transport (CMT) has been found to play an important role during the Madden-Julian Oscillation (MJO). Influences of CMT on tropical waves are analytically studied in a two-layer model, which captures the first-order baroclinic structure in the vertical. Since CMT is the momentum exchange between the lower and the upper troposphere during convection, the easterly and westerly vertical shears of background zonal winds lead to different CMT influences. Generally, CMT plays more important roles than a damping term to tropical waves. CMT is a critical factor for determining the meridional scale of tropical waves and leads to kinetic energy transfer against the direction of background wind shear in the vertical. CMT can also be favorable for internal instability and induce upscale momentum transfer. Specifically, due to CMT, the meridional scale in the two-layer model is wider than the Rossby radius of deformation (RL, the meridional scale of tropical waves in the classical theory) over the Indo-Pacific warm pool, but narrower than RL from the central to the eastern Pacific Ocean and over the Atlantic Ocean. Such variation is consistent with observations. CMT results in minor modifications to the speeds of Rossby waves, inertial gravity waves, and Kelvin waves. Nevertheless, CMT has significant influences on the mixed Rossby-gravity (MRG) waves, especially over the Indo-Pacific warm pool where the vertical wind shear in easterly. Westward propagating MRG waves with small wavenumber become unstable under the influence of CMT. The phase relation between the convergence and geopotential is no longer in quadrature, which is different from classical MRG waves. As a result, there is a net source of mechanical energy within one period and there is an upscale momentum transfer from the perturbed field to large scale velocities. This theoretical study sheds lights on the relation between CMT and slow variations in the atmosphere, including MJO.

  3. Toward a unified theory of atmospheric convective instability

    Science.gov (United States)

    Shirer, H. N.

    1982-01-01

    A nonlinear three-dimensional truncated spectral model of shallow and moist Boussinesq convection indicates that parallel instability and thermal forcing are linked, in view of the fact that only one convective mode exists in which either or both mechanisms are operating to generate convection in the planetary boundary layer. It is also established that the wind field causes two-dimensional roll convection formation, an alignment of the convection with the wind in a preferred manner, and a propagation speed that is related to the wind component perpendicular to the roll axis. Latent heating is responsible for the decrease of the critical value of the environmental lapse rate in accordance with the slice method stability criterion. When only the upper part of the upward branch is moist and all of the downward branch is dry, latent heating also causes a finite-amplitude convective solution for Rayleigh number values lower than the critical value of linear analysis.

  4. Shallow cirrus convection – a source for ice supersaturation

    Directory of Open Access Journals (Sweden)

    Peter Spichtinger

    2014-09-01

    Full Text Available The origin and persistence of high ice supersaturation is still not well understood. In this study, the impact of local dynamics as source for ice supersaturation inside cirrus clouds is investigated. Nucleation and growth of ice crystals inside potentially unstable layers in the tropopause region might lead to shallow convection inside (layered cirrus clouds due to latent heat release. The intrinsic updraught inside convective cells constitutes a dominant but transient source for ice supersaturation. A realistic case of shallow cirrus convection is investigated using radiosonde data, meteorological analyses and large-eddy simulations of cirrus clouds. The simulations corroborate the existence of ice supersaturation inside cirrus clouds as a transient phenomenon. Ice supersaturation is frequent, but determined by the life cycle of convective cells in shallow cirrus convection. Cirrus clouds driven by shallow cirrus convection are mostly not in thermodynamic equilibrium; they are usually in a subsaturated or supersaturated state.

  5. A test of time-dependent theories of stellar convection

    CERN Document Server

    Gastine, T

    2011-01-01

    Context: In Cepheids close to the red edge of the classical instability strip, a coupling occurs between the acoustic oscillations and the convective motions close to the surface.The best topical models that account for this coupling rely on 1-D time-dependent convection (TDC) formulations. However, their intrinsic weakness comes from the large number of unconstrained free parameters entering in the description of turbulent convection. Aims: We compare two widely used TDC models with the first two-dimensional nonlinear direct numerical simulations (DNS) of the convection-pulsation coupling in which the acoustic oscillations are self-sustained by the kappa-mechanism. Methods: The free parameters appearing in the Stellingwerf and Kuhfuss TDC recipes are constrained using a chi2-test with the time-dependent convective flux that evolves in nonlinear simulations of highly-compressible convection with kappa-mechanism. Results: This work emphasises some inherent limits of TDC models, that is, the temporal variabilit...

  6. Nonlinear simulations of the convection-pulsation coupling

    CERN Document Server

    Gastine, T

    2011-01-01

    In cold Cepheids close to the red edge of the classical instability strip, a strong coupling between the stellar pulsations and the surface convective motions occurs. This coupling is by now poorly described by 1-D models of convection, the so-called "time-dependent convection models" (TDC). The intrinsic weakness of such models comes from the large number of unconstrained free parameters entering in the description of turbulent convection. A way to overcome these limits is to compute two-dimensional direct simulations (DNS), in which all the nonlinearities are correctly solved. Two-dimensional DNS of the convection-pulsation coupling are presented here. In an appropriate parameter regime, convective motions can actually quench the radial pulsations of the star, as suspected in Cepheids close to the red edge of the instability strip. These nonlinear simulations can also be used to determine the limits and the relevance of the TDC models.

  7. Meridional Circulation in Solar and Stellar Convection Zones

    CERN Document Server

    Featherstone, Nicholas A

    2015-01-01

    We present a series of 3-D nonlinear simulations of solar-like convection, carried out using the Anelastic Spherical Harmonic (ASH) code, that are designed to isolate those processes that drive and shape meridional circulations within stellar convection zones. These simulations have been constructed so as to span the transition between solar-like differential rotation (fast equator/slow poles) and ``anti-solar' differential rotation (slow equator/fast poles). Solar-like states of differential rotation, arising when convection is rotationally constrained, are characterized by a very different convective Reynolds stress than anti-solar regimes, wherein convection only weakly senses the Coriolis force. We find that the angular momentum transport by convective Reynolds stress plays a central role in establishing the meridional flow profiles in these simulations. We find that the transition from single-celled to multi-celled meridional circulation profiles in strong and weak regimes of rotational constraint is lin...

  8. 3D Convection-pulsation Simulations with the HERACLES Code

    Science.gov (United States)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  9. Archimedean Proof of the Physical Impossibility of Earth Mantle Convection

    OpenAIRE

    Herndon, J. Marvin

    2010-01-01

    Eight decades ago, Arthur Holmes introducted the idea of mantle convection as a mechanism for continental drift. Five decades ago, continental drift was modified to become plate tectonics theory, which included mantle convection as an absolutely critical component. Using the submarine design and operation concept of "neutral buoyancy", which follows from Archimedes' discoveries, the concept of mantle convection is proven to be incorrect, concomitantly refuting plate tectonics, refuting all ma...

  10. Diapycnal Transport and Pattern Formation in Double-Diffusive Convection

    Science.gov (United States)

    2015-12-01

    not be able to prevent an eventual melting of sea ice and subsequent onset of convection indefinitely. Temperature and salt diffusivities in the...156 Figure 3.54. Model 21C, Time Series. Convection occurs two years after sea ice completely melts away at year...cover in the domain, saw simultaneous sea ice melting and convection. These three cases were all similar. The combination of initial sea ice cover

  11. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  12. The Effect of Nuclear Reaction Rates & Convective Mixing on the Evolution of a 6M$_{\\odot}$ Star

    CERN Document Server

    Halabi, Ghina M

    2014-01-01

    We present the evolution of a 6M$_{\\odot}$ star, of solar-like initial metallicity, and investigate the effects of key nuclear reaction rates, as well as the treatment of the convective mixing on its evolution along the Cepheid instability strip. In particular, we study the effect of recent estimates of the $^{14}$N(p,{\\gamma})$^{15}$O reaction on the formation and extension of the blue loop during core helium burning. We also investigate the effects induced on this blue loop by the adoption of non-standard convective mixing prescriptions, as well as the implications of modifying the Mixing Length Theory.

  13. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    Variable viscosity effects on mixed convection heat and mass transfer along a ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Keywords: Variable viscosity, Chemical Reaction, Viscous Dissipation, Finite difference method, Suction.

  14. Comparison between ionospheric convection vortices and the associated equivalent currents

    Science.gov (United States)

    Liang, J.; Benkevitch, L.; Sofko, G. J.; Koustov, A. V.

    2004-12-01

    The equivalent current pattern derived from CANOPUS, NRCAN/GSC and MACCS magnetometers has been compared with the ionospheric convection pattern observed by SuperDARN HF radars. The discrepancies between the equivalent convection (EQC) and the SuperDARN-observed convection (SDC) patterns are explained in terms of the effect of day-night photoionization conductance gradient and the coupling between field-aligned currents (FACs) and ionospheric conductances. In particular, the agreement between the EQC and SDC patterns is usually worse for a counterclockwise convection vortex than for a clockwise cell, but a consistent pattern of discrepancy for counterclockwise convection vortices has been found. We suggest that the discrepancies are due to a downward FAC-conductance coupling process. Since the counterclockwise vortices and clockwise vortices occur predominantly in the dawn and dusk sectors, respectively, in accordance with the usual 2-cell global convection pattern, the asymmetry between the EQC and SDC patterns for counterclockwise vortices and clockwise vortices would naturally lead to a dawn-dusk asymmetry as well. This is revealed by a global statistical study of the deviation of direction between the magnetic equivalent convection and the SuperDARN convection in different time sectors and latitudes. In the dawn sector, the statistical results reveal that, at lower latitudes, the EQC direction deviation is slightly counterclockwise with respect to the SDC direction, whereas the deviation is significantly clockwise at high latitudes. These deviations are consistent with the discrepancy pattern for counterclockwise convection vortices, as found in the individual vortex event studies.

  15. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids.

    Science.gov (United States)

    Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.

  16. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  17. Surface tension-driven convection patterns in two liquid layers

    CERN Document Server

    Juel, A; McCormick, W D; Swift, J B; Swinney, H L; Juel, Anne; Burgess, John M.; Swinney, Harry L.

    1999-01-01

    Two superposed liquid layers display a variety of convective phenomena that are inaccessible in the traditional system where the upper layer is a gas. We consider several pairs of immiscible liquids. Once the liquids have been selected, the applied temperature difference and the depths of the layers are the only independent control parameters. Using a perfluorinated hydrocarbon and silicone oil system, we have made the first experimental observation of convection with the top plate hotter than the lower plate. Since the system is stably stratified, this convective flow is solely due to thermocapillary forces. We also have found oscillatory convection at onset in an acetonitrile and n-hexane system heated from below.

  18. Convective and radiative heating of a Saturn entry probe

    Science.gov (United States)

    Tiwari, S. N.; Szema, K. Y.; Moss, J. N.; Subramanian, S. V.

    1984-01-01

    The extent of convective and radiative heating for a Saturn entry probe is investigated in the absence and presence of ablation mass injection. The flow in the shock layer is assumed to be axisymmetric, viscous and in local thermodynamic equilibrium. The importance of chemical nonequilibrium effects for both the radiative and convective nonblowing surface heating rates is demonstrated for prescribed entry conditions. Results indicate that the nonequilibrium chemistry can significantly influence the rate of radiative heating to the entry probes. With coupled carbon-phenolic ablation injection, the convective heating rates are reduced substantially. Turbulence has little effect on radiative heating but it increases the convective heating considerably.

  19. Transition between free, mixed and forced convection

    Science.gov (United States)

    Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.

    2017-07-01

    In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.

  20. Parameterization of convective clouds mesoscale convective systems, and convective-generated cirrus. Final report, September 15, 1990--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, W.R.

    1993-11-05

    The overall goal of this research is to develop a scheme to parameterize diabatic heating, moisture/water substance, and momentum transports, and precipitation from mesoscale convective systems (MCSs) for use in general circulation models (GCMs). Our approach is to perform explicit cloud-resolving simulations of MCSs in the spirit of the GEWEX Cloud Systems Study (GCSS), by using the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU). We then perform statistical analyses (conditional sampling, ensemble-averages, trajectory analyses) of simulated MCSs to assist in fabricating a parameterization scheme, calibrating coefficients, and provide independent tests of the efficacy of the parameterization scheme. A cloud-resolving simulation of ordinary cumulonimbi forced by sea breeze fronts has been completed. Analysis of this case and comparison with parameterized convection simulations has resulted in a number of refinements in the scheme. Three three-dimensional, cloud-resolving simulations of MCSs have been completed. Statistical analyses of model-output data are being performed to assist in developing a parameterization scheme of MCSs in general circulation models.

  1. Unsteady natural convection in micropolar nanofluids

    Directory of Open Access Journals (Sweden)

    Rup Kazimierz

    2014-09-01

    Full Text Available This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2 nanoparticles, the second one contained Al2O3 nanoparticles, and the third one the Cu nanoparticles.

