WorldWideScience

Sample records for ray improving target

  1. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  2. X-ray tube target

    International Nuclear Information System (INIS)

    Weber, R.G.

    1980-01-01

    A target with an improved heat emissive surface for use in a rotating anode type x-ray tube is described. The target consists of a body having a first surface portion made of x-ray emissive material and a second surface portion made of a heat emissive material comprising at least one of hafnium boride, hafnium oxide, hafnium nitride, hafnium silicide, and hafnium aluminide. (U.K.)

  3. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  4. Target for production of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A. E-mail: sergey_korenev@steris.com

    2004-10-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  5. Target for production of X-rays

    International Nuclear Information System (INIS)

    Korenev, S.A.

    2004-01-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented

  6. Target for production of X-rays

    Science.gov (United States)

    Korenev, S. A.

    2004-09-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  7. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging.

    Science.gov (United States)

    Verellen, Dirk; Soete, Guy; Linthout, Nadine; Van Acker, Swana; De Roover, Patsy; Vinh-Hung, Vincent; Van de Steene, Jan; Storme, Guy

    2003-04-01

    The aim of this study is to investigate the positional accuracy of a prototype X-ray imaging tool in combination with a real-time infrared tracking device allowing automated patient set-up in three dimensions. A prototype X-ray imaging tool has been integrated with a commercially released real-time infrared tracking device. The system, consisting of two X-ray tubes mounted to the ceiling and a centrally located amorphous silicon detector has been developed for automated patient positioning from outside the treatment room prior to treatment. Two major functions are supported: (a) automated fusion of the actual treatment images with digitally reconstructed radiographs (DRRs) representing the desired position; (b) matching of implanted radio opaque markers. Measurements of known translational (up to 30.0mm) and rotational (up to 4.0 degrees ) set-up errors in three dimensions as well as hidden target tests have been performed on anthropomorphic phantoms. The system's accuracy can be represented with the mean three-dimensional displacement vector, which yielded 0.6mm (with an overall SD of 0.9mm) for the fusion of DRRs and X-ray images. Average deviations between known translational errors and calculations varied from -0.3 to 0.6mm with a standard deviation in the range of 0.6-1.2mm. The marker matching algorithm yielded a three-dimensional uncertainty of 0.3mm (overall SD: 0.4mm), with averages ranging from 0.0 to 0.3mm and a standard deviation in the range between 0.3 and 0.4mm. The stereoscopic X-ray imaging device integrated with the real-time infrared tracking device represents a positioning tool allowing for the geometrical accuracy that is required for conformal radiation therapy of abdominal and pelvic lesions, within an acceptable time-frame.

  8. Experimental benchmark for an improved simulation of absolute soft-X-ray emission from polystyrene targets irradiated with the Nike laser

    International Nuclear Information System (INIS)

    Weaver, J.L.; Colombant, D.G.; Mostovych, A.N.; Busquet, M.; Feldman, U.; Klapisch, M.; Seely, J.F.; Brown, C.; Holland, G.

    2005-01-01

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hν∼0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of ∼1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/δE∼1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra

  9. Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the Nike laser.

    Science.gov (United States)

    Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G

    2005-02-04

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

  10. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  11. Fixed target measurements at LHCb for cosmic rays physics

    CERN Document Server

    AUTHOR|(CDS)2069608

    2018-01-01

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target. The energy scale achievable at the LHC, combined with the LHCb forward geometry and detector capabilities, allow to explore particle production in a wide Bjorken-$x$ range at the $\\sqrt {s_{NN}} ~$ ~ 100 GeV energy scale, providing novel inputs to nuclear and cosmic ray physics. The first measurement of antiproton production in collisions of LHC protons on helium nuclei at rest is presented. The knowledge of this cross-section is of great importance for the study of the cosmic antiproton flux, and the LHCb results are expected to improve the interpretation of the recent high-precision measurements of cosmic antiprotons performed by the space-borne PAMELA and AMS-02 experiments.

  12. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  13. Improved backward ray tracing with stochastic sampling

    Science.gov (United States)

    Ryu, Seung Taek; Yoon, Kyung-Hyun

    1999-03-01

    This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.

  14. Nanodiamond targets for accelerator X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lobko, A., E-mail: lobko@inp.bsu.by [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Golubeva, E. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Kuzhir, P.; Maksimenko, S. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Ryazan State RadioEngineering University, 59/1 Gagarina Street, Ryazan 390005 (Russian Federation); Paddubskaya, A. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Shenderova, O. [International Technology Center, 8100 Brownleigh Dr., S. 120, Raleigh, NC 27617 (United States); Uglov, V. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Valynets, N. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus)

    2015-07-15

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc.

  15. Nanodiamond targets for accelerator X-ray experiments

    International Nuclear Information System (INIS)

    Lobko, A.; Golubeva, E.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Shenderova, O.; Uglov, V.; Valynets, N.

    2015-01-01

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc

  16. X-ray spectroscopy of laser imploded targets

    International Nuclear Information System (INIS)

    Yaakobi, B.; Skupsky, S.; McCrory, R.L.; Hooper, C.F.; Deckman, H.; Bourke, P.; Soures, J.M.

    1981-01-01

    X-ray spectroscopy provides a variety of means for studying the interaction of lasers with plasmas, in particular the interaction with imploding targets in inertial confinement fusion. A typical fusion target is composed of materials other than the thermonuclear fuel which play a variety of roles (tamping, shielding, thermal isolation, etc.). These structural elements emit characteristic X-ray lines and continua, and through their spectral and spatial distributions can yield very valuable information on the interaction and implosion dynamics. Examples are the study of heat conductivity, the mixing of different target layers, and the determination of temperature and density at the compressed target core. Results will be shown for electron densities Nsub(e) approximately equal to 10 24 cm -3 and temperatures T approximately equal to 1 keV measured during compression of argon-filled targets with a six-beam laser of peak power 2 TW. (author)

  17. Parametric X-rays from a polycrystalline target

    International Nuclear Information System (INIS)

    Lobach, Ihar; Benediktovitch, Andrei; Feranchuk, Ilya; Lobko, Alexander

    2015-01-01

    Highlights: • X-ray radiation from relativistic electrons in a polycrystal is described. • Analytical results are found for two models of the polycrystal texture. • Characteristic number of emitted photons for real accelerator is 10 6 s −1 . • Intensity distribution at fixed frequency resembles a set of rings. • Radiation intensities in monocrystals and polycrystals are compared. - Abstract: A theoretical description of parametric X-ray radiation (PXR) from a nanocrystal powder target is presented in terms of the orientation distribution function (ODF). Two models of ODF resulting in the analytical solution for the PXR intensity distribution are used and the characteristic features of this distribution are considered. A promising estimate of the number of the emitted photons is obtained for the case of a nanodiamond powder target using the parameters of ASTA Facility at Fermilab. The PXR spectra from polycrystal and single crystal targets are compared. The application scenarios of PXR from nanocrystals are discussed.

  18. Study of compact X-ray laser pumped by pulse-train laser. Double-target experiment

    International Nuclear Information System (INIS)

    Yamaguchi, Naohiro; Fujikawa, Chiemi; Hara, Tamio

    2000-01-01

    We have been developing a tabletop x-ray laser based on the recombination plasma scheme. An advanced experiment has been started to improve x-ray laser output substantially. Two 11-mm-long laser produced plasmas were produced so that their axis aligned into a line, the double-target configuration. X-ray intensity of the 15.47 nm transition line of the Li-like Al ion has been enhanced in the double-target configuration. (author)

  19. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  20. Hydrodynamic aspects of selenium X-ray laser targets

    Energy Technology Data Exchange (ETDEWEB)

    Charatis, G; Busch, G E; Shepard, C L; Campbell, P M; Rosen, M D

    1986-10-01

    Recent experiments at KMS have been performed to investigate parameter variations of target component thickness, laser pulse duration and intensity, and one-sided vs two-sided irradiation in order to optimize the performance of the Livermore exploding foil selenium x-ray laser experiments. Preliminary experiments with selenium double foil targets were also conducted as a means of prolonging the duration and enlarging the spatial extent of the lasing conditions. Four-frame holographic interferometry was used in determining the time-dependence of density profiles obtained by Abel inversion of the interferometric fringe field and comparisons were made to LASNEX code calculations.

  1. X-ray absorption in characterization of laser fusion targets

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-11-01

    Many plastic or metal coated targets are opaque, so their thickness and thickness uniformity cannot be obtained by optical means. Therefore, we have built and tested a new system using monochromatic X-ray absorption measurements. This system is also able to perform non-destructive measurements of argon fill pressure in glass microballoons. The X-ray source is a diffraction tube with a chromium target and fine focus (0.4 x 0.8 mm 2 ). Since monochromatic calculations are involved in this method, we use electronic discrimination to isolate the chromium Kα line (5.4 keV) from the bremsstrahlung spectrum. The detectors are xenon-filled proportional counters. The system is composed of two beams (10 μm in diameter), one used as a reference and the other as the measurement arm. A PET desk computer is coupled ot the experiment. We achieved a precision better than 10% for gold layers in the range of 0.1 to 1 μm, and better than 20% for argon pressures in the range of 5 - 13 bars

  2. Exploiting target amplitude information to improve multi-target tracking

    Science.gov (United States)

    Ehrman, Lisa M.; Blair, W. Dale

    2006-05-01

    Closely-spaced (but resolved) targets pose a challenge for measurement-to-track data association algorithms. Since the Mahalanobis distances between measurements collected on closely-spaced targets and tracks are similar, several elements of the corresponding kinematic measurement-to-track cost matrix are also similar. Lacking any other information on which to base assignments, it is not surprising that data association algorithms make mistakes. One ad hoc approach for mitigating this problem is to multiply the kinematic measurement-to-track likelihoods by amplitude likelihoods. However, this can actually be detrimental to the measurement-to-track association process. With that in mind, this paper pursues a rigorous treatment of the hypothesis probabilities for kinematic measurements and features. Three simple scenarios are used to demonstrate the impact of basing data association decisions on these hypothesis probabilities for Rayleigh, fixed-amplitude, and Rician targets. The first scenario assumes that the tracker carries two tracks but only one measurement is collected. This provides insight into more complex scenarios in which there are fewer measurements than tracks. The second scenario includes two measurements and one track. This extends naturally to the case with more measurements than tracks. Two measurements and two tracks are present in the third scenario, which provides insight into the performance of this method when the number of measurements equals the number of tracks. In all cases, basing data association decisions on the hypothesis probabilities leads to good results.

  3. A new hybrid target concept for multi-keV X-ray sources

    International Nuclear Information System (INIS)

    Primout, M.; Babonneau, D.; Jacquet, L.; Villette, B.; Girard, F.; Brebion, D.; Stemmler, P.; Fournier, K.B.; Marrs, R.; May, M.J.; Heeter, R.F.; Wallace, R.J.; Nishimura, H.; Fujioka, S.; Tanabe, M.; Nagai, H.

    2013-01-01

    A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the Osaka University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm 3 ) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm 3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm 3 for some target diameter and length. (authors)

  4. Improvements in X-ray detectors

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1979-01-01

    Multicellular, spatially separate, gaseous ionization detectors for use in computerized tomography are described. They have high sensitivity, short recovery time, fine spatial resolution and are relatively insensitive to the adverse effects of k shell x-ray fluoresecence.(UK)

  5. Target focusing configuration for X-ray laser experiments

    International Nuclear Information System (INIS)

    Seppala, L.G.

    1985-01-01

    X-ray laser experiments imposed a new demand on the Novette focusing optics. These optics had to provide highly uniform, double-sided illumination on a target region 1.0 cm long by 100 to 200 μm wide. This line focus requirement had to be achieved without degrading the diagnostic reflection from the last surface of the focus lens and without potential ghost focus problems. The only optical configuration that preserves the diagnostic reflection is shown. A negative focal length cylinder lens is placed between the focus lens and the debris shield, with the concave surface facing toward the focus lens. Any ghost reflections from the cylinder lens or debris shield are degraded by astigmatism, making them less hazardous. In practice, the uniformity of illumination is probably about the same for a positive or a negative cylinder lens. The minimum Novette focused spot was approximately 50 to 75 μm in diameter, and the fabrication errors in the 80-cm-diam precision cylinder lens produced a line focus 25 μm wide. a negative cylinder lens design was chosen, however, to optimize the illumination uniformity in the case of line widths of several hundred microns

  6. Target Improves Efficiency in New Construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  7. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  8. Improving privacy protection in the area of behavioural targeting

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.J.

    2014-01-01

    This PhD thesis discusses how European law could improve privacy protection in the area of behavioural targeting. Behavioural targeting, also referred to as online profiling, involves monitoring people’s online behaviour, and using the collected information to show people individually targeted

  9. Will Interventions Targeting Conscientiousness Improve Aging Outcomes?

    Science.gov (United States)

    English, Tammy; Carstensen, Laura L.

    2014-01-01

    The articles appearing in this special section discuss the role that conscientiousness may play in healthy aging. Growing evidence suggests that conscientious individuals live longer and healthier lives. However, the question remains whether this personality trait can be leveraged to improve long-term health outcomes. We argue that even though it…

  10. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  11. X-ray emission from National Ignition Facility indirect drive targets

    International Nuclear Information System (INIS)

    Anderson, A.T.; Managan, R.A.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    We have performed a series of 1-D numerical simulations of the x-ray emission from National Ignition Facility (NIF) targets. Results are presented in terms of total x-ray energy, pulse length, and spectrum. Scaling of x-ray emissions is presented for variations in both target yield and hohlraum thickness. Experiments conducted on the Nova facility provide some validation of the computational tools and methods

  12. Could targeted food taxes improve health?

    Science.gov (United States)

    Mytton, Oliver; Gray, Alastair; Rayner, Mike; Rutter, Harry

    2007-08-01

    To examine the effects on nutrition, health and expenditure of extending value added tax (VAT) to a wider range of foods in the UK. A model based on consumption data and elasticity values was constructed to predict the effects of extending VAT to certain categories of food. The resulting changes in demand, expenditure, nutrition and health were estimated. Three different tax regimens were examined: (1) taxing the principal sources of dietary saturated fat; (2) taxing foods defined as unhealthy by the SSCg3d nutrient scoring system; and (3) taxing foods in order to obtain the best health outcome. Consumption patterns and elasticity data were taken from the National Food Survey of Great Britain. The health effects of changing salt and fat intake were from previous meta-analyses. (1) Taxing only the principal sources of dietary saturated fat is unlikely to reduce the incidence of cardiovascular disease because the reduction in saturated fat is offset by a rise in salt consumption. (2) Taxing unhealthy foods, defined by SSCg3d score, might avert around 2,300 deaths per annum, primarily by reducing salt intake. (3) Taxing a wider range of foods could avert up to 3,200 cardiovascular deaths in the UK per annum (a 1.7% reduction). Taxing foodstuffs can have unpredictable health effects if cross-elasticities of demand are ignored. A carefully targeted fat tax could produce modest but meaningful changes in food consumption and a reduction in cardiovascular disease.

  13. Targeting Environmental Quality to Improve Population Health ...

    Science.gov (United States)

    Key goals of health care reform are to stimulate innovative approaches to improve healthcare quality and clinical outcomes while holding down costs. To achieve these goals value-based payment places the needs of the patient first and encourages multi-stakeholder cooperation. Yet, the stakeholders are typically all within the healthcare system, e.g. the Accountable Care Organization or Patient-Centered Medical Home, leaving important contributors to the health of the population such as the public health and environmental health systems absent. And rarely is the quality of the environment regarded as a modifiable factor capable of imparting a health benefit. Underscoring this point, a PubMed search of the search terms “environmental quality” with “value-based payment”, “value-based healthcare” or “value-based reimbursement” returned no relevant articles, providing further evidence that the healthcare industry largely disregards the quality of the environment as a significant determinant of wellbeing and an actionable risk factor for clinical disease management and population health intervention. Yet, the quality of the environment is unequivocally related to indicators of population health including all-cause mortality. The EPA’s Environmental Quality Index (EQI) composed of five different domains (air, land use, water, built environment and social) has provided new estimates of the associations between environmental quality and health stat

  14. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  15. The effect of target thickness on x-ray production by FXR [Flash X-Ray Machine

    International Nuclear Information System (INIS)

    Back, N.L.

    1986-01-01

    The electron-photon transport code SANDYL has been used to calculate the x-ray flux for a simplified Flash X-Ray Machine (FXR) bullnose geometry. Four different thicknesses (24.5, 36.75, 49, and 61.25 mils) were used for the tantalum bremsstrahlung target in order to study the effect of target thickness on the FXR output. The calculations were performed for a parallel 17 MeV electron beam, and the resulting angular distributions were then used to compute the forward flux for the more realistic case of a converging beam. Over the range of thicknesses studied, the x-ray energy content per steradian on axis was essentially independent of target thickness. The main reason for this is that, while the total x-ray flux coming out of the target increases with increasing target thickness, the angular width of that flux also increases. The implications for target wheel design are discussed. 3 refs., 7 figs

  16. Improved indexes for targeting placement of buffers of Hortonian runoff

    Science.gov (United States)

    M.G. Dosskey; Z. Qiu; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Targeting specific locations within agricultural watersheds for installing vegetative buffers has been advocated as a way to enhance the impact of buffers and buffer programs on stream water quality. Existing models for targeting buffers of Hortonian, or infiltration-excess, runoff are not well developed. The objective was to improve on an existing soil survey–based...

  17. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  18. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman; Chapman, Natalie H; Smith, Rebecca; Poole, Mervin; Adams, Gary; Gillis, Richard B; Besong, Tabot M.D.; Sheldon, Judith; Stiegelmeyer, Suzy; Perez, Laura; Samsulrizal, Nurul; Wang, Duoduo; Fisk, Ian D; Yang, Ni; Baxter, Charles; Rickett, Daniel; Fray, Rupert; Blanco-Ulate, Barbara; Powell, Ann L T; Harding, Stephen E; Craigon, Jim; Rose, Jocelyn K C; Fich, Eric A; Sun, Li; Domozych, David S; Fraser, Paul D; Tucker, Gregory A; Grierson, Don; Seymour, Graham B

    2016-01-01

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  19. Time resolved x-ray pinhole photography of compressed laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    Use of the Livermore x-ray streak camera to temporally record x-ray pinhole images of laser compressed targets is described. Use is made of specially fabricated composite x-ray pinholes which are near diffraction limited for 6 A x-rays, but easily aligned with a He--Ne laser of 6328 A wavelength. With a 6 μm x-ray pinhole, the overall system can be aligned to 5 μm accuracy and provides implosion characteristics with space--time resolutions of approximately 6 μm and 15 psec. Acceptable criteria for pinhole alignment, requisite x-ray flux, and filter characteristics are discussed. Implosion characteristics are presented from our present experiments with 68 μm diameter glass microshell targets and 0.45 terawatt, 70 psec Nd laser pulses. Final implosion velocities in excess of 3 x 10 7 cm/sec are evident

  20. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  1. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  2. Differential diagnosis of benign and malignant breast tumors by high frequency molybdenum-target X-ray photography

    International Nuclear Information System (INIS)

    Mai Yuanqi; Wang Maosheng; Huang Jian; Cui Guoru; Liang Zhicong; Lu Yingying

    2008-01-01

    Objective: To explore the X-ray Image of benign and malignant breast lesions (tumors) in order to improve their differcatial diagnostic level. Methods: X-ray image changes of 63 malignant breast neoplasms were described by the mammography and in comparision with those of 43 benign masses. Results: The accordance percentages between the X-ray and histological examinations for the benign and malignant neoplasms were shown as 85% and 90.6% respectively. Spiculated mass, calcification granules in clusters and other images were found to be indication of benign or malignant breast lesion. Conclusion: The High Frequency Molybdenum-target X-ray Photography can provide effective imaging data for diagnosis and distinguish between the benign and malignant breast lesions. (authors)

  3. Streamline and Improve the Targeting of Education Tax Benefits

    Science.gov (United States)

    Institute for College Access & Success, 2014

    2014-01-01

    This one-page document presents The Institute for College Access & Success' (TICAS') recommendations for ways to improve the targeting of higher education tax benefits. The TICAS white paper, "Aligning the Means and the Ends: How to Improve Federal Student Aid and Increase College Access and Success," recommends almost entirely…

  4. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  5. The production of sulfur targets for gamma-ray spectroscopy

    CERN Document Server

    Greene, J P

    2002-01-01

    The production of thin sulfur targets for nuclear physics, either in elemental or in compound form, is problematic, due to low melting points, high vapor pressures and high dissociation rates. Many sulfur compounds have been tried in the past without great success. In this paper, we report the use of spray coating molybdenum disulfide onto a thin carbon backing. The targets were of thickness 750 mu g/cm sup 2 (approx 300 mu g/cm sup 2 of sulfur) on 15 mu g/cm sup 2 carbon backings, and withstood 4 pnA (approx 10 mW/cm sup 2) of deposited beam power for several days without apparent loss of sulfur content.

  6. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    E.Y. Kong

    2016-08-01

    Full Text Available The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio, as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP. The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf revealed through acridine orange (AO staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.

  7. Using Target Ablation for Ion Beam Quality Improvement

    International Nuclear Information System (INIS)

    Zhao Shuan; Chen Jia-Er; Lin Chen; Ma Wen-Jun; Yan Xue-Qing; Wang Jun-Jie

    2016-01-01

    During the laser foil interaction, the output ion beam quality including the energy spread and beam divergence can be improved by the target ablation, due to the direct laser acceleration (DLA) electrons generated in the ablation plasma. The acceleration field established at the target rear by these electrons, which is highly directional and triangle-envelope, is helpful for the beam quality. With the help of the target ablation, both the beam divergence and energy spread will be reduced. If the ablation is more sufficient, the impact of DLA-electron-caused field will be strengthened, and the beam quality will be better, confirmed by the particle-in-cell simulation. (paper)

  8. Investigation on diagnostic techniques of X-ray radiation characteristic from slit target

    International Nuclear Information System (INIS)

    Cheng Jinxiu; Miao Wenyong; Sun Kexu; Wang Hongbin; Cao Leifeng; Yang Jiamin; Chen Zhenglin

    2001-01-01

    On the Xingguang-II facility, X-ray transport process in a cavity target was simulated in a long cylindrical cavity with slits. High temporally and spatially resolved Microchannel Plate (MCP) gated X-ray picosecond frame camera and soft X-ray steak camera were used to investigate the temporal and spatial distribution of the soft X-ray emitted from the cavity wall through the slit. X-ray transport velocity, X-ray emission time and amount of intensity decay was obtained. X-ray CCD pinhole transmission grating spectrometer was used to investigate the spectrum change of the emitted X-ray versus its location. The change characteristic of the spectrum of X-ray absorbed and emitted again and again in transport was obtained. X-ray diodes and Dante spectrometer were used to measure X-ray flux and radiation temperature in the slit, the source and the transport end, respectively. The typical results in the experiment were given. A brief and essential analysis and discussion were made

  9. Debris-free soft x-ray source with gas-puff target

    Science.gov (United States)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  10. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  11. Improving scanner wafer alignment performance by target optimization

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  12. Crystal quality analysis and improvement using x-ray topography

    International Nuclear Information System (INIS)

    Maj, J.; Goetze, K.; Macrander, A.; Zhong, Y.; Huang, X.; Maj, L.

    2008-01-01

    The Topography X-ray Laboratory of the Advanced Photon Source (APS) at Argonne National Laboratory operates as a collaborative effort with APS users to produce high performance crystals for APS X-ray beamline experiments. For many years the topography laboratory has worked closely with an on-site optics shop to help ensure the production of crystals with the highest quality, most stress-free surface finish possible. It has been instrumental in evaluating and refining methods used to produce high quality crystals. Topographical analysis has shown to be an effective method to quantify and determine the distribution of stresses, to help identify methods that would mitigate the stresses and improve the Rocking curve, and to create CCD images of the crystal. This paper describes the topography process and offers methods for reducing crystal stresses in order to substantially improve the crystal optics.

  13. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  14. X-ray yields by low energy heavy ion excitation in alkali halide solid targets

    International Nuclear Information System (INIS)

    Kurup, M.B.; Prasad, K.G.; Sharma, R.P.

    1981-01-01

    Solid targets of the alkali halides KCl, NaCl and KBr are bombarded with ion beams of 35 Cl + , 40 Ar + and 63 Cu + in the energy range 165 keV to 320 keV. The MO and characteristic K X-ray yields resulting from the ion-atom collision have been systematically studied. Both MO and Cl K X-ray yields are enhanced by factors 3.5 and 2 respectively in KCl targets as compared to that in NaCl when bombarded with either Cl + or Ar + projectiles. An intercomparison of MO and K X-ray yields for a given projectile-target combination has shown that the latter increases ten times faster than the former as the energy of the projectile is increased from 165 to 320 keV indicating a correspondingly stronger velocity dependence of the K X-ray production process. The X-ray yields observed in the symmetric Cl-Cl collision are identical to those observed in the asymmetric Ar-Cl collision for the same projectile velocities in both KCl and NaCl targets. It is inferred that the multiple ionization of the projectile resulting in an increase in the binding energy of its inner shells offsets the expected enhancement in the X-ray yields in a symmetric collision. The same projectiles, Ar or Cl, incident on KBr targets have produced only Br L X-rays. Using substantially heavier projectiles than the target atoms (Na, K and Cl), like 63 Cu + ions, the inner shell excitation by recoiling atoms is shown. (orig.)

  15. Progress in target materials for high-efficiency X-ray backlight

    International Nuclear Information System (INIS)

    Du Ai; Zhou Bin; Li Longxiang; Zhu Xiurong; Li Yu'nong; Shen Jun; Gao Guohua; Zhang Zhihua; Wu Guangming

    2012-01-01

    The composition, microstructure and density of the target materials are the key parameters to determinate the photon energy and intensity of the laser-induced X-ray backlight. Thus the classification of backlight targets, the preparation of target materials and the interaction between targets and high power laser were introduced in this paper. Underdense targets were more competitive than traditional dense targets among the backlight targets. Nano-structured foam targets, which could be classified into nanofiber targets and aerogel targets, were regarded as novel high-efficiency underdense targets. Nanofiber, which was commonly prepared via electro spinning and thermal treatment, exhibited good formability and high concentration of emission atoms; while aerogel, which was prepared via sol-gel processes and supercritical fluid drying, possesses the advantages of homogeneous microstructure and theoretically high conversion efficiency, but accompanied with the disadvantages of complex synthetic processes and low concentration of emission atoms. To prepare monolithic aerogels with low density and high concentration of emission atoms via combined sol-gel theories may be the better design for the development of the laser-induced X-ray backlight. (authors)

  16. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  17. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  18. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  19. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  20. Improvements in or relating to X-ray apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    In this invention an apparatus is described for producing X-ray radiation. It comprises a target which, in use, is exposed to an electron beam so as to produce a conical beam of X-ray radiation, a primary collimator with an opening defining the largest desired angle of the conical beam of radiation and a first electron absorber made from one or more elements having an atomic number lower than that of copper, (aluminium or graphite) and a second electron absorber, made from a similar material, mounted in the opening of the primary collimator, with dimensions similar to those of the opening. The effective cross-section for producing x-ray radiation increases with the atomic number and the electron absorption is proportional to the density. With the lower atomic number of the electron absorber material, the proportion of additional X-radiation arising is reduced. The problem of the reduced electron absorption is overcome by the use of two electron absorbers. (U.K.)

  1. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  2. MULTI-KEV X-Ray Yields From High-Z Gas Targets Fielded At Omega

    International Nuclear Information System (INIS)

    Kane, J.O.; Fournier, K.B.; May, M.J.; Colvin, J.D.; Thomas, C.A.; Marrs, R.E.; Compton, S.M.; Moody, J.D.; Bond, E.J.; Davis, J.F.

    2010-01-01

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ∼ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3ω (∼ 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  3. Target surface structure effects on x-ray generation from laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi [NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan)

    2000-03-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 {mu}m and a groove depth of 100 {mu}m on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al{sup 8+,9+} ions. (author)

  4. Target surface structure effects on x-ray generation from laser produced plasma

    International Nuclear Information System (INIS)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi

    2000-01-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 μm and a groove depth of 100 μm on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al 8+,9+ ions. (author)

  5. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  6. Targeted reduction of advanced glycation improves renal function in obesity

    DEFF Research Database (Denmark)

    Harcourt, Brooke E; Sourris, Karly C; Coughlan, Melinda T

    2011-01-01

    -lowering pharmaceutical, alagebrium, and mice in which the receptor for AGE (RAGE) was deleted. Obesity, resulting from a diet high in both fat and AGE, caused renal impairment; however, treatment of the RAGE knockout mice with alagebrium improved urinary albumin excretion, creatinine clearance, the inflammatory profile...... if treatments that lower tissue AGE burden in patients and mice would improve obesity-related renal dysfunction. Overweight and obese individuals (body mass index (BMI) 26-39¿kg/m(2)) were recruited to a randomized, crossover clinical trial involving 2 weeks each on a low- and a high-AGE-containing diet. Renal......, and renal oxidative stress. Alagebrium treatment, however, resulted in decreased weight gain and improved glycemic control compared with wild-type mice on a high-fat Western diet. Thus, targeted reduction of the advanced glycation pathway improved renal function in obesity....

  7. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  8. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  9. Process safety improvement--quality and target zero.

    Science.gov (United States)

    Van Scyoc, Karl

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The "plan, do, check, act" improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  10. Process safety improvement-Quality and target zero

    International Nuclear Information System (INIS)

    Van Scyoc, Karl

    2008-01-01

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The 'plan, do, check, act' improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given

  11. Process safety improvement-Quality and target zero

    Energy Technology Data Exchange (ETDEWEB)

    Van Scyoc, Karl [Det Norske Veritas (U.S.A.) Inc., DNV Energy Solutions, 16340 Park Ten Place, Suite 100, Houston, TX 77084 (United States)], E-mail: karl.van.scyoc@dnv.com

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The 'plan, do, check, act' improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  12. X-ray generation from Bremsstrahlung effect using stainless steel target

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Shari Jahar; Leo Kee Wah; Muhammad Zahidee Taat

    2004-01-01

    X-ray radiation is produced when high energy electron interacts with metals. This process is known as Bremsstrahlung. In commercial electron beam irradiator, this process may be utilized to serve irradiation of thick products with lower dose requirement such disinfestation of fruits, delaying ripening and medical product sterilization. Initial experiment was carried out to measure the amount of x-ray radiation produced by using a simple converter. In this experiment, the target material is the stainless steel beam shutter that is normally used to protect the window. The maximum energy for the Eps 3000 is 3 MeV and was used generate the x-ray radiation. The dose was measure using CTA film and analyzed using UV spectrophotometer. The results obtained showed that sufficient amount of x-ray dose can be generated for low dose irradiation by using this simple set up. (Author)

  13. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  14. Improved targeted immunization strategies based on two rounds of selection

    Science.gov (United States)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  15. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  16. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  17. Gamma-rays generated from plasmas in the interaction of solid targets with femtosecond laser pulses

    International Nuclear Information System (INIS)

    He Jingtang; Zhang Ping; Chen Duanbao; Li Zuhao; Tang Xiaowei; Zhang Ying; Wang Long; Feng Baohua; Zhang Xiulan; Wei Zhiyi; Li Zanliang; Zhang Jie

    1998-01-01

    The γ-rays with energies up to 300 keV have been observed from plasmas produced by femtosecond laser pulses at a focused intensity of 5 x 10 15 W·cm -2 ·μm 2 irradiating Ta, Mo and Cu targets. By introducing an 8% prepulse of 70 ps before the main pulse, the fraction of high energy γ-ray photons (hν>100 keV) was significantly enhanced relative to low energy photons (hν<100 keV)

  18. Improving the survivability of Nb-encapsulated Ga targets for the production of 68Ge

    Science.gov (United States)

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Olivas, E. R.; Kelsey, C. T., IV; Engle, J. W.; Connors, M. A.; Nortier, F. M.; Runde, W. H.; Moddrell, C.; Lenz, J. W.; John, K. D.

    2013-03-01

    At the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF), radioisotopes are produced for medical, scientific, and industrial applications by irradiating various targets with a 100 MeV, 230 μA proton beam. The medical isotope germanium-68 is produced by irradiating Nb capsules containing molten Ga target material. During irradiation, the Nb is subjected to intense radiation damage, corrosive attack by Ga, and mechanical and thermally-induced stresses for an extended period. Maintaining the structural integrity of the Nb target capsules during irradiation is crucial to contain the molten Ga target and the radioisotope product. In the present work, we focus on potential material related factors and assess the effect of the Nb stock material on target durability. We do so by comparing post-irradiation target mortality information to data collected during pre-irradiation ultrasound testing and X-ray imaging. We also explore possible failure mechanisms by using MCNP6 simulations and ANSYS codes to predict the induced atom displacement levels, hydrogen gas built-up, temperature distribution, and mechanical stresses. Our analysis, performed entirely in the context of an aggressive production program that allows for only limited diagnostic interference, suggests that using Nb stock with reasonably large and uniform grains is the most important factor in reducing early target failure at integrated beam current values <18 mAh and random failure at the face of the rear window at <60 mAh. We discuss possible failure mechanisms of failed targets that were fabricated using the same stock material and grain structure and then irradiated to integrated beam current values of up to 60 mAh and more. Based on these observations, we have enacted new specifications for Nb stock material quality, target design, and limits on integrated beam current. These changes have resulted in improved Nb capsule survivability.

  19. Using Gamma Rays to Improve Nutritional Value of Legumes

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2009-01-01

    World is suffering from food shortages and rising prices of animal food, in particular. Therefore, attention turned to fill the shortfall by increasing the production and consumption of pulses. Beans are the most important types of legumes consumed in the countries of the Middle East. But there are some factors that reduce the expansion in the consumption of beans and some factors discourage feeding the trypsin inhibitor,phytic acid, causes of gases and allergens in some people, which negatively affect the bioavailability to absorb the vital minerals and proteins in addition to the length of time needed for cooking beans. There have been attempts to use gamma rays to improve strength and Leakage and cooking recipes for legumes, and reached results in other studies to reduce the efficiency of trypsin inhibitor in beans treated at a dose of 10 kGy as well as achieving the highest percentage reduction in phytic acid content of the same seed above. Also it was found that gamma rays affect negatively on the causes of gases in the beans, radiation works to break down some of the Oligosaccharides and turn it into simple sugars, as well as to break down some of the compounds which are responsible of disease in beans.

  20. Improved liquid-lithium target for the FMIT facility

    International Nuclear Information System (INIS)

    Miles, R.R.; Greenwell, R.K.; Hassberger, J.A.; Ingham, J.G.

    1982-11-01

    An improved target for the Fusion Materials Irradiation Testing Facility was designed. The purpose of the target is to produce a high neutron flux (10 19 n/m 2 sec) for testing of candidate first wall materials for fusion reactors. The neutrons are produced through a Li(d,n) stripping reaction between accelerated deuterons (35 MeV, 0.1A) and a thin jet of flowing liquid lithium. The target consists of a high speed (approx. 17 m/s), free surface wall jet which is exposed to the high (10 -4 Pa) accelerator vacuum. The energy deposited by the deuteron beam in the lithium is sufficient to heat the jet internally to a maximum temperature of roughly 740 0 C, 430 0 C greater than the saturation temperature at the jet free surface. For this reason, the jet flows along a curved wall which provides the pressurization required to prevent sperheat internal to the jet. Supporting hardware for the jet and a drain line which controls the jet beyond the beam intercept region

  1. Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets

    International Nuclear Information System (INIS)

    Poludniowski, Gavin G.; Evans, Philip M.

    2007-01-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target

  2. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia.

    Science.gov (United States)

    Wu, Muzo; Gibbons, John G; DeLoid, Glen M; Bedugnis, Alice S; Thimmulappa, Rajesh K; Biswal, Shyam; Kobzik, Lester

    2017-07-01

    Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia. Copyright © 2017 the American Physiological Society.

  3. Analysis of multiple-foil XRL targets using x-ray spectroscopy

    International Nuclear Information System (INIS)

    Wang, J.; Boehly, T.; Yaakobi, B.; Epstein, R.; Meyerhofer, D.; Richardson, M.C.; Russotto, M.; Soures, J.M.

    1989-01-01

    The multiple-foil collisional excitation x-ray laser targets proposed by LLE have been studied spectroscopically. Using spatially resolved 3d-2p x-ray spectra, the authors compare the temperatures and densities obtained in single- and double-foil geometries. They use the ratio of the dipole transitions to the electric quadrupole transitions in the Neon-like species as a density diagnostic. A non-LTE average-ion atomic physics model is used to describe the ionization process and a relativistic atomic physics code is used for calculation of the level energies, populations, and gain calculations. They support their claims that the double-vfoils provide higher densities and in some cases concave density profiles. The XUV spectra in the range of 20-300 A show the effect of target geometry and incident laser intensity on the lasing lines and the ionization balance

  4. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  5. X-ray backlighting requirements for the double-shell target

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1980-01-01

    We have analyzed one specific NOVA double-shell target design and have determined the x-ray energies required for probing the performance of the implosion. It is virtually impossible to study the compression of the fuel or the motion of the inner pusher. An x-ray energy of about 9 keV appears to be ideal for measuring the behavior of the outer TaCOH shell for the majority of its travel. However, it would be advantageous to have an x-ray source of about 25 keV to measure the contact between the two shells. Development of narrowband x-ray line sources are more desirable than broadband continuum sources since the intensity per keV is many times greater in the line. Intensities of the probes are determined by the self-emission levels of the target capsule. For the 9 keV line source, an intensity of upwards to 10 15 keV/keV/sh/cm 2 /sr is required with a source area of about 0.01 cm 2

  6. A moving target for accelerated charged particle induced X-ray measurement

    International Nuclear Information System (INIS)

    Chuang, L.S.; Shima, K.; Ebihara, H.; Seki, R.; Mikumo, T.

    1980-01-01

    To attain good reproducibility as well as to enable an absolute determination in the measurement of X-ray fluorescences, resulting from bombardment of a heterogeneous sample by accelerated charged particles, a moving-target mechanism incorporating an electronic remote control system has been devised. The system is designed to scan the whole sample area with a chosen constant linear speed, by a fixed particle beam with a cross-sectional area a small fraction of that of the sample. Using 16 MeV protons and 40 MeV oxygen-ion beams, test runs of this system showed that the attempted objectives are attainable with good accuracies: reproducibility of the data for a given target is better than 3%, the linearity of the calibration curve is in good agreement, within the weighing errors of the standard elements and the uncertainty due to beam current fluctuation, with the expected values, and the results of absolute determinations using both metal foils and heterogeneous powder samples are in good agreement with accepted results using different methods. Detailed accounts of the moving-target system, and the test for reproducibility and linearity are presented. An absolute determination of the quantities related to accelerated charged-particle induced X-ray fluorescence (PIXE) using the moving target is presented for samples in different forms. (orig./HP)

  7. Spatially and temporally resolved x-ray emission from imploding laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.; Coleman, L.W.; Boyle, M.J.; Phillion, D.W.; Swain, J.E.; Manes, K.R.; Larsen, J.T.

    1976-09-01

    The Livermore 15 psec x-ray streak camera has been used in conjunction with 6 μm diameter pinholes to record well resolved implosion histories of DT filled laser fusion targets. The space-time compression data provide clearly identified implosion velocities, typically 3 x 10 7 cm/sec for two-sided clamshell irradiation of a 70 μm/sup D/, .5 μm wall DT filled glass microshell. Single-sided irradiation results show hydrodynamic convergence at the target center, followed by an asymmetric but two-sided target disassembly. These experiments were performed at the two arm Janus Laser facility, which typically delivered a total of 0.4 TW in a 70 psec pulse for these experiments

  8. Targeted 2D/3D registration using ray normalization and a hybrid optimizer

    International Nuclear Information System (INIS)

    Dey, Joyoni; Napel, Sandy

    2006-01-01

    X-ray images are often used to guide minimally invasive procedures in interventional radiology. The use of a preoperatively obtained 3D volume can enhance the visualization needed for guiding catheters and other surgical devices. However, for intraoperative usefulness, the 3D dataset needs to be registered to the 2D x-ray images of the patient. We investigated the effect of targeting subvolumes of interest in the 3D datasets and registering the projections with C-arm x-ray images. We developed an intensity-based 2D/3D rigid-body registration using a Monte Carlo-based hybrid algorithm as the optimizer, using a single view for registration. Pattern intensity (PI) and mutual information (MI) were two metrics tested. We used normalization of the rays to address the problems due to truncation in 3D necessary for targeting. We tested the algorithm on a C-arm x-ray image of a pig's head and a 3D dataset reconstructed from multiple views of the C-arm. PI and MI were comparable in performance. For two subvolumes starting with a set of initial poses from +/-15 mm in x, from +/-3 mm (random), in y and z and +/-4 deg in the three angles, the robustness was 94% for PI and 91% for MI, with accuracy of 2.4 mm (PI) and 2.6 mm (MI), using the hybrid algorithm. The hybrid optimizer, when compared with a standard Powell's direction set method, increased the robustness from 59% (Powell) to 94% (hybrid). Another set of 50 random initial conditions from [+/-20] mm in x,y,z and [+/-10] deg in the three angles, yielded robustness of 84% (hybrid) versus 38% (Powell) using PI as metric, with accuracies 2.1 mm (hybrid) versus 2.0 mm (Powell)

  9. TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bechtol, K.; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Okumura, A.; /JAXA, Sagamihara /Stanford U., HEPL /KIPAC, Menlo Park; Ruckman, L.; /Hawaii U.; Simons, A.; Tajima, H.; Vandenbroucke, J.; /Stanford U., HEPL /KIPAC, Menlo Park; Varner, G.; /Hawaii U.

    2011-08-11

    The next-generation very-high-energy (VHE) gamma-ray observatory, the Cherenkov Telescope Array, will feature dozens of imaging atmospheric Cherenkov telescopes (IACTs), each with thousands of pixels of photosensors. To be affordable and reliable, reading out such a mega-channel array requires event recording technology that is highly integrated and modular, with a low cost per channel. We present the design and performance of a chip targeted to this application: the TeV Array Readout with GSa/s sampling and Event Trigger (TARGET). This application-specific integrated circuit (ASIC) has 16 parallel input channels, a 4096-sample buffer for each channel, adjustable input termination, self-trigger functionality, and tight window-selected readout. We report the performance of TARGET in terms of sampling frequency, power consumption, dynamic range, current-mode gain, analog bandwidth, and cross talk. The large number of channels per chip allows a low cost per channel ($10 to $20 including front-end and back-end electronics but not including photosensors) to be achieved with a TARGET-based IACT readout system. In addition to basic performance parameters of the TARGET chip itself, we present a camera module prototype as well as a second-generation chip (TARGET 2), both of which have been produced.

  10. The α-induced thick-target γ-ray yield from light elements

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R. K. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-10-01

    The α-induced thick-target γ-ray yield from light elements has been measured in the energy range 5.6 MeV ≤ Eα ≤ 10 MeV. The γ-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the α-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the α-induced direct production γ-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  11. Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows

    Science.gov (United States)

    Greyber, H. D.

    1997-12-01

    Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).

  12. Improving Global Multi-target Tracking with Local Updates

    DEFF Research Database (Denmark)

    Milan, Anton; Gade, Rikke; Dick, Anthony

    2014-01-01

    -target tracker, if they result in a reduction in the global cost function. Since tracking failures typically arise when targets become occluded, we propose a local data association scheme to maintain the target identities in these situations. We demonstrate a reduction of up to 50% in the global cost function...

  13. X-ray targeting puncture collagenase chemonucleolysis combined with injection of medical ozone for the treatment of lumbar disc herniation

    International Nuclear Information System (INIS)

    Yao Lin; Zhu Genfa

    2011-01-01

    Objective: To evaluate the clinical value of X-ray target puncture collagenase chemonucleolysis combined with injection of medical ozone for lumbar disc herniation. Methods: One thousand and sixty-two cases of lumbar disc herniation accepted collagenase chemonucleolysis combined with injection of medical ozone targeted by X-ray. The therapeutic effects after operation were analyzed. Results: Of all the 1062 cases, the effective rate of X-ray target puncture collagenase chemonucleolysis combined with injection of medical ozone was 95.3% at 3 months, 92.3% at 12 months, and 91.2% at 24 months after operation. Conclusion: X-ray target puncture collagenase chemonucleolysis combined with injection of medical ozone is a simple and safe method for the lumbar disc herniation. It also had fewer adverse reactions and better therapeutic effects. (authors)

  14. Experimental and theoretical studies of the physical processes occurring in thin plane targets irradiated by intense X-ray pulses

    International Nuclear Information System (INIS)

    Bugrov, A. E.; Burdonskii, I. N.; Gavrilov, V. V.; Gol'tsov, A. Yu.; Grabovskii, E. V.; Efremov, V. P.; Zhuzhukalo, E. V.; Zurin, M. V.; Koval'skii, N. G.; Kondrashov, V. N.; Oleinik, G. M.; Potapenko, A. I.; Samokhin, A. A.; Smirnov, V. P.; Fortov, V. E.; Frolov, I. N.

    2007-01-01

    Results are presented from experimental and theoretical studies of the interaction of intense X-ray pulses with different types of plane targets, including low-density (∼10 mg/cm 3 ) ones, in the Angara-5-1 facility. It is found experimentally that a dense low-temperature plasma forms on the target surface before the arrival of the main heating X-ray pulse. It is demonstrated that the contrast of the X-ray pulse can be increased by placing a thin organic film between the target and the discharge gap. The expansion velocity of the plasma created on the target surface irradiated by Z-pinch-produced X rays was found to be (3-4) x 10 6 cm/s. A comparison between the simulation and experimental results confirms the validity of the physical-mathematical model used

  15. PRODUCTION OF CATHODES AND HIGH PURITY TARGETS OF CHEMICALLY ACTIVE METALS BY MEANS OF ELECTRONIC-RAY MELTING

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2007-01-01

    Full Text Available The technical process of production and restoration of worn cathodes and targets of chemically active metals (Ti, Zr, V and others with the help of cathode ray in vacuum is developed. Regenerating of worn cathodes, targets is carried out by means of insertion in chill of worn base and successive cathode ray deposition on certain places of required quantity of metal (from 2 till 50mm.

  16. Improvements in or relating to pulsed X-ray units

    International Nuclear Information System (INIS)

    Bichenkov, E.I.; Klypin, V.V.; Palchikov, E.I.

    1983-01-01

    A pulsed X-ray unit comprises a pulsed X-ray tube connected to a discharge capacitor. The discharge capacitor comprises two coaxially arranged cylinders. One cylinder of the discharge capacitor is connected to the X-ray tube and to the high-voltage end of the secondary winding of the pulsed transformer which is shaped as a truncated cone, and is arranged internally of this winding coaxially therewith. The other cylinder of the discharge capacitor is also connected to the X-ray tube and to the low-voltage end of the secondary winding of the pulsed transformer, and is arranged intermediate this winding and the primary winding of the pulsed transformer which is shaped as a hollow cylinder, and connected to the charging device. The cylinders of the discharge capacitor have ports made therein for the passage therethrough of the magnetic flux produced by the windings of the pulsed transformer. (author)

  17. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; MikoIajczyk, J.; Szczurek, A.; Szczurek, M.; Foeldes, I.B.; Toth, Zs.

    2005-01-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined

  18. Computer simulation for the effect of target angle in diagnostic x-ray tube output and half-value layer

    International Nuclear Information System (INIS)

    Hayami, Akimune; Fuchihata, Hajime; Yamazaki, Takeshi; Mori, Yoshinobu; Ozeki, Syuji.

    1980-01-01

    The change of target angle of X-ray tube plays an important role in changing both the output and the quality of X-rays. A computer simulation was made to estimate the effect of target angle on the output and the quality (half-value layer: HVL) in the central ray using Storm's semiempirical formula. The data here presented are the values of output and HVL for the target angles of 10, 15, 20 and 30 degrees and for the total filtrations of 1, 2, 3 and 4 mm Al eq., at an increment of 10 kV steps of applied voltage between 50 and 150 kV. The output values and HVL's as a function of target angle, applied voltage and total filtration are shown for a full-wave rectified diagnostic X-ray generator. As a result, changes ranging from 17 to 76% in the output and 5 to 66% in the HVL were noted by varying the target angle from 10 to 30 degrees. Therefore, the target angle of X-ray tube should be clearly stated whenever the output and the quality (HVL) of X-ray generator are discussed. (author)

  19. Determination of tungsten target parameters for transmission X-ray tube: A simulation study using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI), Tehran (Iran, Islamic Republic of)

    2016-06-15

    Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

  20. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  1. An improved analytical model of diffusion through the RIST target

    CERN Document Server

    Bennett, J R J

    2003-01-01

    The diffusion and effusion through the RIST target is calculated using a more realistic model than previously. Extremely good fits to the data are obtained and new values of the time constants of effusion through the target and the ioniser are found.

  2. Improving your target-template alignment with MODalign.

    KAUST Repository

    Barbato, Alessandro; Benkert, Pascal; Schwede, Torsten; Tramontano, Anna; Kosinski, Jan

    2012-01-01

    , upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three

  3. Dosimetric effects of rotational output variation and x-ray target degradation on helical tomotherapy plans

    International Nuclear Information System (INIS)

    Staton, Robert J.; Langen, Katja M.; Kupelian, Patrick A.; Meeks, Sanford L.

    2009-01-01

    In this study, two potential sources of IMRT delivery error have been identified for helical tomotherapy delivery using the HiART system (TomoTherapy, Inc., Madison, WI): Rotational output variation and target degradation. The HiArt system is known to have output variation, typically about ±2%, due to the absence of a dose servo system. On the HiArt system, x-ray target replacement is required approximately every 10-12 months due to target degradation. Near the end of target life, the target thins and causes a decrease in the beam energy and a softening of the beam profile at the lateral edges of the beam. The purpose of this study is to evaluate the dosimetric effects of rotational output variation and target degradation by modeling their effects and incorporating them into recalculated treatment plans for three clinical scenarios: Head and neck, partial breast, and prostate. Models were created to emulate both potential sources of error. For output variation, a model was created using a sine function to match the amplitude (±2%), frequency, and phase of the measured rotational output variation data. A second model with a hypothetical variation of ±7% was also created to represent the largest variation that could exist without violating the allowable dose window in the delivery system. A measured beam profile near the end of target life was used to create a modified beam profile model for the target degradation. These models were then incorporated into the treatment plan by modifying the leaf opening times in the delivery sinogram. A new beam model was also created to mimic the change in beam energy seen near the end of target life. The plans were then calculated using a research version of the PLANNED ADAPTIVE treatment planning software from TomoTherapy, Inc. Three plans were evaluated in this study: Head and neck, partial breast, and prostate. The D 50 of organs at risk, the D 95 for planning target volumes (PTVs), and the local dose difference were used to

  4. Improving your target-template alignment with MODalign

    OpenAIRE

    Barbato, Alessandro; Benkert, Pascal; Schwede, Torsten; Tramontano, Anna; Kosinski, Jan

    2012-01-01

    Summary: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-di...

  5. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  6. Imaging of 1.0-mm-diameter radiopaque markers with megavoltage X-rays: an improved online imaging system

    International Nuclear Information System (INIS)

    Pang, G.; Beachey, D.J.; O'Brien, P.F.; Rowlands, J.A.

    2002-01-01

    Purpose: To improve an online portal imaging system such that implanted cylindrical gold markers of small diameter (no more than 1.0 mm) can be visualized. These small markers would make the implantation procedure much less traumatic for the patient than the large markers (1.6 mm in diameter), which are usually used today to monitor prostate interfraction motion during radiation therapy. Methods and Materials: Several changes have been made to a mirror-video based online imaging system to improve image quality. First, the conventional camera tube was replaced by an avalanche-multiplication-based video tube. This new camera tube has very high gain at the target such that the camera noise, which is one of the main causes of image degradation of online portal imaging systems, was overcome and effectively eliminated. Second, the conventional linear-accelerator (linac) target was replaced with a low atomic number (low-Z) target such that more diagnostic X-rays are present in the megavoltage X-ray beam. Third, the copper plate buildup layer for the phosphor screen was replaced by a thin plastic layer for detection of the diagnostic X-ray components in the beam generated by the low-Z target. Results: Radiopaque fiducial gold markers of different sizes, i.e., 1.0 mm (diameter) x 5 mm (length) and 0.8 mm (diameter) x 3 mm (length), embedded in an Alderson Rando phantom, can be clearly seen on the images acquired with our improved system. These markers could not be seen on images obtained with any commercial system available in our clinic. Conclusion: This work demonstrates the visibility of small-diameter radiopaque markers with an improved online portal imaging system. These markers can be easily implanted into the prostate and used to monitor the interfraction motion of the prostate

  7. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    Science.gov (United States)

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  8. Improving your target-template alignment with MODalign.

    KAUST Repository

    Barbato, Alessandro

    2012-02-04

    SUMMARY: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-dimensional model(s). Although it has been designed to simplify the target-template alignment step in modeling, it is suitable for all cases where a sequence alignment needs to be inspected in the context of other biological information. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modalign. Website implemented in HTML and JavaScript with all major browsers supported. CONTACT: jan.kosinski@uniroma1.it.

  9. Cooperative Airborne Inertial-SLAM for Improved Platform and Feature/Target Localisation

    National Research Council Canada - National Science Library

    Sukkarieh, Salah; Bryson, Mitch

    2008-01-01

    .... The benefit of using the SLAM algorithm is that it can determine the accuracy of both platform and target locations, both of which improve as a function of feature/target revisitation or sharing...

  10. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy.

    Science.gov (United States)

    Amoozgar, Zohreh; Goldberg, Michael S

    2015-08-30

    While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improving the X-ray Diagnostics of Gonarthrosis

    Directory of Open Access Journals (Sweden)

    U.М. Rustamova

    2013-04-01

    Full Text Available We have examined the soft-tissue state and bone structure of the joint in osteoarthritis of the knee joint. The analysis was performed in 120 male and female patients with primary osteoarthritis of the knee joint. Digital X-ray and ultrasonographic semiotics of diseased joint has been studied. According to finfings we established the correlation between degenerative changes in the subchondral and changes in the meniscus, capsule, ligamentous apparatus, etc.

  12. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    International Nuclear Information System (INIS)

    Fuller, Clifton David; Jr, Charles R Thomas; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J

    2006-01-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  13. Recent improvements in plutonium gamma-ray analysis using MGA

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Gunnink, R.

    1992-06-01

    MGA is a gamma-ray spectrum analysis program for determining relative plutonium isotopic abundances. It can determine plutonium isotopic abundances better than 1% using a high-resolution, low-energy, planar germanium detector and measurement times ten minutes or less. We have modified MGA to allow determination of absolute plutonium isotopic abundances in solutions. With calibration of a detector using a known solution concentration in a well-defined sample geometry, plutonium solution concentrations can be determined. MGA can include analysis of a second spectrum of the high-energy spectrum to include determination of fission product abundances relative to total plutonium. For the high-energy gamma-ray measurements we have devised a new hardware configuration, so that both the low- and high-energy gamma-ray detectors are mounted in a single cryostat thereby reducing weight and volume of the detector systems. We describe the detector configuration, and the performance of the MGA program for determining plutonium concentrations in solutions and fission product abundances

  14. Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications

    Science.gov (United States)

    de Andrés, A. I.; Esteban, Ó.; Embid, M.

    2017-08-01

    Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.

  15. Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli

    Science.gov (United States)

    Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias

    2015-01-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799

  16. Clinical improvement in psoriasis with specific targeting of interleukin-23

    DEFF Research Database (Denmark)

    Kopp, Tamara; Riedl, Elisabeth; Bangert, Christine

    2015-01-01

    Psoriasis is a chronic inflammatory skin disorder that affects approximately 2-3% of the population worldwide and has severe effects on patients' physical and psychological well-being. The discovery that psoriasis is an immune-mediated disease has led to more targeted, effective therapies; recent...

  17. Neural conflict-control mechanisms improve memory for target stimuli.

    Science.gov (United States)

    Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias

    2015-03-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Improved fluorescent X-ray image intensifying screen

    International Nuclear Information System (INIS)

    Landeghem, W.K. van; Suys, A.R.

    1981-01-01

    An X-ray image intensifying screen is described, which includes at least one fluorescent layer comprising phosphor particles dispersed in a binder and on top of such layer a protective layer containing a crosslinked polymer mass obtained by an acid-catalyzed reaction of a polymer or mixture of polymers containing reactive hydrogen atoms and a cross-linking agent, the cross-linking agent being an organic compound containing a plurality of etherified N-methylol groups. Examples are given of appropriate polymers and cross-linking agents. (author)

  19. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  20. Single cell low dose studies of bystander cell killing with targeted ultrasoft x-rays

    International Nuclear Information System (INIS)

    Schettino, G.; Prise, K.M.; Folkard, M.; Vojnovic, B.; Michael, B.D.; Wu, L.; Held, K.D.

    2003-01-01

    Full text: Bystander responses have attracted considerable interest in the recent years and several investigations have reported a binary behavior with the effect triggered by very small doses and immediately reaching a plateau. The Ultrasoft X-ray Microprobe in operation at the GCI is a facility designed to precisely assess the biological response of individual cells in vitro irradiated with a sub-micron size X-ray beam . Although recent improvements have upgrade the facility with AlK and TiK X-rays, most of the bystander studies have been performed using CK X-rays of 278 eV. The high sensitivity and the accurate irradiation and revisiting of the individual samples allowed us to investigate specific characteristics of the bystander phenomenon. In particular, evidences of a dose dependency of cell killing by bystander effect have been found at doses below 0.2 Gy where no differences is observed between all cell and single cell irradiation. Recent improvements have also allowed us to individually identify the phase of the cell cycle of all samples exposed. Although the G2-S phase have been found the most sensitive in responding to the bystander signal (a factor of 1.3), cells in the G1 phase also respond significantly while the phase of the irradiated cell doesn't seem to play a critical role. The time scale of the bystander effect has also been investigated by irradiating the same sample(s) twice with a few hours gap between exposures. Results indicate that the bystander signal is transmitted within a few minutes from the irradiation as replacing the medium immediately after irradiation does not influence the response, and it doesn't depend on the number of cells irradiated (up to 5). However, after a resting time of a few hours (3 h), the system seems to reset itself and a second irradiation has been shown to trigger a further bystander effect. Finally, by considering the total amount of energy deposited in to the sample population as critical parameter (instead

  1. De-excitation gamma-ray technique for improved resolution in intermediate energy photonuclear reactions

    International Nuclear Information System (INIS)

    Kuzin, A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Fissum, K.; Issaksson, L.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Gregel, J.

    1997-01-01

    The 12 C (γ,p) reaction was studied. The experiment was done at the MAX Laboratory of Lund University, using tagged photons with energy between 50 and 70 MeV and natural carbon targets. It has been possible to detect γ-ray emitted from the residual nucleus, in coincidence with photoprotons leading to the excited residual state. The 200 KeV gamma-ray resolution permitted the identification of the residual states and allowed off-line cuts to be made in order to identify the excitation region in 11 B from what particular de-excitation gamma-ray were seen. 9 refs., 1 tab., 3 figs

  2. Studies of soy sauce sterilization and its special flavour improvement by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Yang Jingtian; Jin Xinhua; Gu Guoxing; Yun Guichun

    1988-01-01

    Experimental studies for sterilizing 12 kinds of soy sauce with gamma-ray irradiation showed that both sterilization and improvements in flavour and quality of soy sauce were obtained simultaneously. (author)

  3. Infrared target recognition based on improved joint local ternary pattern

    Science.gov (United States)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  4. Measurement of antiproton production in p-He collisions and prospects for other inputs to cosmic rays physics from the fixed target program of the LHCb experiment

    CERN Document Server

    Graziani, Giacomo

    2018-01-01

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target SMOG. The energy scale achievable at the LHC and the excellent detector capabilities for vertexing, tracking and particle identification allow a wealth of measurements of great interest for cosmic ray physics. We present the first measurement of antiproton production in proton-helium collisions at $\\sqrt s_{NN} = 110$ GeV, which allows to improve the accuracy of the prediction for secondary antiproton production in cosmic rays. Prospects for other measurements achievable in the fixed target program are also discussed.

  5. Usability improvement of x-ray food inspection equipment

    International Nuclear Information System (INIS)

    Ohira, Norihiro; Yamaguchi, Takashi; Ohara, Mamoru; Shimizu, Hideaki; Kamimura, Kunio; Saiki, Hideo

    2010-01-01

    To properly set up X-ray inspection equipment of foreign bodies in foods properly has become more and more complicated and time-consuming, because digital image processing used in it has more parameters for more precise inspecting. In this paper, it is reported some methods to lighten the work load of workers who set up the parameters. Using Statistical methods, we construct an auto setting lookup table for adjusting contrast and parameters of inspection algorithm. With the former we confirmed an expansion of a range of grey levels that include domain of foreign bodies in sample data. Furthermore, with we constructed in our former research, we can set automatically limit of parameters that judge input product's image to be not including foreign bodies. It is suitable for food inspection system, since users prefer severely inspecting of foreign products. (author)

  6. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  7. Improving the Targeting of Treatment: Evidence from College Remediation

    Science.gov (United States)

    Scott-Clayton, Judith; Crosta, Peter M.; Belfield, Clive R.

    2014-01-01

    Remediation is one of the largest single interventions intended to improve outcomes for underprepared college students, yet little is known about the remedial screening process. Using administrative data and a rich predictive model, we find that severe mis-assignments are common using current test-score-cutoff-based policies, with…

  8. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim:  Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions:  Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  9. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions: Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  10. Can we improve the identification of cold homes for targeted home energy-efficiency improvements?

    International Nuclear Information System (INIS)

    Hutchinson, Emma J.; Wilkinson, Paul; Hong, Sung H.; Oreszczyn, Tadj

    2006-01-01

    Objective: To investigate the extent to which homes with low indoor-temperatures can be identified from dwelling and household characteristics. Design: Analysis of data from a national survey of dwellings, occupied by low-income households, scheduled for home energy-efficiency improvements. Setting: Five urban areas of England: Birmingham, Liverpool, Manchester, Newcastle and Southampton. Methods: Half-hourly living-room temperatures were recorded for two to four weeks in dwellings over the winter periods November to April 2001-2002 and 2002-2003. Regression of indoor on outdoor temperatures was used to identify cold-homes in which standardized daytime living-room and/or nighttime bedroom-temperatures were o C (when the outdoor temperature was 5 o C). Tabulation and logistic regression were used to examine the extent to which these cold-homes can be identified from dwelling and household characteristics. Results: Overall, 21.0% of dwellings had standardized daytime living-room temperatures o C, and 46.4% had standardized nighttime bedroom-temperatures below the same temperature. Standardized indoor-temperatures were influenced by a wide range of household and dwelling characteristics, but most strongly by the energy efficiency (SAP) rating and by standardized heating costs. However, even using these variables, along with other dwelling and household characteristics in a multi-variable prediction model, it would be necessary to target more than half of all dwellings in our sample to ensure at least 80% sensitivity for identifying dwellings with cold living-room temperatures. An even higher proportion would have to be targeted to ensure 80% sensitivity for identifying dwellings with cold-bedroom temperatures. Conclusion: Property and household characteristics provide only limited potential for identifying dwellings where winter indoor temperatures are likely to be low, presumably because of the multiple influences on home heating, including personal choice and

  11. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    Science.gov (United States)

    Fuller, Clifton David; Thomas, Charles R., Jr.; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J.

    2006-10-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  12. Radiative electron rearrangement and polarization in target K x-ray spectra

    International Nuclear Information System (INIS)

    Jamison, K.A.

    1978-01-01

    Two topics in the atomic physics of ion-atom collisions are studied. The first is an investigation of a free-atom decay process that is shown to be a two-electron one-photon decay. This two-electron decay requires an initial state with multiple inner-shell vacancies that has a high probability of creation in ion-atom collisions. Because this decay promotes one electron to a higher shell while allowing the other to fall to a lower shell, it is referred to as radiative electron rearrangement (RER). The investigation of this process includes the experimental study of the x-ray spectra region approx. 150 eV below the characteristic Kα 1 2 target radiation in third period elements when bombarded by various ion beams in the energy range 1 to 2 MeV/amu. Theoretical calculations of the transition energies, line strengths, and line widths are performed to verify the origin of the RER lines. The second topic of consideration is the study of the polarization of Kα satellite radiation from targets of Al and Si. It is shown that the polarization, which is observed experimentally with a curved-crystal polarimeter, is due to the nonstatistical population of the magnetic substates created in specific ion-atom collisions. Further, the polarization of the RER lines is studied. The connection between the polarization of the normal Kα satellite radiation and the polarization of the RER lines adds final proof to their origin as two-electron one-photon transitions

  13. Fast electron and X-ray scattering as a tool to study target's structure

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2007-01-01

    We concentrate on several relatively new aspects of the study of fast electron and X-ray scattering by atoms and atom-like objects, namely endohedral atoms and fullerenes. However, main attention is given to fast charge particle scattering. We show that the corresponding cross-sections, being expressed via so-called generalized oscillator strengths (GOS), give information on the electronic structure of the target and on the role of electron correlations in it. We consider what sort of information became available when analyzing the dependence of GOS upon their multipolarity, transferred momentum q and energy ω. To obtain theoretical results, we employ both the one-electron Hartree-Fock approximation and account for the multi-electron correlation in the target, using the random phase approximation with exchange. We demonstrate the role of non-dipole corrections in the small-angle fast-electron inelastic scattering. There dipole contribution dominates while non-dipole corrections can be considerably and controllably enhanced as compared to the case of low and medium energy photoionization. We show also that analyses of GOS for discrete level excitations permit to clarify their multipolarity. The results of calculations of Compton excitation and ionization cross-sections are presented. Attention is given to cooperative effects in inelastic fast electron-atom scattering that results in directed motion of the secondary electrons, a phenomenon that is similar to 'drag currents' in photoionization. We demonstrate how one should derive GOS for endohedral atoms, e.g. A-C 60 and what is the additional information that can be obtained from corresponding GOS. Most of discussions are illustrated by the results of concrete calculations

  14. Detection algorithm of infrared small target based on improved SUSAN operator

    Science.gov (United States)

    Liu, Xingmiao; Wang, Shicheng; Zhao, Jing

    2010-10-01

    The methods of detecting small moving targets in infrared image sequences that contain moving nuisance objects and background noise is analyzed in this paper. A novel infrared small target detection algorithm based on improved SUSAN operator is put forward. The algorithm selects double templates for the infrared small target detection: one size is greater than the small target point size and another size is equal to the small target point size. First, the algorithm uses the big template to calculate the USAN of each pixel in the image and detect the small target, the edge of the image and isolated noise pixels; Then the algorithm uses the another template to calculate the USAN of pixels detected in the first step and improves the principles of SUSAN algorithm based on the characteristics of the small target so that the algorithm can only detect small targets and don't sensitive to the edge pixels of the image and isolated noise pixels. So the interference of the edge of the image and isolate noise points are removed and the candidate target points can be identified; At last, the target is detected by utilizing the continuity and consistency of target movement. The experimental results indicate that the improved SUSAN detection algorithm can quickly and effectively detect the infrared small targets.

  15. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    International Nuclear Information System (INIS)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E.; Baldis, H.A.; Constantin, C.G.; Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C.; Pellinen, D.; Watts, P.

    2006-01-01

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  16. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Lab., Livermore, CA (United States); Baldis, H.A.; Constantin, C.G. [California at Davis Univ., CA (United States); Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, NY (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  17. Targeting Treatments to Improve Cognitive Function in Mood Disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla Woznica; Rush, A. John; Gerds, Thomas A.

    2016-01-01

    Learning Test (RAVLT) total recall with multiple logistic regression adjusted for diagnosis, age, gender, symptom severity, and education levels. RESULTS: We included 79 patients with an ICD-10 diagnosis of unipolar or bipolar disorder, of whom 39 received EPO and 40 received placebo (saline). For EPO......-treated patients with objective memory dysfunction at baseline (n = 16) (defined as RAVLT total recall ≤ 43), the odds of a clinically relevant memory improvement were increased by a factor of 290.6 (95% CI, 2.7-31,316.4; P = .02) compared to patients with no baseline impairment (n = 23). Subjective cognitive...

  18. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  19. The flux distribution from a 1.25m2 target aligned heliostat: comparison of ray tracing and experimental results

    CSIR Research Space (South Africa)

    Maliage, M

    2012-05-01

    Full Text Available The purpose of this paper is to validate SolTrace for concentrating solar investigations at CSIR by means of a test case: the comparison of the flux distribution in the focal spot of a 1.25 m2 target aligned heliostat predicted by the ray tracing...

  20. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    Science.gov (United States)

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  1. Can targeted food taxes and subsidies improve the diet?

    DEFF Research Database (Denmark)

    Nordström, Leif Jonas; Thunström, Linda

    2011-01-01

    This paper analyses distributional effects of revenue-neutral tax reforms aimed at improving dietary quality and encouraging healthier grain consumption. Using data on household grain purchases, we analyse both the impact on dietary quality and the tax incidence among income groups of VAT reforms...... of the VAT reforms is therefore difficult to evaluate. With the exception of the lowest income group, the excise duty reforms seem to have a positive health effect across all other income groups, with increases in the intake of fibre and reductions in the intake of saturated fat, sugar and added sugar...... and the excise duty reforms appear to be progressive. The lowest income group pays less food taxes and generally faces a lower overall post-reform price level. The income group that increases its tax payments most is the one with the highest income. This is also the income group that faces the largest increase...

  2. Study on two-dimensional distribution of X-ray image based on improved Elman algorithm

    International Nuclear Information System (INIS)

    Wang, Fang; Wang, Ming-Yuan; Tian, Feng-Shuo; Liu, Yu-Fang; Li, Lei; Zhao, Jing

    2015-01-01

    The principle of the X-ray detector which can simultaneously perform the measurement of the exposure rate and 2D (two-dimensional) distribution is described. A commercially available CMOS image sensor has been adopted as the key part to receive X-ray without any scintillators. The correlation between the pixel value (PV) and the absorbed exposure rate of X-ray is studied using the improved Elman neural network. Comparing the optimal adjustment process of the BP (Back Propagation) neural network and the improved Elman neural network, the neural network parameters are selected based on the fitting curve and the error curve. The experiments using the practical production data show that the proposed method achieves high accurate predictions to 10 −15 , which is consistent with the anticipated value. It is proven that it is possible to detect the exposure rate using the X-ray detector with the improved Elman algorithm for its advantages of fast converges and smooth error curve. - Highlights: • A method to measure the X-ray radiation with low cost and miniaturization. • A general CMOS image sensor is used to detect X-ray. • The system can measure exposure rate and 2D distribution simultaneously. • The Elman algorithm is adopted to improve the precision of the radiation detector

  3. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys.

    Science.gov (United States)

    Barnhart, Kirstin F; Christianson, Dawn R; Hanley, Patrick W; Driessen, Wouter H P; Bernacky, Bruce J; Baze, Wallace B; Wen, Sijin; Tian, Mei; Ma, Jingfei; Kolonin, Mikhail G; Saha, Pradip K; Do, Kim-Anh; Hulvat, James F; Gelovani, Juri G; Chan, Lawrence; Arap, Wadih; Pasqualini, Renata

    2011-11-09

    Obesity, defined as body mass index greater than 30, is a leading cause of morbidity and mortality and a financial burden worldwide. Despite significant efforts in the past decade, very few drugs have been successfully developed for the treatment of obese patients. Biological differences between rodents and primates are a major hurdle for translation of anti-obesity strategies either discovered or developed in rodents into effective human therapeutics. Here, we evaluate the ligand-directed peptidomimetic CKGGRAKDC-GG-(D)(KLAKLAK)(2) (henceforth termed adipotide) in obese Old World monkeys. Treatment with adipotide induced targeted apoptosis within blood vessels of white adipose tissue and resulted in rapid weight loss and improved insulin resistance in obese monkeys. Magnetic resonance imaging and dual-energy x-ray absorptiometry confirmed a marked reduction in white adipose tissue. At experimentally determined optimal doses, monkeys from three different species displayed predictable and reversible changes in renal proximal tubule function. Together, these data in primates establish adipotide as a prototype in a new class of candidate drugs that may be useful for treating obesity in humans.