  2. Transient convective instabilities in directional solidification

    CERN Document Server

    Meca, Esteban

    2010-01-01

    We study the convective instability of the melt during the initial transient in a directional solidification experiment in a vertical configuration. We obtain analytically the dispersion relation, and perform an additional asymptotic expansion for large Rayleigh number that permits a simpler analytical analysis and a better numerical behavior. We find a transient instability, i.e. a regime in which the system destabilizes during the transient whereas the final unperturbed steady state is stable. This could be relevant to growth mode predictions in solidification.

  3. Convection pump and method of operation

    Energy Technology Data Exchange (ETDEWEB)

    Steinhour, Leif Alexi

    2017-07-11

    This disclosure provides systems, methods, and apparatus related to a convection pump. In one aspect, an apparatus includes a chamber, the chamber having an inlet at a first end of the chamber and an outlet at a second end of the chamber. The chamber further has a first surface and a second surface, the first surface being opposite to the second surface. A baffle having a substantially helical shape is disposed inside the chamber. A heating device is configured to heat the first surface of the chamber. A cooling device is configured to cool the second surface of the chamber.

  4. Effect of rotation on ferro thermohaline convection

    CERN Document Server

    Sekar, R; Ramanathan, A

    2000-01-01

    The ferro thermohaline convection in a rotating medium heated from below and salted from above has been analysed. The solute is magnetic oxide, which modifies the magnetic field established as a perturbation. The effect of salinity has been included in magnetisation and in the density of the ferrofluid. The conditions for both stationary and oscillatory modes have been obtained using linear stability analysis and it has been found that stationary mode is favoured in comparison with oscillatory mode. The numerical and graphical results are presented. It has been observed that rotation stabilises the system.

  5. Thermohaline convection in main sequence stars

    Science.gov (United States)

    Vauclair, S.

    2009-07-01

    Thermohaline convection is a well-known process in oceanography, which has long been put aside in stellar physics. In the ocean, it occurs when warm salted layers sit on top of cool and less salted ones. Then the salted water rapidly diffuses downwards even in the presence of stabilizing temperature gradients, due to double diffusion between the falling blobs and their surroundings. A similar process may occur in stars in case of inverse μ-gradients in a thermally stabilized medium. This process has important consequences in stellar physics.

  6. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... by DE 1. The selected passes, which occurred during substorm expansion phase, maximum, or early recovery phase, cover the entire nighttime substorm. The organization of the data used the method developed by Fujii et al. [1994], which divided the data into six local time sectors covering the nighttime...

  7. Parametric resonances of convection belt system

    Institute of Scientific and Technical Information of China (English)

    Zhi-an YANG; Gao-feng LI

    2009-01-01

    Based on the Coriolis acceleration and the Lagrangian strain formula,a generalized equation for the transverse vibration system of convection belts is derived using Newton's second law.The method of multiple scales is directly applied to the governing equations,and an approximate solution of the primary parameter resonance of the system is obtained.The detuning parameter,cross-section area,elastic and viscoelastic parameters,and axial moving speed have a significant influences on the amplitudes of steady-state response and their existence boundaries.Some new dynamical phenomena are revealed.

  8. Bounds for convection between rough boundaries

    CERN Document Server

    Goluskin, David

    2016-01-01

    We consider Rayleigh-B\\'enard convection in a layer of fluid between no-slip rough boundaries, where the top and bottom boundary heights are functions of the horizontal coordinates with bounded gradients. We use the background method to derive an upper bound on mean heat flux across the layer for all admissible boundary geometries. This flux, normalized by the temperature difference between the boundaries, can grow with the Rayleigh number ($Ra$) no faster than $Ra^{1/2}$ as $Ra \\rightarrow \\infty$. Coefficients of the bound are given explicitly in terms of the geometry, and evaluation of the coefficients is illustrated for sinusoidal boundaries.

  9. Convective heat transfer during dendritic solidification

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1978-01-01

    Experiments on succinonitrile are described in which the dependence of dendritic growth velocity is studied as a function of orientation with respect to gravity. Growth rate measurements were carried out at a relatively small supercooling, requiring high specimen purity as well as extreme thermal stability and precision temperature measurement. The normalized growth velocity showed a dependence on orientation described by the ratio of observed growth velocity to that expected for convection-free growth being equal to 3.52 times the n-th power of Cos half the orientation angle, where n lies between 0.5 and 0.75.

  10. Computer Simulation of Convective Plasma Cells

    CERN Document Server

    Carboni, Rodrigo

    2015-01-01

    Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their own movies in MPEG format. The programs were written in Fortran and C. There are two versions of the program (GNUPLOT and OpenGL). GNUPLOT and OpenGL are used to display the simulation.

  11. Rapid PCR thermocycling using microscale thermal convection.

    Science.gov (United States)

    Muddu, Radha; Hassan, Yassin A; Ugaz, Victor M

    2011-03-05

    Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed(1). Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format. Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations(2-9). Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument. One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time(10,11). Here we describe results of our efforts to probe the full 3-D velocity and

  12. Dust Devils and Convective Vortices on Mars

    Science.gov (United States)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2017-03-01

    Dust devils are low pressure convective vortices able to lift dust from the surface of a planet. They are a common feature on Mars and they can also be found on desertic locations on Earth. On Mars they are considered an important part of the atmospheric dust cycle. Dust in Mars is an essential ingredient of the atmosphere where it affects the radiative balance of the planet. Here we review observations of these dusty vortices from orbit, from in situ measurements on the surface of Mars and some of the models developed to simulate them.

  13. Nonaxisymmetric Variations Deep in the Convection Zone

    Science.gov (United States)

    Duvall, Thomas

    2002-01-01

    Using a deep-focusing time-distance technique and the MDI medium-1 data, a preliminary study of nonaxisymmetric variability deep in the convection zone has been performed. The purpose of the present study is to see what signals might be present in raw travel times indicating variation. To this end, noise levels will be examined. Correlations with point separations in the range 40-50 deg. have been measured for the entire medium-1 dataset over a significant fraction of the solar disk. Both flows and mean-time variations have been examined. Separation of near-surface signals from deep signals will also be examined.

  14. Convective chemical fronts in a Poiseuille flow.

    Science.gov (United States)

    Vasquez, Desiderio A

    2007-11-01

    Autocatalytic reaction fronts propagating in a Poiseuille flow present a change of speed and curvature depending on the strength of the flow and on the direction of front propagation. These chemical fronts separate reacted and unreacted fluids of different densities, consequently convection will always be present due to the horizontal density gradient of the curved front. In this paper, we find the change of speed caused by gravity for fronts propagating in vertical tubes under a Poiseuille flow. For small density differences, we find axisymmetric fronts. Our theory predicts a transition to nonaxisymmetric fronts as the distance between the walls is increased. The transition depends on the average speed of the Poiseuille flow.

  15. Surface Tension Driven Convection Experiment Completed

    Science.gov (United States)

    Jacobson, Thomas P.; Sedlak, Deborah A.

    1997-01-01

    The Surface Tension Driven Convection Experiment (STDCE) was designed to study basic fluid mechanics and heat transfer on thermocapillary flows generated by temperature variations along the free surfaces of liquids in microgravity. STDCE first flew on the USML-1 mission in July 1992 and was rebuilt for the USML-2 mission that was launched in October 1995. This was a collaborative project with principal investigators from Case Western Reserve University (CWRU), Professors Simon Ostrach and Yasuhiro Kamotani, along with a team from the NASA Lewis Research Center composed of civil servants and contractors from Aerospace Design & Fabrication, Inc. (ADF), Analex, and NYMA, Inc.

  16. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  17. Dynamics of Turbulent Convection and Convective Overshoot in a Moderate Mass Star

    CERN Document Server

    Kitiashvili, Irina N; Mansour, Nagi N; Wray, Alan A

    2015-01-01

    Continued progress in observational stellar astrophysics requires a deep understanding of the underlying convection dynamics. We present results of realistic 3D radiative hydrodynamic simulations of the outer layers of a moderate mass star (1.47 Msun), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding 1D standard stellar model shows an increase of the stellar radius by ~800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km/s, penetrate through the whole convection zone, hit the radiative zone, and form a 8 Mm...

  18. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    Science.gov (United States)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  19. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  20. EFFECT OF CONVECTIVE BOUNDARY CONDITIONS AT BOTTOM WALL ON NATURAL CONVECTIONS IN A SQUARE CAVITY

    Directory of Open Access Journals (Sweden)

    ASWATHA

    2013-04-01

    Full Text Available Simulations were carried out for natural convection in a square cavity using finite volume based computational procedure with biased quadratic elements to investigate the influence of convective boundary conditions at bottom wall. Parametric study has been carried out for a wide range of Rayleigh number (Ra (103 ≤ Ra ≤ 108, Prandtl number (Pr (0.7 ≤ Pr ≤ 17 and heat transfer coefficient (h (0.1 ≤ h ≤ 104 W/m2 K. It is observed from the present study that the heat transfer is primarily due to conduction for Rayleigh number up to 104. Convection dominant heat transfer is observed at higher Ra values. The intensity of circulation increases with increase in Ra number. The average heat transfer rate at the bottom wall is found to be invariant for all values of heat transfer coefficient for Ra up to 104. The power law correlations between average Nusselt number and Rayleigh numbers are presented for convection dominated regimes.

  1. The Effect of Convective Overstability on Planet Disk Interactions

    Science.gov (United States)

    Klahr, Hubert; Gomes, Aiara Lobo

    2016-10-01

    We run global two dimensional hydrodynamical simulations, using the PLUTO code and the planet-disk model of Uribe et al. 2011, to investigate the effect of the convective overstability (CO) on planet-disk interactions. First, we study the long-term evolution of planet-induced vortices. We found that the CO leads to smoother planetary gap edges, thus weaker planet-induced vortices. The main result was the observation of two generation of vortices, which can pose an explanation for the location of the vortex in the Oph IRS48 system. The lifetime of the primary vortices, as well as the birth time of the secondary vortices are shown to be highly dependent on the thermal relaxation timescale. Second, we study the long-term evolution of the migration of low mass planets and assess whether the CO can prevent the saturation of the horseshoe drag. We found that the disk parameters that favour slow inward or outward migration oppose the amplification of vortices, meaning that the CO does not seem to be a good mechanism to prevent the saturation of the horseshoe drag. On the other hand, we observed a planetary trap, caused by vortices formed in the horseshoe region. This trap may be an alternative mechanism to prevent the fast type I migration rates.

  2. The onset of natural convection in vertical fault planes: consequences for the thermal regime in crystalline basements and for heat recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, C.; Genthon, P.; Rabinowicz, M. [UMR 5562 Observatoire Midi-Pyrenees, Toulouse (France)

    1999-07-01

    Very few results are available on free convection in fractured zones, although this is a major mechanism for heat and mass transfer in crystalline rocks. Murphy (1979) has shown, using analytical stability analysis, that the critical Rayleigh number for the onset of free convection in a fracture greatly exceeds the value of 4{pi}{sup 2}, which is the value for an infinite porous medium, and even for a subcritical Rayleigh number, convection may occur after a time delay. Murphy proposed that this delayed convection results from a blanketing effect of the fracture induced by the progressive development of a thermal skin inside the fracture walls. The present paper extends Murphy's results by means of numerical modelling. Our numerical method involves a 2-D computation of convection in the fracture plane, and a 3-D solution of the conduction problem inside the fracture wall. The coupling of the codes is achieved by imposing a common temperature at the mid-fracture plane, together with the conservation of energy at the fracture-wall interface. We use two kinds of initial perturbation, which are assumed to constitute end-members for natural or application cases. For an A-type initial condition the thermal field is disrupted in the fracture only, while for a B-type initial condition the perturbation is introduced in the fracture and in the walls. For a given perturbation wavenumber, three distinct domains can be defined according to the Rayleigh number (R). In the first domain, convection takes place immediately; in the second one, convection starts after a delay; and in the third one, convection is damped. These three domains are therefore termed the instantaneous convection (R > R{sub s}), delayed convection (R{sub d} < R < R{sub s}), and conduction (R < R{sub d}) domains, respectively. It is noteworthy that these three domains are bounded by the same values of the Rayleigh number for both A-type and B-type perturbations. Except for R close to R{sub d}, the time

  3. Generation of free convection due to changes of the local circulation system

    Directory of Open Access Journals (Sweden)

    T. Foken

    2009-11-01

    Full Text Available Eddy-covariance and Sodar/RASS experimental measurement data of the COPS (Convective and Orographically-induced Precipitation Study field campaign 2007 are used to investigate the generation of near-ground free convection conditions (FCCs in the Kinzig valley, Black Forest, Southwest Germany. The measured high-quality turbulent flux data revealed that FCCs are initiated near the ground in situations where moderate to high buoyancy fluxes and a simultaneously occurring drop of the wind speed were present. The minimum in wind speed – observable by the Sodar measurements through the whole vertical extension of the valley atmosphere – is the consequence of a thermally-induced valley wind system, which changes its wind direction from down to up-valley winds in the morning hours. Buoyancy then dominates over shear within the production of turbulence kinetic energy near the ground. These situations are detected by the stability parameter (ratio of the measurement height to the Obukhov length when the level of free convection, which starts above the Obukhov length, drops below that of the sonic anemometer. An analysis of the scales of turbulent motions during FCCs using wavelet transform shows the occurrence of large-scale turbulence structures. Regarding the entire COPS measurement period, FCCs in the morning hours occur on about 50% of all days. Enhanced surface fluxes of latent and sensible heat are found on these days.

  4. Analysis of streamwise conduction in forced convection of microchannels using fin approach

    Institute of Scientific and Technical Information of China (English)

    Suhandran MUNIANDY; Yew Mun HUNG

    2011-01-01

    The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied.By employing the fin approach in the first law of analysis,models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases.These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions.The effects of the Peclet number,aspect ratio,and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed.This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis ofmicrochannel heat sinks.

  5. Rayleigh-Bénard convection in a vertical annular container near the convection threshold.

    Science.gov (United States)

    Wang, Bo-Fu; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun

    2014-04-01

    The instabilities and transitions of flow in an annular container with a heated bottom, a cooled top, and insulated sidewalls are studied numerically. The instabilities of the static diffusive state and of axisymmetric flows are investigated by linear stability analysis. The onset of convection is independent of the Prandtl number but determined by the geometry of the annulus, i.e., the aspect ratio Γ (outer radius to height) and radius ratio δ (inner radius to outer radius). The stability curves for onset of convection are presented for 0.001≤δ≤0.8 at six fixed aspect ratios: Γ=1, 1.2, 1.6, 1.75, 2.5, and 3.2. The instability of convective flow (secondary instability), which depends on both the annular geometry and the Prandtl number, is studied for axisymmetric convection. Two pairs of geometric control parameters are chosen to perform the secondary instability analysis-Γ=1.2, δ=0.08 and Γ=1.6, δ=0.2-and the Prandtl number ranges from 0.02 to 6.7. The secondary instability exhibits some similarities to that for convection in a cylinder. A hysteresis stability loop is found for Γ=1.2, δ=0.08 and frequent changes of critical mode with Prandtl number are found for Γ=1.6, δ=0.2. The three-dimensional flows beyond the axisymmetry-breaking bifurcations are obtained by direct numerical simulation for Γ=1.2, δ=0.08.

  6. DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kosovichev, A. G., E-mail: irina.n.kitiashvili@nasa.gov [New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-04-10

    We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M {sub ⊙}), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ∼800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s{sup −1}, penetrate through the whole convection zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the convection zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting convective plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.

  7. Laboratory measurements of density-driven convection in analogy with solubility trapping of geologically sequestered CO2

    Science.gov (United States)

    Rasmusson, Maria; Fagerlund, Fritjof; Rasmusson, Kristina; Niemi, Auli

    2016-04-01

    Density-driven convection is of interest to several areas of groundwater-science: nuclear waste storage, industrial waste disposal, deep geothermal energy extraction, and seawater intrusion into coastal aquifers. Lately it has been identified to accelerate the rate of CO2 solubility trapping for geological CO2 storage in deep saline aquifers. We present an experimental method based on the light transmission technique and an analogue system design that enable comprehensive study of solutally induced density-driven convection in saturated porous media. The system design affords an examination of the convective process in general as well as a two-dimensional laboratory analogue for field phenomena. Furthermore, the method can be used to verify numerical results from density-driven flow simulation codes as part of benchmarking. With application to geological CO2 storage, we show how the method is used to measure density-driven convection in both homogenous and heterogeneous porous media and for different Rayleigh numbers. The results demonstrate that the solute concentration distribution in the system can be accurately determined with high spatial and temporal resolution. Thus, the onset time of convection, mass flux and flow dynamics can be quantified for different systems under well-controlled conditions.

  8. The instability of diffusive convection and its implication for the thermohaline staircases in the deep Arctic Ocean

    Science.gov (United States)

    Zhou, S.-Q.; Qu, L.; Lu, Y.-Z.; Song, X.-L.

    2014-02-01

    In the present study, the classical description of diffusive convection is updated to interpret the instability of diffusive interfaces and the dynamical evolution of the bottom layer in the deep Arctic Ocean. In the new consideration of convective instability, both the background salinity stratification and rotation are involved. The critical Rayleigh number of diffusive convection is found to vary from 103 to 1011 in the deep Arctic Ocean as well as in other oceans and lakes. In such a wide range of conditions, the interface-induced thermal Rayleigh number is shown to be consistent with the critical Rayleigh number of diffusive convection. In most regions, background salinity stratification is found to be the main hindrance to the occurrence of convecting layers. With the new parameterization, it is predicted that the maximum thickness of the bottom layer is 1051 m in the deep Arctic Ocean, which is close to the observed value of 929 m. The evolution time of the bottom layer is predicted to be ~ 100 yr, which is on the same order as that based on 14C isolation age estimation.

  9. Modeling condensation with a noncondensable gas for mixed convection flow

    Science.gov (United States)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  10. Vertical Motions in Convective Clouds Over Darwin, Australia

    Science.gov (United States)

    Mallinson, H.; Schumacher, C.; Ahmed, F.

    2015-12-01

    Vertical motions are essential in parameterizing convection in large-scale models. Yet in tropical systems vertical motions are difficult to obtain, especially in areas of active convection. This study uses three months of profiler data from Darwin, Australia to directly compare vertical velocity and spectrum width with reflectivity at a height of 1 km (a near-surface rain proxy) for shallow, mid-level, and deep convective clouds. Vertical velocities for all convective clouds were also compared to echo-top heights of varying reflectivities to better understand convective cloud dynamics in relation to their vertical structure. In shallow convective clouds (tops 40 dBz). These regimes could represent different stages in the convective cloud life cycle with strong updrafts and moderate reflectivity occurring in the growing phase and strong downdrafts and large reflectivity occurring in the mature phase. The weak up-and downdraft couplet and low reflectivities suggest a dissipating phase. Mid-level convective clouds (tops 4-8 km) also show three distinct regimes: moderate updrafts at low reflectivities (possible growing phase), a weak up-and downdraft couplet at moderate reflectivities (possible dissipating phase), and strong up-and downdrafts at large reflectivities (mature phase). Deep convective clouds (tops >8 km) show strong updrafts above 4 km for all reflectivities with the strongest downdrafts occurring at large reflectivities. While maximum updrafts vary in height and occur at different reflectivities among cloud types, mean downdraft depth never exceeds 3 km and is always strongest at large reflectivities, which may allow better characterization of cold pool properties. Throughout all convective cloud types, spectrum width has the highest values at lower heights than where the strongest up-and downdrafts occur while also showing a maximum value core around the transition height. In addition, maximum vertical motions occur at or just beneath the 30-dBz echo

  11. A New And Fundamental View Of Organized Tropical Convection

    Science.gov (United States)

    Webster, P. J.; Toma, V. E.

    2012-12-01

    During the last decade, a paradigm has emerged to explain the existence of tropical organized convection. Based on the projection of spatial and temporal patterns of observed convection onto dispersion relationships of equatorially trapped very shallow modes (h=10-30 m, where h is the equivalent depth of a shallow fluid) the convectively coupled equatorial mode (CCEM) theory has developed. However, there is an incompleteness and some inconsistencies in the theory that need to be addressed. Whereas the horizontal structure of these shallow modes appears similar to that observed, the vertical structure consistent with small h requires a high vertical wave number. This is not observed. Second, basic scaling of the tropics, as initially undertaken by Charney in the 1960s suggests an extremely stable vertical structure, far more stable than equivalent scales at higher latitudes. In fact, at the scales of observed organized convection in the tropics (about 106m) the atmosphere is essentially barotropic to high approximation resulting in almost complete lack of communication between the upper and lower troposphere. The CCEM theory suggests that the observed modes are consistent with existing convection but there is no explanation of how the convection forms and organizes in this very stable tropical environment. It is also noted that there are discrete genesis regions of organized convection formation within the tropics and that organized convection does not occur indiscriminately. Based on these factors we propose that organized convection occurs through regional instabilities of the basic state in which vortex tube stretching overcomes the inherent stability restriction. The instabilities determine the spatial and temporal scales of the convective phenomena. We provide examples of instabilities. Further, in certain regions, influences from higher latitudes may be important. In the end, CCEMs appears as a result and not an explanation or a cause of organized convection.

  12. Non-axisymmetric vertical shear and convective instabilities as a mechanism of angular momentum transport

    CERN Document Server

    Volponi, Francesco

    2013-01-01

    Discs with a rotation profile depending on radius and height are subject to an axisymmetric linear instability, the vertical shear instability. Here we show that non-axisymmetric perturbations, while eventually stabilized, can sustain huge exponential amplifications with growth rate close to the axisymmetric one. Transient growths are therefore to all effects genuine instabilities. The ensuing angular momentum transport is positive. These growths occur when the product of the radial times the vertical wavenumbers (both evolving with time) is positive for a positive local vertical shear, or negative for a negative local vertical shear. We studied, as well, the interaction of these vertical shear induced growths with a convective instability. The asymptotic behaviour depends on the relative strength of the axisymmetric vertical shear (s_v) and convective (s_c) growth rates. For s_v > s_c we observed the same type of behaviour described above - large growths occur with asymptotic stabilization. When s_c > s_v th...

  13. In situ X-ray monitoring of convection effects on segregation freckle formation

    Science.gov (United States)

    Shevchenko, N.; Eckert, S.; Boden, S.; Gerbeth, G.

    2012-07-01

    Visualizations of the solidification process under the influence of thermo-solutal convection were obtained by means of X-ray radioscopy within a Hele-Shaw cell filled with Ga-25wt%In alloy. The density-driven melt flow causes the formation of vertical segregation channels ("chimneys") in the mushy zone. The development of the chimneys and the probability of their surviving depend sensitively on the spatial and temporal properties of the flow field. The second part of this study concerns the case when the natural convection is superimposed by an electromagnetically driven flow perpendicular to the dendrites growth direction. The main effects of forced melt flow are a modification of the dendritic structure and flow-induced redistribution of the solute concentration.

  14. Atmospheric circulation of tidally locked exoplanets II: dual-band radiative transfer and convective adjustment

    CERN Document Server

    Heng, Kevin; Phillipps, Peter J

    2011-01-01

    Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the GFDL-Princeton Flexible Modeling System (FMS). As the first steps away from the purely dynamical benchmarks of Heng, Menou & Phillipps (2011), we add dual-band radiative transfer and dry convective adjustment schemes to our computational setup. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation ("shortwave" versus "longwave"), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by an uniform slab with a finite thermal inertia. For our hot Jupiter models, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption v...

  15. Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    CERN Document Server

    Traxler, A; Garaud, P; Radko, T; Brummell, N

    2010-01-01

    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes...

  16. Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, E.; Busse, F.H.; Pesch, W. [University of Bayreuth, Institute of Physics, Bayreuth (Germany)

    2004-11-01

    The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, {omega}) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle {psi} between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, Q{proportional_to}B{sup 2}, and the Coriolis number, {tau}{proportional_to}{omega}. Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions. (orig.)

  17. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-04-15

    Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.

  18. Geoid and topography for infinite Prandtl number convection in a spherical shell

    Science.gov (United States)

    Bercovici, D.; Schubert, G.; Zebib, A.

    1988-01-01

    Geoid anomalies and surface and lower-boundary topographies are calculated for numerically generated thermal convection for an infinite Prandtl number, Boussinesq, axisymmetric spherical fluid shell with constant gravity and viscosity, for heating both entirely from below and entirely from within. Convection solutions are obtained for Rayleigh numbers Ra up to 20 times the critical Ra in heating from below and 27 times critical for heating from within. Geoid parallels surface undulations, and boundary deformation generally increases with increasing cell wavelength. Dimensionless geoid and topography in heating from below are about 5 times greater than in heating from within. Values for heating from within correlate more closely with geophysical data than values from heating from below, suggesting a predominance of internal heating in the mantle. The study emphasizes that dynamically induced topography and geoid are sensitive to the mode of heating in the earth's mantle.

  19. Evidence for Corotating Convection in Saturn's Magnetosphere

    Science.gov (United States)

    Kivelson, M. G.; Southwood, D. J.; Dougherty, M. K.

    2006-05-01

    Saturn's magnetic field exhibits a high degree of azimuthal symmetry, yet the field and plasma signatures of the magnetosphere are modulated at a period close to that of planetary rotation. How, then, is a clear periodicity imposed on the magnetic field and plasma of the planetary magnetosphere? In this talk, Cassini magnetometer data are used to develop a scenario for the dynamics of the Saturn magnetosphere. The proposal is that mass transport, accomplished in the inner magnetosphere by interchange motion, feeds into the outer magnetosphere where ballooning driven by centrifugal stress leads to outward transport, field reconnection and plasma loss in a favored local time sector; flux is transported inward in other regions. The model is closely related to the concept of corotating convection proposed by Dessler, Hill, and co-workers for Jupiter. The proposed mechanism can be consistent with aspects of the empirical camshaft model introduced by Espinosa et al., 2003 to explain Pioneer and Voyager magnetometer data. Anomalous transport here proposed could originate from a localized ionospheric conductivity anomaly. The resulting cyclic stress modulates the current in the current sheet and can account for its north-south excursions. The convection patterns proposed also imply that corotating, field-aligned currents would be a basic feature of the Saturn system.