  4. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lar' kin, A., E-mail: alexeylarkin@yandex.ru; Uryupina, D.; Ivanov, K.; Savel' ev, A., E-mail: abst@physics.msu.ru [International Laser Center and Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M. [Centre d' Études Nucléaires de Bordeaux-Gradignan, University of Bordeaux-CNRS-IN2P3, 33170 Gradignan (France); Spohr, K. [School of Engineering, University of the West of Scotland, Paisley, Scotland PA1 2BE (United Kingdom); Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T. [Centre Lasers Intenses et Applications, University of Bordeaux-CNRS-CEA, Talence 33405 (France)

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  5. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-01-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition

  6. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    Science.gov (United States)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  7. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  8. Improving Pharmacists’ Targeting of Patients for Medication Review and Deprescription

    Directory of Open Access Journals (Sweden)

    Vanessa Marvin

    2018-04-01

    Full Text Available Background: In an acute hospital setting, a multi-disciplinary approach to medication review can improve prescribing and medicine selection in patients with frailty. There is a need for a clear understanding of the roles and responsibilities of pharmacists to ensure that interventions have the greatest impact on patient care. Aim: To use a consensus building process to produce guidance for pharmacists to support the identification of patients at risk from their medicines, and to articulate expected actions and escalation processes. Methods: A literature search was conducted and evidence used to establish a set of ten scenarios often encountered in hospitalised patients, with six or more possible actions. Four consultant physicians and four senior pharmacists ranked their levels of agreement with the listed actions. The process was redrafted and repeated until consensus was reached and interventions were defined. Outcome: Generalised guidance for reviewing older adults’ medicines was developed, alongside escalation processes that should be followed in a specific set of clinical situations. The panel agreed that both pharmacists and physicians have an active role to play in medication review, and face-to-face communication is always preferable to facilitate informed decision making. Only prescribers should deprescribe, however pharmacists who are not also trained as prescribers may temporarily “hold” medications in the best interests of the patient with appropriate documentation and a follow up discussion with the prescribing team. The consensus was that a combination of age, problematic polypharmacy, and the presence of medication-related problems, were the most important factors in the identification of patients who would benefit most from a comprehensive medication review. Conclusions: Guidance on the identification of patients on inappropriate medicines, and subsequent pharmacist-led intervention to prompt and promote deprescribing, has

  9. Improvement of cosmic ray ruggedness of hybrid vehicles power semiconductor devices

    International Nuclear Information System (INIS)

    Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Shoji, Tomoyuki; Ishiko, Masayasu

    2010-01-01

    Power semiconductors which are used under high voltage conditions in HVs (Hybrid Vehicles) are required to have high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, an SEB (Single Event Burnout) failure mechanism induced by cosmic rays in IGBTs (Insulated Gate Bipolar Transistors) was investigated. Through an optimized device design in which thyristor action was suppressed, the device destruction tolerance was greatly improved. (author)

  10. Preparation of a liquid nitrogen target for measurement of γ-ray in the 14N(n,γ)15N reaction as an intensity standard in energy region up to 11 MeV

    International Nuclear Information System (INIS)

    Hirano, M.; Obayashi, H.; Sakane, H.; Shibata, M.; Kawade, K.; Taniguchi, A.

    2001-01-01

    For determination of relative γ-ray intensities up to 11 MeV in the 14 N(n,γ) 15 N reaction, we have developed a liquid nitrogen (N 2 ) target which contain no hydrogen (H) to improve the accuracy of γ-ray intensities. The ratio of the relative uncertainties for the liquid nitrogen to that for the melamine (C 3 H 6 N 6 ) widely used was improved by a factor of 2 above 2.2 MeV and a factor of 3 - 6 below 2.2 MeV. It has been shown that the liquid nitrogen target is useful for reduction of the 2.2 MeV γ-ray from the 1 H(n,γ) 2 H reaction and improvement of statistics. (author)

  11. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  12. Targeting Nursing Homes Under the Quality Improvement Organization Program’s 9th Statement of Work

    OpenAIRE

    Stevenson, David G.; Mor, Vincent

    2009-01-01

    In the Quality Improvement Organization (QIO) program’s latest Statement of Work, the Centers for Medicare and Medicaid Services (CMS) is targeting its nursing home activities toward facilities that perform poorly on two quality measures—pressure ulcers and restraint use. The designation of target facilities is a shift in strategy for CMS and a direct response to criticism that QIO program resources were not being targeted effectively to facilities or clinical areas that most needed improveme...

  13. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Science.gov (United States)

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  14. An improved in situ method for determining depth distributions of gamma-ray emitting radionuclides

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    2001-01-01

    In situ gamma-ray spectrometry determines the quantities of radionuclides in some medium with a portable detector. The main limitation of in situ gamma-ray spectrometry lies in determining the depth distribution of radionuclides. This limitation is addressed by developing an improved in situ method for determining the depth distributions of gamma-ray emitting radionuclides in large area sources. This paper implements a unique collimator design with conventional radiation detection equipment. Cylindrically symmetric collimators were fabricated to allow only those gamma-rays emitted from a selected range of polar angles (measured off the detector axis) to be detected. Positioned with its axis normal to surface of the media, each collimator enables the detection of gamma-rays emitted from a different range of polar angles and preferential depths. Previous in situ methods require a priori knowledge of the depth distribution shape. However, the absolute method presented in this paper determines the depth distribution as a histogram and does not rely on such assumptions. Other advantages over previous in situ methods are that this method only requires a single gamma-ray emission, provides more detailed depth information, and offers a superior ability for characterizing complex depth distributions. Collimated spectrometer measurements of buried area sources demonstrated the ability of the method to yield accurate depth information. Based on the results of actual measurements, this method increases the potential of in situ gamma-ray spectrometry as an independent characterization tool in situations with unknown radionuclide depth distributions

  15. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Geoffrey K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); National Institute of Environmental Health Science, Research Triangle Park, NC (United States); Heymann, Michael [Brandeis Univ., Waltham, MA (United States); Univ. of Hamburg and DESY, Hamburg (Germany); Benner, W. Henry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, Tommaso [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsai, Ching -Ju [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hunter, Mark S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Xiaodan [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States); BioXFEL Science and Technology Center, Buffalo, NY (United States); Opathalage, Achini [Brandeis Univ., Waltham, MA (United States); Pedrini, Bill [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krantz, Bryan A. [Univ. of California, Berkeley, CA (United States); Fraden, Seth [Brandeis Univ., Waltham, MA (United States); Hau-Riege, Stefan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Segelke, Brent W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-27

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low-Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.

  16. X-ray spectroscopic diagnostics of plasma produced by femtosecond laser pulses at interaction with cluster target

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    By means of X-ray spectroscopy one determined parameters of plasma produced at interaction of supershort laser pulses with cluster targets. One investigated into the effect of both initial properties of a cluster target and properties of a laser pulse on plasma characteristics. To diagnose plasma one applied a model of production of emitting spectra covering a whole number of free parameters. The conducted experimental investigations show that the investigated model of cluster heating by supershort pulses is the actual physical model, while the applied fitting parameters have a meaning of average values of plasma parameters [ru

  17. Assessment of an X-Ray Spectrometer for fluorescence cross sections measurements of elements with 22≤Ζ≤55 in a secondary target configuration

    International Nuclear Information System (INIS)

    Delabat Diaz, Y.

    2015-01-01

    A performance evaluation of an X-Ray Fluorescence Spectrometer for X-Ray Fluorescence (XRF) cross section measurements in a Secondary Target (ST) set-up has been carried out. Using Cd and Dy as STs, an annular 241 Am (∼1 Ci) radioactive source and an X-Ray Spectrometer with a Si(Li) semiconductor detector, the photon effective flux factors (Ι 0 Gε) were measured for some elements with 22≤Ζ≤55 as a function of the characteristics X-Rays energy for two different distances Source-St (0.5 cm and 1.0 cm). Thin high purity foils and a few pellets made out of composed materials were used as samples for the Ι 0 Gε calibrations. the contribution of 59.54 KeV scattered photons to the XRF was analysed and the Scattering Correction Factor (SCF) due to excitation by 59.54 keV scattered photons was estimated in the Cd configuration for further cross section measurements improvements. (Author)

  18. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  19. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    Science.gov (United States)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  20. Overview of progress on the improvement projects for the LANSCE accelerator and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.; Browne, J.; Brun, T.; Donahue, J.B.; Fitzgerald, D.H.; Hoffman, E.; Pynn, R.; Schriber, S.; Weinacht, D.

    1997-01-01

    Three projects have been initiated since 1994 to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center (LANSCE). The LANSCE Reliability Improvement Project (LRIP) was separated into two phases. Phase 1, completed in 1995, targeted near-term improvements to beam reliability and availability that could be completed in one-year's time. Phase 2, now underway and scheduled for completion in May 1998, consists of two projects: (a) implementation of direct H-injection for the Proton Storage Ring (PSR) and (b) an upgrade of the target/moderator system for the short pulse spallation neutron (SPSS) source. The latter will reduce the target change-out time from about 10 months to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current to 200 microA at 30 Hz and providing up to seven new neutron scattering instruments

  1. Improved backscatter x-ray detection for anti-terrorist applications

    International Nuclear Information System (INIS)

    Shope, S.L.; Lockwood, G.J.; Selph, M.M.; Wehlburg, J.C.

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be booby trapped. The authors have developed a method to x-ray a package using backscattered x-rays based on similar work for landmine detection. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. They are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen. Preliminary experiments have also imaged objects within or behind a wall. They are currently using a scanning x-ray source and scintillating plastic detectors. It can take several hours to image a briefcase size object. This time could be reduced if better x-ray detection methods could be used. They have looked at using pinhole photography and CCD cameras to reduce this time

  2. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Science.gov (United States)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  3. Intense non-linear soft X-ray emission from a hydride target during pulsed D bombardment

    International Nuclear Information System (INIS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm 2 and a dose of 3.3 μJ/cm 2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved. (author)

  4. Improved X-ray position for XTE J1701-407

    Science.gov (United States)

    Starling, R.; Evans, P.

    2008-07-01

    We report an improved position for the transient source XTE J1701-407 (Markwardt et al. ATEL #1569, Degenaar et al. ATEL #1572) using Swift XRT data from the recently detected X-ray burst (Markwardt et al. ATEL #1616 ; Linares et al. ATEL #1618).

  5. Improvement of mungbean by X-ray and thermal neutron irradiation

    International Nuclear Information System (INIS)

    Kwon, S.H.; Oh, J.H.

    1983-01-01

    With the aim of improving yield, resistance to Cercospora leaf spot and pod shattering, mungbean varieties Kyunggi No. 5 and M-317 were irradiated with X-rays and thermal neutrons. High yielding mutant lines are generally characterized by a higher number of pods per plant. Better Cercospora resistance appears often associated with later maturity. Satisfactory shattering resistance was not yet obtained. (author)

  6. Improving material identification by combining x-ray and neutron tomography

    Science.gov (United States)

    LaManna, Jacob M.; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.

    2017-09-01

    X-rays and neutrons provide complementary non-destructive probes for the analysis of structure and chemical composition of materials. Contrast differences between the modes arise due to the differences in interaction with matter. Due to the high sensitivity to hydrogen, neutrons excel at separating liquid water or hydrogenous phases from the underlying structure while X-rays resolve the solid structure. Many samples of interest, such as fluid flow in porous materials or curing concrete, are stochastic or slowly changing with time which makes analysis of sequential imaging with X-rays and neutrons difficult as the sample may change between scans. To alleviate this issue, NIST has developed a system for simultaneous X-ray and neutron tomography by orienting a 90 keVpeak micro-focus X-ray tube orthogonally to a thermal neutron beam. This system allows for non-destructive, multimodal tomography of dynamic or stochastic samples while penetrating through sample environment equipment such as pressure and flow vessels. Current efforts are underway to develop methods for 2D histogram based segmentation of reconstructed volumes. By leveraging the contrast differences between X-rays and neutrons, greater histogram peak separation can occur in 2D vs 1D enabling improved material identification.

  7. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  8. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  9. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  10. Improvements in Off-Center Focusing in an X-ray Streak Camera

    International Nuclear Information System (INIS)

    McDonald, J W; Weber, F; Holder, J P; Bell, P M

    2003-01-01

    Due to the planar construction of present x-ray streak tubes significant off-center defocusing is observed in both static and dynamic images taken with one-dimensional resolution slits. Based on the streak tube geometry curved photocathodes with radii of curvature ranging from 3.5 to 18 inches have been fabricated. We report initial off-center focusing performance data on the evaluation of these ''improved'' photocathodes in an X-ray streak camera and an update on the theoretical simulations to predict the optimum cathode curvature

  11. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    Science.gov (United States)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  12. Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios

    Energy Technology Data Exchange (ETDEWEB)

    Garmay, Andrey V., E-mail: andrew-garmay@yandex.ru; Oskolok, Kirill V.

    2017-04-15

    An X-ray fluorescence analysis algorithm is proposed which is based on a use of ratios of X-ray fluorescence lines intensities. Such an analytical signal is more stable and leads to improved accuracy. Novel calibration equations are proposed which are suitable for analysis in a broad range of matrix compositions. To apply the algorithm to analysis of samples containing significant amount of undetectable elements a use of a dependence of a Rayleigh-to-Compton intensity ratio on a total content of these elements is suggested. The technique's validity is shown by analysis of standard steel samples, model metal oxides mixture and iron ore samples.

  13. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Saudi Arabia)

    Energy Technology Data Exchange (ETDEWEB)

    Al Jammaz, Ibrahim; AlYanbawi, S.; Van-Heerden, W.; Miliebari, S.; Rahma, S.; Carrol, D. [King Faisal Specialist Hospital & Research Centre, Riyadh (Saudi Arabia)

    2009-07-01

    The development and improvement of target technology for reliable and higher production yields is described with respect to fluorine-18 and krypton-81. This report includes specific studies on: 1) beam degradation, distribution and diagnostic tools for monitoring the beam during irradiation; 2) targets that are capable of withstanding high current beam and consequently high specific activity radiopharmaceuticals; 3) greater understanding of in-target chemical and physical phenomena for the preparation of new radiolabeled species; and 4) recovery and characterization very expensive enriched material. (author)

  14. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Saudi Arabia)

    International Nuclear Information System (INIS)

    Al Jammaz, Ibrahim; AlYanbawi, S.; Van-Heerden, W.; Miliebari, S.; Rahma, S.; Carrol, D.

    2009-01-01

    The development and improvement of target technology for reliable and higher production yields is described with respect to fluorine-18 and krypton-81. This report includes specific studies on: 1) beam degradation, distribution and diagnostic tools for monitoring the beam during irradiation; 2) targets that are capable of withstanding high current beam and consequently high specific activity radiopharmaceuticals; 3) greater understanding of in-target chemical and physical phenomena for the preparation of new radiolabeled species; and 4) recovery and characterization very expensive enriched material. (author)

  15. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies.

    Science.gov (United States)

    Lefranc, M; Monet, P; Desenclos, C; Peltier, J; Fichten, A; Toussaint, P; Sevestre, H; Deramond, H; Le Gars, D

    2012-01-01

    Stereotactic biopsies are subject to sampling errors (essentially due to target selection). The presence of contrast enhancement is not a reliable marker of malignancy. The goal of the present study was to determine whether perfusion-weighted imaging can improve target selection in stereotactic biopsies. We studied 21 consecutive stereotactic biopsies between June 2009 and March 2010. Perfusion-weighted magnetic resonance imaging (MRI) was integrated into our neuronavigator. Perfusion-weighted imaging was used as an adjunct to conventional MRI data for target determination. Conventional MRI alone was used to determine the trajectory. We found a linear correlation between regional cerebral blood volume (rCBV) and vessel density (number of vessels per mm(2); R = 0.64; p < 0.001). Perfusion-weighted imaging facilitated target determination in 11 cases (52.4%), all of which were histopathologically diagnosed as glial tumors. For glial tumors, which presented with contrast enhancement, perfusion-weighted imaging identified a more precisely delimited target in 9 cases, a different target in 1 case, and exactly the same target in 1 other case. In all cases, perfusion-selected sampling provided information on cellular features and tumor grading. rCBV was significantly associated with grading (p < 0.01), endothelial proliferation (p < 0.01), and vessel density (p < 0.01). For lesions with rCBV values ≤1, perfusion-weighted MRI did not help to determine the target but was useful for surgical management. For stereotactic biopsies, targeting based on perfusion-weighted imaging is a feasible method for reducing the sampling error and improving target selection in the histopathological diagnosis of tumors with high rCBVs. Copyright © 2012 S. Karger AG, Basel.

  16. Improving customs’ border control by creating a reference database of cargo inspection X-ray images

    Directory of Open Access Journals (Sweden)

    Selina Kolokytha

    2017-04-01

    Full Text Available Countries’ effective and efficient border security is becoming increasingly important in today’s global world of economy and trade. To ensure these, customs organisations are responsible for the prevention of illicit goods’ transportation across borders, particularly upon entry. The predicament of the customs administrations will soon be aggravated by both the increase of global trade and the trend towards 100% screening. It is therefore a goal to advance inspection methods to enable successful cargo handling, a scope towards which this research was aimed at. This work was carried out as part of the project ACXIS “Automated Comparison of X-ray Images for cargo Scanning” a European research project within the seventh framework programme answering the call SEC-2012.3.4-1: « Research on Automated Comparison of X-ray Images for cargo Scanning », to improve the process with the largest impact to trade flow: the procedures of freight X-ray scanning. As such, this project was focused on to implementing a manufacturer independent reference database for X-ray images of illicit and non-illicit cargo, developing procedures and algorithms in order to uniform X-ray images of different cargo scanners, and developing a training simulator for inspection officers and a toolbox enclosing several assisted and automated identification techniques for potentially illicit cargo.

  17. Maximum entropy restoration of laser fusion target x-ray photographs

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.

    1976-01-01

    Maximum entropy principles were used to analyze the microdensitometer traces of a laser-fusion target photograph. The object is a glowing laser-fusion target microsphere 0.95 cm from a pinhole of radius 2 x 10 -4 cm, the image is 7.2 cm from the pinhole and the photon wavelength is likely to be 6.2 x 10 -8 cm. Some computational aspects of the problem are also considered

  18. Improving of chest x-ray picture to state typical symptoms

    International Nuclear Information System (INIS)

    Kalnakarkle, S.; Glazs, A.; Kadakovska, E.; Markovics, Z.

    2003-01-01

    Improving of quality of chest x-rays imagings to state plain films peculiarities of such lung diseases as tuberculosis and tumor is presented in this article. It is necessary to increase the confidence of physician in the diagnoses. The characteristics symptoms - size, shape, contours and margins definition of shadows and shift of trachea or mediastinum are hardly detected generally, more over in the cases when quality of pictures is bad. The computer, HP ScanJet 5370 scanner with transparency adapter and software Adobe Photoshop 6.0 were used. The scanning of plain film and developing of raster image file were done. Adobe Photoshop were used to improve the quality of x-rays imaging. It allows to state fluffy, smooth, radiate, wrinkled margins of shadows and in such way to differentiate above lung diseases. Ten unrelated plain films - tuberculosis and tumor were processed in our study and it demonstrates effectiveness of applied algorithm. (authors)

  19. Environmental aspects of ion-induced x-ray emission by infinitely thick targets

    International Nuclear Information System (INIS)

    Van Rinsvelt, H.A.; Dunnam, F.E.; Russell, J.P.; Bolch, W.E.

    1974-01-01

    Elemental analysis through proton and alpha particle induced x-ray emission by infinitely thick samples of environmental interest was found to be feasible. A quantization technique using internal standards and the optimization of the beam energy for optimal sensitivity were investigated. The average limit of detection ranges from about 0.1 ppM for calcium to 1 ppM for strontium

  20. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  1. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  2. Development of improved x-ray optics for analytical x-ray microbeams. CRADA final report for CRADA Number Y-1294-0283

    International Nuclear Information System (INIS)

    Carpenter, D.A.; Gao, N.; Xiao, Q.F.; Ponomarev, I.

    1996-01-01

    The purpose of this CRADA was to develop improved glass capillary, x-ray optics for analytical x-ray microbeam applications. X-Ray Optical Systems, Inc. (XOS) designed and fabricated capillary optics and LMES tested those optics for x-ray microanalytical applications using its unique X-Ray Microprobe. Tapered capillaries with 3-microm and 8-microm output openings were fabricated and tested. The tapered capillaries had better spectral quality for x-ray microfluorescence (XRMF) analysis, than non-tapered, straight capillaries that are currently used in the system. X-ray beam count-rates for the tapered capillaries were also greater than the straight capillaries. Two monolithic, polycapillary optics were fabricated and tested. The polycapillary optics produced focal spots of 40 and 100 microm. Beam intensities for the polycapillaries were, respective, 44 and 18 times the intensities found in straight 50-microm and 100-microm capillaries. High-sensitivity scanning will be possible because of the enhanced intensity of the polycapillary optic. LMES and the DP program will benefit from improved capabilities for nondestructive x-ray microanalysis, while XOS will benefit from test results that will enhance the marketability of their products

  3. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    Science.gov (United States)

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  4. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF.

    Science.gov (United States)

    Lemieux, Daniel A; Baudet, Camille; Grim, Gary P; Barber, H Bradford; Miller, Brian W; Fasje, David; Furenlid, Lars R

    2011-09-23

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, (12)C(n,n'γ)(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  5. Physics design for the measurement of the ionic emission generated by 12 MeV LIA X-ray converter target

    International Nuclear Information System (INIS)

    Yu Haijun; Long Jidong; Shi Jinshui

    2002-01-01

    Linear induction accelerator (LIA) is expected to generated small diameter x-ray spots with high intensity. The interaction of the electron beam with ions generated at the x-ray converter will make the spot on target increase with time and debase the x-ray dose and the imaging resolving power. The diagnostic methods of ion produced at 12 MeV LIA including faraday cup, sheet diagnostic apparatus and the multiframing interferometer are introduced in the paper

  6. Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zientek, John; Maj, Jozef; Navrotski, Gary; Srajer, George; Harmata, Charles; Maj, Lech; Lazarski, Krzysztof; Mikula, Stanislaw

    2015-01-02

    The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTU has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.

  7. Improved OAM-Based Radar Targets Detection Using Uniform Concentric Circular Arrays

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2016-01-01

    Full Text Available Without any relative moves or beam scanning, the novel Orbital-Angular-Momentum- (OAM- based radar targets detection technique using uniform concentric circular arrays (UCCAs shows the azimuthal estimation ability, which provides new perspective for radar system design. However, the main estimation method, that is, Fast Fourier Transform (FFT, under this scheme suffers from low resolution. As a solution, this paper rebuilds the OAM-based radar targets detection model and introduces the multiple signal classification (MUSIC algorithm to improve the resolution for detecting targets within the main lobes. The spatial smoothing technique is proposed to tackle the coherent problem brought by the proposed model. Analytical study and simulation demonstrate the superresolution estimation capacity the MUSIC algorithm can achieve for detecting targets within the main lobes. The performance of the MUSIC algorithm to detect targets not illuminated by the main lobes is further evaluated. Despite the fact that MUSIC algorithm loses the resolution advantage under this case, its estimation is more robust than that of the FFT method. Overall, the proposed MUSIC algorithm for the OAM-based radar system demonstrates the superresolution ability for detecting targets within the main lobes and good robustness for targets out of the main lobes.

  8. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Targeting utility customers to improve energy savings from conservation and efficiency programs

    International Nuclear Information System (INIS)

    Taylor, Nicholas W.; Jones, Pierce H.; Kipp, M. Jennison

    2014-01-01

    Highlights: • Improving DSM program impacts by targeting high energy users. • DSM energy savings potential hinges on pre-participation performance. • Targeting can benefit different utilities and energy efficiency programs. • Overall performance can be improved by up to 250% via targeting strategies. - Abstract: Electric utilities, government agencies, and private interests in the US have committed and continue to invest substantial resources – including billions of dollars of financial capital – in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. While most of these programs are deemed to be cost effective, and therefore in the public interest, opportunities exist to improve cost effectiveness by targeting programs to those customers with the greatest potential for energy savings. This article details an analysis of three DSM programs offered by three Florida municipal electric utilities to explore such opportunities. First, we estimate programs’ energy savings impacts; second, we measure and compare energy savings across subgroups of program participants as determined by their pre-intervention energy performance, and third, we explore potential changes in program impacts that might be realized by targeting specific customers for participation in the DSM programs. All three programs resulted in statistically significant average (per-participant) energy savings, yet average savings varied widely, with the customers who performed best (i.e., most efficient) before the intervention saving the least energy and those who performed worst (i.e., least efficient) before the intervention saving the most. Assessment of alternative program participation scenarios with varying levels of customer targeting suggests that program impacts could be increased by as much as 80% for a professional energy audit program, just over 100% for a high-efficiency heat pump upgrade program, and nearly 250% for an attic insulation

  10. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-01-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution. - Highlights: • Radiation detection introduces distortions in X- and Gamma-ray spectrum measurements. • UMESTRAT is a graphical tool to unfold X- and Gamma-ray spectra. • UMESTRAT uses the maximum entropy method. • UMESTRAT’s new version produces unfolded spectra with quantitative meaning. • UMESTRAT is a software tool to improve the detector resolution.

  11. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility

    International Nuclear Information System (INIS)

    Hueso-González, Fernando; Enghardt, Wolfgang; Golnik, Christian; Petzoldt, Johannes; Pausch, Guntram; Fiedler, Fine; Priegnitz, Marlen; Römer, Katja E; Wagner, Andreas; Janssens, Guillaume; Prieels, Damien; Smeets, Julien; Vander Stappen, François

    2015-01-01

    Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry. (paper)

  12. Target Matching Recognition for Satellite Images Based on the Improved FREAK Algorithm

    Directory of Open Access Journals (Sweden)

    Yantong Chen

    2016-01-01

    Full Text Available Satellite remote sensing image target matching recognition exhibits poor robustness and accuracy because of the unfit feature extractor and large data quantity. To address this problem, we propose a new feature extraction algorithm for fast target matching recognition that comprises an improved feature from accelerated segment test (FAST feature detector and a binary fast retina key point (FREAK feature descriptor. To improve robustness, we extend the FAST feature detector by applying scale space theory and then transform the feature vector acquired by the FREAK descriptor from decimal into binary. We reduce the quantity of data in the computer and improve matching accuracy by using the binary space. Simulation test results show that our algorithm outperforms other relevant methods in terms of robustness and accuracy.

  13. Investigation of the radiation leakage from X ray flaw detectors and the improvement measures for the unqualified products

    International Nuclear Information System (INIS)

    Li Yiachun; Wu Yi; Pang Hu; Bai Bin

    1997-01-01

    The authors introduce investigation methods and results for radiation leakage from X ray flaw detectors, which are used in Beijing area. Total 21 sets of flaw detectors made in 8 factories in Beijing, Shanghai etc. have been tested, of which 16 sets made in Beijing, Dandong and Japan are gas cooling flaw detectors, and rest 5 sets made in Shanghai and Germany are water or oil cooling detectors. The air Kerma rate of leakage radiation at 1 m from the X ray tube target were measured by Type FJ-347A X, γ dosimeter. It can be seen from the results that, compared with the trade standard ZBY315-83, 5 sets of water or oil cooling flaw detectors are all qualified. However, only two sets of gas cooling detectors are qualified, and the radiation leakage of another 14 sets are over the values specified in the standard. The reason is analyzed, and some advices about the measures of improving radiation protection structure design and production technology for the unqualified products have been proposed

  14. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  15. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search

    Directory of Open Access Journals (Sweden)

    Meiqin Liu

    2017-12-01

    Full Text Available Underwater wireless sensor networks (UWSNs can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.

  16. X-ray burst studies with the JENSA gas jet target

    Directory of Open Access Journals (Sweden)

    Schmidt Konrad

    2017-01-01

    Full Text Available When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA gas jet target enables the direct measurement of previously inaccessible (α,p reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL, USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR at the Facility for Rare Isotope Beams (FRIB. Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL showed a highly localized, pure gas target with a density of ∼1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p37 K reaction at NSCL.

  17. Improved target detection and bearing estimation utilizing fast orthogonal search for real-time spectral analysis

    International Nuclear Information System (INIS)

    Osman, Abdalla; El-Sheimy, Naser; Nourledin, Aboelamgd; Theriault, Jim; Campbell, Scott

    2009-01-01

    The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR

  18. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    Energy Technology Data Exchange (ETDEWEB)

    Poškus, A., E-mail: andrius.poskus@ff.vu.lt

    2016-09-15

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic K{sub α}, total K (=K{sub α} + K{sub β}) and L{sub α} X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the K{sub α} yield by more than 40% for the elements with Z > 25. The L{sub α} yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the L{sub α} yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated K{sub α} yields are typically underestimated by (20–30)% for the elements with Z > 25, whereas the L{sub α} yields are underestimated by (60–70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner

  19. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    Science.gov (United States)

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  20. X-ray spectroscopy of laser heated CF{sub 2}-targets

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, M.; Hoffmann, D.H.H.; Pirzadeh, P.; Rosmej, F.B.; Roth, M.; Seelig, W.; Sub, W. [Technische Universitat Darmstadt (Germany); Faenov, A.; Pikuz, T. [VNIIFTRI Mendeleevo (Russian Federation); Tauschwitz, A. [Gesellschaft fur Schwerionenforschung, Darmstadt (Germany)

    2000-07-01

    The scientific focus of plasma physics with heavy ions is to investigate the interaction of heavy ion beams with hot and dense plasmas. These plasmas are generated by a Nd:YAG/Nd:glass-laser system which can provide up to 100 J within 15 ns. Previous experiments showed, that there is an enhanced energy loss of the projectiles in carbon, when it is heated from the solid into the plasma state. To model and interpret the experiments more precisely, an exact knowledge of the plasma parameters, such as size, temperature, electron density and inhomogeneity are of fundamental necessity. Due to the high temperatures achieved in laser produced plasmas the soft X-ray emission of highly charged ions can be used for diagnostics. (authors)

  1. Improvement in Cuba of the regulatory mark in the industrial X-ray practice

    International Nuclear Information System (INIS)

    Lopez Forteza; Yamil; Quevedo Garcia, Jose R.; Jerez Vegueria, Pablo F.; Dumenigo Gonzalez, Cruz; De la Fuente Puch, Andres; Diaz Guerra, Pedro

    2003-01-01

    The Cuban regulatory mark as regards nuclear and radiological security until the year 2002 had not had a Guide of Security linked to the practice of Industrial X-ray. The improvement of the national regulatory mark, by the light of the international recommendations and the national experience of the inspection and licensing regulatory activity of this practice took to necessity of the existence of a Guide of Security that allowed in an effective way to make complete the established approaches of security in the Basic Norms of Security (NBS), during the operation of the teams of Industrial X-ray. The present work exposes and they expose the main aspects that are included in this document that they constitute from an or another way precision to that settled down in the NBS

  2. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  3. A simple method to improve the quantification accuracy of energy-dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Walther, T

    2008-01-01

    Energy-dispersive X-ray spectroscopy in a transmission electron microscope is a standard tool for chemical microanalysis and routinely provides qualitative information on the presence of all major elements above Z=5 (boron) in a sample. Spectrum quantification relies on suitable corrections for absorption and fluorescence, in particular for thick samples and soft X-rays. A brief presentation is given of an easy way to improve quantification accuracy by evaluating the intensity ratio of two measurements acquired at different detector take-off angles. As the take-off angle determines the effective sample thickness seen by the detector this method corresponds to taking two measurements from the same position at two different thicknesses, which allows to correct absorption and fluorescence more reliably. An analytical solution for determining the depth of a feature embedded in the specimen foil is also provided.

  4. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  5. Improving Student Outcomes in Higher Education: The Science of Targeted Intervention.

    Science.gov (United States)

    Harackiewicz, Judith M; Priniski, Stacy J

    2018-01-04

    Many theoretically based interventions have been developed over the past two decades to improve educational outcomes in higher education. Based in social-psychological and motivation theories, well-crafted interventions have proven remarkably effective because they target specific educational problems and the processes that underlie them. In this review, we evaluate the current state of the literature on targeted interventions in higher education with an eye to emerging theoretical and conceptual questions about intervention science. We review three types of interventions, which focus on the value students perceive in academic tasks, their framing of academic challenges, and their personal values, respectively. We consider interventions that (a) target academic outcomes (e.g., grades, major or career plans, course taking, retention) in higher education, as well as the pipeline to college, and (b) have been evaluated in at least two studies. Finally, we discuss implications for intervention science moving forward.

  6. Systems biology-embedded target validation: improving efficacy in drug discovery.

    Science.gov (United States)

    Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

    2014-01-01

    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment. © 2013 Wiley Periodicals, Inc.

  7. Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes.

    Science.gov (United States)

    Gaikwad, Hanmant K; Tsvirkun, Darya; Ben-Nun, Yael; Merquiol, Emmanuelle; Popovtzer, Rachela; Blum, Galia

    2018-03-14

    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT.

  8. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    Science.gov (United States)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  9. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  10. Improvement of CT-based treatment planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Balter, J.M.; Lam, K.L.; McGinn, C.J.; Lawrence, T.S.

    1996-01-01

    PURPOSE: CT based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Without knowledge of the patient's ventilatory status during the CT scan, a planning target volume margin for the entire range of ventilation is required both inferior and superior to abdominal target volumes to ensure coverage. Also, dose-volume histograms and normal tissue complication probability (NTCP) estimates may be uncertain. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. MATERIALS AND METHODS: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. On repeat simulations, the reproducibility of the diaphragm position at exhale was determined. A clinical protocol was developed for treatment based on exhale CT models. CT scans were acquired at normal exhale using a spiral scanner. Typical volumes were acquired using 5 mm slice thickness and a 1:1 pitch. The scan volume was divided into 2-3 segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. RESULTS: The average patient's diaphragm was located within 2 mm of the average exhale position for 50% of the typical ventilatory cycle. For inhale, this value was reduced to 10%, and for mid ventilation, 15%. The reproducibility of exhale position over multiple breathing cycles was 2 mm (2σ), as opposed to 4 mm for inhale. Combining the variation of exhale position and the

  11. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov

    2016-02-25

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

  12. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

    International Nuclear Information System (INIS)

    Hao, Ming; Wang, Yanli; Bryant, Stephen H.

    2016-01-01

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

  13. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.

    Science.gov (United States)

    Ma, Sanyuan; Liu, Yue; Liu, Yuanyuan; Chang, Jiasong; Zhang, Tong; Wang, Xiaogang; Shi, Run; Lu, Wei; Xia, Xiaojuan; Zhao, Ping; Xia, Qingyou

    2017-04-01

    Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  15. Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.

    Science.gov (United States)

    Ericksen, Spencer S; Wu, Haozhen; Zhang, Huikun; Michael, Lauren A; Newton, Michael A; Hoffmann, F Michael; Wildman, Scott A

    2017-07-24

    In structure-based virtual screening, compound ranking through a consensus of scores from a variety of docking programs or scoring functions, rather than ranking by scores from a single program, provides better predictive performance and reduces target performance variability. Here we compare traditional consensus scoring methods with a novel, unsupervised gradient boosting approach. We also observed increased score variation among active ligands and developed a statistical mixture model consensus score based on combining score means and variances. To evaluate performance, we used the common performance metrics ROCAUC and EF1 on 21 benchmark targets from DUD-E. Traditional consensus methods, such as taking the mean of quantile normalized docking scores, outperformed individual docking methods and are more robust to target variation. The mixture model and gradient boosting provided further improvements over the traditional consensus methods. These methods are readily applicable to new targets in academic research and overcome the potentially poor performance of using a single docking method on a new target.