  20. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  1. Natural convection through enclosed disconnected solid blocks

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Fernando Cesar De; Junqueira, Silvio L.M.; Franco, Admilson T. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)]. E-mails: fernandodelai@gmail.com; silvio@utfpr.edu.br; admilson@utfpr.edu.br; Lage, Jose L. [Southern Methodist University (SMU), Dallas, TX (United States)]. E-mail: JLL@smu.edu

    2008-07-01

    In this study, the natural convection inside a fluid filled, enclosure containing several solid obstructions and being heated from the side is modeled and numerically simulated. The solid obstructions are equally spaced, conducting, and disconnected square blocks. The mathematical model is based on the balance equations of mass, momentum and energy, which are then solved numerically via the finite-volume method with the SIMPLEST algorithm and the HYBRID scheme. The effects of varying the solid-fluid thermal conductivity ratio (K), the fluid volume-fraction or porosity ({phi}), the number of solid blocks (N) and the heating strength (represented by the Rayleigh number, Ra) of the enclosure on the Nusselt number based on the surface-averaged heat transfer coefficient along the heated wall of the enclosure are studied. The results indicate a competing effect caused by the proximity of the solid blocks to the heated and cooled walls, vis-a-vis hindering the boundary layer growth, hence reducing the heat transfer effectiveness, and at the same time enhancing the heat transfer when the blocks' thermal conductivity is larger than that of the fluid. An analytical estimate of the minimum number of blocks beyond which the convection hindrance becomes predominant is presented and validated by the numerical results. (author)

  2. Properties of convective motions in facular regions

    CERN Document Server

    Kostik, R

    2012-01-01

    In this paper, we study the properties of solar granulation in a facular region from the photosphere up to the lower chromosphere. Our aim is to investigate the dependence of granular structure on magnetic field strength. We use observations obtained at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife) using two different instruments: Triple Etalon SOlar Spectrometer (TESOS), in the BaII 4554 A line to measure velocity and intensity variations along the photosphere; and, simultaneously, Tenerife Infrared Polarimeter (TIP-II), in the FeI 1.56 $\\mu$m lines to the measure Stokes parameters and the magnetic field strength at the lower photosphere. We obtain that the convective velocities of granules in the facular area decrease with magnetic field while the convective velocities of intergranular lanes increase with the field strength. Similar to the quiet areas, there is a contrast and velocity sign reversal taking place in the middle photosphere. The reversal heights depend on the magnetic fie...

  3. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Directory of Open Access Journals (Sweden)

    Orlin D. Velev

    2013-05-01

    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  4. Magnetic Helicity in a Cyclic Convective Dynamo

    Science.gov (United States)

    Miesch, Mark S.; Zhang, Mei; Augustson, Kyle C.

    2016-05-01

    Magnetic helicity is a fundamental agent for magnetic self-organization in magnetohydrodynamic (MHD) dynamos. As a conserved quantity in ideal MHD, it establishes a strict topological coupling between large and small-scale magnetic fields. The generation of magnetic fields on scales larger than the velocity field is linked to an upscale transfer of magnetic helicity, either locally in spectral space as in the inverse cascade of magnetic helicity in MHD turbulence or non-locally, as in the turbulent alpha-effect of mean-field dynamo theory. Thus, understanding the generation, transport, and dissipation of magnetic helicity is an essential prerequisite to understanding manifestations of magnetic self-organization in the solar dynamo, including sunspots, the prominent dipole and quadrupole moments, and the 22-year magnetic activity cycle. We investigate the role of magnetic helicity in a convective dynamo model that exhibits regular magnetic cycles. The cycle is marked by coherent bands of toroidal field that persist within the convection zone and that are antisymmetric about the equator. When these toriodal bands interact across the equator, it initiates a global restructuring of the magnetic topology that contributes to the reversal of the dipole moment. Thus, the polar field reversals are preceeded by a brief reversal of the subsurface magnetic helicity. There is some evidence that the Sun may exhibit a similar magnetic helicity reversal prior to its polar field reversals.

  5. Convective heat transfer of nanofluids with correlations

    Institute of Scientific and Technical Information of China (English)

    Lazarus Godson Asirvatham; Balakrishnan Raja; Dhasan Mohan Lal; Somchai Wongwises

    2011-01-01

    To investigate the convective heat transfer of nanofluids,experiments were performed using silver-water nanofluids under laminar,transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section.The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%,and the effects of thermo-physical properties,inlet temperature,volume concentration,and mass flow rate on heat transfer coefficient were investigated.Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient,by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content,respectively.Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid,with ±10% agreement between experiments and prediction.

  6. Superstructures in Rayleigh-Benard convection

    Science.gov (United States)

    Stevens, Richard; Verzicco, Roberto; Lohse, Detlef

    2016-11-01

    We study the heat transfer and the flow structures in Rayleigh-Bénard convection as function of the Rayleigh number Ra and the aspect ratio. We consider three-dimensional direct numerical simulations (DNS) in a laterally periodic geometry with aspect ratios up to Γ =Lx /Lz =Ly /Lz = 64 at Ra =108 , where Lx and Ly indicate the horizontal domain sizes and Lz the height. We find that the heat transport convergences relatively quickly with increasing aspect ratio. In contrast, we find that the large scale flow structures change significantly with increasing aspect ratio due to the formation of superstructures. For example, at Ra =108 we find the formation of basically only one large scale circulation roll in boxes with an aspect ratio up to 8. For larger boxes we find the formation of multiple of these extremely large convection rolls. We illustrate this by movies of horizontal cross-section of the bulk and the boundary layer and analyze them by using spectra in the boundary layer and the bulk. In addition, we study the effect of the large scale flow structures on the mean and higher order temperature and velocity statistics in the boundary layer and the bulk by comparing the simulation results obtained in different aspect ratio boxes. Foundation for fundamental Research on Matter (FOM), Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), SURFsara, Gauss Large Scale project.

  7. A new perspective on the infrared brightness temperature distribution of the deep convective clouds

    National Research Council Canada - National Science Library

    KONDURU, RAKESH TEJA; KISHTAWAL, C M; SHAH, SHIVANI

    2013-01-01

    ...), for both deep convective and non-deep convective (shallow cloud) cases. It is observed that Johnson SB function is the best continuous distribution function in explaining the histogram of infrared brightness temperatures of the convective clouds...

  8. Travelling waves in nonlinear diffusion-convection-reaction

    NARCIS (Netherlands)

    Gilding, B.H.; Kersner, R.

    2001-01-01

    The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu

  9. Convective heat transfer measurement involving flow past stationary circular disks

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L. (Oakland Univ., Rochester, MI (United States))

    1989-11-01

    Considerable empirical data exist in the literature for forced convection heat transfer involving external flow over a variety of geometries, and for various ranges of Reynolds number. This author is not aware of any published empirical data for forced convection heat transfer involving flow past a simple stationary circular disk, whose axis is perpendicular to the flow. Such is the purpose of this paper.

  10. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions.

    Science.gov (United States)

    Yoshikawa, H N; Tadie Fogaing, M; Crumeyrolle, O; Mutabazi, I

    2013-04-01

    Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection.

  11. Transition to geostrophic convection: the role of the boundary conditions

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Ostilla-Monico, Rodolfo; Poel, van der E.P.; Verzicco, R.; Lohse, D.

    2016-01-01

    Rotating Rayleigh–Bénard convection, the flow in a rotating fluid layer heated from below and cooled from above, is used to analyse the transition to the geostrophic regime of thermal convection. In the geostrophic regime, which is of direct relevance to most geo- and astrophysical flows, the system

  12. Chaotic asymmetric convection in the Bridgman-Stockbarger technique

    Science.gov (United States)

    Potts, H.; Wilcox, W. R.

    1986-01-01

    Convection was observed in naphthalene in a vertical Bridgman-Stockbarger arrangement. Differing from the assumptions of the theorists, the flow was neither steady nor axi-symmetric because of the heating and cooling conditions employed. It is suggested that such irregular convection may be common and cause compositional striations and azimuthal composition variations.

  13. Temperature-driven groundwater convection in cold climates

    Science.gov (United States)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  14. Natural Convection in Enclosed Porous or Fluid Media

    Science.gov (United States)

    Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.

    2014-01-01

    In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…

  15. Plains Elevated Convection at Night (PECAN) Experiment Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D [National Oceanic and Atmospheric Administration; Parsons, D [NCAR; Geerts, B [Department of Atmospheric Science, University of Wyoming

    2015-03-01

    The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fraction of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.

  16. Solar wind effects on ionospheric convection: a review

    DEFF Research Database (Denmark)

    Lu, G.; Cowley, S.W.H.; Milan, S.E.

    2002-01-01

    ), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...

  17. Emergence of Anchored Flux Tubes Through the Convection Zone

    CERN Document Server

    Fisher, George H; McClymont, Alexander N

    2010-01-01

    We model the evolution of buoyant magnetic flux tubes in the Sun's convection zone. A flux tube is assumed to lie initially near the top of the stably stratified radiative core below the convection zone, but a segment of it is perturbed into the convection zone by gradual heating and convective overshoot motions. The ends ("footpoints") of the segment remain anchored at the base of the convection zone, and if the segment is sufficiently long, it may be buoyantly unstable, rising through the convection zone in a short time. The length of the flux tube determines the ratio of buoyancy to magnetic tension: short loops of flux are arrested before reaching the top of the convection zone, while longer loops emerge to erupt through the photosphere. Using Spruit's convection zone model, we compute the minimum footpoint separation $L_c$ required for erupting flux tubes. We explore the dependence of $L_c$ on the initial thermal state of the perturbed flux tube segment and on its initial magnetic field strength. Followi...

  18. Intensification of convective extremes driven by cloud-cloud interaction

    CERN Document Server

    Moseley, Christopher; Berg, Peter; Haerter, Jan O

    2015-01-01

    In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if precipitation intensities will increase mainly due to modified thermodynamic forcing or due to stronger convective dynamics. In gradual self-organization, convective events produce highest intensities late in the day. Tracking rain cells throughout their life cycles, we find that interacting events respond strongly to changes in boundary conditions. Conversely, events without interaction remain unaffected. Increased surface temperature indeed leads to more interaction and higher precipitation extremes. However, a similar intensification occurs when leaving temperature unchanged but simply granting more time for self-organization.Our study implies that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. Our results implicate that the dynamical interaction between convective clouds must be incorpor...

  19. Limitations of estimating turbulent convection velocities from PIV

    CERN Document Server

    de Kat, Roeland; Dawson, James R; Ganapathisubramani, Bharathram

    2013-01-01

    This paper deals with determination of turbulent convection velocities from particle image velocimetry (PIV). Turbulent convection velocities are of interest because they can be used to map temporal information into space. Convection velocity can be defined in several different ways. One approach is to use the phase-spectrum of two signals with a time-separation. Obtaining convection velocity per wavenumber involves determining a spatial spectrum. PIV data is limited in spatial resolution and sample length. The influence of truncation of both spatial resolution and frequency resolution is investigated, as well as the influences of spatial filtering and measurement noise. These issues are investigated by using a synthetic data set obtained by creating velocity-time data with an imposed spectrum. Results from the validation show that, when applying a Hamming window before determining the phase spectrum, there is a usable range of wavenumbers for which convection velocities can be determined. Simulation of flow ...

  20. Convection and segregation in a flat rotating sandbox

    Science.gov (United States)

    Rietz, Frank; Stannarius, Ralf

    2012-01-01

    A flat box, almost completely filled with a mixture of granulate, is rotated slowly about its horizontal central axis. In this experiment, a regular vortex flow of the granular material is observed in the cell plane. These vortex structures have a superficial analogy to convection rolls in dissipative structures of ordinary liquids. Whereas in the latter, the origin of the convection can often be attributed to gradients e.g. of densities or surface tensions, there is no trivial explanation at present for the convection of the granulate in the rotating container. Despite the simplicity of the experiment, the underlying mechanisms for convection and segregation are difficult to extract. Here, we present a comprehensive experimental study of the patterns under various experimental conditions and propose a mechanism for the convection.

  1. Effect of Marangoni Convection on Mass Transfer in Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    YU Liming; ZENG Aiwu; YU Kuo Tsung

    2006-01-01

    Marangoni convection and its influence on the mass transfer in the liquid phase were investigated.Marangoni convection was visualized using laser Schlieren technique.Orderly polygonal convection patterns and random interfacial turbulence were observed.The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqueous solution in the falling film.The experimental results show that Marangoni convection can speed up the surface renewal and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds.The corresponding empirical correlations are given in terms of the mass transfer enhancement factor.Furthermore,in considering the Marangoni effect,the conventional mass transfer correlation was modified.The differences between the values predicted by the correlation and the experimental data are within ± 8.2% and the average difference is 4.2%.

  2. Preventing Blow up by Convective Terms in Dissipative PDE's

    Science.gov (United States)

    Bilgin, Bilgesu; Kalantarov, Varga; Zelik, Sergey

    2016-09-01

    We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger's type equations, convective Cahn-Hilliard equation, generalized Kuramoto-Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger's type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.

  3. Experimental and numerical investigation of wave ferrofluid convection

    Energy Technology Data Exchange (ETDEWEB)

    Bozhko, A.A. [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation)]. E-mail: bozhko@psu.ru; Putin, G.F. [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Tynjaelae, T. [Department of Energy and Environmental Engineering, Lappeenranta Univeristy of Technology, P.O. Box 20, Lappeenranta 53851 (Finland); Sarkomaa, P. [Department of Energy and Environmental Engineering, Lappeenranta Univeristy of Technology, P.O. Box 20, Lappeenranta 53851 (Finland)

    2007-09-15

    The stability of buoyancy-driven shear flow in an inclined layer of a ferrocolloid is investigated for different values of inclinations and homogeneous longitudinal magnetic fields. Near the onset of Rayleigh convection of ferrofluid layer inclined with respect to gravity, the wave oscillatory regimes were observed in experiments and numerical simulations. Visualization of convection patterns is provided by a temperature-sensitive liquid crystal film. As experiments testify, the origin of traveling wave regimes in ferrofluid is due to concentration gradients caused by gravity sedimentation of the magnetic particles. To study the effects of initial concentration gradient of particles, on convective instabilities, finite volume numerical simulations using a two-phase mixture model were carried out for the same setup. The most fascinating effect in ferrofluid convection is spontaneous formation of localized states, those where the convection chaotically focuses in confined regions and is absent in the remainder of cavity.

  4. Directional Solidification and Convection in Small Diameter Crucibles

    Science.gov (United States)

    Chen, J.; Sung, P. K.; Tewari, S. N.; Poirier, D. R.; DeGroh, H. C., III

    2003-01-01

    Pb-2.2 wt% Sb alloy was directionally solidified in 1, 2, 3 and 7 mm diameter crucibles. Pb-Sb alloy presents a solutally unstable case. Under plane-front conditions, the resulting macrosegregation along the solidified length indicates that convection persists even in the 1 mm diameter crucible. Al-2 wt% Cu alloy was directionally solidified because this alloy was expected to be stable with respect to convection. Nevertheless, the resulting macrosegregation pattern and the microstructure in solidified examples indicated the presence of convection. Simulations performed for both alloys show that convection persists for crucibles as small as 0.6 mm of diameter. For the solutally stable alloy, Al-2 wt% Cu, the simulations indicate that the convection arises from a lateral temperature gradient.

  5. Magnetic fields in non-convective regions of stars

    CERN Document Server

    Braithwaite, J

    2015-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them, the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and...

  6. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  7. Connections matter: Updraft merging in organized tropical deep convection

    Science.gov (United States)

    Glenn, I. B.; Krueger, Steven K.

    2017-07-01

    When tropical cumulus convection is organized, the spacing between updrafts is reduced, and deep convective cloud tops are higher. The relative importance of various processes through which organization increases cloud top heights is not well understood. It is likely that decreased spacing between updrafts in organized convection increases the frequency of convective updraft merging. What is the relative importance of merging in determining an updraft parcel's detrainment height? We investigated updraft parcel merging in organized deep convection using results from a large eddy simulation. We used Lagrangian parcel trajectories (LPTs) to locate merging events. LPTs that merge reach detrainment heights 1.5 km higher on average than LPTs which do not merge. Merged LPTs are more buoyant than nonmerged LPTs, implying less dilution due to entrainment. Using mutual information analysis, we found that merging, cloud base vertical velocity, and cloud base area are about equally important in determining parcel detrainment height.

  8. Deep convective clouds at the tropopause

    Directory of Open Access Journals (Sweden)

    H. H. Aumann

    2010-07-01

    Full Text Available Data from the Advanced Infrared Sounder (AIRS on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC. Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP, 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion" of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be

  9. Convection in Icy Satellites: Implications for Habitability and Planetary Protection

    Science.gov (United States)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.

  10. MHD Natural Convection with Convective Surface Boundary Condition over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rashidi

    2014-01-01

    Full Text Available We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to (x--1/2 where x- is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.

  11. Open-ocean convection process: A driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Severin, Tatiana; Kessouri, Faycal; Rembauville, Mathieu; Sánchez-Pérez, Elvia Denisse; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Ghiglione, Jean-François; D'Ortenzio, Fabrizio; Taillandier, Vincent; Mayot, Nicolas; Durrieu De Madron, Xavier; Ulses, Caroline; Estournel, Claude; Conan, Pascal

    2017-06-01

    This study was a part of the DeWEX project (Deep Water formation Experiment), designed to better understand the impact of dense water formation on the marine biogeochemical cycles. Here, nutrient and phytoplankton vertical and horizontal distributions were investigated during a deep open-ocean convection event and during the following spring bloom in the Northwestern Mediterranean Sea (NWM). In February 2013, the deep convection event established a surface nutrient gradient from the center of the deep convection patch to the surrounding mixed and stratified areas. In the center of the convection area, a slight but significant difference of nitrate, phosphate and silicate concentrations was observed possibly due to the different volume of deep waters included in the mixing or to the sediment resuspension occurring where the mixing reached the bottom. One of this process, or a combination of both, enriched the water column in silicate and phosphate, and altered significantly the stoichiometry in the center of the deep convection area. This alteration favored the local development of microphytoplankton in spring, while nanophytoplankton dominated neighboring locations where the convection reached the deep layer but not the bottom. This study shows that the convection process influences both winter nutrients distribution and spring phytoplankton distribution and community structure. Modifications of the convection's spatial scale and intensity (i.e., convective mixing depth) are likely to have strong consequences on phytoplankton community structure and distribution in the NWM, and thus on the marine food web.Plain Language SummaryThe deep open-ocean convection in the Northwestern Mediterranean Sea is an important process for the formation and the circulation of the deep waters of the entire Mediterranean Sea, but also for the local spring phytoplankton bloom. In this study, we showed that variations of the convective mixing depth induced different supply in nitrate

  12. Convective phenomena at high resolution over Europe and the Mediterranean. The join EURO-CORDEX and Med-CORDEX flagship pilot study

    Science.gov (United States)

    Coppola, Erika; Sobolowski, Stefan

    2017-04-01

    The join EURO-CORDEX and Med-CORDEX Flagship Pilot Study dedicated to the frontier research of using convective permitting models to address the impact of human induced climate change on convection, has been recently approved and the scientific community behind the project is made of 30 different scientific institutes distributed all around Europe. The motivations for such a challenge is the availability of large field campaigns dedicated to the study of heavy precipitation events such as HyMeX and high resolution dense observation networks like WegnerNet, RdisaggH (CH),COMEPHORE (Fr), SAFRAN (Fr), EURO4M-APGD (CH); the increased computing capacity and model developments; the emerging trend signals in extreme precipitation at daily and mainly sub-daily time scale in the Mediterranean and Alpine regions and the priority of convective extreme events under the WCRP Grand Challenge on climate extremes, because they carry both society-relevant and scientific challenges. The main objective of this effort are to investigate convective-scale events, their processes and their changes in a few key regions of Europe and the Mediterranean using convection-permitting RCMs, statistical models and available observations. To provide a collective assessment of the modeling capacity at convection-permitting scale and to shape a coherent and collective assessment of the consequences of climate change on convective event impacts at local to regional scales. The scientific aims of this research are to investigate how the convective events and the damaging phenomena associated with them will respond to changing climate conditions in several European regions with different climates. To understand if an improved representation of convective phenomena at convective permitting scales will lead to upscaled added value and finally to assess the possibility to replace these costly convection-permitting experiments with statistical approaches like "convection emulators". The common initial

  13. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  14. Imaging convection and magnetism in the sun

    CERN Document Server

    Hanasoge, Shravan

    2015-01-01

    This book reviews the field of helioseismology and its outstanding challenges and also offers a detailed discussion of the latest computational methodologies. The focus is on the development and implementation of techniques to create 3-D images of convection and magnetism in the solar interior and to introduce the latest computational and theoretical methods to the interested reader. With the increasing availability of computational resources, demand for greater accuracy in the interpretation of helioseismic measurements and the advent of billion-dollar instruments taking high-quality observations, computational methods of helioseismology that enable probing the 3-D structure of the Sun have increasingly become central. This book will benefit students and researchers with proficiency in basic numerical methods, differential equations and linear algebra who are interested in helioseismology.

  15. Convective dissolution in anisotropic porous media

    Science.gov (United States)

    de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2016-11-01

    Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.

  16. Thermophoresis in natural convection with variable properties

    Science.gov (United States)

    Jayaraj, S.; Dinesh, K. K.; Pillai, K. L.

    The present paper deals with thermophoresis in natural convection with variable properties for a laminar flow over a cold vertical flat plate. Variation of properties like density, viscosity and thermal conductivity with temperature is included in the formulation of the problem. Selection of components for the property ratio is made by fitting the property values between the desired temperature limits. For a selected fluid, Prandtl number variation with temperature is neglected and the Prandtl number corresponding to film temperature is used for the analysis. Solution is carried out by finite difference method. Variation of wall concentration and wall flux along the length of plate is studied. The effect of thermophoretic coefficient on wall concentration is also studied. Results are presented in the form of graphs. The result is compared with similarity solution by Runge-Kutta method and found to be accurate upto second decimal place.

  17. Inside the supernova a powerful convective engine

    CERN Document Server

    Herant, M; Hix, W R; Fryer, C F; Colgate, S A; Marc Herant; Willy Benz; Chris F Fryer; Stirling Colgate

    1994-01-01

    We present an extensive study of the inception of supernova explosions by following the evolution of the cores of two massive stars (15 Msun and 25 Msun) in two dimensions. Our calculations begin at the onset of core collapse and stop several 100 ms after the bounce, at which time successful explosions of the appropriate magnitude have been obtained. (...) Guided by our numerical results, we have developed a paradigm for the supernova explosion mechanism. We view a supernova as an open cycle thermodynamic engine in which a reservoir of low-entropy matter (the envelope) is thermally coupled and physically connected to a hot bath (the protoneutron star) by a neutrino flux, and by hydrodynamic instabilities. (...) In essence, a Carnot cycle is established in which convection allows out-of-equilibrium heat transfer mediated by neutrinos to drive low entropy matter to higher entropy and therefore extracts mechanical energy from the heat generated by gravitational collapse. We argue that supernova explosions are ne...

  18. Testing turbulent closure models with convection simulations

    CERN Document Server

    Snellman, J E; Mantere, M J; Rheinhardt, M; Dintrans, B

    2012-01-01

    Aims: To compare simple analytical closure models of turbulent Boussinesq convection for stellar applications with direct three-dimensional simulations both in homogeneous and inhomogeneous (bounded) setups. Methods: We use simple analytical closure models to compute the fluxes of angular momentum and heat as a function of rotation rate measured by the Taylor number. We also investigate cases with varying angles between the angular velocity and gravity vectors, corresponding to locating the computational domain at different latitudes ranging from the pole to the equator of the star. We perform three-dimensional numerical simulations in the same parameter regimes for comparison. The free parameters appearing in the closure models are calibrated by two fit methods using simulation data. Unique determination of the closure parameters is possible only in the non-rotating case and when the system is placed at the pole. In the other cases the fit procedures yield somewhat differing results. The quality of the closu...

  19. Convectively driven vortex flows in the Sun

    CERN Document Server

    Bonet, J A; Almeida, J Sanchez; Cabello, I; Domingo, V

    2008-01-01

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  20. Vortices in simulations of solar surface convection

    CERN Document Server

    Moll, R; Schüssler, M

    2011-01-01

    We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.

  1. Mantle Convection Models Constrained by Seismic Tomography

    Science.gov (United States)

    Durbin, C. J.; Shahnas, M.; Peltier, W. R.; Woodhouse, J. H.