  16. Earth Science Data and Models for Improved Targeting of Humanitarian Aid

    Science.gov (United States)

    Brown, Molly E.

    2011-01-01

    Humanitarian assistance to developing countries has long focused on countries that have political, economic and strategic interest to the United States. Recent changes in global security concerns have heightened the perception that humanitarian action is becoming increasingly politicized. This is seen to be largely driven by the 'global war on terror' along with a push by donors and the United Nations for closer integration between humanitarian action and diplomatic, military and other spheres of engagement in conflict and crisis-affected states (HPG 2010). As we enter an era of rising commodity prices and increasing uncertainty in global food production due to a changing climate, scientific data and analysis will be increasingly important to improve the targeting of humanitarian assistance. Earth science data enables appropriate humanitarian response to complex food emergencies that arise in regions outside the areas of current strategic and security focus. As the climate changes, new places will become vulnerable to food insecurity and will need emergency assistance. Earth science data and multidisciplinary models will enable an information-based comparison of need that goes beyond strategic and political considerations to identify new hotspots of food insecurity as they emerge. These analyses will improve aid targeting and timeliness while reducing strategic risk by highlighting new regions at risk of crisis in a rapidly changing world. Improved targeting with respect to timing and location could reduce cost while increasing the likelihood that those who need aid get it.

  17. Cueing listeners to attend to a target talker progressively improves word report as the duration of the cue-target interval lengthens to 2,000 ms.

    Science.gov (United States)

    Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin

    2018-04-25

    Endogenous attention is typically studied by presenting instructive cues in advance of a target stimulus array. For endogenous visual attention, task performance improves as the duration of the cue-target interval increases up to 800 ms. Less is known about how endogenous auditory attention unfolds over time or the mechanisms by which an instructive cue presented in advance of an auditory array improves performance. The current experiment used five cue-target intervals (0, 250, 500, 1,000, and 2,000 ms) to compare four hypotheses for how preparatory attention develops over time in a multi-talker listening task. Young adults were cued to attend to a target talker who spoke in a mixture of three talkers. Visual cues indicated the target talker's spatial location or their gender. Participants directed attention to location and gender simultaneously ("objects") at all cue-target intervals. Participants were consistently faster and more accurate at reporting words spoken by the target talker when the cue-target interval was 2,000 ms than 0 ms. In addition, the latency of correct responses progressively shortened as the duration of the cue-target interval increased from 0 to 2,000 ms. These findings suggest that the mechanisms involved in preparatory auditory attention develop gradually over time, taking at least 2,000 ms to reach optimal configuration, yet providing cumulative improvements in speech intelligibility as the duration of the cue-target interval increases from 0 to 2,000 ms. These results demonstrate an improvement in performance for cue-target intervals longer than those that have been reported previously in the visual or auditory modalities.

  18. The Holistic Targeting (HOT) methodology as the means to improve Information Operations (IO) target development and prioritization

    OpenAIRE

    Ieva, Christopher S.

    2008-01-01

    Prioritization. In response to this challenge, this study proposes five recommendations to enhance IO integration into the Joint Targeting Cycle: the use of interim IO Joint Munitions Effectiveness Manual (JMEM) techniques to better forecast cognitive effects, the adoption of the Measure of Worth (MOW) model to assess IO effects, the HOT methodology to develop and prioritize IO targets, the use of compendium software facilitate targeting problem understanding and the network analysis to...

  19. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI 2 ) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E g = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG ampersand G/EM on 96 HgI 2 spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI 2 which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs

  20. Using of gamma rays in stimulation and improvement of mushroom spawns plerotus ostreatus

    International Nuclear Information System (INIS)

    Hussein, O.S.; Atia, A.I.

    2009-01-01

    The objective of this work was activation and stimulation of plerotus ostreatus growth and increasing their yields by using of gamma rays, in addition to improvement of mushroom quality and shelf life.Exposing plerotus ostreatus to different doses of gamma rays 2.5, 5, 10 and 15 Gy to determine some of the basic composition of mushroom fruits achieved significant increase in yields and basic composition of resulted mushrooms. Also, increase in carbohydrates content, most of amino acids content and fatty acids content, mainly unsaturated fatty acid i.e., (C 16:1) and (C 18:1,2), which are essential for human nutrition as antioxidant. Whereas, there was a significant decrease in the total phenols content of the resulted fruits, which affected the quality and shelf life of mushroom fruits. All gamma rays doses used increased mushroom yield in fresh and dry wt basis. The recommended dose for spawn irradiation was 10 Gy to increase mushroom yields and its chemical components

  1. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    International Nuclear Information System (INIS)

    Ramamurthy, Senthil; D’Orsi, Carl J; Sechopoulos, Ioannis

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated. (paper)

  2. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements

    International Nuclear Information System (INIS)

    Perez-Arantegui, J.; Castillo, J.R.; Querre, G.

    1994-01-01

    Particle-induced X-ray emission (PIXE) has been applied to the analysis of inorganic materials to determine some elements with Z < 27: Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe, in thick-target analysis. A PIXE method has been developed for the analysis of geological materials, ceramics and pottery. Work has been carried out with an ion beam analytical system, using a low particle beam energy. Relative sensitivity, detection limits, reproducibility and accuracy of the method were calculated based on the analysis of geological standard materials (river sediments, argillaceous limestone, basalt, diorite and granite). Analysis using PIXE offers a number of advantages, such as short analysis time, multi-elemental and nondestructive determinations, and the results are similar to those obtained with other instrumental techniques of analysis. (Author)

  3. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Practical consideration in the selection of X-ray fluorescence tube targets for analysis of geological materials

    International Nuclear Information System (INIS)

    Attawiya, M.Y.; El-Behay, A.Z.; Khattab, F.M.

    1985-01-01

    Four X-ray fluorescence tubes with different targets (Cr, W, Mo and Rh) were compared for their suitability to analyze twelve of the most common major and trace elements in some geological samples. The major elements and Si, Al, Ca, K, Ti, and S. All elements having wavelengths higher than that of the iron K-absorption edge, gave significantly higher intensities of their characteristic fluorescence radiations when using a Cr-anode tube compared to W, Mo and Rh anode tubes. However, for the light elements (Si and Al) the Rh-anode tube of equal efficiency as the Cr-anode tube. The highest Ka-line intensity of Fe was obtained by the W-anode tube. The lowest detection limits (highest sensitivity) for the trace elements Rb, Sr, Zr, and Nb are obtained using both the Mo and Rh tubes. (author)

  5. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    International Nuclear Information System (INIS)

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  6. Quantification of the In Vitro Radiosensitivity of Mung Bean Sprout Elongation to 6MV X-Ray: A Revised Target Model Study.

    Directory of Open Access Journals (Sweden)

    Tzu Hwei Wang

    Full Text Available In this study, a revised target model for quantifying the in vitro radiosensitivity of mung bean sprout elongation to 6-MV X-rays was developed. The revised target model, which incorporated the Poisson prediction for a low probability of success, provided theoretical estimates that were highly consistent with the actual data measured in this study. The revised target model correlated different in vitro radiosensitivities to various effective target volumes and was successfully confirmed by exposing mung beans in various elongation states to various doses of 6-MV X-rays. For the experiment, 5,000 fresh mung beans were randomly distributed into 100 petri dishes, which were randomly divided into ten groups. Each group received an initial watering at a different time point prior to X-ray exposure, resulting in different effective target volumes. The bean sprouts were measured 70 hr after X-ray exposure, and the average length of the bean sprouts in each group was recorded as an index of the mung bean in vitro radiosensitivity. Mung beans that received an initial watering either six or sixteen hours before X-ray exposure had the shortest sprout length, indicating that the maximum effective target volume was formed within that specific time period. The revised target model could be also expanded to interpret the "two-hit" model of target theory, although the experimental data supported the "one-hit" model. If the "two-hit" model was sustained, theoretically, the target size would be 2.14 times larger than its original size to produce the same results.

  7. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Philip

    2017-07-15

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  8. Indirect radio-chemo-beta therapy: a targeted approach to increase biological efficiency of x-rays based on energy.

    Science.gov (United States)

    Oktaria, Sianne; Corde, Stéphanie; Lerch, Michael L F; Konstantinov, Konstantin; Rosenfeld, Anatoly B; Tehei, Moeava

    2015-10-21

    Despite the use of multimodal treatments incorporating surgery, chemotherapy and radiotherapy, local control of gliomas remains a major challenge. The potential of a new treatment approach called indirect radio-chemo-beta therapy using the synergy created by combining methotrexate (MTX) with bromodeoxyuridine (BrUdR) under optimum energy x-ray irradiation is assessed. 9L rat gliosarcoma cells pre-treated with 0.01 μM MTX and/or 10 μM BrUdR were irradiated in vitro with 50 kVp, 125 kVp, 250 kVp, 6 MV and 10 MV x-rays. The cytotoxicity was assessed using clonogenic survival as the radiobiological endpoint. The photon energy with maximum effect was determined using radiation sensitization enhancement factors at 10% clonogenic survival (SER10%). The cell cycle distribution was investigated using flow cytometric analysis with propidium iodide staining. Incorporation of BrUdR in the DNA was detected by the fluorescence of labelled anti-BrUdR antibodies. The radiation sensitization enhancement exhibits energy dependence with a maximum of 2.3 at 125 kVp for the combined drug treated cells. At this energy, the shape of the clonogenic survival curve of the pharmacological agents treated cells changes substantially. This change is interpreted as an increased lethality of the local radiation environment and is attributed to supplemented inhibition of DNA repair. Radiation induced chemo-beta therapy was demonstrated in vitro by the targeted activation of combined pharmacological agents with optimized energy tuning of x-ray beams on 9 L cells. Our results show that this is a highly effective form of chemo-radiation therapy.

  9. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    International Nuclear Information System (INIS)

    Roedig, Philip

    2017-07-01

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  10. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    Science.gov (United States)

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  11. Ultrastructural and cellular damage to rat lung with x-rays: a search for target cell in lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, I

    1975-03-01

    Radiation effects on the peripheral alveoli of conventional rats were examined by means of electron microscopy. The right hemithorax alone was exposed to various single doses of x rays. The initial cellular lesions selectively involved the cytoplasms of alveolar capillary endothelial (Ed) and type 1 epithelial (Ep 1) cells in a dose-dependent fashion, where the major alterations were multifocal vacuolations and swellings. These lesions became visible as early as 1 hr after 1000 R (the assumed mean lethal dose for Ed cells) and more. However, progenitor Ep 2 cells exhibited no obvious cytoplasmic lesions by the doses below 2000 R, indicating that Ep 2 cells are more resistant to x rays. With time following 1000 R, the capillary Ed blebbing abruptly developed in various forms from the sites presumably other than the Ed junctions. The Ed blebs and interstitial edema progressed until about 2 weeks without recovery, while some signs of cellular recovery were recognized in Ep 1 cells during this period. The observations after a long period of 6 months following 1000 R showed that the typical pulmonary fibrotic changes were initiated in the interstitium perhaps around unrepaired capillaries. Further, inflammatory reaction characterized by massive cellular infiltations was superimposed on developing pulmonary fibrosis. Considering the current knowledge about the cell sensitivity and renewal in stable tissues, the present results imply that capillary Ed cell is the primary target for the radiation lesion leading to the secondary pulmonary alterations.

  12. Improved image alignment method in application to X-ray images and biological images.

    Science.gov (United States)

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  13. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  14. Improvement of sample preparation for input plutonium accountability measurement by isotope dilution gammy-ray spectroscopy

    International Nuclear Information System (INIS)

    Nishida, K.; Kuno, Y.; Sato, S.; Masui, J.; Li, T.K.; Parker, J.L.; Hakkila, E.A.

    1992-01-01

    The sample preparation method for the isotope dilution gamma-ray spectrometry (IDGS) technique has been further improved for simultaneously determining the plutonium concentration and isotopic composition of highly irradiated spent-fuel dissolver solutions. The improvement includes using ion-exchange filter papers (instead of resin beads, as in two previous experiments) for better separation and recovery of plutonium from fission products. The results of IDGS measurements for five dissolver solutions are in good agreement with those by mass spectrometry with ∼0.4% for plutonium concentration and ∼0.1% for 239 Pu isotopic composition. The precision of the plutonium concentration is ∼1% with a 1-h count time. The technique could be implemented as an alternative method for input accountability and verification measurements in reprocessing plants

  15. Development of Wavelet Based Tools for Improving the γ-ray Spectrometry

    International Nuclear Information System (INIS)

    Hamzaoui, E-M.; El Badri, L.; Laraki, K.; Cherkaoui-Elmorsli, R.

    2013-06-01

    In this article, we propose a wavelet transform based tool to improve the use of gamma ray spectrometry as a nuclear technique. First, we attempt to study the problem of filtering the preamplifier's output signals of HPGe detector used in the measurements chain. Thus, we developed a nonlinear method based on discrete Coiflet transform combined to principal component analysis, which allows a significant improvement of the signal to noise ratio (SNR) at the output of the HPGe preamplifier. In a second step, the continuous wavelet transform, based on the Mexican Hat mother function, is used to achieve an automatic processing of the spectrometric data. This method permits us to get an alternative representation of the gamma energy spectrum. The results of different tests, performed in both the presence and the absence of a gamma radiation source, are illustrated. (authors)

  16. Progress in improving provincial plans for nutrition through targeted technical assistance and local advocacy in Vietnam.

    Science.gov (United States)

    Harris, Jody; Nguyen, Phuong H; To, Quyen; Frongillo, Edward A; Menon, Purnima

    2016-12-01

    Vietnam has been decentralizing nutrition planning to provinces, which could help with local relevance and accountability. Assessment in 2009 found a continuing top-down approach, limited human capacity, and difficulty in integrating multiple sectors. Alive and Thrive (A&T) provided targeted assistance and capacity-building for 15 provincial plans for nutrition (PPNs). We aimed to (i) assess PPN content and quality improvements 2009-2014, and (ii) explain processes through which change occurred. Data consisted of interview-based assessments of provincial planning processes, annual PPN assessments, and tracking of A&T involvement. At endline, some provinces produced higher quality plans. Local planning skills improved, but capacity remained insufficient. Awareness of and support for nutrition improved, but some policy and legal environments were contradictory. Objectives were clearer, but use of data for planning remained inconsistent. Provinces became more proactive and creative, but remained constrained by slow approval processes and insufficient funding. Targeted assistance and local advocacy can improve decentralized planning, with success dependent on policy and programming contexts and ability to overcome constraints around capacity, investment, data use and remnants of centralized planning. We recommend strong engagement with planners at the national level to understand how to unblock major constraints; solutions must take into consideration the particular political, financial and administrative context. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  17. Electron track reconstruction and improved modulation for photoelectric X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tenglin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zeng, Ming, E-mail: zengming@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Cang, Jirong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Li, Hong; Zhang, Heng [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi; Cheng, Jianping; Ma, Hao; Liu, Yinong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2017-06-21

    The key to photoelectric X-ray polarimetry is the determination of the emission direction of photoelectrons. Because of the low mass of an electron, the ionisation trajectory is not straight and the useful information needed for polarimetry is stored mostly in the initial part of the track where less energy is deposited. We present a new algorithm, based on the shortest path problem in graph theory, to reconstruct the 2D electron track from the measured image that is blurred due to transversal diffusion along drift and multiplication in the gas chamber. Compared with previous methods based on moment analysis, this algorithm allows us to identify the photoelectric interaction point more accurately and precisely for complicated tracks resulting from high energy photons or low pressure chambers. This leads to a better position resolution and a higher degree of modulation toward high energy X-rays. The new algorithm is justified using simulations and measurements with the gas pixel detector (GPD), and it should also work for other polarimetric techniques such as a time projection chamber (TPC). As the improvement is restricted in the high energy band, this new algorithm shows limited improvement for the sensitivity of GPD polarimeters, but it may have a larger potential for low-pressure TPC polarimeters.

  18. Improved X-ray diffraction from Bacillus megaterium penicillin G acylase crystals through long cryosoaking dehydration

    International Nuclear Information System (INIS)

    Rojviriya, Catleya; Pratumrat, Thunyaluck; Saper, Mark A.; Yuvaniyama, Jirundon

    2011-01-01

    Penicillin G acylase from the Gram-positive bacterium B. megaterium was crystallized and X-ray diffraction from these crystals could be substantially improved by slight dehydration through a long cryo-soak. Penicillin G acylase from Bacillus megaterium (BmPGA) is currently used in the pharmaceutical industry as an alternative to PGA from Escherichia coli (EcPGA) for the hydrolysis of penicillin G to produce 6-aminopenicillanic acid (6-APA), a penam nucleus for semisynthetic penicillins. Despite the significant differences in amino-acid sequence between PGAs from Gram-positive and Gram-negative bacteria, a representative PGA structure of Gram-positive origin has never been reported. In this study, crystallization and diffraction studies of BmPGA are described. Poor diffraction patterns with blurred spots at higher resolution were typical for BmPGA crystals cryocooled after a brief immersion in cryoprotectant solution. Overnight soaking in the same cryo-solution substantially improved both the mosaicity and resolution limit through the establishment of a new crystal-packing equilibrium. A crystal of BmPGA diffracted X-rays to 2.20 Å resolution and belonged to the monoclinic space group P2 1 with one molecule of BmPGA in the asymmetric unit

  19. Sesame mutation induction: Improvement of non-shattering capsule by using gamma rays and EMS

    International Nuclear Information System (INIS)

    Wongyai, W.; Saengkaewsook, W.; Veerawudh, J.

    2001-01-01

    Improvement of non-shattering capsule by using gamma rays and EMS in the Kasetsart University Sesame Breeding Project has been carried out since November 1994. Seed treatments with gamma rays (500 Gy) and EMS (0.5 and 1.0%, 4 hrs) were used. Growth characteristics, delayed shattering and shatter resistance of capsule were investigated in M 2 through M 8 lines. The seed yield of thirty promising M 7 lines was evaluated in April 1997 at Suwan Farm, Pakchong, Nakorn Ratchasima. Most of the tested lines gave higher seed yields than the check variety, MK 60. M 6026 gave the highest seed yield (1,477 kg/ha). All the tested mutant lines had a longer period of growth during flowering (GF). However, three promising lines had a shorter flowering period (FP) and a degree of stem termination (DST) when they were planted both in April and August 1997. Based on the criteria of determinate growth studied, these mutant lines would be classified as having a determinate growth habit. Delayed shattering and shatter resistant capsule were obtained. It is noted that the promising mutant lines were obtained from EMS treatment. Thus, the study of these mutant lines revealed that the improvement of sesame by mutation breeding for reduced seed losses before or during the harvest can be successful. (author)

  20. Toward improved target conformity for two spot scanning proton therapy delivery systems using dynamic collimation

    Science.gov (United States)

    Moignier, Alexandra; Gelover, Edgar; Smith, Blake R.; Wang, Dongxu; Flynn, Ryan T.; Kirk, Maura L.; Lin, Liyong; Solberg, Timothy D.; Lin, Alexander; Hyer, Daniel E.

    2016-01-01

    Purpose: To quantify improvement in target conformity in brain and head and neck tumor treatments resulting from the use of a dynamic collimation system (DCS) with two spot scanning proton therapy delivery systems (universal nozzle, UN, and dedicated nozzle, DN) with median spot sizes of 5.2 and 3.2 mm over a range of energies from 100 to 230 MeV. Methods: Uncollimated and collimated plans were calculated with both UN and DN beam models implemented within our in-house treatment planning system for five brain and ten head and neck datasets in patients previously treated with spot scanning proton therapy. The prescription dose and beam angles from the clinical plans were used for both the UN and DN plans. The average reduction of the mean dose to the 10-mm ring surrounding the target between the uncollimated and collimated plans was calculated for the UN and the DN. Target conformity was analyzed using the mean dose to 1-mm thickness rings surrounding the target at increasing distances ranging from 1 to 10 mm. Results: The average reductions of the 10-mm ring mean dose for the UN and DN plans were 13.7% (95% CI: 11.6%–15.7%; p < 0.0001) and 11.5% (95% CI: 9.5%–13.5%; p < 0.0001) across all brain cases and 7.1% (95% CI: 4.4%–9.8%; p < 0.001) and 6.3% (95% CI: 3.7%–9.0%; p < 0.001), respectively, across all head and neck cases. The collimated UN plans were either more conformal (all brain cases and 60% of the head and neck cases) than or equivalent (40% of the head and neck cases) to the uncollimated DN plans. The collimated DN plans offered the highest conformity. Conclusions: The DCS added either to the UN or DN improved the target conformity. The DCS may be of particular interest for sites with UN systems looking for a more economical solution than upgrading the nozzle to improve the target conformity of their spot scanning proton therapy system. PMID:26936726

  1. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies

    International Nuclear Information System (INIS)

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-01-01

    Many investigators have demonstrated the ability to treat hematologic malignancies with radiolabeled monoclonal antibodies targeting hematopoietic antigens such as anti-CD20 and anti-CD45. [1-5] Although the remission rates achieved with radioimmunotherapy (RIT) are relatively high, many patients subsequently relapse presumably due to suboptimal delivery of enough radiation to eradicate the malignancy. The dose-response of leukemia and lymphoma to radiation has been proven. Substantial amounts of radiation can be delivered by RIT if followed by hematopoietic cell transplantation to rescue the bone marrow from myeloablation.[ref] However, the maximum dose of RIT that can be used is still limited by toxicity to normal tissues affected by nonspecific delivery of radiation. Efforts to improve RIT focus on improving the therapeutic ratios of radiation in target versus non-target tissues by removing the fraction of radioisotope that fails to bind to target tissues and circulates freely in the bloodstream perfusing non-target tissues. Our group and others have explored several alternatives for removal of unbound circulating antibody. [refs] One such method, extracorporeal adsorption therapy (ECAT) consists of removing unbound antibody by a method similar to plasmapheresis after critical circulation time and distribution of antibody into target tissues have been achieved. Preclinical studies of ECAT in murine xenograft models demonstrated significant improvement in therapeutic ratios of radioactivity. Chen and colleagues demonstrated that a 2-hour ECAT procedure could remove 40 to 70% of the radioactivity from liver, lung and spleen. [ref] Although isotope concentration in the tumor was initially unaffected, a 50% decrease was noted approximately 36 hours after the procedure. This approach was also evaluated in a limited phase I pilot study of patients with refractory B-cell lymphoma. [ref] After radiographic confirmation of tumor localization of a test dose of anti-CD20

  2. Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Balter, James M.; Lam, Kwok L.; McGinn, Cornealeus J.; Lawrence, Theodore S.; Haken, Randall K. ten

    1998-01-01

    Purpose: CT-based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. Methods and Materials: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. A subsequent clinical protocol was developed for treatment based on exhale CT models. CT scans (typically 3.5-mm slice thickness) were acquired at normal exhale using a spiral scanner. The scan volume was divided into two to three segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. Results: The average patient's diaphragm remained within 25% of the range of ventilatory excursion from the average exhale position for 42% of the typical breathing cycle, and within 25% of the range from the average inhale position for 15% of the cycle. The reproducibility of exhale position over multiple breathing cycles was 0.9 mm (2σ), as opposed to 2.6 mm for inhale. Combining the variation of exhale position and the uncertainty in diaphragm position from CT slices led to typical margins of 10 mm superior to the target, and 19 mm inferior to the target, compared to margins of 19 mm in both directions under our prior protocol of margins based on free-breathing CT studies. For a typical intrahepatic target, these smaller volumes resulted in a 3.6% reduction in V eff for the liver. Analysis of portal films shows proper

  3. Measurement of 2-5 keV x-ray emission from laser-target interactions by using fluor-MCP and CsI-XRD detectors

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Tirsell, K.G.; Leipelt, G.R.; Laird, W.B.

    1981-01-01

    For inertial confinement fusion plasma diagnostics, x-ray diode (XRD) detectors using conventional cathodes are not sensitive enough to measure x-rays above approx. 1.5 keV. However, for laser driver fusion targets, x-rays in the range of 2 to 5 keV are important because of their mobility in the target. We have successfully used fluor-microchannel plate (MCP) detectors to obtain absolute x-ray measurements in the 2 to 5 keV range. Recent data obtained from experiments on the Shiva laser system are presented. In addition, designs for a variety of channels in the range using fluor-MCP and CsI-XRD's above 1.5 keV will be discussed

  4. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  5. Targeting anxiety to improve quality of life in patients with schizophrenia.

    Science.gov (United States)

    Buonocore, M; Bosia, M; Bechi, M; Spangaro, M; Cavedoni, S; Cocchi, F; Bianchi, L; Guglielmino, C; Mastromatteo, A R; Cavallaro, R

    2017-09-01

    Several studies suggested that anxiety can significantly affect the outcome of schizophrenia. Despite this evidence, non-pharmacological interventions targeting anxiety are still heterogenous. This study aims to test the efficacy of a novel training specifically designed to target anxiety in patients with schizophrenia. Innovatively, this training, beyond psychoeducation and problem solving, also targets Theory of Mind, as it provides coping strategies. Twenty-seven outpatients with schizophrenia received a novel rehabilitative training targeting anxiety (Anxiety Management Group [AMG]) combined with a Computer-Assisted Cognitive Remediation (CACR), and twenty received CACR plus a control intervention (Control Newspaper discussion Group [CNG]). All patients were assessed at baseline and after treatment for quality of life, neurocognition and anxiety. After training, patients treated with AMG+CACR showed significantly greater improvements on anxiety. A significant increase in quality of life was observed only for AMG+CACR group. Moreover, the participants' appraisal showed a significant difference between treatment groups with higher ratings among patients who received the AMG+CACR. This study thus suggests feasibility and efficacy of the proposed intervention, that could be implemented in rehabilitative programs for patients with schizophrenia with potential benefits also on disease course and outcome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Physical exercises to improve the stability of the target sight in sport shooting

    Directory of Open Access Journals (Sweden)

    Mercedes Miló Dubé

    2017-04-01

    Full Text Available Sport shooting stands for a highly technical sport, and a competitive art. It is the target sight one of the more important technical elements because it favors the sport performance and it must be considered in the training sessions from the junior school categories. This research meets the goals of proposing a set of physical exercises to improve the stability of the target sight technique for the Shooting athletes, category 13-16, field Standard gun pistol in the Sport School “Ormani Arenado Llonch” in Pinar del Río, Cuba. To fulfill this objective it was applied scientific observation, surveys and interviews, theoretical methods were also used in this research adjusted to 11 athletes and 3 coaches as the sample of research belonging to this school under study. Based on the diagnosed weaknesses found along the training was selected a set of physical exercise to improve the target sight empowering the pedagogical implication and without breaking the planning process of the sport.

  7. A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Science.gov (United States)

    Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien

    2018-03-01

    -posterior direction. Inferred traces often exhibit higher interdimensional correlation, which are not true representation of thoracic/abdominal motion and may underestimate kV-based tracking errors. The use of internal traces acquired from systems such as Calypso is advised for future kV-based tracking studies. The Gaussian PDF method is the most accurate 2D-3D inference method for tracking thoracic/abdominal targets. Motion magnitude has significant impact on 2D-3D inference error, and should be considered when estimating kV-based tracking error. © 2018 American Association of Physicists in Medicine.

  8. Improvement of Chrysanthemum var 'Taipei' Through In Vitro Induced Mutation with Chronic and Acute Gamma Rays

    International Nuclear Information System (INIS)

    Lamseejan, Siranut; Jompuk, Peeranuch; Deeseepan, Surin

    2003-01-01

    The project on chrysanthemum improvement by using radiation and in vitro culture technique was initiated. In vitro cultures of Taihei variety were irradiated with chronic gamma rays of 62.8 and 112 Gy. The irradiated shoots were multiplied three times from single-node cutting. M 1 V 4 shoots and control were rooted, transferred to soil in the greenhouse and finally transplanted in the field in September 2000. Mutation investigation was done at flowering time. Changes in flower color, form and size were observed only on the irradiated plants. The flower color mutation frequency among the plants treated with 62.8 and 112 Gy was 7.5% and 9.3%, respectively. Sixteen variants were selected from M 1 V 4 plants treated with gamma-ray of 62.8% Gy, and fourteen variants were selected from M 1 V 4 population treated with gamma-ray of 112 Gy. Shoots obtained from selected plants were cultured in vitro and then planted in the field in October 2001. By culturing purple florets from selected tall plant resulting from 62.8 Gy treatment, a new dwarf mutant was obtained. In another experiment involving culturing floret rays of a large orange flower mutant treated with gamma-ray of 112 Gy, a new small yellow flower mutant was produced. The experiment on in vitro culture acute irradiation was carried out using two different methods of irradiation. The first method, applying acute irradiation treatment with 20 and 30 Gy, resulted in color mutation frequency of 1.3% and 1.8% respectively. Another experiment on in vitro culture irradiation with acute 30 Gy delivered as split dose at first 20 Gy and then 10 Gy after 53 days, resulted in flower color mutant frequency of 8.6%. In the same way, acute 40 Gy treatment was delivered as split dose, at first 20 Gy and then followed by 20 Gy after 53 days this resulted in flower color mutation frequency of 10.9%. Investigation and evaluation of the mutant flowers were carried out with the help of ornamental growers from Chiang Rai and Chiang Mai

  9. Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice

    International Nuclear Information System (INIS)

    Tang, Rongbiao; Chai, Wei-Min; Yan, Fuhua; Chen, Ke-Min; Yang, Guo-Yuan

    2016-01-01

    X-ray phase contrast imaging (PCI) provides excellent image contrast by utilizing the phase shift. The introduction of microbubbles into tissues can cause a phase shift to make microbubbles visibly identified on PCI. In this study, we assessed the feasibility of targeted microbubble-based PCI for the detection of thrombosis. The absorption and phase contrast images of P-selectin-targeted microbubbles (MB P ) were obtained and compared in vitro. MB P , control IgG-targeted microbubbles (MB C ), and unbound microbubbles (MB U ) were tested for binding specificity on thrombi expressing P-selectin. MB P were used as molecular PCI probes to evaluate P-selectin expression in a mouse model of arteriovenous shunt thrombosis that was created using PE tubes in the bypass outside of the mouse body. PCI clearly showed the microbubbles not viewable via absorption contrast imaging (ACI). In vitro attachment of MB P (91.60 ± 11.63) to thrombi was significantly higher than attachment of MB C (17.80 ± 4.02, P < 0.001) or MB U (9.80 ± 2.59, P < 0.001). In the mouse model of arteriovenous shunt thrombosis, the binding affinity of MB P (15.50 ± 6.25) was significantly greater than that of MB C (0.50 ± 0.84, P < 0.001) or MB U (0.33 ± 0.52, P < 0.001). Our results indicate that molecular PCI may be considered as a novel and promising imaging modality for the investigation of thrombosis. (orig.)

  10. Current research relevant to the improvement of γ-ray spectroscopy as an analytical tool

    International Nuclear Information System (INIS)

    Meyer, R.A.; Tirsell, K.G.; Armantrout, G.A.

    1976-01-01

    Four areas of research that will have significant impact on the further development of γ-ray spectroscopy as an accurate analytical tool are considered. The areas considered are: (1) automation; (2) accurate multigamma ray sources; (3) accuracy of the current and future γ-ray energy scale, and (4) new solid state X and γ-ray detectors

  11. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment

    Directory of Open Access Journals (Sweden)

    Clare eScott

    2013-12-01

    Full Text Available Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDX are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy.PDX models have been applied to preclinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial ovarian cancer PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues

  12. High-resolution soft X-ray spectroscopy of 2.3 keV/u N sup 7 sup + ions through a microcapillary target

    CERN Document Server

    Iwai, Y; Kanai, Y; Oyama, H; Ando, K; Masuda, H; Nishio, K; Nakao, M; Tamamura, T; Komaki, K; Yamazaki, Y

    2002-01-01

    X-rays emitted from 2.3 keV/u sup 1 sup 5 N sup 7 sup + ions transmitted through a highly ordered Ni microcapillary were measured with a high-resolution soft X-ray spectrometer. The highly ordered microcapillary has recently become available employing a nano-lithographic technique. A transmission ratio and charge state distribution of ions through the microcapillary target were found to be consistent with theoretical predictions. A preliminary analysis showed that a series of X-rays from np-1s transitions with n as high as 8 were identified, which is consistent with the classical over barrier model.

  13. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  14. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  15. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  16. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  17. Automated computer analysis of x-ray radiographs greatly facilitates measurement of coating-thickness variations in laser-fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.; Moore, K.R.; Thomas, G.D.; Whitman, R.L.

    1981-01-01

    An automated system was built to analyze x-ray radiographs of laser fusion targets which greatly facilitates the detection of coating thickness variations. Many laser fusion targets reqire opaque coatings 1 to 20 μm thick which have been deposited on small glass balloons 100 to 500 μm in diameter. These coatings must be uniformly thick to 1% for the targets to perform optimally. Our system is designed to detect variations as small as 100 A in 1-μm-thick coatings by converting the optical density variations of contact x-ray radiographs into coating thickness variations. Radiographic images are recorded in HRP emulsions and magnified by an optical microscope, imaged onto television camera, digitized and processed on a Data General S/230 computer with a code by Whitman. After an initial set-up by the operator, as many as 200 targets will be automatically characterized

  18. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  19. Improved analytical formulas for x-ray and neutron reflection from surface films

    International Nuclear Information System (INIS)

    Zhou, X.; Chen, S.; Felcher, G.P.

    1992-01-01

    A general and exact expression for x-ray and neutron reflectance and transmittance is given in terms of an integral of the real-space scattering-length-density profile fluctuation of the film, with respect to an arbitrary constant reference density level, over the wave function inside the film. Various special cases and approximations are then derived from this exact form by suitable approximations of the wave function. In particular, two practical approximate formulas are derived which are improvement over the corresponding distorted-wave Born approximations. One is for an arbitrary film deposited on a known substrate and the other for a free liquid surface. Numerical results are used to illustrate the accuracy of these formulas

  20. Using DCM pitch modulation and feedback to improve long term X-ray beam stability

    International Nuclear Information System (INIS)

    Bloomer, C; Dent, A; Diaz-Moreno, S; Dolbnya, I; Pedersen, U; Rehm, G; Tang, C; Thomas, C

    2013-01-01

    In this paper we demonstrate significant improvements to the stability of the monochromatic X-ray beam intensity on several beamlines at Diamond, using a modulation of the pitch axis of the DCM with a piezoelectric actuator. The modulation is detected on an intensity diagnostic (e.g. an ion chamber) using a software lock-in technique. The detected amplitude and phase are used in a feedback to keep the DCM at the peak of the rocking curve, or any arbitrary position 'off-peak' which might be desired to detune the DCM and reject unwanted harmonics. A major advantage of this software based system is the great flexibility offered, using standard, readily available instrumentation. Measurements of the short and long-term performance of the feedback on several beamlines are presented, and the limitations of such a feedback are discussed.

  1. Improving the performance of X-ray proportional counters by using field transistor preamplifiers

    International Nuclear Information System (INIS)

    Kalinina, N.I.; Mel'ttser, L.V.; Pan'kin, V.V.