    2011-12-01

    Although available three dimensional models of the lateral heterogeneity of the mantle, based upon the latest advances in seismic tomographic imaging (e.g. Ritsema et al., 2004, JGR) have provided profound insights into aspects of the mantle general circulation that drives continental drift, the compatibility of the tomography with explicit models of mantle mixing has remained illusive. For example, it remains a significant issue as to whether hydrodynamic models of the mixing process alone are able to reconcile the observed detailed pattern of surface plate velocities or whether explicit account must be taken of elastic fracture processes to account for the observed equipartition of kinetic energy between the poloidal and toroidal components of the surface velocity pattern (e.g. Forte and Peltier, 1987, JGR). It is also an issue as to the significance of the role of mantle chemical heterogeneity in determining the buoyancy distribution that drives mantle flow, especially given the expected importance of the spin transition of iron that onsets in the mid-lower mantle, at least in the ferropericlase component of the mineralogy. In this paper we focus upon the application of data assimilation techniques to the development of a model of mantle mixing that is consistent with a modern three dimensional tomography based model of seismic body wave heterogeneity. Beginning with the simplest possible scenario, that chemical heterogeneity is irrelevant to first order, we employ a three dimensional version of the recently published control volume based convection model of Shahnas and Peltier (2010, JGR) as the basis for the assimilation of a three dimensional density field inferred from our preferred tomography model (Ritsema et al., 2004, JGR). The convection model fully incorporates the dynamical influence of the Olivine-Spinel and Spinel-Perovskite+Magnesiowustite solid-solid phase transformations that bracket the mantle transition zone as well as the recently discovered

  2. Magnetogenesis through convection in barotropic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E., E-mail: evan.d.miller@dartmouth.edu; Rogers, B., E-mail: barret.n.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-04-15

    It is shown that an unmagnetized plasma with non-uniform bulk velocity can generate magnetic fields through consideration of the non-relativistic isentropic two-fluid equations, even when the initial conditions contain with no fields or currents, uniform densities and pressures, and a divergence-free bulk velocity. This effect does not depend on the baroclinicity of the plasma and is therefore relevant even in barotropic flows, where the Biermann battery is absent. It also does not rely on kinetic effects or shear discontinuities. Instead, our magnetogenesis effect arises from convection terms proportional to the electron mass in the generalized Ohm's law. The resulting magnetic fields are typically weak but may still serve as seed fields for dynamo mechanisms.

  3. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  4. Mixed convection from an isolated spherical particle

    DEFF Research Database (Denmark)

    Bhattacharyya, S.; Singh, Ashok

    2008-01-01

    A numerical study on mixed convection around a hot spherical particle moving vertically downwards in a still fluid medium has been made. The flow field is considered to be axisymmetric for the range of Reynolds number (based on the diameter and the settling velocity of the particle) considered....... A third-order accurate upwind scheme is employed to compute the flow field and the temperature distribution. The form of the wake and the thermal field is analyzed for several values of Grashof number and the Reynolds number. The influence of buoyancy on drag and the rate of heat transfer are studied....... At moderate Reynolds number, recirculating eddy develops in the downstream of the sphere. With the rise of surface temperature this eddy collapses and the fluid adjacent to the heated surface develops into a buoyant plume above the sphere. The increase in surface temperature of the sphere delays the flow...

  5. Magnetic field and convection in Betelgeuse

    CERN Document Server

    Petit, P; Konstantinova-Antova, R; Morgenthaler, A; Perrin, G; Roudier, T; Donati, J -F

    2011-01-01

    We present the outcome of a highly-sensitive search for magnetic fields on the cool supergiant Betelgeuse. A time-series of six circularly-polarized spectra was obtained using the NARVAL spectropolarimeter at T\\'elescope Bernard Lyot (Pic du Midi Observatory), between 2010 March and April. Zeeman signatures were repeatedly detected in cross-correlation profiles, corresponding to a longitudinal component of about 1 G. The time-series unveils a smooth increase of the longitudinal field from 0.5 to 1.5 G, correlated with radial velocity fluctuations. We observe a strong asymmetry of Stokes V signatures, also varying in correlation with the radial velocity. The Stokes V line profiles are red-shifted by about 9 km/s with respect to the Stokes I profiles, suggesting that the observed magnetic elements may be concentrated in the sinking components of the convective flows.

  6. Role of viscoelasticity in mantle convection models

    Science.gov (United States)

    Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul

    2015-04-01

    A present limitation of global thermo-chemical convection models is that they assume a purely viscous or visco-plastic flow law for solid rock, i.e. elasticity is ignored. This may not be a good assumption in the cold, outer boundary layer known as the lithosphere, where elastic deformation may be important. Elasticity in the lithosphere plays at least two roles: It changes surface topography, which changes the relationship between topography and gravity, and it alters the stress distribution in the lithosphere, which may affect dynamical behaviour such as the formation of plate boundaries and other tectonics features. A method for adding elasticity to a viscous flow solver to make a visco-elastic flow solver, which involves adding advected elastic stress to the momentum equation and introducing an "effective" viscosity has been proposed (e.g. Moresi, 2002). The proposed method is designed primarily for a regional-scale numerical model which employs tracers for advection and co-rotation of the stress field. In this study we test a grid-based version of the method in context of thermal convection in the Boussinesq approximation. A simple finite difference/volume model with staggered grid is used, with the aim to later use the same method to implement viscoelasticity into StagYY (Tackley, 2008). The main obstacle is that Maxwell viscoelastic rheology produces instantaneous deformation if instantaneous change of the driving forces occurs. It is not possible to model such deformation in a velocity formulated convection model, as velocity undergoes a singularity for an instantaneous deformation. For a given Rayleigh number there exists a certain critical value of the Deborah number above which it is necessary to use a thermal time step different from the one used in viscoelastic constitutive equation to avoid this numerical instability from happening. Critical Deborah numbers for various Rayleigh numbers are computed. We then propose a method to decouple the thermal and

  7. Convective mixing in vertically-layered porous media: The linear regime and the onset of convection

    Science.gov (United States)

    Ghorbani, Zohreh; Riaz, Amir; Daniel, Don

    2017-08-01

    We study the effect of permeability heterogeneity on the stability of gravitationally unstable, transient, diffusive boundary layers in porous media. Permeability is taken to vary periodically in the horizontal plane normal to the direction of gravity. In contrast to the situation for vertical permeability variation, the horizontal perturbation structures are multimodal. We therefore use a two-dimensional quasi-steady eigenvalue analysis as well as a complementary initial value problem to investigate the stability behavior in the linear regime, until the onset of convection. We find that thick permeability layers enhance instability compared with thin layers when heterogeneity is increased. On the contrary, for thin layers the instability is weakened progressively with increasing heterogeneity to the extent that the corresponding homogeneous case is more unstable. For high levels of heterogeneity, we find that a small change in the permeability field results in large variations in the onset time of convection, similar to the instability event in the linear regime. However, this trend does not persist unconditionally because of the reorientation of vorticity pairs due to the interaction of evolving perturbation structures with heterogeneity. Consequently, an earlier onset of instability does not necessarily imply an earlier onset of convection. A resonant amplification of instability is observed within the linear regime when the dominant perturbation mode is equal to half the wavenumber of permeability variation. On the other hand, a substantial damping occurs when the perturbation mode is equal to the harmonic and sub-harmonic components of the permeability wavenumber. The phenomenon of such harmonic interactions influences both the onset of instability as well as the onset of convection.

  8. The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations

    Science.gov (United States)

    Pendergrass, Angeline G.; Reed, Kevin A.; Medeiros, Brian

    2016-11-01

    The rate of increase of extreme precipitation in response to global warming varies dramatically across climate model simulations, particularly over the tropics, for reasons that have yet to be established. Here we propose one potential mechanism: changing organization of convection with climate. We analyze a set of simulations with the Community Atmosphere Model version 5 with an idealized global radiative-convective equilibrium configuration forced by fixed sea surface temperatures varying in 2° increments from 285 to 307 K. In these simulations, convective organization varies from semiorganized in cold simulations, disorganized in warm simulations, and abruptly becomes highly organized at just over 300 K. The change in extreme precipitation with warming also varies across these simulations, including a large increase at the transition from disorganized to organized convection. We develop an extreme precipitation-focused metric for convective organization and use this to explore their connection.

  9. Engineering photochemical smog through convection towers

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L. [Los Alamos National Lab., NM (United States); Jacobson, M.Z.; Turco, R.P. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Los Angeles, CA (United States). Atmospheric Sciences Dept.

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  10. Chaotic dynamics of corotating magnetospheric convection

    Science.gov (United States)

    Summers, Danny; Mu, Jian-Lin

    1994-01-01

    The corotating plasma convection system of the Jovian magnetosphere is analyzed. The macroscopic (mhd) model introduced by Summers and Mu, (1992) that incorporates the effects of microdiffusion is extended by including previously neglected density effects. We reduce the governing partial differential equations to a third-order ordinary differential system by the Galerkin technique of mode truncation. We carry out such a severe truncation partly in the interests of tractability, and leave open the question of the efficacy of adding additional modes. Exhaustive numerical integrations are carried out to calculate the long-term solutions, and we discover that a rich array of plasma motions is possible, dependent on the value of the height-integrated ionospheric Pederson conductivity Sigma. If Sigma is less than a certain critical value Sigma(sub c), then plasma motion can be expected to be chaotic (or periodic), while if Sigma is greater than Sigma(sub c), then steady state convection is expected. In the former case, whether the plasma motion is chaotic or periodic (and, if periodic, the magnitude of the period) can be very sensitive to the value of Sigma. The value of Sigma(sub c), which is a function of a parameter q that occurs in the assumed form of the stationary radial profile (varies as L(exp -q) of the plasma mass per unit magnetic flux, lies well within the accepted range of values of Sigma for Jupiter, i.e. Sigma greater than or equal to 0.1 mho and less than or equal to 10 mho.

  11. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus).

    Science.gov (United States)

    Bhattacharya, Mrittika; Srivastav, Prem Prakash; Mishra, Hari Niwas

    2015-04-01

    Oyster mushroom samples were dried under selected convective, microwave-convective drying conditions in a recirculatory hot-air dryer and microwave assisted hot-air dryer (2.45 GHz, 1.5 kW) respectively. Only falling rate period and no constant rate period, was exhibited in both the drying technique. The experimental moisture loss data were fitted to selected semi-theoretical thin-layer drying equations. The mathematical models were compared according to three statistical parameters, i.e. correlation coefficient, reduced chi-square and residual mean sum of squares. Among all the models, Midilli et al. model was found to have the best fit as suggested by 0.99 of square correlation coefficient, 0.000043 of reduced-chi square and 0.0023 of residual sum of square. The highest effective moisture diffusivity varying from 10.16 × 10(-8) to 16.18 × 10(-8) m(2)/s over the temperature range was observed in microwave-convective drying at an air velocity of 1.5 m/s and the activation energy was calculated to be 16.95 kJ/mol. The above findings can aid to select the most suitable operating conditions, so as to design drying equipment accordingly.

  12. Natural convective boundary layer flow of a nano-fluid past a convectively heated vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350 (Pakistan)

    2012-03-15

    Natural convective flow of a nano-fluid over a convectively heated vertical plate is investigated using a similarity analysis of the transport equations followed by their numerical computations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and solid volume fraction of the nano-fluid profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on four additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy-ratio parameter Nr and convective parameter Nc. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, solid volume fraction of the nano-fluid, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These linear regression models provide a highly accurate (with a maximum standard error of 0.004) representation of the numerical data and can be conveniently used in engineering practice. (authors)

  13. Numerical modelling of the process of heat transference, of the convective flow induced and the power generated in a wind power station; Modelizacion numerica del proceso de transferencia de calor, del flujo convectivo inducido y de la potencia generada en una central eolico solar

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, F. J.; Kaiser, A. S.; Zamora, B.; Lucas, M.; Viedma, A.

    2008-07-01

    A thermodynamic analysis for solar chimney power plant has been carried out by numerical simulation. A numerical model has been developed using the general purpose code Fluent to study heat transfer and convective flow within the chimney power plant. The {kappa}-{epsilon} turbulence model has been employed. A heat transfer, mass flow and power production numerical analysis has been carried out on different hours during the day, assuming steady state conditions. The numeric values obtained are 10% different from experimental measures. Once model has been validated, a numeric study about flow within power plant, heat transfer and mass flow has been carry out, and the non-dimensional parameters obtained have been compared with studies about free convection. (Author)

  14. Mantle convection, tectonics and the evolution of the Tethyan subduction zone

    Science.gov (United States)

    Jolivet, Laurent; Sternai, Pietro; Menant, Armel; Faccenna, Claudio; Becker, Thorsten; Burov, Evguenii

    2014-05-01

    side of Africa from the Jurassic until the collision in the Oligocene, and even afterward when Arabia formed by opening of the Red Sea and the Gulf of Aden. This also suggests a dominant role of an underlying flow at large scale, dragging and mechanically eroding plates and breaking them into fragments, then passively carried. Only during a short period of the Late Cretaceous did the situation change drastically with the obduction event giving the large ophiolitic nappes observed from Oman to Turkey. This obduction event has never been really explained. It has been shown to be coeval with faster plate velocities and more active formation of oceanic crust globally, which in turn suggests a link with deep mantle convection. We discuss this succession of events and propose to relate them with the basal drag induced by convective mantle flow below the African continental lithosphere. We discuss the effects of convection on crustal deformation at different scales from deep convection related to plumes and subduction zones to more local mantle flow due to slab retreat and tearing.

  15. Penetrative convection in stratified fluids: velocity and temperature measurements

    Directory of Open Access Journals (Sweden)

    M. Moroni

    2006-01-01

    Full Text Available The flux through the interface between a mixing layer and a stable layer plays a fundamental role in characterizing and forecasting the quality of water in stratified lakes and in the oceans, and the quality of air in the atmosphere. The evolution of the mixing layer in a stably stratified fluid body is simulated in the laboratory when "Penetrative Convection" occurs. The laboratory model consists of a tank filled with water and subjected to heating from below. The methods employed to detect the mixing layer growth were thermocouples for temperature data and two image analysis techniques, namely Laser Induced Fluorescence (LIF and Feature Tracking (FT. LIF allows the mixing layer evolution to be visualized. Feature Tracking is used to detect tracer particle trajectories moving within the measurement volume. Pollutant dispersion phenomena are naturally described in the Lagrangian approach as the pollutant acts as a tag of the fluid particles. The transilient matrix represents one of the possible tools available for quantifying particle dispersion during the evolution of the phenomenon.

  16. Rotating convection-driven dynamos at low Ekman number.

    Science.gov (United States)

    Rotvig, Jon; Jones, Chris A

    2002-11-01

    We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that scales as E(-1/3) (E being the Ekman number), and a constant Roberts number. The optimized model allows us to study dynamos with Ekman numbers in the range [10(-5),10(-4)]. In this regime we find strong-field dynamos where the induced magnetic fields satisfy Taylor's constraint to good accuracy. The solutions are characterized by (i) a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable magnitude, while viscous forces are only significant in thin boundary layers, (ii) the Elsasser number is O(10), (iii) the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large-scale components, (iv) the Taylor-Proudman effect is detectable, (v) the Taylorization decreases as the Ekman number is lowered, and (vi) the ageostrophic velocity component makes up 80% of the flow.

  17. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  18. Induction of Marangoni convection in pure water drops

    Science.gov (United States)

    Kita, Yutaku; Askounis, Alexandros; Kohno, Masamichi; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-10-01

    We report on experimental observations/visualization of thermocapillary or Marangoni flows in a pure water drop via infrared thermography. The Marangoni flows were induced by imposing a temperature gradient on the drop by locally heating the substrate directly below the center with a laser. Evidently, a temperature gradient along the liquid-air interface of ca. 2.5 °C was required for the Marangoni flows to be initiated as twin vortices and a subsequent gradient of ca. 1.5 °C to maintain them. The vortices exhibited an oscillatory behavior where they merged and split in order for the drop to compensate for the non-uniform heating and cooling. The origin of these patterns was identified by comparing the dimensionless Marangoni and Rayleigh numbers, which showed the dominance of the Marangoni convection. This fact was further supported by a second set of experiments where the same flow patterns were observed when the drop was inverted (pendant drop).

  19. THE EFFECT OF MAGNETIC FIELDS ON LOW FREQUENCY OSCILLATING NATURAL CONVECTION WITH PRESSURE GRADIENT

    Institute of Scientific and Technical Information of China (English)

    G.C. Sharma; Madhu Jain; Mahesh Chandra

    2003-01-01

    The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a parallel plate configuration. The emphasis is on low frequency oscillating convective flows induced by g-jitter associated with micro gravity because of their importance to the space processing materials. A general solution for an oscillating flow in the presence of transverse magnetic field is carried out. Some special cases of the oscillating flow and its response to an applied magnetic field are performed. It was observed that the behavior of oscillating free convective flows depends on frequency, amplitude of the driving buoyancy forces, temperature gradient, magnetic field and the electric conditions of the channel walls. In the absence of magnetic field, buoyancy force plays a predominant role in driving the oscillatory flow pattern, and velocity magnitude is also affected by temperature gradients. To suppress the oscillating flow external magnetic field can be used. It is also found that the reduction of the velocity is inversely proportional to the square of the applied magnetic field with conducting wall but directly proportional to the inverse of the magnetic field with insulating wall. Detailed calculations and computational results are also carried out to depict the real situation.

  20. Solutal Convection Around Growing Protein Crystal and Diffusional Purification in Space

    Science.gov (United States)

    Lee, Chun P.; Chernov, Alexander A.

    2004-01-01

    At least some protein crystals were found to preferentially trap microheterogeneous impurities. The latter are, for example, dimmer molecules of the crystallizing proteines (e.g. ferritin, lysozyme), or the regular molecules on which surfaces small molecules or ions are adsorbed (e.g. acetilated lysozyme) and modi@ molecular charge. Impurities may induce lattice defects and deteriorate structural resolution. Distribution of impurities between mother solution and gorwing crystal is defined by two interrelated distribution coefficients: kappa = rho(sup c, sub 2) and K = (rho(sup c, sub 2)/rho(sup c, sub 1)/rho(sub 2)/rho(sub 1). Here, rho(sub 2), rho(sub 1) and rho(sup c, sub 2) are densities of impurity (2) and regular protein (1) in solution at the growing interface and within the crystal ("c"). For the microheterogeneous impurities studied, K approx. = 2 - 4, so that kappa approx. - 10(exp 2) - 10(exp 3), since K = kappa (rho(sub 1)/rho(sup c, sub 1) and protein solubility ratio rho(sub 1)/rho(sub=p c, sub 2) much less than 1. Therefore, a crystal growing in absence of convection purifies mother solution around itself, grows cleaner and, probably, more perfect. If convection is present, the solution flow permanently brings new impurities to the crystal. This work theoretically addressed two subjects: 1) onset of convection, 2) distribution of impurities.

  1. Thermal convection in Earth's inner core with phase change at its boundary

    CERN Document Server

    Deguen, Renaud; Cardin, Philippe

    2013-01-01

    Inner core translation, with solidification on one hemisphere and melting on the other, provides a promising basis for understanding the hemispherical dichotomy of the inner core, as well as the anomalous stable layer observed at the base of the outer core - the F-layer - which might be sustained by continuous melting of inner core material. In this paper, we study in details the dynamics of inner core thermal convection when dynamically induced melting and freezing of the inner core boundary (ICB) are taken into account. If the inner core is unstably stratified, linear stability analysis and numerical simulations consistently show that the translation mode dominates only if the viscosity $\\eta$ is large enough, with a critical viscosity value, of order $3 10^{18}$ Pas, depending on the ability of outer core convection to supply or remove the latent heat of melting or solidification. If $\\eta$ is smaller, the dynamical effect of melting and freezing is small. Convection takes a more classical form, with a one...

  2. Thermal and solutal convection with conduction effects inside a rectangular enclosure

    Science.gov (United States)

    Mennetrier, Christophe; Duval, Walter M. B.

    1991-01-01

    We numerically investigate the effects of various boundary conditions on the flow field characteristics of the physical vapor transport process. We use a prescribed temperature profile as boundary condition on the enclosure walls, and we consider parametric variations applicable to ground-based and space microgravity conditions. For ground-based applications, density gradients in the fluid phase generate buoyancy-driven convection which in turn disrupts the uniformity of the mass flux at the interface depending on the orientation. Heat conduction in the crystal can affect the fluid flow near the interface of the crystal. When considering isothermal source and sink at the interfaces, we observe a diffusive mode and three modes (i.e., thermal, solutal, and thermo-solutal). The convective modes show opposing flow field trends between thermal and solutal convection; theoretically, these trends can be used to achieve a uniform mass flux near the crystal. However, under the physical conditions chosen, the mathematical condition necessary for uniform mass flux cannot be satisfied because of thermodynamic restrictions. When a longitudinal thermal gradient is prescribed on the boundary of the crystal, a non-uniform interface temperature results, which induces a symmetrical fluid flow near the interface for the vertical case. For space microgravity applications, we show that the flow field is dominated by the Stefan wind and a uniform mass flux results at the interface.

  3. A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.

    2000-09-01

    Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.

  4. Constraints on plate tectonics initiation from scaling laws for single-cell convection

    Science.gov (United States)

    Wong, Teresa; Solomatov, Viatcheslav S.

    2016-08-01

    The Earth is the only planet known to have plate tectonics, while other planets are covered with a stagnant lid. On the Earth, the initiation of subduction, which is thought to be the fundamental process for plate tectonics initiation, is caused not only by the negative buoyancy of the lithosphere but also by the forces from plate motions. However, for planets which do not have plate tectonics, the very first episode of lithospheric failure has to be caused by forces other than plate motions. Sublithospheric convection has been proposed as a possible mechanism that provides lithospheric instability through inducing stresses in the lithosphere, and lithospheric failure can occur when the yield stress is below a critical value. We test the applicability of scaling laws for the critical yield stress obtained in single-cell convection simulations to strongly time-dependent multi-cell systems. We show that with an appropriate choice of characteristic aspect ratio for the convective system, the scaling laws from single-cell simulations can be used to evaluate the conditions on the terrestrial planets in the inner Solar System for plate tectonics to exist. In agreement with previous studies, the estimated values for critical yield stress and coefficient of friction are much lower than the expected values for the Earth's lithosphere.

  5. Apparatus to study the onset of free convection about vertical and inclined hot wires

    Science.gov (United States)

    Giaretto, Valter; Miraldi, Elio; Torchio, Marco F.

    2007-07-01

    This article describes a methodology and an apparatus used to evaluate the onset time of free convection in hot-wire experiments. The evaluation of the onset time is useful to obtain a measurement interval that is suitable to estimate the thermal properties of a fluid. If a pure conduction regime is present, the hot-wire temperature increment versus time is a straight line in a semilog plot, whereas the convection effect induces a deviation from this trend. An algorithm based on the F test is proposed to evaluate the onset time of free convection. The experimental facility has the particular feature of allowing an easy change of the hot-wire inclination angle up to 118.3mrad. The wire is kept in a tilted position by a permanent horseshoe magnet, and the tilting angle from the vertical is measured by a theodolite. Some testing results using water are discussed for vertical and inclined wires. A good agreement between the experimental onset times and the theoretical ones is found in the case of a vertical wire.

  6. Apparatus to study the onset of free convection about vertical and inclined hot wires.

    Science.gov (United States)

    Giaretto, Valter; Miraldi, Elio; Torchio, Marco F

    2007-07-01

    This article describes a methodology and an apparatus used to evaluate the onset time of free convection in hot-wire experiments. The evaluation of the onset time is useful to obtain a measurement interval that is suitable to estimate the thermal properties of a fluid. If a pure conduction regime is present, the hot-wire temperature increment versus time is a straight line in a semilog plot, whereas the convection effect induces a deviation from this trend. An algorithm based on the F test is proposed to evaluate the onset time of free convection. The experimental facility has the particular feature of allowing an easy change of the hot-wire inclination angle up to 118.3 mrad. The wire is kept in a tilted position by a permanent horseshoe magnet, and the tilting angle from the vertical is measured by a theodolite. Some testing results using water are discussed for vertical and inclined wires. A good agreement between the experimental onset times and the theoretical ones is found in the case of a vertical wire.

  7. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    Science.gov (United States)

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  8. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  9. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  10. Theory of stellar convection: Removing the Mixing-Length Parameter

    CERN Document Server

    Pasetto, S; Cropper, M; Grebel, E K

    2014-01-01

    Stellar convection is customarily described by Mixing-Length Theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and at all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty. The aim of this study is to present a new theory of stellar convection that does not require the mixing length parameter. We present a self-consistent analytical formulation of stellar convection that determines the properties of stellar convection as a function of the physical behaviour of the convective elements themselves and the surround...

  11. Hydrodynamic simulations of He-shell flash convection

    CERN Document Server

    Herwig, F; Hückstädt, R M; Timmes, F X; Freytag, Bernd; Herwig, Falk; Hueckstaedt, Robert M.; Timmes, Francis X.

    2006-01-01

    We present the first hydrodynamic, multi-dimensional simulations of He-shell flash convection. Specifically, we investigate the properties of shell convection at a time immediately before the He- luminosity peak during the 15th thermal pulse of a stellar evolution track with initially two solar masses and metallicity Z=0.01. This choice is a representative example of a low-mass asymptotic giant branch thermal pulse. We construct the initial vertical stratification with a set of polytropes to resemble the stellar evolution structure. Convection is driven by a constant volume heating in a thin layer at the bottom of the unstable layer. We calculate a grid of 2D simulations with different resolutions and heating rates. Our set of simulations includes one low-resolution 3D run. The computational domain includes 11.4 pressure scale heights. He-shell flash convection is dominated by large convective cells that are centered in the lower half of the convection zone. Convective rolls have an almost circular appearance...

  12. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  13. Regulation of the climate in coupled convection-permitting simulations

    Science.gov (United States)

    Hohenegger, Cathy; Stevens, Bjorn

    2017-04-01

    The question of the regulation of the climate, in particular the existence of a stable climatic state and its basic characteristics, is investigated in this study. In contrast to previous studies, we use a convection-permitting simulation with an explicit representation of convection and of cloud cover. The grid spacing amounts to 3 km. The simulation is coupled to a slab ocean and is integrated in an idealized set-up of radiative convective equilibrium without rotation, without continent and with spatially uniform insolation. It is found that the system equilibrates at a sea surface temperature near the one of the present-day tropics. The equilibration results from the self-aggregation of convection that generates the dry and clear subtropics needed to radiate the excess heat from the system. When artificially preventing the self-aggregation, the existence of a runaway greenhouse cannot be ruled out. This is very different from what happens when performing a similar simulation at low resolution (T63) with a General Circulation Model (GCM) and parameterized cloud and convective processes. In that case, the atmosphere cools through an increase in planetary albedo arising from clouds. The total cloud radiative effect is 2.5 times larger than in the convection-permitting simulation. Perturbing the system by increasing the solar insolation also reveals a different behavior of the two simulations, with a larger warming in the convection-permitting simulation than in the GCM due to their distinct cloud feedbacks.