    1972-01-01

    The possibility of using low-noise field-effect transistors with the n-channel in preamplifiers for x-ray proportional counters constitutes the object of this article. The operation of the preamplifier assembled according to the scheme of the voltage amplifier and charge-sensitive preamplifier has been studied. The use of the field-effect transistor with the n-channel in preamplifiers for proportional counters allows to improve significantly the energy resolution and operation at reduced voltage and at high loads. Notably good results have been obtained when constructing the circuit of the premplifier with the field-effect transistor on the charge-sensitive principle. The use of home-produced field-effect transistors makes it possible to construct detectors of roentgen radiometric instruments to measure light element content with proportional counters at reduced voltage

  2. Magnetron target designs to improve wafer edge trench filling in ionized metal physical vapor deposition

    International Nuclear Information System (INIS)

    Lu Junqing; Yoon, Jae-Hong; Shin, Keesam; Park, Bong-Gyu; Yang Lin

    2006-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed. The model was validated based on the agreement between the model predictions and the reported experimental values for the asymmetric metal deposition at trench sidewalls near the wafer edge for a 200 mm wafer. This model could predict the thickness of the metal deposits across the wafer, the symmetry of the deposits on the trench sidewalls at any wafer location, and the angular distributions of the metal fluxes arriving at any wafer location. The model predictions for the 300 mm wafer indicate that as the target-to-wafer distance is shortened, the deposit thickness increases and the asymmetry decreases, however the overall uniformity decreases. Up to reasonable limits, increasing the target size and the sputtering intensity for the outer target portion significantly improves the uniformity across the wafer and the symmetry on the trench sidewalls near the wafer edge

  3. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  4. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Directory of Open Access Journals (Sweden)

    Carasco C.

    2018-01-01

    Full Text Available AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS based on a NaI(Tl scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  5. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Science.gov (United States)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  6. Multi-energy x-ray detectors to improve air-cargo security

    Science.gov (United States)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  7. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    Science.gov (United States)

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness

    International Nuclear Information System (INIS)

    Hu Guangyue; Zheng Jian; Shen Baifei; Lei Anle; Xu Zhizhan; Liu Shenye; Zhang Jiyan; Yang Jiamin; Ding Yongkun; Hu Xin; Huang Yixiang; Du Huabing; Yi Rongqing

    2008-01-01

    The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size

  9. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    Energy Technology Data Exchange (ETDEWEB)

    Borm, B.; Gärtner, F.; Khaghani, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by a larger drive laser energy.

  10. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

    Science.gov (United States)

    Herr, Andreas; Fischer, Reinhard

    2014-09-01

    Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Spatial targeting of conservation tillage to improve water quality and carbon retention benefits

    International Nuclear Information System (INIS)

    Yang, W.; Sheng, C.; Voroney, P.

    2005-01-01

    Conservation tillage reduces soil erosion and improves water quality in agricultural watersheds. However, the benefits of conservation tillage in carbon sequestration are the subject of controversy. Public funds are provided to farms to encourage the adoption of conservation tillage. Given the economic costs, the targeting of areas likely to achieve the greatest environmental benefits has become an important policy-making issue. A geographic information system (GIS) based modelling framework which integrated hydrologic, soil organic matter, and farm models to evaluate the spatial targeting of conservation tillage was presented. A case study applying the framework in the Fairchild Creek watershed in Ontario indicated that targeting conservation tillage based on sediment abatement goals can achieve comparable carbon retention benefits in terms of the percentage reduction of base carbon losses. Targeted subcatchments for conservation tillage varied across the watershed based on benefit to cost ratios. Conservation tillage patterns based on carbon retention goals showed similar results to sediment abatement goals but slight differences were observed because of different carbon content in the soils. The results indicated that sediment abatement may be used as an indicator in setting up program goals. The impacts of conservation programs can then be evaluated based on calibrated and validated hydrologic models in conjunction with monitoring data. Results also showed that setting carbon retention may lead to higher costs in order to achieve corresponding sediment abatement benefits. Carbon retention may not be suitable for setting as a stand-alone environmental goal for conservation programs because of the difficulties in verifying the impacts and the discrepancies between carbon and sediment benefits. It was concluded that the modelling results have important policy implications for the design of conservation stewardship programs that aim to achieve environmental

  12. Fast electron and X-ray scattering as a tool to study target's structure

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)], E-mail: amusia@vms.huji.ac.il

    2007-06-15

    We concentrate on several relatively new aspects of the study of fast electron and X-ray scattering by atoms and atom-like objects, namely endohedral atoms and fullerenes. However, main attention is given to fast charge particle scattering. We show that the corresponding cross-sections, being expressed via so-called generalized oscillator strengths (GOS), give information on the electronic structure of the target and on the role of electron correlations in it. We consider what sort of information became available when analyzing the dependence of GOS upon their multipolarity, transferred momentum q and energy {omega}. To obtain theoretical results, we employ both the one-electron Hartree-Fock approximation and account for the multi-electron correlation in the target, using the random phase approximation with exchange. We demonstrate the role of non-dipole corrections in the small-angle fast-electron inelastic scattering. There dipole contribution dominates while non-dipole corrections can be considerably and controllably enhanced as compared to the case of low and medium energy photoionization. We show also that analyses of GOS for discrete level excitations permit to clarify their multipolarity. The results of calculations of Compton excitation and ionization cross-sections are presented. Attention is given to cooperative effects in inelastic fast electron-atom scattering that results in directed motion of the secondary electrons, a phenomenon that is similar to 'drag currents' in photoionization. We demonstrate how one should derive GOS for endohedral atoms, e.g. A-C{sub 60} and what is the additional information that can be obtained from corresponding GOS. Most of discussions are illustrated by the results of concrete calculations.

  13. Improved shielding of the gonads of infants during comparative X-ray examination of the hip joints

    International Nuclear Information System (INIS)

    Petrik, R.; Reumuth, H.J.

    1979-01-01

    Improved shielding of the gonads of infants during comparative X-ray examination of the hip joints. The presented gonad shielding device for male and female infants aged 3 to 12 months has two small windows for the incident X-ray beam and allows to keep the gonad dose very low. The regions of the skeleton concerned are adequately displayed. The shield can be applied in routine examinations and does not require personnel to hold the patient. (author)

  14. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    Science.gov (United States)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  15. X-ray emission spectra of the plasma produced by an ultrashort laser pulse in cluster targets

    International Nuclear Information System (INIS)

    Stenz, C; Bagnoud, V; Blasco, F; Roche, J R; Salin, F; Faenov, A Ya; Skobelev, I Yu; Magunov, A I; Pikuz, T A

    2000-01-01

    The first observation of x-ray emission spectra of multiply charged ions in the plasma produced by a 35-fs laser pulse with an intensity up to 10 17 W cm -2 in CO 2 and Kr gas jet targets is reported. The emission in the wavelength ranges of the 1snp-1s 2 (n=3-6) transitions of O VII ions and the Ly α line of O VIII ions, as well as of the (2s 1/2 2p 6 3p 3/2 ) 1 -2s 2 2p 6 1 S 0 and (2s 1/2 2p 6 3p 1/2 ) 1 -2s 2 2p 6 1 S 0 lines of Ne-like KrXXVII ions testifies that the highly ionised plasma is formed by collision processes in clusters. Modelling the shape of the spectral lines of oxygen ions by including the principal mechanisms of broadening and absorption in optically dense plasmas reveals that the main contribution to the time-integrated intensity is made by the plasma with the parameters N e =(2-20)x10 20 cm -3 and T e =100 - 115 eV. (interaction of laser radiation with matter. laser plasma)

  16. X-ray spectroscopic study of nonequilibrium laser produced plasma in porous targets of low average density

    Energy Technology Data Exchange (ETDEWEB)

    Burdonskiy, I.N.; Dimitrenko, V.V.; Fasakhov, I.K.; Gavrilov, V.V.; Goltsov, A.Y.; Kovalskii, N.G.; Mironov, B.N. [Science Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow Reg. (Russian Federation); Faenov, A.Y.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Y. [Multicharged Ions Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation)

    2006-06-15

    New experimental results on laser irradiation (I {<=} 10{sup 14} W/cm{sup 2}, {lambda} = 1.053 {mu}m) of low-density fibrous agar are presented. X-ray spectrometers with spherically bent mica crystals were used for measuring with high spectral resolution the line spectra of multicharged ions. Detailed analysis of the measured spectra made it possible to determine the temperature of electrons and ions in hot plasma created in laser irradiated low-density samples in dependence on average material density and average intensity within a focal spot. Both the ion and electron temperatures are found to decrease by a factor 1.5 - 2 following a factor of about 3 as increase of the target average density (5 mg/cm{sup 3} and 15 mg/cm{sup 3}) for I 5*10{sup 13} W/cm{sup 2}. In all cases the ion temperature exceeds the electron temperature by a factor of 2 - 3.

  17. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors

    NARCIS (Netherlands)

    Zhu, Yaqin; Wang, Xinhui; Wang, X.; Chen, J.; Meng, Fenghua; Deng, D.; Cheng, R.; Feijen, Jan; Zhong, Zhiyuan

    2016-01-01

    Nanotheranostics is a rapidly growing field combining disease diagnosis and therapy, which ultimately may add in the development of ‘personalized medicine’. Here, we designed and developed bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels (HAI-NGs) for targeted X-ray computed

  18. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; Villette, B.; Girard, F.; Reverdin, C.; May, M.; Emig, J.; Sorce, C.; Colvin, J.; Gammon, S.; Jaquez, J.; Satcher, J. H.; Fournier, K. B.

    2012-08-01

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5–8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm36-16 mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1-5 μm1-5 μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5%<5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%<2.5%). The aerogel targets produced Te=2Te=2 to 3 keV, ne=0.12-0.2ne=0.12-0.2 critical density plasmas yielding a 40%–60% laser-to-x-ray total conversion efficiency (CE) (1.2%–3% in the Fe K-shell range). The foil cavity targets produced Te~2 keV, Te~2 keV, ne~0.15ne~0.15 critical density plasmas yielding a 60%–75% conversion efficiency (1.6%–2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  19. Design improvement of the target elements of Wendelstein 7-X divertor

    International Nuclear Information System (INIS)

    Boscary, J.; Peacock, A.; Friedrich, T.; Greuner, H.; Böswirth, B.; Tittes, H.; Schulmeyer, W.; Hurd, F.

    2012-01-01

    Highlights: ► Improvement of the cooling structure design. ► Improvement of the CFC tile arrangement at the element end. ► Design and fabrication validated with high heat flux testing. ► Selected solution removes stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side facing the pumping gap of the element, respectively. - Abstract: The actively cooled high-heat flux divertor of the Wendelstein 7-X stellarator consists of individual target elements made of a water-cooled CuCrZr copper alloy heat sink armored with CFC tiles. The so-called “bi-layer” technology developed in collaboration with the company Plansee for the bonding of the tiles onto the heat sink has reliably demonstrated the removal of the specified heat load of 10 MW/m 2 in the central area of the divertor. However, due to geometrical constraints, the loading performance at the ends of the elements is reduced compared to the central part. Design modifications compatible with industrial processes have been made to improve the cooling capabilities at this location. These changes have been validated during test campaigns of full-scale prototypes carried out in the neutral beam test facility GLADIS. The tested solution can remove reliably the stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side of the element, respectively. The results of the testing allowed the release of the design and fabrication processes for the next manufacturing phase of the target elements.

  20. Patient-centric Blood Pressure–targeted Cardiopulmonary Resuscitation Improves Survival from Cardiac Arrest

    Science.gov (United States)

    Friess, Stuart H.; Naim, Maryam Y.; Lampe, Joshua W.; Bratinov, George; Weiland, Theodore R.; Garuccio, Mia; Nadkarni, Vinay M.; Becker, Lance B.; Berg, Robert A.

    2014-01-01

    Rationale: Although current resuscitation guidelines are rescuer focused, the opportunity exists to develop patient-centered resuscitation strategies that optimize the hemodynamic response of the individual in the hopes to improve survival. Objectives: To determine if titrating cardiopulmonary resuscitation (CPR) to blood pressure would improve 24-hour survival compared with traditional CPR in a porcine model of asphyxia-associated ventricular fibrillation (VF). Methods: After 7 minutes of asphyxia, followed by VF, 20 female 3-month-old swine randomly received either blood pressure–targeted care consisting of titration of compression depth to a systolic blood pressure of 100 mm Hg and vasopressors to a coronary perfusion pressure greater than 20 mm Hg (BP care); or optimal American Heart Association Guideline care consisting of depth of 51 mm with standard advanced cardiac life support epinephrine dosing (Guideline care). All animals received manual CPR for 10 minutes before first shock. Primary outcome was 24-hour survival. Measurements and Main Results: The 24-hour survival was higher in the BP care group (8 of 10) compared with Guideline care (0 of 10); P = 0.001. Coronary perfusion pressure was higher in the BP care group (point estimate +8.5 mm Hg; 95% confidence interval, 3.9–13.0 mm Hg; P < 0.01); however, depth was higher in Guideline care (point estimate +9.3 mm; 95% confidence interval, 6.0–12.5 mm; P < 0.01). Number of vasopressor doses before first shock was higher in the BP care group versus Guideline care (median, 3 [range, 0–3] vs. 2 [range, 2–2]; P = 0.003). Conclusions: Blood pressure–targeted CPR improves 24-hour survival compared with optimal American Heart Association care in a porcine model of asphyxia-associated VF cardiac arrest. PMID:25321490

  1. Patient-centric blood pressure-targeted cardiopulmonary resuscitation improves survival from cardiac arrest.

    Science.gov (United States)

    Sutton, Robert M; Friess, Stuart H; Naim, Maryam Y; Lampe, Joshua W; Bratinov, George; Weiland, Theodore R; Garuccio, Mia; Nadkarni, Vinay M; Becker, Lance B; Berg, Robert A

    2014-12-01

    Although current resuscitation guidelines are rescuer focused, the opportunity exists to develop patient-centered resuscitation strategies that optimize the hemodynamic response of the individual in the hopes to improve survival. To determine if titrating cardiopulmonary resuscitation (CPR) to blood pressure would improve 24-hour survival compared with traditional CPR in a porcine model of asphyxia-associated ventricular fibrillation (VF). After 7 minutes of asphyxia, followed by VF, 20 female 3-month-old swine randomly received either blood pressure-targeted care consisting of titration of compression depth to a systolic blood pressure of 100 mm Hg and vasopressors to a coronary perfusion pressure greater than 20 mm Hg (BP care); or optimal American Heart Association Guideline care consisting of depth of 51 mm with standard advanced cardiac life support epinephrine dosing (Guideline care). All animals received manual CPR for 10 minutes before first shock. Primary outcome was 24-hour survival. The 24-hour survival was higher in the BP care group (8 of 10) compared with Guideline care (0 of 10); P = 0.001. Coronary perfusion pressure was higher in the BP care group (point estimate +8.5 mm Hg; 95% confidence interval, 3.9-13.0 mm Hg; P < 0.01); however, depth was higher in Guideline care (point estimate +9.3 mm; 95% confidence interval, 6.0-12.5 mm; P < 0.01). Number of vasopressor doses before first shock was higher in the BP care group versus Guideline care (median, 3 [range, 0-3] vs. 2 [range, 2-2]; P = 0.003). Blood pressure-targeted CPR improves 24-hour survival compared with optimal American Heart Association care in a porcine model of asphyxia-associated VF cardiac arrest.

  2. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice

    Directory of Open Access Journals (Sweden)

    Dominic Jauvin

    2017-06-01

    Full Text Available Myotonic dystrophy type 1 (DM1, a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTGn trinucleotide repeat in the 3′ UTR of the human dystrophia myotonica protein kinase (DMPK gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2′-4′-constrained, ethyl-modified (ISIS 486178 antisense oligonucleotide (ASO targeted to the 3′ UTR of the DMPK gene, which led to a 70% reduction in CUGexp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUGexp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs.

  3. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

    Science.gov (United States)

    Awad, Louis N; Reisman, Darcy S; Kesar, Trisha M; Binder-Macleod, Stuart A

    2014-05-01

    To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. Single group pre-post preliminary study investigating a novel locomotor intervention. Research laboratory. Individuals (N=13) with locomotor deficits after stroke. FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each Pstudy of this promising locomotor intervention for persons poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.

    Science.gov (United States)

    Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K; Martineau, Laurie; Revillod, Lucille; Bassez, Guillaume; Lachon, Aline; MacLeod, A Robert; Gourdon, Geneviève; Wheeler, Thurman M; Thornton, Charles A; Bennett, C Frank; Puymirat, Jack

    2017-06-16

    Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG) n trinucleotide repeat in the 3' UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2'-4'-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3' UTR of the DMPK gene, which led to a 70% reduction in CUG exp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUG exp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. X-ray fluorescence in Member States: Austria and Sri Lanka. A new attachment module for secondary target excitation with sample changer and vacuum chamber

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Smolek, S.; Streli, C.; Waduge, V.A.; Seneviratne, S.

    2009-01-01

    A new secondary target attachment vacuum chamber was developed, designed and constructed at the Atomic Institute of Vienna Technical University X ray Laboratory and installed at the Atomic Energy Authorities, Colombo, Sri Lanka. The prerequisites were that the new system had to fit physically next to the Wobistrax TXRF spectrometer and to use the same existing X ray tube and an existing uplooking LN2 cooled Si(Li) detector. This new spectrometer replaces a simple secondary target system previously installed. The new system offers a 10 position sample changer integrated in a vacuum chamber. The secondary targets are exchangeable, and Mo, Zr, Ti, Al, KBr and Teflon as Barkla polarizer are available. The system is designed for the emission-transmission method for quantification but can also be used for air filter samples where the thin film model for the quantification is applicable

  6. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  7. Improved target detection algorithm using Fukunaga-Koontz transform and distance classifier correlation filter

    Science.gov (United States)

    Bal, A.; Alam, M. S.; Aslan, M. S.

    2006-05-01

    Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.

  8. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    Science.gov (United States)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible

  9. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy.

    Science.gov (United States)

    Gautron, Anne-Sophie; Juillerat, Alexandre; Guyot, Valérie; Filhol, Jean-Marie; Dessez, Emilie; Duclert, Aymeric; Duchateau, Philippe; Poirot, Laurent

    2017-12-15

    Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of "off-the-shelf" CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells' functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.

    Science.gov (United States)

    El-Zaafarany, Ghada M; Soliman, Mahmoud E; Mansour, Samar; Awad, Gehanne A S

    2016-04-30

    Lipid-based nanovectors offer effective carriers for brain delivery by improving drug potency and reducing off-target effects. Emulsomes are nano-triglyceride (TG) carriers formed of lipid cores supported by at least one phospholipid (PC) sheath. Due to their surface active properties, PC forms bilayers at the aqueous interface, thereby enabling encapsulated drug to benefit from better bioavailability and stability. Emulsomes of oxcarbazepine (OX) were prepared, aimed to offer nanocarriers for nasal delivery for brain targeting. Different TG cores (Compritol(®), tripalmitin, tristearin and triolein) and soya phosphatidylcholine in different amounts and ratios were used for emulsomal preparation. Particles were modulated to generate nanocarriers with suitable size, charge, encapsulation efficiency and prolonged release. Cytotoxicity and pharmacokinetic studies were also implemented. Nano-spherical OX-emulsomes with maximal encapsulation of 96.75% were generated. Stability studies showed changes within 30.6% and 11.2% in the size and EE% after 3 months. MTT assay proved a decrease in drug toxicity by its encapsulation in emulsomes. Incorporation of OX into emulsomes resulted in stable nanoformulations. Tailoring emulsomes properties by modulating the surface charge and particle size produced a stable system for the lipophilic drug with a prolonged release profile and mean residence time and proved direct nose-to-brain transport in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. e-Health Tools for Targeting and Improving Melanoma Screening: A Review

    International Nuclear Information System (INIS)

    Tyagi, A.; Miller, K.; Cockburn, M.

    2012-01-01

    The key to improved prognosis for melanoma is early detection and diagnosis, achieved by skin surveillance and secondary prevention (screening). However, adherence to screening guidelines is low, with population-based estimates of approximately 26% for physician-based skin cancer screening and 20-25% for skin self-examination. The recent proliferation of melanoma detection "e-Health"tools, digital resources that facilitate screening in patients often outside of the clinical setting, may offer new strategies to promote adherence and expand the proportion and range of individuals performing skin self-examination. The purpose of this paper is to catalog and categorize melanoma screening e-Health tools to aid in the determination of their efficacy and potential for adoption. The availability and accessibility of such tools, their costs, target audience, and, where possible, information on their efficacy, will be discussed with potential benefits and limitations considered. While e-Health tools targeting melanoma screening are widely available, little has been done to formally evaluate their efficacy and ability to aid in overcoming screening barriers. Future research needs to formally evaluate the potential role of e-Health tools in melanoma prevention.

  12. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  13. Improvement of Zinc Coating Weight Control for Transition of Target Change

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien Ming; Lin, Jeong Hwa; Hsu, Tse Wei; Lin, Rui Rong [China Steel Corporation, Kaohsiung (China)

    2010-06-15

    The product specification of the Continuous Hot Dip Galvanizing Line (CGL) changes and varies constantly with different customers' requirements, especially in the zinc coating weight which is from 30 to 150 g/m{sup 2} on each side. Since the coating weight of zinc changes often, it is very important to reduce time spent in the transfer of target values changed for low production cost and yield loss. The No.2 CGL in China Steel Corporation (CSC) has improved the control of the air knife which is designed by Siemens VAI. CSC proposed an experiment design which is an L{sub 9}(3{sup 4}) orthogonal array to find the relations between zinc coating weight and the process parameters, such as the line speed, air pressure, gap of air knife and air knife position. A non-linear regression formula was derived from the experimental results and applied in the mathematical model. A new air knife feedforward control system, which is coupled with the regression formula, the air knife control system and the process computer, is implemented into the line. The practical plant operation results have been presented to show the transfer time is obviously shortened while zinc coating weight target changing and the product rejected ratio caused by zinc coating weight out of specification is significantly reduced from 0.5% to 0.15%.

  14. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Gautron

    2017-12-01

    Full Text Available Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of “off-the-shelf” CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC. Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells’ functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.

  15. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  16. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.

    Science.gov (United States)

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Furling, Denis; Rüegg, Markus A; Sinnreich, Michael; Castets, Perrine

    2017-02-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.

  17. Improved production and processing of 89Zr using a solution target

    International Nuclear Information System (INIS)

    Pandey, Mukesh K.; Bansal, Aditya; Engelbrecht, Hendrik P.; Byrne, John F.; Packard, Alan B.; DeGrado, Timothy R.

    2016-01-01

    Objective: The objectives of the present work were to improve the cyclotron production yield of 89 Zr using a solution target, develop a practical synthesis of the hydroxamate resin used to process the target, and develop a biocompatible medium for 89 Zr elution from the hydroxamate resin. Methods: A new solution target (BMLT-2) with enhanced heat dissipation capabilities was designed by using helium-cooled dual foils (0.2 mm Al and 25 μ Havar) and an enhanced water-cooled, elongated solution cavity in the target insert. Irradiations were performed with 14 MeV protons on a 2 M solution of yttrium nitrate in 1.25 M nitric acid at 40-μA beam current for 2 h in a closed system. Zirconium-89 was separated from Y by use of a hydroxamate resin. A one-pot synthesis of hydroxamate resin was accomplished by activating the carboxylate groups on a carboxymethyl cation exchange resin using methyl chloroformate followed by reaction with hydroxylamine hydrochloride. After trapping of 89 Zr on hydroxamate resin and rinsing the resin with HCl and water to release Y, 89 Zr was eluted with 1.2 M K 2 HPO 4 /KH 2 PO 4 buffer (pH 3.5). ICP-MS was used to measure metal contaminants in the final 89 Zr solution. Results: The BMLT-2 target produced 349 ± 49 MBq (9.4 ± 1.2 mCi) of 89 Zr at the end of irradiation with a specific activity of 1.18 ± 0.79 GBq/μg. The hydroxamate resin prepared using the new synthesis method showed a trapping efficiency of 93% with a 75 mg resin bed and 96–97% with a 100–120 mg resin bed. The elution efficiency of 89 Zr with 1.2 M K 2 HPO 4 /KH 2 PO 4 solution was found to be 91.7 ± 3.7%, compared to > 95% for 1 M oxalic acid. Elution with phosphate buffer gave very small levels of metal contaminants: Al = 0.40–0.86 μg (n = 2), Fe = 1.22 ± 0.71 μg (n = 3), Y = 0.29 μg (n = 1). Conclusions: The BMLT-2 target allowed doubling of the beam current for production of 89 Zr, resulting in a greater than 2-fold increase in production yield in comparison

  18. Improved production and processing of ⁸⁹Zr using a solution target.

    Science.gov (United States)

    Pandey, Mukesh K; Bansal, Aditya; Engelbrecht, Hendrik P; Byrne, John F; Packard, Alan B; DeGrado, Timothy R

    2016-01-01

    The objectives of the present work were to improve the cyclotron production yield of (89)Zr using a solution target, develop a practical synthesis of the hydroxamate resin used to process the target, and develop a biocompatible medium for (89)Zr elution from the hydroxamate resin. A new solution target (BMLT-2) with enhanced heat dissipation capabilities was designed by using helium-cooled dual foils (0.2 mm Al and 25 μ Havar) and an enhanced water-cooled, elongated solution cavity in the target insert. Irradiations were performed with 14 MeV protons on a 2M solution of yttrium nitrate in 1.25 M nitric acid at 40-μA beam current for 2 h in a closed system. Zirconium-89 was separated from Y by use of a hydroxamate resin. A one-pot synthesis of hydroxamate resin was accomplished by activating the carboxylate groups on a carboxymethyl cation exchange resin using methyl chloroformate followed by reaction with hydroxylamine hydrochloride. After trapping of (89)Zr on hydroxamate resin and rinsing the resin with HCl and water to release Y, (89)Zr was eluted with 1.2 M K2HPO4/KH2PO4 buffer (pH3.5). ICP-MS was used to measure metal contaminants in the final (89)Zr solution. The BMLT-2 target produced 349±49 MBq (9.4±1.2 mCi) of (89)Zr at the end of irradiation with a specific activity of 1.18±0.79 GBq/μg. The hydroxamate resin prepared using the new synthesis method showed a trapping efficiency of 93% with a 75 mg resin bed and 96-97% with a 100-120 mg resin bed. The elution efficiency of (89)Zr with 1.2M K2HPO4/KH2PO4 solution was found to be 91.7±3.7%, compared to >95% for 1 M oxalic acid. Elution with phosphate buffer gave very small levels of metal contaminants: Al=0.40-0.86 μg (n=2), Fe=1.22±0.71 μg (n=3), Y=0.29 μg (n=1). The BMLT-2 target allowed doubling of the beam current for production of (89)Zr, resulting in a greater than 2-fold increase in production yield in comparison with a conventional liquid target. The new one-pot synthesis of hydroxamate

  19. WAYS TO IMPROVE THE EFFICIENCY OF THE PROGAM-TARGETED OF INFRASTRUCTURE OBJECTS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    A. V. Frolova

    2014-01-01

    Full Text Available The relevance of this article due to the fact that the current situation inRussiais complemented by the negative eff ects of market reforms in the economy, initiated economic sanctions that have been taken against our country. In view of this, for the eff ective fi nancing costs of the federal budget for the development of transport infrastructure is a very topical issues related to the targeted program planning. The study aims to study ways to improve the effi ciency of program fi nancing expenditures of the federal budget for the development of transport infrastructure. The results will contribute to solving urgent problems in the development of transport infrastructure, high technology and housing sectors.

  20. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells.

    Science.gov (United States)

    Rodrigues, Ana F; Carrondo, Manuel J T; Alves, Paula M; Coroadinha, Ana S

    2014-12-01

    The past decade witnessed the entry into the market of new virus-based biopharmaceuticals produced in animal cells such as oncolytic vectors, virus-like particle vaccines, and gene transfer vectors. Therefore, increased attention and investment to optimize cell culture processes towards enhanced manufacturing of these bioproducts is anticipated. Herein, we review key findings on virus-host interactions that have been explored in cell culture optimization. Approaches supporting improved productivity or quality of vector preparations are discussed, mainly focusing on medium design and genetic manipulation. This review provides an integrated outline for current and future efforts in exploring cellular targets for the optimization of cell culture manufacturing of virus-based biopharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    Science.gov (United States)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  2. Capturing the target genes of BldD in Saccharopolyspora erythraea using improved genomic SELEX method.

    Science.gov (United States)

    Wu, Hang; Mao, Yongrong; Chen, Meng; Pan, Hui; Huang, Xunduan; Ren, Min; Wu, Hao; Li, Jiali; Xu, Zhongdong; Yuan, Hualing; Geng, Ming; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2015-03-01

    BldD (SACE_2077), a key developmental regulator in actinomycetes, is the first identified transcriptional factor in Saccharopolyspora erythraea positively regulating erythromycin production and morphological differentiation. Although the BldD of S. erythraea binds to the promoters of erythromycin biosynthetic genes, the interaction affinities are relatively low, implying the existence of its other target genes in S. erythraea. Through the genomic systematic evolution of ligands by exponential enrichment (SELEX) method that we herein improved, four DNA sequences of S. erythraea A226, corresponding to the promoter regions of SACE_0306 (beta-galactosidase), SACE_0811 (50S ribosomal protein L25), SACE_3410 (fumarylacetoacetate hydrolase), and SACE_6014 (aldehyde dehydrogenase), were captured with all three BldD concentrations of 0.5, 1, and 2 μM, while the previously identified intergenic regions of eryBIV-eryAI and ermE-eryCI plus the promoter region of SACE_7115, the amfC homolog for aerial mycelium formation, could be captured only when the BldD's concentration reached 2 μM. Electrophoretic mobility shift assay (EMSA) analysis indicated that BldD specifically bound to above seven DNA sequences, and quantitative real-time PCR (qRT-PCR) assay showed that the transcriptional levels of the abovementioned target genes decreased when bldD was disrupted in A226. Furthermore, SACE_7115 and SACE_0306 in A226 were individually inactivated, showing that SACE_7115 was predominantly involved in aerial mycelium formation, while SACE_0306 mainly controlled erythromycin production. This study provides valuable information for better understanding of the pleiotropic regulator BldD in S. erythraea, and the improved method may be useful for uncovering regulatory networks of other transcriptional factors.

  3. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  4. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  5. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  6. Electron beam produced in a transient hollow cathode discharge: beam electron distribution function, X-ray emission and solid target ablation

    International Nuclear Information System (INIS)

    Nistor, Magdalena

    2000-01-01

    This research thesis aims at a better knowledge of phenomena occurring during transient hollow cathode discharges. The author first recalls the characteristics of such a discharge which make it different from conventional pseudo-spark discharges. The objective is to characterise the electron beam produced within the discharge, and the phenomena associated with its interaction with a solid or gaseous target, leading to the production of an X ray or visible radiation. Thus, the author reports the measurement (by magnetic deflection) of the whole time-averaged electronic distribution function. Such a knowledge is essential for a better use of the electron beam in applications such as X-ray source or material ablation. As high repetition frequency pulse X ray sources are very interesting tools, he reports the development and characterisation of Bremsstrahlung X rays during a beam-target interaction. He finally addresses the implementation of a spectroscopic diagnosis for the filamentary plasma and the ablation of a solid target by the beam [fr

  7. Predicted versus observed cosmic-ray-produced noble gases in lunar samples: improved Kr production ratios

    International Nuclear Information System (INIS)

    Regnier, S.; Hohenberg, C.M.; Marti, K.; Reedy, R.C.

    1979-01-01

    New sets of cross sections for the production of krypton isotopes from targets of Rb, Sr, Y, and Zr were constructed primarily on the bases of experimental excitation functions for Kr production from Y. These cross sections were used to calculate galactic-cosmic-ray and solar-proton production rates for Kr isotopes in the moon. Spallation Kr data obtained from ilmenite separates of rocks 10017 and 10047 are reported. Production rates and isotopic ratios for cosmogenic Kr observed in ten well-documented lunar samples and in ilmenite separates and bulk samples from several lunar rocks with long but unknown irradiation histories were compared with predicted rates and ratios. The agreements were generally quite good. Erosion of rock surfaces affected rates or ratios for only near-surface samples, where solar-proton production is important. There were considerable spreads in predicted-to-observed production rates of 83 Kr, due at least in part to uncertainties in chemical abundances. The 78 Kr/ 83 Kr ratios were predicted quite well for samples with a wide range of Zr/Sr abundance ratios. The calculated 80 Kr/ 83 Kr ratios were greater than the observed ratios when production by the 79 Br(n,γ) reaction was included, but were slightly undercalculated if the Br reaction was omitted; these results suggest that Br(n,γ)-produced Kr is not retained well by lunar rocks. The productions of 81 Kr and 82 Kr were overcalculated by approximately 10% relative to 83 Kr. Predicted-to-observed 84 Kr/ 83 ratios scattered considerably, possibly because of uncertainties in corrections for trapped and fission components and in cross sections for 84 Kr production. Most predicted 84 Kr and 86 Kr production rates were lower than observed. Shielding depths of several Apollo 11 rocks were determined from the measured 78 Kr/ 83 Kr ratios of ilmenite separates. 4 figures, 5 tables

  8. Weathering the storm: Improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis.

    Science.gov (United States)

    Weaver, Lehn K; Behrens, Edward M

    2017-03-01

    Cytokine storm syndromes require rapid diagnosis and treatment to limit the morbidity and mortality caused by the hyperinflammatory state that characterizes these devastating conditions. Herein, we discuss the current knowledge that guides our therapeutic decision-making and personalization of treatment for patients with cytokine storm syndromes. Firstly, ICU-level supportive care is often required to stabilize patients with fulminant disease while additional diagnostic evaluations proceed to determine the underlying cause of cytokine storm. Pharmacologic interventions should be focused on removing the inciting trigger of inflammation and initiation of an individualized immunosuppressive regimen when immune activation is central to the underlying disease pathophysiology. Monitoring for a clinical response is required to ensure that changes in the therapeutic regimen can be made as clinically warranted. Escalation of immunosuppression may be required if patients respond poorly to the initial therapeutic interventions, while a slow wean of immunosuppression in patients who improve can limit medication-related toxicities. In certain scenarios, a decision must be made whether an individual patient requires hematopoietic cell transplantation to prevent recurrence of disease. Despite these interventions, significant morbidity and mortality remains for cytokine storm patients. Therefore, we use this review to propose a clinical schema to guide current and future attempts to design rational therapeutic interventions for patients suffering from these devastating conditions, which we believe speeds the diagnosis of disease, limits medication-related toxicities, and improves clinical outcomes by targeting the heterogeneous and dynamic mechanisms driving disease in each individual patient.

  9. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice.

    Directory of Open Access Journals (Sweden)

    Naoto Tsuda

    Full Text Available OBJECTIVE: Diacylglycerol O-acyltransferase 1 (DGAT1 catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. DESIGN AND METHODS: We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500, reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO mice. RESULTS: The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. CONCLUSIONS: Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.

  10. Mapping multiple components of malaria risk for improved targeting of elimination interventions.

    Science.gov (United States)

    Cohen, Justin M; Le Menach, Arnaud; Pothin, Emilie; Eisele, Thomas P; Gething, Peter W; Eckhoff, Philip A; Moonen, Bruno; Schapira, Allan; Smith, David L

    2017-11-13

    There is a long history of considering the constituent components of malaria risk and the malaria transmission cycle via the use of mathematical models, yet strategic planning in endemic countries tends not to take full advantage of available disease intelligence to tailor interventions. National malaria programmes typically make operational decisions about where to implement vector control and surveillance activities based upon simple categorizations of annual parasite incidence. With technological advances, an enormous opportunity exists to better target specific malaria interventions to the places where they will have greatest impact by mapping and evaluating metrics related to a variety of risk components, each of which describes a different facet of the transmission cycle. Here, these components and their implications for operational decision-making are reviewed. For each component, related mappable malaria metrics are also described which may be measured and evaluated by malaria programmes seeking to better understand the determinants of malaria risk. Implementing tailored programmes based on knowledge of the heterogeneous distribution of the drivers of malaria transmission rather than only consideration of traditional metrics such as case incidence has the potential to result in substantial improvements in decision-making. As programmes improve their ability to prioritize their available tools to the places where evidence suggests they will be most effective, elimination aspirations may become increasingly feasible.

  11. Studies of soy sauce sterilization and its special flavour improvement by gamma-ray irradiation

    Science.gov (United States)

    Jingtian, Yang; Xinhua, Jin; Guoxing, Gu; Guichun, Yun

    Experimental studies for sterilizing 12 kinds of soy sauce with gamma-ray irradiation showed that both of effects for sterilization and improving flavour and quality of soy sauce were obtained simultaneously. All colibacillus in soy sauce were sterilized using 1 kGy radiation dose and total bacteria count in soy sauce can be reduced to below national standard at 5 kGy dose ( 5x10 4count/ml ). But above 10 kGy dose is needed to kill all bacteria in soy sauce. The significant changes on chemical components in soy sauce irradiated at 5-7 kGy dose took place: raduceing-sugar increased by 1-10%, total amount of 18 kinds of free amino acid raised between 3.5-28 %, emerging-sweet smell substances which have low boiling point, such as alchols, aldehydes and esters obviously increased. The taste-specialists from some soy sauce factories concluded that flavour and quality of soy sauce irradiated are better than non-irradiated.

  12. An improved ring removal procedure for in-line x-ray phase contrast tomography

    Science.gov (United States)

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-01

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  13. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods.

    Science.gov (United States)

    Ding, Xinrui; Li, Jiasheng; Chen, Qiu; Tang, Yong; Li, Zongtao; Yu, Binhai

    2015-02-09

    Although the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods. Results show that the sample with the upward-facing convex-cone MPA film that has a diameter of half of that of the remote phosphor glass, and is tightly affixed to the inward surface of the remote phosphor glass renders a superior light distribution performance. When compared with the case in which no MPA film is used, the deviation of the CCT distribution decreases from 1033 K to 223 K, and the corresponding output power of the sample is an acceptable level of 85.6%. We perform experiments to verify our simulation results, and the two sets of results exhibit a close agreement. We believe that our approach can be used to optimize MPA films for various lighting applications.

  14. Measurement of angular distributions of K x-ray intensity of Ti and Cu thick targets following impact of 10–25 keV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra; Kumar, Sunil; Prajapati, Suman; Singh, Bhartendu K. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Llovet, Xavier [Scientific and Technological Centers, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2017-04-15

    Highlights: • New results on the angular distributions of relative intensities of K-X-rays lines of Ti and Cu thick targets under electron bombardment are reported. • An increase of relative intensity of Kα and Kβ X-ray lines has been found to be about 60–70% in the detection range θ = 105{sup 0}–165{sup 0}. • There is a slight impact energy dependence of Cu Kα X-ray line. • A reasonable agreement between experimental and PENELOPE MC Calculations are obtained. - Abstract: We present new results on angular distributions of the relative intensity of K{sub α} and K{sub β} x-ray lines of thick targets of Ti (Z = 22) and Cu (Z = 29) pure elements following impact of 10–25 keV electrons. The angular measurements of the K x-radiations were accomplished by rotating the target surface with respect to the electron beam direction. The x-rays emerging from the target surface in reflection mode were detected by an energy dispersive Si P-I-N photodiode detector. The resulting variation of the relative intensity of the characteristic lines as a function of angle of detection and impact energy has been found to be anisotropic and it is considered to arise due to change in path lengths at a given incidence angle α for the photons generated by direct as well as by indirect K shell ionization processes. The measured angular variations of relative intensity of K{sub α} and K{sub β} x-ray lines of both targets are found to increase by about 60–70% in going from θ = 105{sup 0} to 165{sup 0} at a given impact energy; however there is a slight indication of impact energy dependence of Cu K{sub α} x-ray line as also noted by the earlier workers. We compare the experimental results with those obtained by Monte Carlo simulations using PENELOPE calculations; the agreement between experiment and theory is found to be satisfactory within uncertainties involved in the measurements and the theoretical results.

  15. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  16. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  17. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  18. Does Targeted Education of Emergency Physicians Improve Their Comfort Level in Treating Psychiatric Patients?

    Directory of Open Access Journals (Sweden)

    Brenda J Walker

    2012-12-01

    Full Text Available Introduction: We determined if targeted education of emergency physicians (EPsregarding the treatment of mental illness will improve their comfort level in treatingpsychiatric patients boarding in the emergency department (ED awaiting admission.Methods: We performed a pilot study examining whether an educational interventionwould change an EP’s comfort level in treating psychiatric boarder patients (PBPs. Weidentified a set of psychiatric emergencies that typically require admission or treatmentbeyond the scope of practice of emergency medicine. Diagnoses included majordepression, schizophrenia, schizoaffective disorder, bipolar affective disorder, generalanxiety disorder, suicidal ideation, and criminal behavior. We designed equivalentsurveys to be used before and after an educational intervention. Each survey consistedof 10 scenarios of typical psychiatric patients. EPs were asked to rate their comfort levelsin treating the described patients on a visual analogue scale. We calculated summaryscores for the non intervention survey group (NINT and intervention survey group (INTand compared them using Student’s t-test.Results: Seventy-nine percent (33/42 of eligible participants completed the preinterventionsurvey (21 attendings, 12 residents and comprised the NINT group. Fiftyfivepercent (23/42 completed the post-intervention survey (16 attendings, 7 residentscomprising the INT group. A comparison of summary scores between ‘NINT’ and ‘INT’groups showed a highly significant improvement in comfort levels with treating thepatients described in the scenarios (P = 0.003. Improvements were noted on separateanalysis for faculty (P = 0.039 and for residents (P = 0.012. Results of a sensitivityanalysis excluding one highly significant scenario showed decreased, but still importantdifferences between the NINT and INT groups for all participants and for residents, butnot for faculty (all: P = 0.05; faculty: P = 0.25; residents: P = 0

  19. Results of improvement of simultaneous and sequential x-ray fluorescence equipment for quantitative routine analysis

    International Nuclear Information System (INIS)

    Zsamboky, Jozsef

    1985-01-01

    Two main types of x-ray fluorescence analyzers measuring sequentially and simultaneously, respectively, the intensities at given wave lengths are described. The main parts of an up to date x-ray fluorescence analyzer are surveyed in detail. The advantages and disadvantages of both methods are discussed. Some results on calibration and optimization are given. (D.Gy.)

  20. Improvements in γ-ray reconstruction with positive sensitive Ge detectors using the backtracking method

    International Nuclear Information System (INIS)

    Milechina, L.; Cederwall, B.

    2003-01-01

    Gamma-ray tracking, a new detection technique for nuclear spectroscopy, requires efficient algorithms for reconstructing the interaction paths of multiple γ rays in a detector volume. In the present work, we discuss the effect of the atomic electron momentum distribution in Ge as well as employment of different types of figure-of-merit within the context of the so called backtracking method

  1. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  2. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  3. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  4. Improving superficial target delineation in radiation therapy with endoscopic tracking and registration

    Energy Technology Data Exchange (ETDEWEB)

    Weersink, R. A.; Qiu, J.; Hope, A. J.; Daly, M. J.; Cho, B. C. J.; DaCosta, R. S.; Sharpe, M. B.; Breen, S. L.; Chan, H.; Jaffray, D. A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2011-12-15

    Purpose: Target delineation within volumetric imaging is a critical step in the planning process of intensity modulated radiation therapy. In endoluminal cancers, endoscopy often reveals superficial areas of visible disease beyond what is seen on volumetric imaging. Quantitatively relating these findings to the volumetric imaging is prone to human error during the recall and contouring of the target. We have developed a method to improve target delineation in the radiation therapy planning process by quantitatively registering endoscopic findings contours traced on endoscopic images to volumetric imaging. Methods: Using electromagnetic sensors embedded in an endoscope, 2D endoscopic images were registered to computed tomography (CT) volumetric images by tracking the position and orientation of the endoscope relative to a CT image set. Regions-of-interest (ROI) in the 2D endoscopic view were delineated. A mesh created within the boundary of the ROI was projected onto the 3D image data, registering the ROI with the volumetric image. This 3D ROI was exported to clinical radiation treatment planning software. The precision and accuracy of the procedure was tested on two solid phantoms with superficial markings visible on both endoscopy and CT images. The first phantom was T-shaped tube with X-marks etched on the interior. The second phantom was an anatomically correct skull phantom with a phantom superficial lesion placed on the pharyngeal surface. Markings were contoured on the endoscope images and compared with contours delineated in the treatment planning system based on the CT images. Clinical feasibility was tested on three patients with early stage glottic cancer. Image-based rendering using manually identified landmarks was used to improve the registration. Results: Using the T-shaped phantom with X-markings, the 2D to 3D registration accuracy was 1.5-3.5 mm, depending on the endoscope position relative to the markings. Intraobserver standard variation was 0

  5. Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    Science.gov (United States)

    Kilbourne, C. A.; Adams, J. S.; Brekosky, R. P.; Chervenak, J. A.; Chiao, M. P.; Kelley, R. L.; Kelly, D. P.; Porter, F. S.

    2011-01-01

    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays.

  6. Harnessing implementation science to improve care quality and patient safety: a systematic review of targeted literature.

    Science.gov (United States)

    Braithwaite, Jeffrey; Marks, Danielle; Taylor, Natalie

    2014-06-01

    Getting greater levels of evidence into practice is a key problem for health systems, compounded by the volume of research produced. Implementation science aims to improve the adoption and spread of research evidence. A linked problem is how to enhance quality of care and patient safety based on evidence when care settings are complex adaptive systems. Our research question was: according to the implementation science literature, which common implementation factors are associated with improving the quality and safety of care for patients? We conducted a targeted search of key journals to examine implementation science in the quality and safety domain applying PRISMA procedures. Fifty-seven out of 466 references retrieved were considered relevant following the application of exclusion criteria. Included articles were subjected to content analysis. Three reviewers extracted and documented key characteristics of the papers. Grounded theory was used to distil key features of the literature to derive emergent success factors. Eight success factors of implementation emerged: preparing for change, capacity for implementation-people, capacity for implementation-setting, types of implementation, resources, leverage, desirable implementation enabling features, and sustainability. Obstacles in implementation are the mirror image of these: for example, when people fail to prepare, have insufficient capacity for implementation or when the setting is resistant to change, then care quality is at risk, and patient safety can be compromised. This review of key studies in the quality and safety literature discusses the current state-of-play of implementation science applied to these domains. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  7. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  8. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  9. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    Science.gov (United States)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  10. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Directory of Open Access Journals (Sweden)

    M. Schrön

    2017-10-01

    Full Text Available In the last few years the method of cosmic-ray neutron sensing (CRNS has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  11. Synchrotron-based transmission x-ray microscopy for improved extraction in shale during hydraulic fracturing

    Science.gov (United States)

    Kiss, Andrew M.; Jew, Adam D.; Joe-Wong, Claresta; Maher, Kate M.; Liu, Yijin; Brown, Gordon E.; Bargar, John

    2015-09-01

    Engineering topics which span a range of length and time scales present a unique challenge to researchers. Hydraulic fracturing (fracking) of oil shales is one of these challenges and provides an opportunity to use multiple research tools to thoroughly investigate a topic. Currently, the extraction efficiency from the shale is low but can be improved by carefully studying the processes at the micro- and nano-scale. Fracking fluid induces chemical changes in the shale which can have significant effects on the microstructure morphology, permeability, and chemical composition. These phenomena occur at different length and time scales which require different instrumentation to properly study. Using synchrotron-based techniques such as fluorescence tomography provide high sensitivity elemental mapping and an in situ micro-tomography system records morphological changes with time. In addition, the transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 6-2 is utilized to collect a nano-scale three-dimensional representation of the sample morphology with elemental and chemical sensitivity. We present the study of a simplified model system, in which pyrite and quartz particles are mixed and exposed to oxidizing solution, to establish the basic understanding of the more complex geology-relevant oxidation reaction. The spatial distribution of the production of the oxidation reaction, ferrihydrite, is retrieved via full-field XANES tomography showing the reaction pathway. Further correlation between the high resolution TXM data and the high sensitivity micro-probe data provides insight into potential morphology changes which can decrease permeability and limit hydrocarbon recovery.

  12. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Scheiffele, Lena; Iwema, Joost; Bogena, Heye R.; Lv, Ling; Martini, Edoardo; Baroni, Gabriele; Rosolem, Rafael; Weimar, Jannis; Mai, Juliane; Cuntz, Matthias; Rebmann, Corinna; Oswald, Sascha E.; Dietrich, Peter; Schmidt, Ulrich; Zacharias, Steffen

    2017-10-01

    In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  13. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of Cancer

    Directory of Open Access Journals (Sweden)

    Kathleen F. Pirollo

    2006-01-01

    Full Text Available The development of improvements in magnetic resonance imaging (MRI that would enhance sensitivity, leading to earlier detection of cancer and visualization of metastatic disease, is an area of intense exploration. We have devised a tumor-targeting, liposomal nanodelivery platform for use in gene medicine. This systemically administered nanocomplex has been shown to specifically and efficiently deliver both genes and oligonucleotides to primary and metastatic tumor cells, resulting in significant tumor growth inhibition and even tumor regression. Here we examine the effect on MRI of incorporating conventional MRI contrast agent Magnevist® into our anti-transferrin receptor single-chain antibody (TfRscFv liposomal complex. Both in vitro and in an in vivo orthotopic mouse model of pancreatic cancer, we show increased resolution and image intensity with the complexed Magnevist®. Using advanced microscopy techniques (scanning electron microscopy and scanning probe microscopy, we also established that the Magnevist® is in fact encapsulated by the liposome in the complex and that the complex still retains its nanodimensional size. These results demonstrate that this TfRscFv-liposome-Magnevist® nanocomplex has the potential to become a useful tool in early cancer detection.

  14. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  15. Postoperative radiotherapy for glioma: improved delineation of the clinical target volume using the geodesic distance calculation.

    Directory of Open Access Journals (Sweden)

    DanFang Yan

    Full Text Available OBJECTS: To introduce a new method for generating the clinical target volume (CTV from gross tumor volume (GTV using the geodesic distance calculation for glioma. METHODS: One glioblastoma patient was enrolled. The GTV and natural barriers were contoured on each slice of the computer tomography (CT simulation images. Then, a graphic processing unit based on a parallel Euclidean distance transform was used to generate the CTV considering natural barriers. Three-dimensional (3D visualization technique was applied to show the delineation results. Speed of operation and precision were compared between this new delineation method and the traditional method. RESULTS: In considering spatial barriers, the shortest distance from the point sheltered from these barriers equals the sum of the distance along the shortest path between the two points; this consists of several segments and evades the spatial barriers, rather than being the direct Euclidean distance between two points. The CTV was generated irregularly rather than as a spherical shape. The time required to generate the CTV was greatly reduced. Moreover, this new method improved inter- and intra-observer variability in defining the CTV. CONCLUSIONS: Compared with the traditional CTV delineation, this new method using geodesic distance calculation not only greatly shortens the time to modify the CTV, but also has better reproducibility.

  16. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  17. Investigation of the hydrogen multilayered target H/T-D{sub 2} and muonic X-ray yields in ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-12-21

    This paper extends applications of the multilayered solid target H/T-D{sub 2}, which is kept at 3 K. The time evolutions of muonic tritium atoms ({mu}t) are obtained, by taking into account {mu}t production rate at different places of deuterium material. The apparatus H/T-D{sub 2} can be used for checking nuclear properties of implanted ions, which take part at muon transfer. Electromagnetic X-rays are generated by muon atomic transitions. The muonic X-ray transition energies are strongly affected by the size of nuclei. Here, a solid hydrogen-tritium (H/T) with a Almost-Equal-To 1 mm thick is used for {mu}t production. For ion implantation, the required amount of deuterium material is determined to be about 3.2 {mu}m. Moreover, the muonic X-ray yields are estimated and compared with those of the arrangement H/T-D{sub 2}. While the present target requires argon ion beam intensity nearly a factor of 2 times smaller; gives a relatively higher X-ray yield (15% enhancement per hour) at the energy 644 keV with the detection efficiency of Almost-Equal-To 1%.

  18. Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches

    International Nuclear Information System (INIS)

    Sanford, T.W.; Allshouse, G.O.; Marder, B.M.; Nash, T.J.; Mock, R.C.; Spielman, R.B.; Seamen, J.F.; McGurn, J.S.; Jobe, D.; Gilliland, T.L.; Vargas, M.; Struve, K.W.; Stygar, W.A.; Douglas, M.R.; Matzen, M.K.; Hammer, J.H.; De Groot, J.S.; Eddleman, J.L.; Peterson, D.L.; Mosher, D.; Whitney, K.G.; Thornhill, J.W.; Pulsifer, P.E.; Apruzese, J.P.; Maron, Y.

    1996-01-01

    A systematic experimental study of annular aluminum-wire Z-pinches on a 20-TW electrical generator shows that the measured spatial characteristics and emitted x-ray power agree more closely with rad-hydro simulations when large numbers of wires are used. The measured x-ray power increases first slowly and then rapidly with decreasing interwire gap spacing. Simulations suggested that this increase reflects the transition from implosion of individual wire plasmas to one of an azimuthally symmetric plasma shell. In the plasma-shell regime, x-ray powers of 40TW are achieved. copyright 1996 The American Physical Society

  19. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  20. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    Science.gov (United States)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  1. Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    Science.gov (United States)

    O'Neill, Pat M.; Kim, Myung-Hee Y.

    2014-01-01

    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n-20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized for than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried onward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on the gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its

  2. Mutagenic effect of gamma-rays on improvement of yield attributing traits of greengram (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    Das, T.R.; Baisakh, B.

    2014-01-01

    Seed samples of two morphologically distinct varieties (Sujata and OBGG-52) of greengram were treated with three doses of Gamma-rays (200 Gy, 400 Gy and 600 Gy). Mutagenic treatments in general showed reduction in mean values of germination, survival and plant growth traits in comparison to control in M 1 generation and the magnitude of reduction was directly related to the dose of the mutagens. The spectrum of chlorophyll mutations includes albina, xantha, chlorina, striata and viridis in both the varieties. The varied morphological mutations observed in leaf of both the genotypes were tricotyledonary, quadrifoliate, pentafoliate and lobed leaf. Early flowering, late flowering, tall plant, trailing type, profused poded, bold poded and sterile plant were also observed as an effect of mutagen in both the genotypes. The M 2 populations showed wider range of variations than the parent varieties. Magnitude of changes varied with mutagen dose and the varieties. Higher the dose of treatment, greater the shift in the mean and variance of different yield parameters. Genetic advance estimates showed that selection in M 2 populations would be effective in improving the yield/plant. Following selection among M 2 plants and M 3 progenies on the basis of higher yield, high yielding mutant cultures in both varieties were isolated in M 4 and evaluated in M 5 generation. Gamma-ray dose of 200 Gy was most effective for improving the yield traits in both the genotypes as it brought out improvement in pods/plant, pod length and 100-seed wt. where as 400 Gy improved 100- seed wt. in only Sujata and 600 Gy improved pod length and seeds/pod only. Isolation of high yielding lines from the gamma-rays treated population of greengram proved that different doses of gamma rays induced improvement of different yield attributing characters in greengram. (author)

  3. Cryocooler and Thermal Systems for Improved GeD Gamma-ray Imaging and Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — Place Germanium detectors (GeDs) in a few-MeV γ-ray Compton instrument on a satellite will enable unprecedented insight into nuclear astrophysics, key multimessenger...

  4. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    International Nuclear Information System (INIS)

    Dobbines, J.T. III.

    1990-01-01

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P

  5. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  6. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi.

    1982-07-01

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  7. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.

    Science.gov (United States)

    Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F

    2017-07-28

    -like receptor (TLR) ligand CpG, induced the most profound antigen-specific T cell response, by both CD4 + and CD8 + T cells, in vivo. Overall, our data reveal the impact of NP composition and surface properties on the type and extension of induced immune responses. Deeper understanding on the NP-immune cell crosstalk can guide the rational development of nano-immunotherapeutic systems with improved and specific therapeutic efficacy and avoiding off-target effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Impact on outcome of a targeted performance improvement programme in haemodynamically unstable patients with a pelvic fracture.

    Science.gov (United States)

    Perkins, Z B; Maytham, G D; Koers, L; Bates, P; Brohi, K; Tai, N R M

    2014-08-01

    We describe the impact of a targeted performance improvement programme and the associated performance improvement interventions, on mortality rates, error rates and process of care for haemodynamically unstable patients with pelvic fractures. Clinical care and performance improvement data for 185 adult patients with exsanguinating pelvic trauma presenting to a United Kingdom Major Trauma Centre between January 2007 and January 2011 were analysed with univariate and multivariate regression and compared with National data. In total 62 patients (34%) died from their injuries and opportunities for improved care were identified in one third of deaths. Three major interventions were introduced during the study period in response to the findings. These were a massive haemorrhage protocol, a decision-making algorithm and employment of specialist pelvic orthopaedic surgeons. Interventions which improved performance were associated with an annual reduction in mortality (odds ratio 0.64 (95% confidence interval (CI) 0.44 to 0.93), p = 0.02), a reduction in error rates (p = 0.024) and significant improvements in the targeted processes of care. Exsanguinating patients with pelvic trauma are complex to manage and are associated with high mortality rates; implementation of a targeted performance improvement programme achieved sustained improvements in mortality, error rates and trauma care in this group of severely injured patients. ©2014 The British Editorial Society of Bone & Joint Surgery.

  9. Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors

    International Nuclear Information System (INIS)

    Kitsos, S.; Diop, C.M.; Assad, A.; Nimal, J.C.; Ridoux, P.

    1996-01-01

    Improvements of gamma-ray transport calculations in S n codes aim at taking into account the bound-electron effect of Compton scattering (incoherent), coherent scattering (Rayleigh), and secondary sources of bremsstrahlung and fluorescence. A computation scheme was developed to take into account these phenomena by modifying the angular and energy transfer matrices, and no modification in the transport code has been made. The incoherent and coherent scatterings as well as the fluorescence sources can be strictly treated by the transfer matrix change. For bremsstrahlung sources, this is possible if one can neglect the charged particles path as they pass through the matter (electrons and positrons) and is applicable for the energy range of interest for us (below 10 MeV). These improvements have been reported on the kernel attenuation codes by the calculation of new buildup factors. The gamma-ray buildup factors have been carried out for 25 natural elements up to 30 mean free paths in the energy range between 15 keV and 10 MeV

  10. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, R.D.; Scherrer, B [Boston Children’s Hospital, Boston, MA (United States); Don, S [Washington University, St. Louis, MO (United States)

    2016-06-15

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient. The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.

  11. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    International Nuclear Information System (INIS)

    MacDougall, R.D.; Scherrer, B; Don, S

    2016-01-01

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient. The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund

  12. Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    National Research Council Canada - National Science Library

    Smetek, Timothy E

    2007-01-01

    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors...

  13. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    Science.gov (United States)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  14. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    International Nuclear Information System (INIS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong; He, You; Zhou, Guangzhao; Xiao, Tiqiao; Huang, Qingjie

    2016-01-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  15. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  16. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  17. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  18. Multi-modal and targeted imaging improves automated mid-brain segmentation

    Science.gov (United States)

    Plassard, Andrew J.; D'Haese, Pierre F.; Pallavaram, Srivatsan; Newton, Allen T.; Claassen, Daniel O.; Dawant, Benoit M.; Landman, Bennett A.

    2017-02-01

    The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7T are used, but it is not feasible to scan clinical patients in those scanners. Targeted imaging sequences at 3T such as F-GATIR, and other optimized inversion recovery sequences, have been presented which enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7T can be used to accurately segment these structures at 3T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice coefficient over 0.88 and a mean surface distance less than 1.0mm was achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a Dice over 0.75 and a mean surface distance less than 1.2mm was achieved using a combination of T1 and FGATIR imaging sequences. In the substantia nigra and sub-thalamic nucleus a Dice coefficient of over 0.6 and a mean surface distance of less than 1.0mm was achieved using the optimized inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together produced significantly improved segmentation results than any individual modality (p<0.05 wilcox sign-rank test).

  19. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    Science.gov (United States)

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  20. Health outcomes in acromegaly: depression and anxiety are promising targets for improving reduced quality of life

    Directory of Open Access Journals (Sweden)

    Victor Jacobus Geraedts

    2015-01-01

    Full Text Available IINTRODUCTION. Remission criteria of acromegaly are based on biochemical variables, i.e. normalization of increased hormone levels. However, the established reduction in Quality of Life (QoL is suggested to be independent of biochemical control. The aim of this study was to test which aspects predict Qol best in acromegaly. METHODS/Design. This is a prospective cohort study in 80 acromegalic patients, with a cross-sectional and longitudinal part. The main outcome measure was health-related quality of life (QoL, measured by a generic and a disease-specific questionnaire (the SF-36 and AcroQol. Main predictors were age, gender, biochemical control, disease characteristics, treatment modalities and psychopathology. RESULTS. Our cohort of 80 acromegalics had a mean age 54.7 ± 12.3 years with an average disease duration of 10.8 ± 10.0 years. Ratio macro-/microadenoma was 54/26. In adjusted mixed method models, we found that psychopathology significantly predicts QoL in acromegaly (in models including the variables age, gender, disease duration, tumor size, basal hormone levels, relevant treatment modalities and relevant comorbidities, with a higher degree of psychopathology indicating a lower QoL (depression vs. AcroQoL: B=-1.175, p<0.001, depression vs. SF36: B=-1.648, p<0.001, anxiety vs. AcroQoL: B=-0.399, p<0.001, anxiety vs. SF36: B=-0.661, p<0.001. The explained variances demonstrate superiority of psychopathology over biochemical control and other variables in predicting QoL in our models. DISCUSSION. Superiority of psychopathology over biochemical control calls for a more extensive approach regarding diagnosing depression and anxiety in pituitary adenomas to improve QoL. Depressive symptoms and anxiety are modifiable factors that might provide valuable targets for possible future treatment interventions.

  1. Targeting Reductions in Sitting Time to Increase Physical Activity and Improve Health.

    Science.gov (United States)

    Keadle, Sarah K; Conroy, David E; Buman, Matthew P; Dunstan, David W; Matthews, Charles E

    2017-08-01

    : New evidence suggests that reductions in sedentary behavior may increase physical activity and improve health. These findings point to new behavioral targets for intervention and new ways to think about intervening to increase overall physical activity in the population. This report provides a knowledge update reflecting the rapid accumulation of new evidence related to sedentary behavior and health among adults. Recent observational studies suggest that leveraging the time-inverse relationship between sedentary and active behaviors by replacing sitting with standing, light- or moderate-intensity activity can have important health benefits, particularly among less active adults. Clinical studies are providing evidence of the probable physiologic mechanisms underlying these associations, as well as insights into the cardiometabolic impact of breaking up and reducing sedentary behavior. In contrast to the well-established behavioral theories that guide the development and dissemination of evidence-based interventions to increase moderate- to vigorous-intensity physical activity, much less is known about how to reduce sedentary time to increase daily activities. It has become clear that the environmental, social, and individual level determinants for sedentary time are distinct from those linked to the adoption and maintenance of moderate- to vigorous-intensity physical activity. As a result, novel intervention strategies that focus on sitting and lower-intensity activities by leveraging the surrounding environment (e.g., workplace, school, and home) as well as individual-level cues and habits of sedentary behavior are being tested to increase the potency of interventions designed to increase overall physical activity. Herein we summarize the solutions-oriented research across the behavioral research framework, with a focus on highlighting areas of synergy across disciplines and identifying gaps for future research.

  2. Proposed Optimal Fluoroscopic Targets for Cooled Radiofrequency Neurotomy of the Sacral Lateral Branches to Improve Clinical Outcomes: An Anatomical Study.

    Science.gov (United States)

    Stout, Alison; Dreyfuss, Paul; Swain, Nathan; Roberts, Shannon; Loh, Eldon; Agur, Anne

    2017-11-23

    Current sacroiliac joint (SIJ) cooled radiofrequency (RF) is based on fluoroscopic anatomy of lateral branches (LBs) in three specimens. Recent studies confirm significant variation in LB positions. To determine if common fluoroscopic needle placements for cooled SIJ RF are adequate to lesion all S1-3 LBs. If not, would different targets improve lesion accuracy? The LBs of 20 cadavers were dissected bilaterally (40 SIJs), and 26 G radiopaque wires were sutured to the LBs. With a 10-mm radius ruler centered at each foramen, standard targets were assessed, as judged by a clockface on the right, for S1 and S2 at 2:30, 4:00, and 5:30 positions and at S3 at 2:30 and 4:00. Mirror image targets were assessed on the left. Assuming an 8-mm lesion diameter, the percentage of LBs that would not be ablated for each level was determined. Imaging through the superior end plate of S1 was compared against segment specific (SS) imaging. Nine point four percent of LBs would not be ablated at S1 vs 0.99% at S2 vs 35% at S3, and 60% of the 40 SIJs would be completely denervated using current targets. SS imaging did not improve results. Alternate target locations could improve the miss rate to 2.8% at S1 and 0% at S3 and would ablate all LBs in 95% of SIJs. Using a conservative 8-mm lesion measurement, contemporary cooled RF needle targets are inadequate to lesion all target LBs. Modifications to current targets are recommended to increase the effectiveness of the procedure. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    Science.gov (United States)

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  4. OligoRAP - an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity

    NARCIS (Netherlands)

    Neerincx, P.B.T.; Rauwerda, H.; Nie, H.; Groenen, M.A.M.; Breit, T.M.; Leunissen, J.A.M.

    2009-01-01

    Background: High throughput gene expression studies using oligonucleotide microarrays depend on the specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific probes can only be designed when a reference genome of the species at hand were completely sequenced,

  5. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  6. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

    Science.gov (United States)

    2014-01-01

    Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

  7. Tumor Specific Detection of an Optically Targeted Antibody Combined with a Quencher-conjugated Neutravidin “Quencher-Chaser”: A Dual “Quench and Chase” Strategy to Improve Target to Non-target Ratios for Molecular Imaging of Cancer

    Science.gov (United States)

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a “chase” to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a Fluorescence Resonance Energy Transfer (FRET) quenched antibody with an “avidin chase” to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv) or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21 or sAv-QSY21 as “chasers”. The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21 or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin-derivatives can improve target TBR by using a dual “quench and chase” strategy, both target (3T3/HER2+) and non-target (Balb3T3/ZsGreen) tumor bearing mice were employed. The “FRET quench” effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly due to the “chase” effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors resulting in decreased non-target tumor-to-background ratios but increased target TBR due to the “FRET quench” effect because target-bound antibodies were internalized

  8. The effects of primary beam filters on the analysis of rhodium and cadmium using a rhodium target x-ray tube

    International Nuclear Information System (INIS)

    Anzelmo, J.A.; Boyer, B.W.

    1986-01-01

    Since its introduction in 1964, the thin end-window rhodium target x-ray tube has been considered to be an excellent general purpose source of excitation. Heavy elements are efficiently excited by high Bremsstrahlung and the K lines of rhodium while the light elements are excited by the L lines of rhodium. The ability to efficiently excite both heavy and light elements is essential to special applications such as auto catalysts, which are composed of precious metals in a clay-like matrix. Close control of the light elements, including sodium, phosphorous, aluminum and silicon, and the heavy element precious metals, such as rhodium, are necessary to keep operating characteristics and manufacturing expense at desired levels. A quick survey of typical x-ray tube targets shows that some targets are more efficient for light elements while others are more efficient for heavy elements. The few general purpose x-ray tubes that are available have characteristic lines which overlap on elements to be determined. The rhodium target, which is a good excitation source for most of the elements mentioned, contains line overlaps on cadmium (RHKB) and rhodium (RHKA). When using a sequential wavelength dispersive XRF spectrometer, the characteristic lines of the tube scattered from the sample can be removed by a programmable primary beam filter having an absorption edge just higher in wavelength than the wavelengths to be removed. The thickness and composition of the filter, as well as the choice of KV and MA, will determine the operating parameter necessary to achieve the optimum precision and lowest limits of detection. For this study, synthetic samples are made up using Kaolin as the matrix

  9. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  10. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    Science.gov (United States)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce

  11. Targeting PEPT1: a novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy.

    Science.gov (United States)

    Gong, Yanxia; Wu, Xiang; Wang, Tao; Zhao, Jia; Liu, Xi; Yao, Zhi; Zhang, Qingyu; Jian, Xu

    2017-06-20

    Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeutic target. In this study, we aim to explore the feasibility of a novel tumor target therapeutic strategy: Targeting PEPT1 to improve the antitumor efficacy of Doxorubicin in human HCC therapy. First, Doxorubicin was conjugated with Glycylglycylglycine (Gly-Gly-Gly) - a tripeptide which was known as the substrate of PEPT1 and characterized by HPLC and MS successfully. Doxorubicin-tripeptide conjugate was then observed to clarify the target delivery by PEPT1 and the antitumor effect on human hepatocarcinoma in vivo and in vitro. Furthermore, the improvement of the toxic and side effect of Doxorubicin after conjugation was also evaluated by some biochemical tests. Our results reveal that targeting PEPT1 may contribute to the efficient delivery of Doxorubicin to hepatocarcinoma cells and the reduction of drug toxicity. PEPT1 has the prospect to be a novel target of HCC therapy.

  12. Improved training for target detection using Fukunaga-Koontz transform and distance classifier correlation filter

    Science.gov (United States)

    Elbakary, M. I.; Alam, M. S.; Aslan, M. S.

    2008-03-01

    In a FLIR image sequence, a target may disappear permanently or may reappear after some frames and crucial information such as direction, position and size related to the target are lost. If the target reappears at a later frame, it may not be tracked again because the 3D orientation, size and location of the target might be changed. To obtain information about the target before disappearing and to detect the target after reappearing, distance classifier correlation filter (DCCF) is trained manualy by selecting a number of chips randomly. This paper introduces a novel idea to eliminates the manual intervention in training phase of DCCF. Instead of selecting the training chips manually and selecting the number of the training chips randomly, we adopted the K-means algorithm to cluster the training frames and based on the number of clusters we select the training chips such that a training chip for each cluster. To detect and track the target after reappearing in the field-ofview ,TBF and DCCF are employed. The contduced experiemnts using real FLIR sequences show results similar to the traditional agorithm but eleminating the manual intervention is the advantage of the proposed algorithm.

  13. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  14. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    Energy Technology Data Exchange (ETDEWEB)

    Morace, A. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Bellei, C.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Bartal, T.; Kim, J.; Beg, F. N. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Willingale, L.; Maksimchuk, A.; Krushelnick, K. [University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, Michigan 48109 (United States); Wei, M. S. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); Batani, D. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Piovella, N. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  15. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem.

    Science.gov (United States)

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-12-13

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.

  16. Predictors of satisfactory improvements in pain for patients with early rheumatoid arthritis in a treat-to-target study

    NARCIS (Netherlands)

    Klooster, P.M. ten; Vonkeman, H.E.; Voshaar, M.A.; Siemons, L.; Riel, P.L.C.M. van; Laar, M.A.F.J. van de

    2015-01-01

    OBJECTIVE: The aim of this study was to identify baseline predictors of achieving patient-perceived satisfactory improvement (PPSI) in pain after 6 months of treat to target in patients with early RA. METHODS: Baseline and 6 month data were used from patients included in the Dutch Rheumatoid

  17. Assisting People with Multiple Disabilities by Improving Their Computer Pointing Efficiency with an Automatic Target Acquisition Program

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Peng, Chin-Ling

    2011-01-01

    This study evaluated whether two people with multiple disabilities would be able to improve their pointing performance through an Automatic Target Acquisition Program (ATAP) and a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and is able to monitor mouse movement and intercept click action). Initially, both…

  18. Improvements of High Current/ Low Pressure Liquid And Gas Targets For Cyclotron Produced Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hur, M. G. [Korea Atomic Energy Research Institute, Jeongup (Korea, Republic of); Hong, B. H. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chai, J. S. [SungKyunKwan University, Seoul (Korea, Republic of)

    2009-07-01

    The development of the C-11 cylindrical target with cooling fin for 13 MeV and 30 MeV proton beams and the development of pleated double-foil O-18 water target were carried out. For the test of new target system it was done at 2 pilots of cyclotron centres in Korea. The development of pleated double-foil O-18 water target was also executed. The pleated foil has the more advantages than flat foil. With the same beam bombarding the pleated foil with cooling had more yield of F-18production. CFD and FEM study were considered to design of the pleated foil and flat foil structure. (author)

  19. Mitocans: Mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents

    Czech Academy of Sciences Publication Activity Database

    Ralph, S.J.; Low, P.; Dong, L.; Lawen, A.; Neužil, Jiří

    2006-01-01

    Roč. 1, - (2006), s. 327-346 ISSN 1574-8928 Institutional research plan: CEZ:AV0Z50520514 Keywords : mitocans * vitamin E analogues * mitochondria-based targeting Subject RIV: EB - Genetics ; Molecular Biology

  20. Electronprobe X-ray microanalysis of biological specimens improvement of a number of quantification procedures

    International Nuclear Information System (INIS)

    Boekestein, A.