  14. New layer thickness parameterization of diffusive convection in the ocean

    Science.gov (United States)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng; Song, Xue-Long; Fer, Ilker

    2016-03-01

    In the present study, a new parameterization is proposed to describe the convecting layer thickness in diffusive convection. By using in situ observational data of diffusive convection in the lakes and oceans, a wide range of stratification and buoyancy flux is obtained, where the buoyancy frequency N varies between 10-4 and 0.1 s-1 and the heat-related buoyancy flux qT varies between 10-12 and 10-7 m2 s-3. We construct an intrinsic thickness scale, H0 =[qT3 / (κTN8) ] 1 / 4, here κT is the thermal diffusivity. H0 is suggested to be the scale of an energy-containing eddy and it can be alternatively represented as H0 = ηRebPr1/4, here η is the dissipation length scale, Reb is the buoyant Reynolds number, and Pr is the Prandtl number. It is found that the convective layer thickness H is directly linked to the stability ratio Rρ and H0 with the form of H ∼ (Rρ - 1)2H0. The layer thickness can be explained by the convective instability mechanism. To each convective layer, its thickness H reaches a stable value when its thermal boundary layer develops to be a new convecting layer.

  15. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    Science.gov (United States)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  16. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  17. High-resolution Calculation of the Solar Global Convection with the Reduced Speed of Sound Technique. II. Near Surface Shear Layer with the Rotation

    Science.gov (United States)

    Hotta, H.; Rempel, M.; Yokoyama, T.

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R ⊙ and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R ⊙. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation results from rotationally aligned convection cells ("banana cells"). The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  18. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    Science.gov (United States)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  19. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  20. Modelling of convection during solidification of metal and alloys

    Indian Academy of Sciences (India)

    A K Singh; R Pardeshi; B Basu

    2001-02-01

    The role of convection during solidification is studied with the help of a mathematical model. The effect of various mush models on convection and consequent macrosegregation is examined with the help of numerical simulations. The predicted macrosegregation profiles are compared with published experimental data. Subsequently, the importance of proper auxiliary relationship for thermo-solutal coupling in the mushy region is highlighted through some careful numerical simulations. Finally, the role of material parameters on double-diffusive convection is illustrated through comparative study of solidification of aqueous ammonium chloride, iron-carbon and lead-tin binary systems. Important results of these studies are presented and discussed.

  1. Transition to Chaos in the Floating Half Zone Convection

    Institute of Scientific and Technical Information of China (English)

    AA Yan; CAO Zhong-Hua; HU Wen-Rui

    2007-01-01

    The transition process from steady convection to chaos is experimentally studied in thermocapillary convections of floating half zone. The onset of temperature oscillations in the liquid bridge of floating half zone and further transitions of the temporal convective behaviour are detected by measuring the temperature in the liquid bridge.The fast Fourier transform reveals the frequency and amplitude characteristics of the flow transition. The experimental results indicate the existence of a sequence of period-doubling bifurcations that culminate in chaos.The measured Feigenbaum numbers are δ2 = 4.69 and δ4 = 4.6, which are comparable with the theoretical asymptotic value δ = 4.669.

  2. Modeling of Thermal Convection of Liquid TNT for Cookoff

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Dunn, T; Nichols, A; Reaugh, J; McClelland, M

    2003-02-27

    The objective is to computationally model thermal convection of liquid TNT in a heated cylindrical container for what are called 'cookoff' experiments. Our goal is to capture the thermal convection coupled to the heat transfer in the surrounding container. We will present computational results that validate the functionality of the model, numerical strategy, and computer code for a model problem with Rayleigh number of O(10{sup 6}). We solve the problem of thermal convection between two parallel plates in this turbulent flow regime and show that the three-dimensional computations are in excellent agreement with experiment.

  3. An investigation of planetary convection: The role of boundary layers

    Science.gov (United States)

    King, Eric M.

    Thermal and gravitational energy sources drive turbulent convection in Earth's vast liquid metal outer core. These fluid motions generate the electric currents that are believed to power Earth's magnetic field through a process known as dynamo action. Core flow is subject to the influence of Earth's rotation via the Coriolis force, which has an organizational effect on otherwise chaotic motions. Furthermore the magnetic field generated by convection acts back on the flow via Lorentz forces. Fluid motions in Earth's core, and the magnetic field generating regions of other planets and stars, are then governed by three main ingredients: convection, rotation, and magnetic fields. The goal of my Ph.D. research is to further our understanding of the systematic fluid dynamics occurring in dynamo systems. To accomplish this, I have developed a unique experimental device that allows me to produce fluid conditions approaching those expected in Earth's core and other planetary and stellar environments. The results presented here stem from a broad parameter survey of non-magnetic, rotating convection. In this study, I examine the interplay between rotation and convection by broadly varying the strength of each and measuring the efficiency of convective heat transfer. This parameter survey allows me to argue that the importance of rotation in convection dynamics is determined by boundary layer physics, where the Ekman (rotating) and thermal (non-rotating) boundary layers compete for control of convection dynamics. I develop a simple predictive scaling of this convective regime transition using theoretical boundary layer thickness scalings. This transition scaling permits a unified description of heat transfer in rotating convection, which reconciles contrasting results from previous studies. I also extend this experimental result to a broad array of numerical dynamo models, arguing that the boundary layer control of convective regimes is also evident in the dynamo models. A

  4. 2-D traveling-wave patterns in binary fluid convection

    Energy Technology Data Exchange (ETDEWEB)

    Surko, C.M.; Porta, A.L. [Univ. of California, La Jolla, CA (United States)

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  5. Stabilization meshless method for convection-dominated problems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-hua; OUYANG Jie; WANG Jian-yu

    2008-01-01

    It is well-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several tech- niques are proposed to overcome the instability issues in convection-dominated problems in the simulation with a meshless method. These stable techniques included nodal re- finement, enlargement of the nodal influence domain, full upwind meshless technique and adaptive upwind meshless technique. Numerical results for sample problems show that these techniques are effective in solving convection-dominated problems, and the adaptive upwind meshless technique is the most effective method of all.

  6. A decoupled monolithic projection method for natural convection problems

    Science.gov (United States)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  7. High Rayleigh number convection numerical experiments

    Science.gov (United States)

    Verzicco, Roberto

    2002-03-01

    temperature variance dissipations. The achieved results seem to support the idea that the observed transitional behaviors have to be attributed to the change in the topology of the mean flow rather than to a transition from a laminar to a turbulent state of the viscous boundary layers. Other issues accomplished by the simulation concern the study of the scaling properties of the turbulent quantities and length scales in terms of Ra. Finally, further details on the turbulence dynamics are obtained by the analysis of the power spectra and low order structure functions of both the temperature and the velocity components, computed from the numerical probes both within the bulk region and close to the walls. References Roche, PE; Castaing, B; Chabaud, B; Hebral, B. ``Observation of the 1/2 power law in Rayleigh-Benard convection'' Phys. Rev. E, 2001, 6304(4), p. 5303. Niemela, J.J.; Skrbek, L.; Sreenivasan, K.R. and Donnelly, R.J. ``Turbulent convection at very high Rayleigh numbers'' Nature, 405, 243-253 (11 May 2000). Verzicco, R. and Camussi, R. ``Prandtl number effects in convective turbulence'' J. of Fluid Mech., 383, (1999), 55-73.

  8. Penta-hepta defect chaos in a model for rotating hexagonal convection.

    Science.gov (United States)

    Young, Yuan-Nan; Riecke, Hermann

    2003-04-01

    In a model for rotating non-Boussinesq convection with mean flow, we identify a regime of spatiotemporal chaos that is based on a hexagonal planform and is sustained by the induced nucleation of dislocations by penta-hepta defects. The probability distribution function for the number of defects deviates substantially from the usually observed Poisson-type distribution. It implies strong correlations between the defects in the form of density-dependent creation and annihilation rates of defects. We extract these rates from the distribution function and also directly from the defect dynamics.

  9. Temperature and velocity fields in natural convection by PIV and LIF

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Larsen, Poul Scheel; Westergaard, C. H.

    2002-01-01

    Natural convection in a cubical cavity (L = 250 mm) filled with water is created by heating a square plate (0.5 L) centred in the bottom wall and by cooling the sidewalls, while the remaining walls are insulated. The Rayleigh number based on cavity side length and temperature difference between...... plate and cooled walls is 1.4×10^10. The flow is turbulent and is similar to some indoor room flows. Combined Particle Image Velocimetry (PIV) and Planar Light Induced Fluorescence (LIF) are used to measure local velocities and temperatures. Data measured in a symmetry plane parallel to a sidewall...

  10. The effects of near-core convective shells on the gravity modes of the subdwarf B pulsator KIC 10553698A

    Science.gov (United States)

    Ghasemi, H.; Moravveji, E.; Aerts, C.; Safari, H.; Vučković, M.

    2017-02-01

    KIC 10553698A is a hot pulsating subdwarf B (sdB) star observed by the Kepler satellite. It exhibits dipole (l = 1) and quadrupole (l = 2) gravity modes with a clear period spacing structure. The seismic properties of the KIC 10553698A provide a test of stellar evolution models, and offer a unique opportunity to determine mixing processes. We consider mixing due to convective overshooting beyond the boundary of the helium burning core. Very small overshooting (f = 10-6) results in a progressive increase in the size of convective core. However, moderate (f = 10-2) and small (f = 10-5) overshooting both lead to the occurrence of inert outer convective shells in the near-core region. We illustrate that the chemical stratifications induced by convective shells are able to change the g-mode period spacing pattern of an sdB star appreciably. The mean period spacing and trapping of the gravity modes in the model with moderate and small core overshooting are fully consistent with the period-spacing trends observed in KIC 10553698A. Atomic diffusion driven by gravitational settling as well as thermal and chemical gradients is applied to reach a better match with the observed period spacings. Models that include small or very small overshooting with atomic diffusion have a decreased lifetime of the extreme horizontal branch phase and produce chemical stratification induced by convective shells during helium burning phase. In addition of being consistent with asteroseismology, their calculated values of the R2 parameter are more compatible with the observed R2 values.

  11. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  12. Numerical Study on MHD Mixed Convection Flow in a Vertical Insulated Square Duct with Strong Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Muhim Chutia

    2015-01-01

    Full Text Available A numerical study on steady laminar magnetohydrodynamics (MHD mixed convection flow of an electrically conducting fluid in a vertical square duct under the action of transverse magnetic field has been investigated. The walls are assumed as perfectly electrically insulated. In this study both force and free convection flows are considered. The viscous dissipation and Joule heat are also considered in the energy equation and walls of the duct are kept at constant temperature. The enclosure is heated by uniform volumetric heat density. The governing equations of momentum, induction and energy are first transformed into dimensionless equations by using dimensionless quantities, then these are solved employing finite difference method for velocity, induced magnetic field and temperature distribution. The computed results for velocity, induced magnetic field and temperature distribution are presented graphically for different dimensionless parameters Hartmaan number M, Prandtl number Pr, Grashof number Gr and magnetic Reynolds number Rm.

  13. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  14. Buoyant Magnetic Loops Generated by Global Convective Dynamo Action

    CERN Document Server

    Nelson, Nicholas J; Brun, A Sacha; Miesch, Mark S; Toomre, Juri

    2012-01-01

    Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much larger values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength o...

  15. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  16. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2017-01-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  17. Generation of internal gravity waves by penetrative convection

    CERN Document Server

    Pinçon, C; Goupil, M J

    2015-01-01

    The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a c...

  18. Mixing properties of thermal convection in the earth's mantle

    NARCIS (Netherlands)

    Schmalzl, J.T.

    1996-01-01

    The structure of mantle convection will greatly influence the generation and the survival of compositional heterogeneities. Conversely, geochemical observations can be used to obtain information about heterogeneities in the mantle and then, with certain model assumptions, information about the patte

  19. Thermal Convection Affects Shape Of Solid/Liquid Interface

    Science.gov (United States)

    Mennetrier, C.; Chopra, M. A.; Yao, M.; De Groh, H. C., III; Yeoh, G. H.; De Vahl Davis, G.; Leonardi, E.

    1994-01-01

    Report describes experimental and theoretical study of effect of thermal convection on shape of interface between solid and liquid succinonitrile, clear commercially available plastic, in Bridgman (directional-solidification) apparatus in vertical and horizontal orientations.

  20. A numerical study of momentum and forced convection heat transfer ...

    African Journals Online (AJOL)

    temperature fields, axial velocity profiles, local and average Nusselt numbers, and skin frictions were ... Key words: Finite volume method - Turbulent flow - Forced convection - Waved baffles. .... numerical simulations are conducted in a two-.