    1984-01-01

    In this thesis an investigation is described to establish which quantification procedures can be used in the X-ray microanalysis of biological specimens. Two classes of specimens have been distinguished from each other, i.e. thick specimens (opaque to the beam electrons) and thin specimens (transparent to the beam electrons). (Auth.)

  1. Improving packaged food quality and safety. Part 1: synchrotron X-ray analysis.

    Science.gov (United States)

    López-Rubio, A; Hernandez-Muñoz, P; Catala, R; Gavara, R; Lagarón, J M

    2005-10-01

    The objective was to demonstrate, as an example of an application, the potential of synchrotron X-ray analysis to detect morphological alterations that can occur in barrier packaging materials and structures. These changes can affect the packaging barrier characteristics when conventional food preservation treatments are applied to packaged food. The paper presents the results of a number of experiments where time-resolved combined wide-angle X-ray scattering and small-angle X-ray scattering analysis as a function of temperature and humidity were applied to ethylene-vinyl alcohol co-polymers (EVOH), polypropylene (PP)/EVOH/PP structures, aliphatic polyketone terpolymer (PK) and amorphous polyamide (aPA) materials. A comparison between conventional retorting and high-pressure processing treatments in terms of morphologic alterations are also presented for EVOH. The impact of retorting on the EVOH structure contrasts with the good behaviour of the PK during this treatment and with that of aPA. However, no significant structural changes were observed by wide-angle X-ray scattering in the EVOH structures after high-pressure processing treatment. These structural observations have also been correlated with oxygen permeability measurements that are of importance when guaranteeing the intended levels of safety and quality of packaged food.

  2. 77 FR 27463 - Device Improvements for Pediatric X-Ray Imaging; Public Meeting; Request for Comments

    Science.gov (United States)

    2012-05-10

    ... material and instructions for pediatric digital radiography (Ref. 8) and fluoroscopy (ongoing project.... The draft guidance provides as follows: ``Manufacturers seeking marketing clearance for a new x-ray... the device in pediatric populations. Manufacturers who seek marketing clearance only for general...

  3. Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis

    Science.gov (United States)

    Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; hide

    2015-01-01

    The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an 55Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters.

  4. Ray-based stochastic inversion of prestack seismic data for improved reservoir characterization

    NARCIS (Netherlands)

    Van der Burg, D.; Verdel, A.; Wapenaar, C.P.A.

    2009-01-01

    Trace inversion for reservoir parameters is affected by angle averaging of seismic data and wavelet distortion on the migration image. In an alternative approach to stochastic trace inversion, the data are inverted prestack before migration using 3D dynamic ray tracing. This choice makes it possible

  5. Quality assurance and image improvement in diagnostic radiology with X-rays

    International Nuclear Information System (INIS)

    Evans, S.H.

    1988-01-01

    Basic quality assurance tests for x-ray sets are considered (tube potential, timing, output, H-V layer, focal-spot size, alignment and perpendicularity of the light-beam diaphragm) together with more specific quality-assurance tests such as tomographic tests, image intensifier and mammographic tests. (UK)

  6. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  7. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  8. A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets

    International Nuclear Information System (INIS)

    Ze, F.; Langer, S.H.; Kauffman, R.L.; Kilkenny, J.D.; Landen, O.; Ress, D.; Rosen, M.D.; Suter, L.J.; Wallace, R.J.; Wiedwald, J.D.

    1997-01-01

    In this paper we report the results of experiments that compare the x-ray emission from a laser spot in a radiation-filled hohlraum to that from a similar laser spot on a simple disk target. The studies were done using the Nova laser facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] in its 0.35 μm wavelength, 1 ns square pulse configuration. Focal spot intensities were 2 endash 3.5x10 15 W/cm 2 . X-ray images measured x-ray conversion in a hohlraum and from an isolated disk simultaneously. A laser spot inside a hohlraum emitted more x rays, after subtracting the background emission from the hohlraum walls, than a spot on a disk. Numerical models suggest the enhanced spot emission inside the hohlraum is due to an increase in lateral transport relative to the disk. Filamentation in the hohlraum will also increase the spot size. The models agree fairly well with the results on spot spreading but do not explain the overall increase in conversion efficiency. copyright 1997 American Institute of Physics

  9. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  10. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  11. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  12. Improvement in limit of detection in particle induced X-ray emission by means of rise time and pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Papp, Tibor E-mail: tibpapp@netscape.nettibpapp@yahoo.ca; Lakatos, Tamas; Nejedly, Zdenek; Campbell, John L

    2002-04-01

    A digital signal processor, based upon high-rate sampling of the preamplifier output, and equipped with rise time and pulse shape discrimination, has been tested in three situations. This processor provided significant improvement of particle induced X-ray emission and X-ray fluorescence detection limits over the state of the art analog processors, depending on the energy and intensity distribution of the X-ray spectra. Additionally it had a superior performance when measurements were performed in an environment of large electronic noise and in large nuclear background environment. It has also improved the reduction of several artifacts in X-ray spectra.

  13. An Effort to Improve U Foil Fabrication Technology of Roll-casting for Fission Mo Target

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Woo, Yun Myeong; Kim, Ki Hwan; Oh, Jong Myeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Moon Soo [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of)

    2010-10-15

    Mo-99 isotope has been produced mainly by extracting fission products of {sup 235}U. The targets for irradiating in reactor have used as stainless tube coated with highly enriched UO{sub 2} at the inside surface and highly enriched UAlx plate cladded with aluminum. In connection with non-proliferation policy the RERTR program developed a new process of Mo-99 using low enriched uranium (LEU) instead of highly enriched uranium (HEU). LEU should be put about five times more quantity than HEU because the {sup 235}U contents of LEU and HEU are 20% and higher than 90%, respectively. Accordingly pure uranium metal foil target was adopted as a promising target material due to high uranium density. ANL and BATAN developed a Cintichem process using uranium metal foil target of 130 {mu}m in thickness jointly and the RERTR program is trying to disseminate the new process world-widely. However, uranium foil is made by lots of times rolling work on uranium plate, which is laborious and tedious. In order to avoid this difficulty KAERI developed a new process of making foil directly from uranium melt by roll casting. This process is very much simple, productive, and cost-effective. But the outside surface of foil is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect (1) target fabrication, where the U foil, or the Ni foil might be damaged during drawing, and (2) irradiation behavior, where gaps between the target walls and the U metal might affect cooling of the target

  14. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  15. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-01-01

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed

  16. CXBN: a blueprint for an improved measurement of the cosmological x-ray background

    Science.gov (United States)

    Simms, Lance M.; Jernigan, J. G.; Malphrus, Benjamin K.; McNeil, Roger; Brown, Kevin Z.; Rose, Tyler G.; Lim, Hyoung S.; Anderson, Steven; Kruth, Jeffrey A.; Doty, John P.; Wampler-Doty, Matthew; Cominsky, Lynn R.; Prasad, Kamal S.; Thomas, Eric T.; Combs, Michael S.; Kroll, Robert T.; Cahall, Benjamin J.; Turba, Tyler T.; Molton, Brandon L.; Powell, Margaret M.; Fitzpatrick, Jonathan F.; Graves, Daniel C.; Gaalema, Stephen D.; Sun, Shunming

    2012-10-01

    A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime.

  17. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  18. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  19. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  20. Can Social Functioning in Schizophrenia Be Improved through Targeted Social Cognitive Intervention?

    Directory of Open Access Journals (Sweden)

    David L. Roberts

    2012-01-01

    Full Text Available Efforts to use cognitive remediation in psychosocial intervention for schizophrenia have increasingly incorporated social cognition as a treatment target. A distinction can be made in this work between “broad-based” interventions, which integrate social cognitive training within a multicomponent suite of intervention techniques and “targeted” interventions; which aim to enhance social cognition alone. Targeted interventions have the potential advantage of being more efficient than broad-based interventions; however, they also face difficult challenges. In particular, targeted interventions may be less likely to achieve maintenance and generalization of gains made in treatment. A novel potential solution to this problem is described which draws on the social psychological literature on social cognition.

  1. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation

    DEFF Research Database (Denmark)

    Taskova, Maria; Madsen, Charlotte S.; Jensen, Knud J.

    2017-01-01

    Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide, m...... and makes internally labeled POCs an exciting object of study, i.e., showing high target specificity and simultaneous stability in biological media.......Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide......, most often at the terminal position of the oligonucleotide. Herein, we for the first time systematically investigate the influence of internally attached short peptides on the properties of antisense oligonucleotides. We report the synthesis and internal double labeling of 21-mer oligonucleotides...

  2. X-ray emission from high-intensity interaction of picosecond and subnanosecond laser pulses with solid targets

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Jabloňski, S.; Makowski, J.; Parys, P.; Ryc, L.; Vankov, A. B.; Wolowski, J.; Woryna, E.; Juha, Libor; Krása, Josef

    2002-01-01

    Roč. 32, 1-2 (2002), s. 41-46 ISSN 0078-5466 Grant - others:KBN(PL) 2PO3B08219 Institutional research plan: CEZ:AV0Z1010921 Keywords : soft x-ray emission * laser produced plasma * 1-ps and 0.5ns laser pulses Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.291, year: 2002

  3. Disrupting the Scaffold to Improve Focal Adhesion Kinase–Targeted Cancer Therapeutics

    Science.gov (United States)

    Cance, William G.; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-01-01

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. PMID:23532331

  4. Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics.

    Science.gov (United States)

    Cance, William G; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-03-26

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer.

  5. Eurisol-DS Multi-MW target A proposal for improving overall performance in relation to the isotope yield

    CERN Document Server

    Samec, K; Kadi, Yacine; Rocca, Roberto; Kharoua, Cyril

    2008-01-01

    The Eurisol Design Study has been initiated by the European Commission to demonstrate the feasibility of a facility for producing large yields of exotic isotopes. At the core of the projected facility, the neutron source produces spallation neutrons from a proton beam impacting dense liquid metal. The neutrons emitted from the source are used to fission Uranium targets which, in turn, produce high yields of isotopes. This technical report summarises efforts to improve the overall performance of the planned facility, by optimising the neutron source and the disposition of the fission targets.

  6. EURISOL-DS Multi-MW Target. A proposal for improving overall performance in relation to the isotope yield

    CERN Document Server

    Karel Samec, Mats Lindroos, Yacine Kadi,Roberto Rocca, Cyril KharouaAB Dept. ATB

    The Eurisol Design Study has been initiated by the European Commission to demonstratethe feasibility of a facility for producing large yields of exotic isotopes.At the core of the projected facility, the neutron source produces spallation neutrons from aproton beam impacting dense liquid metal. The neutrons emitted from the source are usedto fission Uranium targets which, in turn, produce high yields of isotopes.This technical report summarises efforts to improve the overall performance of the plannedfacility, by optimising the neutron source and the disposition of the fission targets.

  7. THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC {gamma}-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiike, S.; Fukuda, T.; Sano, H.; Ohama, A.; Moribe, N.; Torii, K.; Hayakawa, T.; Okuda, T.; Yamamoto, H.; Mizuno, N.; Onishi, T.; Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Tajima, H.; Maezawa, H.; Mizuno, A. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Nishimura, A.; Kimura, K.; Ogawa, H. [Department of Astrophysics, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Giuliani, A. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Koo, B.-C., E-mail: yoshiike@a.phys.nagoya-u.ac.jp [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-05-10

    We present an analysis of the interstellar medium (ISM) toward the {gamma}-ray supernova remnant (SNR) W44. We used NANTEN2 {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) transitions in these regions is greater than {approx}1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with {gamma}-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm{sup -3}, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy {gamma}-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The {gamma}-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of {approx}10{sup 49} erg, consistent with the SN origin of the majority of the CRs in the Galaxy.

  8. Improvements in the management of rheumatic patients from vertebral image obtained through dual-energy X-ray absorptiometry

    Directory of Open Access Journals (Sweden)

    D. Gatti

    2011-09-01

    Full Text Available The diagnosis of asymptomatic vertebral fracture is clinically useful and the identification of new fractures may influences the choice of appropriate therapeutic measures. In order to identify moderate and asymptomatic vertebral deformities in an objective and reproducible manner, vertebral morphometry is performed. This method measures the vertebral body’s anterior, middle and posterior heights at the dorsal and lumbar level. Currently this technique is performed on lateral images of the spine obtained through the traditional X-ray method (radiological morphometry or morphometric X-ray radiography, MRX and, more recently from images obtained through dual-energy X-ray absorptiometry (DXA machines (visual assessment of x-ray absoptiometry scans or morphometric X-ray absorptiometry, MXA, commonly used to measure bone mineral density. The main advantage of MXA relative to MRX is the lower radiation dose to which the patient is exposed during the exam. In addition, MXA scans offers the advantage of acquiring a single image of thoracic and lumbar spine, without any distortion (e.g.: coning. The most obvious advantage of MXA is the opportunity of obtaining during the same session a bone mineral density evaluation, and digital images that are easily processable, manageable, recordable and comparable for the patient’s follow up. A limitation of the MXA technique is the inferior quality of the images, that make often impossible the detection of the vertebral edges, and the impossibility to visualize the upper thoracic vertebral bodies. MXA, despite its intrinsic limitations, when carried out by trained personnel may provide substantial improvements in the management (diagnosis and follow-up of rheumatic patients.

  9. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  10. Improving education and supervision of Queensland X-ray Operators through video conference technology: A teleradiography pilot project.

    Science.gov (United States)

    Rawle, Marnie; Oliver, Tanya; Pighills, Alison; Lindsay, Daniel

    2017-12-01

    X-ray Operator (XO) supervision in Queensland is performed by radiographers in a site removed from the XO site. This has historically been performed by telephone when the XO requires immediate help, as well as post-examination through radiographer review and the provision of written feedback on images produced. This project aimed to improve image quality through the provision of real-time support of XOs by the introduction of video conference (VC) supervision. A 6-month pilot project compared image quality with and without VC supervision. VC equipment was installed in the X-ray room at two rural sites, as well as at the radiographer site, to enable visual and oral supervision. The VC unit enabled visualisation of the X-ray examination technique as it was being undertaken, as well as the images produced prior to transmission to the Picture Archiving and Communication System (PACS). Statistically significant improvement in image quality criteria measures were seen for patient positioning (P = 0.008), image quality (P < 0.001) and diagnostic value (P < 0.001) of images taken during this project. No statistically significant differences were seen during case level assessment in the inclusion of only appropriate imaging (P = 0.06), and the inclusion of unacceptable imaging (P = 0.06), however improvements were seen in both of these criteria. The survey revealed 24.6% of examinations performed would normally have involved the XO contacting the radiographer for assistance, although, assistance was actually provided in 88.3% of examinations. This project has demonstrated that significant improvement in image quality is achievable with VC supervision. A larger study with a control arm that did not receive direct supervision should be used to validate the findings of this study. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand

  11. Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Georg Melmer

    2013-01-01

    Full Text Available Conventional cancer treatments lack specificity and often cause severe side effects. Targeted therapeutic approaches are therefore preferred, including the use of immunotoxins (ITs that comprise cell-binding and cell death-inducing components to allow the direct and specific delivery of pro-apoptotic agents into malignant cells. The first generation of ITs consisted of toxins derived from bacteria or plants, making them immunogenic in humans. The recent development of human cytolytic fusion proteins (hCFP consisting of human effector enzymes offers the prospect of highly-effective targeted therapies with minimal side effects. One of the most promising candidates is granzyme B (GrB and this enzyme has already demonstrated its potential for targeted cancer therapy. However, the clinical application of GrB may be limited because it is inactivated by the overexpression in tumors of its specific inhibitor serpin B9 (PI-9. It is also highly charged, which means it can bind non-specifically to the surface of non-target cells. Furthermore, human enzymes generally lack an endogenous translocation domain, thus the endosomal release of GrB following receptor-mediated endocytosis can be inefficient. In this review we provide a detailed overview of these challenges and introduce promising solutions to increase the cytotoxic potency of GrB for clinical applications.

  12. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties.

    Science.gov (United States)

    Thomas, Noémie; Pernot, Marlène; Vanderesse, Régis; Becuwe, Philippe; Kamarulzaman, Ezatul; Da Silva, David; François, Aurélie; Frochot, Céline; Guillemin, François; Barberi-Heyob, Muriel

    2010-07-15

    The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules. 2010 Elsevier Inc. All rights reserved.

  13. Does Information Improve the Health Behavior of Adults Targeted by a Conditional Transfer Program?

    Science.gov (United States)

    Avitabile, Ciro

    2012-01-01

    We use data from the evaluation sample of Mexico's Food Assistance Program (PAL) to study whether including the attendance at health and nutrition classes among the requirements for receiving a transfer affects the health behavior of adults living in localities targeted by the program. The experimental trial has four different treatment types,…

  14. Improved inventory targets in the presence of limited historical demand data

    NARCIS (Netherlands)

    Akcay, A.; Biller, B.; Tayur, S.

    2011-01-01

    Most of the literature on inventory management assumes that the demand distribution and the values of its parameters are known with certainty. In this paper, we consider a repeated newsvendor setting where this is not the case and study the problem of setting inventory targets when there is a

  15. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Liu, S.; Soede, A.C.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2007-01-01

    PURPOSE: The integrin alpha(v)beta(3) is expressed on sprouting endothelial cells and on various tumour cell types. Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3) binding

  16. Prototype high-speed tape target transport for a laser plasma soft-x-ray projection lithography source

    International Nuclear Information System (INIS)

    Haney, S.J.; Berger, K.W.; Kubiak, G.D.; Rockett, P.D.; Hunter, J.

    1993-01-01

    A prototype high-speed tape target transport is constructed for use in a high-repetition-rate laser plasma source. To reduce plasma debris, a 1000--5000-A-thick film of target material is supported by thin Mylar tape backing. Tape is transported to the laser focal volume at a maximum velocity of 356 cm/s, a rate sufficient to accommodate laser repetition rates of 1 kHz. The transport is fully vacuum compatible and can be retracted and then isolated from the laser plasma vacuum enclosure during tape reel replacement. The operating characteristics of the transport are described

  17. Albumin as a "Trojan Horse" for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting.

    Science.gov (United States)

    Yin, Qian; Tang, Li; Cai, Kaimin; Yang, Xujuan; Yin, Lichen; Zhang, Yanfeng; Dobrucki, Lawrence W; Helferich, William G; Fan, Timothy M; Cheng, Jianjun

    2018-05-01

    Although polymeric nanoconjugates (NCs) hold great promise for the treatment of cancer patients, their clinical utility has been hindered by the lack of efficient delivery of therapeutics to targeted tumor sites. Here, we describe an albumin-functionalized polymeric NC (Alb-NC) capable of crossing the endothelium barrier through a caveolae-mediated transcytosis pathway to better target cancer. The Alb-NC is prepared by nanoprecipitation of doxorubicin (Doxo) conjugates of poly(phenyl O-carboxyanhydrides) bearing aromatic albumin-binding domains followed by subsequent surface decoration of albumin. The administration of Alb-NCs into mice bearing MCF-7 human breast cancer xenografts with limited tumor vascular permeability resulted in markedly increased tumor accumulation and anti-tumor efficacy compared to their conventional counterpart PEGylated NCs (PEG-NCs). The Alb-NC provides a simple, low-cost and broadly applicable strategy to improve the cancer targeting efficiency and therapeutic effectiveness of polymeric nanomedicine.

  18. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    Melanoma antigen recognized by T cell 1 (MART-1) is regarded as a candidate peptide for vaccination against malignant melanoma, and it is of importance to develop strategies to improve the vaccine-elicited T-cell activation towards MART-1. T-cell activation is, among other determinants, dependent...... on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...... to non-proteasomal targeting of the epitope to increase its cell-surface presentation. Furthermore, we explored the potential of incorporating multiple minigenes instead of one to increase cell-surface presentation. We show that both proteasomal targeting and repetition of the minigene increase cell...

  19. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy

    KAUST Repository

    Ogorzalek, Tadeusz L.

    2018-01-04

    Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As HT, solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. This article is protected by copyright. All rights reserved.

  20. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy

    KAUST Repository

    Ogorzalek, Tadeusz L.; Hura, Greg L.; Belsom, Adam; Burnett, Kathryn H.; Kryshtafovych, Andriy; Tainer, John A.; Rappsilber, Juri; Tsutakawa, Susan E.; Fidelis, Krzysztof

    2018-01-01

    Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As HT, solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. This article is protected by copyright. All rights reserved.

  1. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  2. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  3. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  4. Targets, drivers and metrics in software process improvement: results of a survey in a multinational organization

    NARCIS (Netherlands)

    Trienekens, J.J.M.; Kusters, R.J.; Genuchten, van M.J.I.M.; Aerts, H.

    2007-01-01

    This paper reports on a survey amongst software groups in a multinational organization. The survey was initiated by the Software Process Improvement (SPI) Steering Committee of Philips, a committee that monitors the status and quality of software process improvement in the global organization. The

  5. No pain: no gain: The complex art of soft x-ray laser target design and analysis

    International Nuclear Information System (INIS)

    Rosen, M.D.; London, R.A.; Hagelstein, P.L.

    1988-01-01

    We review our methodologies in the design and analysis of soft x-ray laser experiments. We convolve large scale 2-D hydro code output with detailed atomic data bases in a kinetics code with 1-D or 2-D line transfer. The time and space dependent level population data is then post processed further with a beam transport code, including refraction, to predict actual experimental results. While mysteries do remain, we present many examples that show how this complex modeling procedure is crucial in explaining experimental results

  6. No pain-no gain: The complex art of soft x-ray laser target design and analysis

    International Nuclear Information System (INIS)

    Rosen, M.D.; London, R.A.; Hagelstein, P.L.

    1988-01-01

    We review our methodologies in the design and analysis of soft x-ray laser experiments. We convolve large-scale 2-D hydro code output with detailed atomic data bases in a kinetics code with 1-D or 2-D line transfer. The time and space dependent level population data is then post processed further with a beam transport code, including refraction, to predict actual experimental results. While mysteries do remain, we present many examples that show how this complex modeling procedure is crucial in explaining experimental results. 23 refs., 8 figs., 1 tab

  7. INR targets and site-level anticoagulation control: results from the Veterans AffaiRs Study to Improve Anticoagulation (VARIA).

    Science.gov (United States)

    Rose, A J; Berlowitz, D R; Miller, D R; Hylek, E M; Ozonoff, A; Zhao, S; Reisman, J I; Ash, A S

    2012-04-01

    Not all clinicians target the same International Normalized Ratio (INR) for patients with a guideline-recommended target range of 2-3. A patient's mean INR value suggests the INR that was actually targeted. We hypothesized that sites would vary by mean INR, and that sites of care with mean values nearest to 2.5 would achieve better anticoagulation control, as measured by per cent time in therapeutic range (TTR). To examine variations among sites in mean INR and the relationship with anticoagulation control in an integrated system of care. We studied 103,897 patients receiving oral anticoagulation with an expected INR target between 2 and 3 at 100 Veterans Health Administration (VA) sites from 1 October 2006 to 30 September 2008. Key site-level variables were: proportion near 2.5 (that is, percentage of patients with mean INR between 2.3 and 2.7) and mean risk-adjusted TTR. Site mean INR ranged from 2.22 to 2.89; proportion near 2.5, from 30 to 64%. Sites' proportions of patients near 2.5, below 2.3 and above 2.7 were consistent from year to year. A 10 percentage point increase in the proportion near 2.5 predicted a 3.8 percentage point increase in risk-adjusted TTR (P < 0.001). Proportion of patients with mean INR near 2.5 is a site-level 'signature' of care and an implicit measure of targeted INR. This proportion varies by site and is strongly associated with site-level TTR. Our study suggests that sites wishing to improve TTR, and thereby improve patient outcomes, should avoid the explicit or implicit pursuit of non-standard INR targets. © 2012 International Society on Thrombosis and Haemostasis.

  8. Maintenance Therapy in Ovarian Cancer with Targeted Agents Improves PFS and OS: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Xinyu Qian

    Full Text Available Maintenance therapy with targeted agents for prolonging remission for ovarian cancer patients remains controversial. As a result, a meta-analysis was conducted to assess the effectiveness and safety of using maintenance therapy with targeted agents for the treatment of ovarian cancer.From inception to January 2015, we searched for randomized, controlled trials (RCTs using the following databases: PubMed, ScienceDirect, the Cochrane Library, Clinicaltrials.gov and EBSCO. Eligible trials included RCTs that evaluated standard chemotherapy which was either followed or not followed by targeted maintenance in patients with ovarian cancer who had been previously receiving adjunctive treatments, such as cytoreductive surgery and standard chemotherapy. The outcome measures included progression-free survival (PFS, overall survival (OS and incidence of adverse events.A total of 13 RCTs, which were published between 2006 and 2014, were found to be in accordance with our inclusion criteria. The primary meta-analysis indicated that both PFS and OS were statistically and significantly improved in the targeted maintenance therapy group as compared to the control group (PFS: HR = 0.84, 95%CI: 0.75 to 0.95, p = 0.001; OS: HR = 0.91, 95%CI: 0.84 to 0.98, p = 0.02. When taking safety into consideration, the use of targeted agents was significantly correlated with increased risks of fatigue, diarrhea, nausea, vomiting, and hypertension. However, no significant differences were found in incidence rates of abdominal pain, constipation or joint pain.Our results indicate that targeted maintenance therapy clearly improves the survival of ovarian cancer patients but may also increase the incidence of adverse events. Additional randomized, double-blind, placebo-controlled, multicenter investigations will be required on a larger cohort of patients to verify our findings.

  9. Improving specificity of Bordetella pertussis detection using a four target real-time PCR.

    Directory of Open Access Journals (Sweden)

    Helena Martini

    Full Text Available The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015.

  10. Improving specificity of Bordetella pertussis detection using a four target real-time PCR

    Science.gov (United States)

    Detemmerman, Liselot; Soetens, Oriane; Yusuf, Erlangga; Piérard, Denis

    2017-01-01

    The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015. PMID:28403204

  11. An improved cone-beam filtered backprojection reconstruction algorithm based on x-ray angular correction and multiresolution analysis

    International Nuclear Information System (INIS)

    Sun, Y.; Hou, Y.; Yan, Y.

    2004-01-01

    With the extensive application of industrial computed tomography in the field of non-destructive testing, how to improve the quality of the reconstructed image is receiving more and more concern. It is well known that in the existing cone-beam filtered backprojection reconstruction algorithms the cone angle is controlled within a narrow range. The reason of this limitation is the incompleteness of projection data when the cone angle increases. Thus the size of the tested workpiece is limited. Considering the characteristic of X-ray cone angle, an improved cone-beam filtered back-projection reconstruction algorithm taking account of angular correction is proposed in this paper. The aim of our algorithm is to correct the cone-angle effect resulted from the incompleteness of projection data in the conventional algorithm. The basis of the correction is the angular relationship among X-ray source, tested workpiece and the detector. Thus the cone angle is not strictly limited and this algorithm may be used to detect larger workpiece. Further more, adaptive wavelet filter is used to make multiresolution analysis, which can modify the wavelet decomposition series adaptively according to the demand for resolution of local reconstructed area. Therefore the computation and the time of reconstruction can be reduced, and the quality of the reconstructed image can also be improved. (author)

  12. Quantum Dots Encapsulated with Canine Parvovirus-Like Particles Improving the Cellular Targeted Labeling.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available Quantum dots (QDs have a promising prospect in live-cell imaging and sensing because of unique fluorescence features. QDs aroused significant interest in the bio-imaging field through integrating the fluorescence properties of QDs and the delivery function of biomaterial. The natural tropism of Canine Parvovirus (CPV to the transferrin receptor can target specific cells to increase the targeting ability of QDs in cell imaging. CPV virus-like particles (VLPs from the expression of the CPV-VP2 capsid protein in a prokaryotic expression system were examined to encapsulate the QDs and deliver to cells with an expressed transferrin receptor. CPV-VLPs were used to encapsulate QDs that were modified using 3-mercaptopropionic acid. Gel electrophoresis, fluorescence spectrum, particle size, and transmission electron microscopy verified the conformation of a complex, in which QDs were encapsulated in CPV-VLPs (CPV-VLPs-QDs. When incubated with different cell lines, CPV-VLPs-QDs significantly reduced the cytotoxicity of QDs and selectively labeled the cells with high-level transferrin receptors. Cell-targeted labeling was achieved by utilizing the specific binding between the CPV capsid protein VP2 of VLPs and cellular receptors. CPV-VLPs-QDs, which can mimic the native CPV infection, can recognize and attach to the transferrin receptors on cellular membrane. Therefore, CPV-VLPs can be used as carriers to facilitate the targeted delivery of encapsulated nanomaterials into cells via receptor-mediated pathways. This study confirmed that CPV-VLPs can significantly promote the biocompatibility of nanomaterials and could expand the application of CPV-VLPs in biological medicine.

  13. Improving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD

    International Nuclear Information System (INIS)

    Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B

    2012-01-01

    In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.

  14. Improvement of the crossed undulator design for effective circular polarization control in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-01-15

    The production of X-ray radiation with a high degree of circular polarization constitutes an important goal at XFEL facilities. A simple scheme to obtain circular polarization control with crossed undulators has been proposed so far. In its simplest configuration the crossed undulators consist of pair of short planar undulators in crossed position separated by an electromagnetic phase shifter. An advantage of this configuration is a fast helicity switching. A drawback is that a high degree of circular polarization (over 90 %) can only be achieved for lengths of the insertion devices significantly shorter than the gain length, i.e. at output power significantly lower than the saturation power level. The obvious and technically possible extension considered in this paper, is to use a setup with two or more crossed undulators separated by phase shifters. This cascade crossed undulator scheme is distinguished, in performance, by a fast helicity switching, a high degree of circular polarization (over 95%) and a high output power level, comparable with the saturation power level in the baseline undulator at fundamental wavelength. We present feasibility study and exemplifications for the LCLS baseline in the soft X-ray regime. (orig.)

  15. Absolute brightness modeling for improved measurement of electron temperature from soft x-rays on MST

    Science.gov (United States)

    Reusch, L. M.; Franz, P.; Goetz, J. A.; den Hartog, D. J.; Nornberg, M. D.; van Meter, P.

    2017-10-01

    The two-color soft x-ray tomography (SXT) diagnostic on MST is now capable of Te measurement down to 500 eV. The previous lower limit was 1 keV, due to the presence of SXR emission lines from Al sputtered from the MST wall. The two-color technique uses two filters of different thickness to form a coarse spectrometer to estimate the slope of the continuum x-ray spectrum, which depends on Te. The 1.6 - 2.0 keV Al emission lines were previously filtered out by using thick Be filters (400 µm and 800 µm), thus restricting the range of the SXT diagnostic to Te >= 1 keV. Absolute brightness modeling explicitly includes several sources of radiation in the analysis model, enabling the use of thinner filters and measurement of much lower Te. Models based on the atomic database and analysis structure (ADAS) agree very well with our experimental SXR measurements. We used ADAS to assess the effect of bremsstrahlung, recombination, dielectronic recombination, and line emission on the inferred Te. This assessment informed the choice of the optimum filter pair to extend the Te range of the SXT diagnostic. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FC02-05ER54814 and DE-SC0015474.

  16. Improving the performance of the MWPC X-ray imaging detector by means of the Multi-Step Avalanche technique

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.

    1984-01-01

    X-ray imaging systems based on conventional MWPC technology and artificial delay line readout techniques have been developed at RAL for several applications over a period of some eight years. It is perceived that very limited scope exists for the further improvement of the imaging capability of the standard MWPC design. Attention has therefore been turned to the possibility of exploiting the Multi-Step Avalanche (MSA) system of electron multiplication in this context. Results from a prototype system are presented which show spatial resolution better than that achieved in the MWPC systems. The facility for controlling the effective depth of the detector electronically is also demonstrated. (author)

  17. New possibilities for improving the accuracy of parameter calculations for cascade gamma-ray decay of heavy nuclei

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.; Grigor'ev, E.P.

    2002-01-01

    The level density and radiative strength functions which accurately reproduce the experimental intensity of two- step cascades after thermal neutron capture and the total radiative widths of the compound states were applied to calculate the total γ-ray spectra from the (n,γ) reaction. In some cases, analysis showed far better agreement with experiment and gave insight into possible ways in which these parameters need to be corrected for further improvement of calculation accuracy for the cascade γ-decay of heavy nuclei. (author)

  18. Does targeting manual therapy and/or exercise improve patient outcomes in nonspecific low back pain? A systematic review

    Directory of Open Access Journals (Sweden)

    Mjøsund Hanne L

    2010-04-01

    Full Text Available Abstract Background A central element in the current debate about best practice management of non-specific low back pain (NSLBP is the efficacy of targeted versus generic (non-targeted treatment. Many clinicians and researchers believe that tailoring treatment to NSLBP subgroups positively impacts on patient outcomes. Despite this, there are no systematic reviews comparing the efficacy of targeted versus non-targeted manual therapy and/or exercise. This systematic review was undertaken in order to determine the efficacy of such targeted treatment in adults with NSLBP. Method MEDLINE, EMBASE, Current Contents, AMED and the Cochrane Central Register of Controlled Trials were electronically searched, reference lists were examined and citation tracking performed. Inclusion criteria were randomized controlled trials of targeted manual therapy and/or exercise for NSLPB that used trial designs capable of providing robust information on targeted treatment (treatment effect modification for the outcomes of activity limitation and pain. Included trials needed to be hypothesis-testing studies published in English, Danish or Norwegian. Method quality was assessed using the criteria recommended by the Cochrane Back Review Group. Results Four high-quality randomized controlled trials of targeted manual therapy and/or exercise for NSLBP met the inclusion criteria. One study showed statistically significant effects for short-term outcomes using McKenzie directional preference-based exercise. Research into subgroups requires much larger sample sizes than traditional two-group trials and other included studies showed effects that might be clinically important in size but were not statistically significant with their samples sizes. Conclusions The clinical implications of these results are that they provide very cautious evidence supporting the notion that treatment targeted to subgroups of patients with NSLBP may improve patient outcomes. The results of the

  19. Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation

    Directory of Open Access Journals (Sweden)

    Renee E. Shimizu

    2018-02-01

    Full Text Available Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12–15 Hz sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.

  20. Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation.

    Science.gov (United States)

    Shimizu, Renee E; Connolly, Patrick M; Cellini, Nicola; Armstrong, Diana M; Hernandez, Lexus T; Estrada, Rolando; Aguilar, Mario; Weisend, Michael P; Mednick, Sara C; Simons, Stephen B

    2018-01-01

    Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12-15 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.

  1. Study of mechanism improving target course traceability in G-Vectoring Control

    Science.gov (United States)

    Yamakado, Makoto; Abe, Masato; Kano, Yoshio; Umetsu, Daisuke; Yoshioka, Thoru

    2018-05-01

    Production-type G-Vectoring Control vehicles are now being put on the market. Customers and reviewers have praised the handling quality and course traceability of these vehicles. This paper clarifies the mechanism behind this improvement in handling quality using a simple bicycle model and driver model analysis. It focuses on the residual yaw angular acceleration when the steering speed is zero and shows that GVC reduces its value. This result provides evidence for improved handling quality in GVC vehicles.

  2. A single blood test adjusted for different liver fibrosis targets improves fibrosis staging and especially cirrhosis diagnosis.

    Science.gov (United States)

    Calès, Paul; Boursier, Jérôme; Oberti, Frédéric; Moal, Valérie; Fouchard Hubert, Isabelle; Bertrais, Sandrine; Hunault, Gilles; Rousselet, Marie Christine

    2018-04-01

    Fibrosis blood tests are usually developed using significant fibrosis, which is a unique diagnostic target; however, these tests are employed for other diagnostic targets, such as cirrhosis. We aimed to improve fibrosis staging accuracy by simultaneously targeting biomarkers for several diagnostic targets. A total of 3,809 patients were included, comprising 1,012 individuals with chronic hepatitis C (CHC) into a derivation population and 2,797 individuals into validation populations of different etiologies (CHC, chronic hepatitis B, human immunodeficiency virus/CHC, nonalcoholic fatty liver disease, alcohol) using Metavir fibrosis stages as reference. FibroMeter biomarkers were targeted for different fibrosis-stage combinations into classical scores by logistic regression. Independent scores were combined into a single score reflecting Metavir stages by linear regression and called Multi-FibroMeter Version Second Generation (V2G). The primary objective was to combine the advantages of a test targeted for significant fibrosis (FibroMeter V2G ) with those of a test targeted for cirrhosis (CirrhoMeter V2G ). In the derivation CHC population, we first compared Multi-FibroMeter V2G to FibroMeter V2G and observed significant increases in the cirrhosis area under the receiver operating characteristic curve (AUROC), Obuchowski index (reflecting all fibrosis-stage AUROCs), and classification metric (six classes expressed as a correctly classified percentage) and a nonsignificant increase in significant fibrosis AUROC. Thereafter, we compared it to CirroMeter V2G and observed a nonsignificant increase in the cirrhosis AUROC. In all 3,809 patients, respective accuracies for Multi-FibroMeter V2G and FibroMeter V2G were the following: cirrhosis AUROC, 0.906 versus 0.878 ( P fibrosis AUROC, 0.833 versus 0.832 ( P = 0.366). Multi-FibroMeter V2G had the highest correlation with the area of portoseptal fibrosis and the highest reproducibility over time. Correct classification rates

  3. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Department of Neurology, Sichuan Medical Science Institute and Sichuan Provincial Hospital, Chengdu 610072 (China); Li, Hongling [Department of Radiotherapy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Sun, Yong, E-mail: sunfanqi2010@163.com [Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China)

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  4. Gamma rays role in the improvement of yield and early maturity in soybean

    International Nuclear Information System (INIS)

    Moualla, M.Y.; Ali, N.M.

    1995-01-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs

  5. An expert system for improving the gamma-ray scanning technique

    International Nuclear Information System (INIS)

    Laraki, K.; Alami, R.; Cherkaoui El Moursli, R.; Bensitel, A.; El Badri, L.

    2007-01-01

    The gamma-ray scanning technique is widely used in the diagnosis and identification of industrial installations, in general and, in particular, of distillation columns considered as the most critical components in petrochemical plants. It provides essential data to optimise the performance of columns and identify maintenance requirements. Due to the various difficulties that can arise while analysing a scanning profile and in order to benefit from the continuous advent of new technologies in the field of electronics and data processing, the team of the Division of Instrumentation and Industrial Applications of CNESTEN have conducted a project aiming the elaboration of an expert system for acquisition, processing and interpretation of the scanning results. This system consists of two main modules: the first one is devoted to the preparation and control of the scanning operation conditions, while the second module has been developed to carry out easily and effectively the automatic (on-line) analysis and interpretation of the scan profiles

  6. Improvement of the instrumental line shape of X-ray spectrometers with Si(Li) - detectors

    International Nuclear Information System (INIS)

    Berdikov, V.V.; Zajtsev, E.A.; Iokhin, B.S.

    1983-01-01

    The possibility of decreasing the background of the X-ray spectrometer detector using the rise-time pulse selection method was investigated. Si(Li)-detectors of 10 and 25 mm 2 square were investigated. Spectrometer channel was composed of ORTEC-472 amplifier and ULTIMA/2 multichannel analyzer on the base of NOVA-3 minicomputer. The energy resolution was equal to 300 eV on 14 KeV line. The pulses of detection allowing were transmitted to analog-to-digital converter. The detection was allowed if front photopeak square) were measured at 17.4, 20.3 and 59.6 keV. 4-6-fold decrease of X-factor was obtained without any loss of detection efficiency. The combination of the method with collimation of radiation in the centre of the detector gives an extremely low value of X-factor which agress with theretical estimations

  7. Gamma rays role in the improvement of yield and early maturity in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Moualla, M Y; Ali, N M [Atomic Energy Commission, P.O.Box 6091, Damascus (Syrian Arab Republic)

    1995-10-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs.

  8. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  9. Combined use of videoendoscopy and X-ray imaging for improved monitoring of stenting application

    Science.gov (United States)

    Cysewska-Sobusiak, A. R.; Sowier, A.; Skrzywanek, P.

    2005-09-01

    The subject of this paper concerns advanced techniques of procedures and imaging used in minimally invasive surgery and in non-operable cases of the alimentary tract tumor therapy. Examples of videoendoscopy and X-ray imaging used for the application of stents (prostheses) and catheters allowing for the performance of diagnostic and endo-therapeutic procedures are described. The possibility was indicated to elaborate a new method of proceeding in tumor therapy in the patients for whom the methods used so far were ineffective. In the paper examples of combined imaging the application of metallic stents and plastic catheters allowing for the performance of diagnostic and therapeutic procedures are presented. The cases shown refer to tumor located in the esophagus and in the bile and pancreatic ducts.

  10. Testing of improved CFC/Cu bondings for the W7-X divertor targets

    International Nuclear Information System (INIS)

    Greuner, H.; Buswirth, B.; Boscary, J.; Tivey, R.; Plankensteiner, A.; Schedler, B.

    2007-01-01

    Full text of publication follows: Extensive high heat flux (HHF) testing of pre-series divertor targets was performed to establish the industrial process for the manufacturing of 890 targets, which will be needed for the installation of the Wendelstein 7-X (W7-X) divertor. The target design consists of flat tiles of CFC NB31 as plasma facing material bonded by an Active Meta] Casting copper (AMC) interlayer onto a water-cooled CuCrZr structure. This design is required by the specific geometrical requirements of the W7-X divertor. The heat removal capability of this target concept has been demonstrated for the envisaged operational power load of 10 MW/m 2 in previous test series of more than 30 full-scale elements. No large detachment or loss of CFC tiles occurred during cyclic loading tests at 10.5 and 13 MW/m 2 , but growing local de-bonded zones at the free edges of several CFC tiles were observed. Therefore a detailed analysis of the system of CFC/Cu bonding was carried out with respect to a further reduction of the stress at the CFC/Cu interface. Based on the results of the 3/D non-linear thermomechanical FEM analysis of the CFC/Cu interface a set of 17 additional pre-series elements was manufactured by PLANSEE SE. Three types of design variations have been investigated: - adopting an additional plastically compliant Cu interlayer between the cooling structure and the AMC region, - reduced size of CFC tiles, - arrangement of tiles with 90 deg. rotation of the CFC fibre plane. HHF tests were performed in the ion beam test facility GLADIS at IPP Garching with up to 3000 cycles at 10.5 MW/m 2 on this elements. The aim of these tests is to investigate the crack propagation between CFC/Cu and to define the acceptable defect size after 100 HHF cycles as an acceptance criterion for the series manufacturing. The applied criterion should allow the selection of elements for W7-X expected to achieve a suitable operational life time. Finally, the design variant with the

  11. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  12. Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas

    International Nuclear Information System (INIS)

    Pronko, J.G.; Kohler, D.

    1996-01-01

    An experiment has been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme uses the He- like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n=4 to n=2,3 states and the n=3 to n=2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began Jan. 1991; however circumstances made it impossible to pursue the research over the past 5 years, and it was decided not to pursue the research any further

  13. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  14. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    Directory of Open Access Journals (Sweden)

    Sergeyeva Victoria

    2016-01-01

    Full Text Available The CEA MADERE platform (Measurement Applied to DosimEtry in REactors is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI. This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample. This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  15. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  16. Executive function needs to be targeted to improve social functioning with Cognitive Remediation Therapy (CRT) in schizophrenia.

    Science.gov (United States)

    Penadés, Rafael; Catalán, Rosa; Puig, Olga; Masana, Guillem; Pujol, Núria; Navarro, Víctor; Guarch, Joana; Gastó, Cristóbal

    2010-05-15

    While the role of impaired cognition in accounting for functional outcome in schizophrenia is generally established, the relationship between cognitive and functional change in the context of treatments is far from clear. The current paper tries to identify which cognitive changes lead to improvements in daily functioning among persons with chronic schizophrenia who had current negative symptoms and evidenced neuropsychological impairments. In a previous work, Cognitive Remediation Therapy (CRT) was compared with a control therapy, involving similar length of therapist contact but different targets. At the end of treatment, CRT conferred a benefit to people with schizophrenia in cognition and functioning [Schizophrenia Research, 87 (2006) 323-331]. Subsequently, analyses of covariance (ANCOVA) were conducted with baseline and cognitive change scores as covariates to test whether cognitive change predicted change in functioning. Additionally, statistical tests to establish the mediation path with significant variables were performed. Although verbal memory, but not executive functioning, was associated with functioning at baseline, it was the improvement in executive functioning that predicted improved daily functioning. Verbal memory played a mediator role in the change process. Consequently, in order to improve daily functioning with CRT, executive function still needs to be targeted in despite of multiple cognitive impairments being present. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Suzuki, Keiji; Prise, K.M.

    2005-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population. Here, we analysed the mechanism of such a bystander effect from targeted cells to non-targeted cells. Firstly, in order to investigate the bystander effect in Chinese hamster ovary (CHO) cell lines we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population, of double strand break repair deficient xrs5 cells, was targeted with 1 Gy of Al-K soft X-rays, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells. The induction of micronuclei was also observed when conditioned medium was transferred from irradiated to non-irradiated xrs5 cells. These results suggest that DNA double strand breaks are caused by factors secreted in the medium from irradiated cells. To clarify the involvements of radical species in the bystander response, cells were treated with 0.5%DMSO 1 hour before irradiation and then bystander effects were estimated in xrs5 cells. The results showed clearly that DMSO treatment during X-irradiation suppress the induction of micronuclei in bystander xrs5 cells, when conditioned medium was transferred from irradiated xrs5 cells. Therefore, it is suggested that radical species induced by ionizing radiation are important for producing bystander signals. (author)

  18. Improving prevention of depression and anxiety disorders: repetitive negative thinking as a promising target

    NARCIS (Netherlands)

    Topper, M.; Emmelkamp, P.M.G.; Ehring, T.

    2010-01-01

    Prevention of depression and anxiety disorders is widely acknowledged as an important health care investment. However, existing preventive interventions have only shown modest effects. In order to improve the efficacy of prevention of depression and anxiety disorders, a number of authors have

  19. Targeted modifications of foot-and-mouth disease virus; towards improved vaccine candidates

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette

    these into susceptible cells it is possible to rescue specifically altered FMDVs. We have used this approach to generate modified viruses that have particular properties; these studies can assist in the development of improved and safer vaccines to protect against FMDV. For example, we have made changes to the leader (L...

  20. Targeting Environmental Quality to Improve Population Health and Lower Healthcare Costs

    Science.gov (United States)

    Key goals of health care reform are to stimulate innovative approaches to improve healthcare quality and clinical outcomes while holding down costs. To achieve these goals value-based payment places the needs of the patient first and encourages multi-stakeholder cooperation. Ye...

  1. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Kivrakdal, Deniz; Ustaoğlu, Özgur; Soylu, Ayfer [Eczacibasi Nuclear Products Inc. (Turkey)

    2009-07-01

    As positron emitting radiopharmaceuticals gain interest in nuclear medicine, more and more baby cyclotrons are installed. The number of cyclotrons in Turkey went up to nine whereas the number of PET or PET/CT cameras increased more than 50% within a year. At the moment there are 65 positron imaging cameras serving a population of around 70 million. Eczacıbası - Monrol Nuclear Products Industry and Trade Inc. has five cyclotrons three of them being of different brands. In this report production data collected with these cyclotrons using high current liquid targets of silver, tantalum and niobium will be presented. The data presented here covers the whole duration of the project. Another topic which will be discussed here is the work carried out about purification and analysis of used O-18 water for re-use purposes. (author)

  2. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes (Turkey)

    International Nuclear Information System (INIS)

    Kivrakdal, Deniz; Ustaoğlu, Özgur; Soylu, Ayfer

    2009-01-01

    As positron emitting radiopharmaceuticals gain interest in nuclear medicine, more and more baby cyclotrons are installed. The number of cyclotrons in Turkey went up to nine whereas the number of PET or PET/CT cameras increased more than 50% within a year. At the moment there are 65 positron imaging cameras serving a population of around 70 million. Eczacıbası - Monrol Nuclear Products Industry and Trade Inc. has five cyclotrons three of them being of different brands. In this report production data collected with these cyclotrons using high current liquid targets of silver, tantalum and niobium will be presented. The data presented here covers the whole duration of the project. Another topic which will be discussed here is the work carried out about purification and analysis of used O-18 water for re-use purposes. (author)

  3. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    Science.gov (United States)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  4. Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoping; Li, Xiaojia; Huang, Bin; Ma, Shuai

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E-binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K) pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP) in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  5. Targeted research to improve invasive species management: yellow crazy ant Anoplolepis gracilipes in Samoa.

    Science.gov (United States)

    Hoffmann, Benjamin D; Auina, Saronna; Stanley, Margaret C

    2014-01-01

    Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu'utele island, Samoa. First, we assessed the ant's impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine

  6. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-05-01

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  7. Improved Deep Belief Networks (IDBN Dynamic Model-Based Detection and Mitigation for Targeted Attacks on Heavy-Duty Robots

    Directory of Open Access Journals (Sweden)

    Lianpeng Li

    2018-04-01

    Full Text Available In recent years, the robots, especially heavy-duty robots, have become the hardest-hit areas for targeted attacks. These attacks come from both the cyber-domain and the physical-domain. In order to improve the security of heavy-duty robots, this paper proposes a detection and mitigation mechanism which based on improved deep belief networks (IDBN and dynamic model. The detection mechanism consists of two parts: (1 IDBN security checks, which can detect targeted attacks from the cyber-domain; (2 Dynamic model and security detection, used to detect the targeted attacks which can possibly lead to a physical-domain damage. The mitigation mechanism was established on the base of the detection mechanism and could mitigate transient and discontinuous attacks. Moreover, a test platform was established to carry out the performance evaluation test for the proposed mechanism. The results show that, the detection accuracy for the attack of the cyber-domain of IDBN reaches 96.2%, and the detection accuracy for the attack of physical-domain control commands reaches 94%. The performance evaluation test has verified the reliability and high efficiency of the proposed detection and mitigation mechanism for heavy-duty robots.

  8. Design Improvement of an X-ray Tube Applicator to Reduce ORE

    International Nuclear Information System (INIS)

    Lee, Juhyuk; Kim, Hyun Nam; Park, Han Beom; Cho, Sung Oh

    2017-01-01

    Radiation therapy has many advantages to treat cancer relative to other therapies. It does not induce scar or hair loss, and could can cover larger area than others. However, one the most critical issues about radiation therapy is shielding. Not only unnecessary exposure to patients but also those to doctors or nurses who participate in the treatment have to be lowered as possible. Occupational radiation exposure (ORE) is limited to 50 mSv per year by NCRP's recommendation. In this study, MC simulations were performed to evaluate the effective dose induced by the miniature x-ray tube. It was confirmed that when the applicator is adopted to the tube, the effective dose to doctor is less than the occupational radiation exposure limit recommended by ICRP. All assumptions used in this calculation were too highly conservative enough to have reliability. However some limitations still exist; for example, the more accurate results could be obtained if most recent version of conversion factors was used or we specified the organs irradiated and weighted the values by the radiation sensitivity.

  9. Improvement of high-fold gamma-ray data processing: the spherical gate method

    CERN Document Server

    Theisen, C; Stezowski, O; Vivien, J P

    1999-01-01

    A new method for optimizing the processing of events from a highly efficient large array gamma-ray detector is described in this article. The spherical gates technique, developed to project high-fold events, consists of optimizing n-dimensional gate shape as a function of peak width and shape of each detector. Formulas in closed form are proposed for determining the projected statistics from coincidence fold and peak shape and for estimating the increased quality of projected spectra. This procedure has been tested on high-fold, high statistics data sets including superdeformed cascades. Compared to the classical 'square-gate' technique, better peak-to-background ratios as well as a reduction in fluctuations are observed. A quality parameter is defined to characterize the optimal parameter set. This method leads roughly to a gain in spectral quality equivalent of one fold. It is also shown that the efficiency of the method increases with coincidence fold. This should be particularly suited for future higher-f...

  10. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  11. Improvements in Applied Gamma-Ray Spectrometry with Germanium Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Hellstroem, S [AB Atomenergi, Nykoeping (Sweden); Dubois, J [Chalmers University of Technology, Goeteborg (Sweden)

    1965-01-15

    A germanium semi-conductor detector has in the present investigation been used in four cases of applied gamma-ray spectrometry. In one case the weak-activity contribution of Cs{sup 134} in Cs{sup 137} standard sources has been determined. The second case concerns the determination of K{sup 42} in samples of biological origin containing strong Na{sup 24} activities. In the third case the Nb{sup 94} and Nb{sup 95} activities from neutron-irradiated niobium foils used in the dosimetry of high neutron fluxes with long exposure times have been completely resolved and it has been possible to determine the ratio of the two activities with a high degree of accuracy. Finally, a Zr{sup 95} - Nb{sup 95} source has been analysed in a similar way with respect to its radiochemical composition. The resolution obtained also made possible a determination of the branching ratio of the two gamma-transitions in Zr{sup 95} and of the energies of the gamma-transitions of both nuclides.

  12. X-rays taken by radiologists. Influence on a continuous quality improvement process?

    International Nuclear Information System (INIS)

    Kurtz, C.; Freiburg Univ.; Czapp, W.; Trampe, I.; Leppek, R.; Klose, K.J.

    2000-01-01

    Purpose: To evaluate how the training of radiology residents in taking radiographs influences the work of radiographers and the established quality standards. Methods: A first year radiology resident was trained for 4 weeks in focusing and exposure techniques by radiographers. In a second period the resident took 582 radiograms, which were compared with those taken by technicians for error estimation on a daily basis. During a third period the radiographs were produced in a contest between the resident and a skilled radiographer. Errors were analysed by two independent experts according to established guidelines of the German Medical Association. Results: At the beginning of the second period the average error rate of the resident was 11.9% as compared to 8.9% in the technicians team, in the following month 9.2% versus 15.9%. In the third period no relevant difference in errors could be observed. Finally, unexpected quality improvements were implemented like an improved standardization of focusing and exposure techniques as well as dose reduction. Conclusions: Radiology residents easily learn focusing and exposure techniques and achieve comparable results as radiographers within a short period of time. The additionally achieved knowledge improves the technical process of taking radiographs. We recommend to include a two plane radiography training period in the curriculum of radiology residents. It reinforces the radiologist's role in continuous quality improvements of the diagnostic process. (orig.) [de

  13. Hydrophilicity improvement of polyethersulfone membranes by grafting methacrylic acid with γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Jing; Hou Zhengchi; Xie Leidong; Zhang Fengying; Deng Bo

    2005-01-01

    Grafting methyacrylic acid onto poly(ether sulfone) membranes was realized by means of simultaneous irradiation in liquids. The modified membranes with different grafting ratios were obtained by changing the concentration of methyacrylic acid. It was shown that the grafting ratio increased lineally as the monomer concentration was less than 10% and hydrophilicity of the membranes was improved with increasing grafting ratios. (authors)

  14. Sub-coulombian fusion of 12 C + 12 C measured with the γ rays improved technique

    International Nuclear Information System (INIS)

    Rosales M, P.

    2005-01-01

    In this work we report the measurements carried out in the National Institute of Nuclear Research of Mexico (ININ) for the absolute section of fusion of the system 12 C + 12 C in an interval of energy of E c.m. 4.5-6.5 MeV with fine steps of 75 keV. The objective of measuring in fine steps is to register all the existent resonances. To be able to obtain an absolute normalization of the cross section, it was applied a method that allows to measure simultaneously the one number of projectiles that arrive to the target, as well as the numbers of nuclei in the target, even when this doesn't stay constant. In the chapter 2 the experimental procedure it is described, it is carried out with detail the analysis of the data and the results are shown. Later on the chapter 3 it is described with detail the method used for the absolute normalization, that is to say the form of obtaining the quantities N p and η T of the equation is explained and the obtained results are presented. Additionally in the chapter 4 it was carried out a theoretical analysis applying models as that of barrier penetration and the optical model combined with the Breit-Wigner theory with the purpose of being able to reproduce the resonances of the excitation function. In the chapter 5 the concept of S-Astrophysicist factor it is introduced and this value is calculated for our data. Finally in the chapter 6 the conclusions of this work are presented. (Author)

  15. Recognition and management of depression in skilled-nursing and long-term care settings: evolving targets for quality improvement.

    Science.gov (United States)

    Boyle, Vicki L; Roychoudhury, Canopy; Beniak, Renee; Cohn, Lisa; Bayer, Albert; Katz, Ira

    2004-01-01

    Depression is a common disorder associated with suffering, morbidity, and mortality in nursing home residents. It is treatable, and improving the quality of treatment can have a major impact. MPRO, Michigan's Quality Improvement Organization, initiated a quality-improvement project in 14 nursing facilities to improve the accuracy of assessments, targeting, and monitoring of care. Electronic Minimum Data Set (MDS) data and medical-record abstraction results were combined to form the analytic dataset. Findings from the baseline phase demonstrated that, according to medical and administrative records, 26% of newly admitted nursing home residents had symptoms of depression that were apparent at admission, and an additional 12% were recognized early in their stay. Eighty-one percent of residents with depression were receiving treatment on admission to the facility, and 79% of those with depression recognized by Day 14 were treated by then. These data demonstrate progress toward improving the initiation of treatment for depression in nursing homes; however, there are still opportunities for improving the quality of care and, especially, the quality of assessments. The authors recommend the addition of the Geriatric Depression Scale to the federally mandated MDS for cognitively intact patients. There could also be mechanisms to ensure that providers and facilities follow recommended practice guidelines. Initiating treatment with antidepressant medications should be followed with monitoring of residents to identify those who still have depressive symptoms and to modify or intensify their treatment.

  16. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    Science.gov (United States)

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  17. Using a Treat-to-Target Management Strategy to Improve the Doctor-Patient Relationship in Inflammatory Bowel Disease.

    Science.gov (United States)

    Rubin, David T; Krugliak Cleveland, Noa

    2015-09-01

    The doctor-patient relationship (DPR) in inflammatory bowel disease (IBD) has been facing new challenges, in part due to the substantial progress in medical and surgical management and also due to the rapid expansion of patient access to medical information. Not surprisingly, the complexity of IBD care and heterogeneity of the disease types may lead to conflict between a physician's therapeutic recommendations and the patient's wishes. In this commentary, we propose that the so-called "treat-to-target" approach of objective targets of disease control and serial adjustments to therapies can also strengthen the DPR in IBD by enabling defined trials of alternative approaches, followed by a more objective assessment and reconsideration of treatments. We contend that such respect for patient autonomy and the use of objective markers of disease activity improves the DPR by fostering trust and both engaging and empowering patients and physicians with the information necessary to make shared decisions about therapies.

  18. Blocking mammalian target of rapamycin (mTOR improves neuropathic pain evoked by spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wang Xiaoping

    2016-01-01

    Full Text Available Spinal cord injury (SCI is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E–binding protein 4 (4E-BP1 and p70 ribosomal S6 protein kinase 1 (S6K1 in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  19. Improved field abutment-wedge design for 6-MV x-rays

    International Nuclear Information System (INIS)

    Nyerick, C.E.; Steadham, R.E.

    1989-01-01

    This paper presents an improved abutment wedge for matching large photon fields. The wedge is used with a 6-MV Linac accelerator and generates a 5-cm pseudopenumbra at the 50% relative dose juncture. The features allow treatment of fields up to 40 cm long in any fractional step of increment, simultaneous generation of two wide penumbrae or one wide and one sharp penumbra, and attachment of the device downstream of standard beam-shaping accessories in any 90 degrees angular orientation

  20. Targeting couple and parent-child coercion to improve health behaviors.

    Science.gov (United States)

    Smith Slep, Amy M; Heyman, Richard E; Mitnick, Danielle M; Lorber, Michael F; Beauchaine, Theodore P

    2018-02-01

    This phase of the NIH Science of Behavior Change program emphasizes an "experimental medicine approach to behavior change," that seeks to identify targets related to stress reactivity, self-regulation, and social processes for maximal effects on multiple health outcomes. Within this framework, our project focuses on interpersonal processes associated with health: coercive couple and parent-child conflict. Diabetes and poor oral health portend pain, distress, expense, loss of productivity, and even mortality. They share overlapping medical regimens, are driven by overlapping proximal health behaviors, and affect a wide developmental span, from early childhood to late adulthood. Coercive couple and parent-child conflict constitute potent and destructive influences on a wide range of adult and child health outcomes. Such interaction patterns give rise to disturbed environmental stress reactivity (e.g., disrupted sympathetic nervous and parasympathetic nervous systems) and a wide range of adverse health outcomes in children and adults, including dental caries, obesity, and diabetes-related metabolic markers. In this work, we seek to identify/develop/validate assays assessing coercion, identify/develop and test brief interventions to reduce coercion, and test whether changes in coercion trigger changes in health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An Effort to Improve Uranium Foil Target Fabrication Technology by Single Roll Method

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Moon Soo; Lee, Jong Hyeon [Chungnam National University, Daejeon (Korea, Republic of); Kim, Chang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Technetium-99({sup 99m}Tc) is the most commonly used radioisotope in nuclear medicine for diagnostic procedures. It is produced from the decay of its parent Mo-99, which is sent to the hospital or clinic in the form of a generator. Recently, all of the major providers of Mo-99 have used high-enrichment uranium (HEU) as a target material in a research and test reactor. As a part of a nonproliferation effort, the RERTR program has investigated the production of the fission isotope Mo-99 using low-enrichment uranium(LEU) instead of HEU since 1993, a parent nuclide of {sup 99m}Tc , which is a major isotope for a medical diagnosis. As uranium foils have been produced by the conventional method on a laboratory scale by a repetitive hot-rolling method with significant problems in foil quality, productivity and economic efficiency, attention has shifted to the planar flow casting(PFC) method. In KAERI, many experiments are performed using depleted uranium(DU).

  2. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    Science.gov (United States)

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

  3. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats.

    Science.gov (United States)

    Kaminskas, Lisa M; Kota, Jagannath; McLeod, Victoria M; Kelly, Brian D; Karellas, Peter; Porter, Christopher Jh

    2009-12-03

    Polylysine dendrimers have potential as highly flexible, biodegradable nanoparticular carriers that may also promote lymphatic transport. The current study was undertaken to determine the impact of PEGylation on the absorption and lymphatic transport of polylysine dendrimers modified by surface derivatisation with PEG (200, 570 or 2000Da) or 4-benzene sulphonate following SC or IV dosing. PEGylation led to the PEG(200) derived dendrimer being rapidly and completely absorbed into the blood after SC administration, however only 3% of the administered dose was recovered in pooled thoracic lymph over 30h. Increasing the PEG chain length led to a systematic decrease in absorption into the blood and an enhancement of the proportion recovered in the lymphatics (up to 29% over 30h). For the PEG(570) and PEG(2000) derived dendrimers, indirect access to the lymph via equilibration across the capillary beds also appeared to play a role in lymphatic targeting after both IV and SC dosing. In contrast, the anionic benzene sulphonate-capped dendrimer was not well absorbed from the SC injection site (26% bioavailability) into either the blood or the lymph. The data suggest that PEGylated poly-L-lysine dendrimers are well absorbed from SC injection sites and that the extent of lymphatic transport may be enhanced by increasing the size of the PEGylated dendrimer complex.

  4. Energy Storage System Control Algorithm by Operating Target Power to Improve Energy Sustainability of Smart Home

    Directory of Open Access Journals (Sweden)

    Byeongkwan Kang

    2018-01-01

    Full Text Available As energy issues are emerging around the world, a variety of smart home technologies aimed at realizing zero energy houses are being introduced. Energy storage system (ESS for smart home energy independence is increasingly gaining interest. However, limitations exist in that most of them are controlled according to time schedules or used in conjunction with photovoltaic (PV generation systems. In consideration of load usage patterns and PV generation of smart home, this study proposes an ESS control algorithm that uses constant energy of energy network while making maximum use of ESS. Constant energy means that the load consumes a certain amount of power under all conditions, which translates to low variability. The proposed algorithm makes a smart home a load of energy network with low uncertainty and complexity. The simulation results show that the optimal ESS operating target power not only makes the smart home use power constantly from the energy network, but also maximizes utilization of the ESS. In addition, since the smart home is a load that uses constant energy, it has the advantage of being able to operate an efficient energy network from the viewpoint of energy providers.

  5. Targeting tumor multicellular aggregation through IGPR-1 inhibits colon cancer growth and improves chemotherapy.

    Science.gov (United States)

    Woolf, N; Pearson, B E; Bondzie, P A; Meyer, R D; Lavaei, M; Belkina, A C; Chitalia, V; Rahimi, N

    2017-09-18

    Adhesion to extracellular matrix (ECM) is crucially important for survival of normal epithelial cells as detachment from ECM triggers specific apoptosis known as anoikis. As tumor cells lose the requirement for anchorage to ECM, they rely on cell-cell adhesion 'multicellular aggregation' for survival. Multicellular aggregation of tumor cells also significantly determines the sensitivity of tumor cells to the cytotoxic effects of chemotherapeutics. In this report, we demonstrate that expression of immunoglobulin containing and proline-rich receptor-1 (IGPR-1) is upregulated in human primary colon cancer. Our study demonstrates that IGPR-1 promotes tumor multicellular aggregation, and interfering with its adhesive function inhibits multicellular aggregation and, increases cell death. IGPR-1 supports colon carcinoma tumor xenograft growth in mouse, and inhibiting its activity by shRNA or blocking antibody inhibits tumor growth. More importantly, IGPR-1 regulates sensitivity of tumor cells to the chemotherapeutic agent, doxorubicin/adriamycin by a mechanism that involves doxorubicin-induced AKT activation and phosphorylation of IGPR-1 at Ser220. Our findings offer novel insight into IGPR-1's role in colorectal tumor growth, tumor chemosensitivity, and as a possible novel anti-cancer target.

  6. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  7. Using an International Clinical Registry of Regional Anesthesia to Identify Targets for Quality Improvement

    Science.gov (United States)

    Sites, Brian D.; Barrington, Michael J.; Davis, Matthew

    2014-01-01

    Background Despite the widespread use of regional anesthesia, limited information on clinical performance exists. Institutions, therefore, have little knowledge of how they are performing in regards to both safety and effectiveness. In this study, we demonstrate how a medical institution (or physician/physician group) may use data from a multi-center clinical registry of regional anesthesia to inform quality improvement strategies. Methods We analyzed data from the International Registry of Regional Anesthesia that includes prospective data on peripheral regional anesthesia procedures from 19 centers located around the world. Using data from the clinical registry, we present summary statistics of the overall safety and effectiveness of regional anesthesia. Furthermore, we demonstrate, using a variety of performance measures, how these data can be used by hospitals to identify areas for quality improvement. To do so, we compare the performance of one member institution (a United States medical center in New Hampshire) to that of the other 18 member institutions of the clinical registry. Results The clinical registry contained information on 23,271 blocks that were performed between June 1, 2011, and May 1, 2014, on 16,725 patients. The overall success rate was 96.7%, immediate complication rate was 2.2%, and the all-cause 60-day rate of neurological sequelae was 8.3 (95% CI, 7.2–9.7) per 10,000. Registry wide major hospital events included 7 wrong site blocks, 3 seizures, 1 complete heart block, 1 retroperitoneal hematoma, and 3 pneumothoraces. For our reference medical center, we identified areas meriting quality improvement. Specifically, after accounting for differences in the age, sex, and health status of patient populations, the reference medical center appeared to rely more heavily on opioids for post procedure management, had higher patient pain scores, and experienced delayed discharge when compared with other member institutions. Conclusions To our

  8. Getting a healthy start: The effectiveness of targeted benefits for improving dietary choices.

    Science.gov (United States)

    Griffith, Rachel; von Hinke, Stephanie; Smith, Sarah

    2018-03-01

    There is growing policy interest in encouraging better dietary choices. We study a nationally-implemented policy - the UK Healthy Start scheme - that introduced vouchers for fruit, vegetables and milk. We show that the policy has increased spending on fruit and vegetables and has been more effective than an equivalent-value cash benefit. We also show that the policy improved the nutrient composition of households' shopping baskets, with no offsetting changes in spending on other foodstuffs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  10. Predictors of satisfactory improvements in pain for patients with early rheumatoid arthritis in a treat-to-target study.

    Science.gov (United States)

    Ten Klooster, Peter M; Vonkeman, Harald E; Oude Voshaar, Martijn A H; Siemons, Liseth; van Riel, Piet L C M; van de Laar, Mart A F J

    2015-06-01

    The aim of this study was to identify baseline predictors of achieving patient-perceived satisfactory improvement (PPSI) in pain after 6 months of treat to target in patients with early RA. Baseline and 6 month data were used from patients included in the Dutch Rheumatoid Arthritis Monitoring remission induction cohort study. Simple and multivariable logistic regression analyses were used to identify significant predictors of achieving an absolute improvement of 30 mm or a relative improvement of 50% on a visual analogue scale for pain. At 6 months, 125 of 209 patients (59.8%) achieved an absolute PPSI and 130 patients (62.2%) achieved a relative PPSI in pain. Controlling for baseline pain, having symmetrical arthritis was the strongest independent predictor of achieving an absolute [odds ratio (OR) 3.17, P = 0.03] or relative (OR 3.44, P = 0.01) PPSI. Additionally, anti-CCP positivity (OR 2.04, P = 0.04) and having ≤12 tender joints (OR 0.29, P = 0.01) were predictive of achieving a relative PPSI. The total explained variance of baseline predictors was 30% for absolute and 18% for relative improvements, respectively. Symmetrical joint involvement, anti-CCP positivity and fewer tender joints at baseline are prognostic signs for achieving satisfactory improvement in pain after 6 months of treat to target in patients with early RA. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Study of characteristic X-ray source and its applications

    International Nuclear Information System (INIS)

    Li Fuquan

    1994-11-01

    The law of characteristic X-rays emitted by target element under the radiation of isotope source in a range of low energy is discussed. Both the way of improving the rate of γ-X conversion and the method to eliminate the influence of scatter rays are introduced. The influence of the variation of isotopes source, targets and the relative position of source-target to the output of X-rays is also discussed and then the conditions of improving signal-to-noise radio is presented. The X-ray source based on these results can produce different energy X-rays, and so can be broadly used on nuclear instruments and other fields as a low energy source. The thickness gauge, as one of the applications, has succeeded in thickness measuring of the different materials in large range, and it presents a new application field for characteristic X-ray source. (11 figs., 10 tabs.)

  12. The health-related quality of life was not improved by targeting higher hemoglobin in the Normal Hematocrit Trial.

    Science.gov (United States)

    Coyne, Daniel W

    2012-07-01

    The Normal Hematocrit Trial (NHT) was the largest trial of epoetin randomizing 1265 hemodialysis patients with cardiac disease to lower (9-11 g/dl) or higher (13-15 g/dl) hemoglobin (Hgb), hypothesizing that higher Hgb would reduce mortality, and improve survival and quality of life. The trial was terminated early, and a 1998 publication reported that targeting higher hematocrit levels led to an insignificant increase in the primary end points (death or myocardial infarct), or risk ratio 1.3, 95% confidence interval (CI), 0.9-1.90, but the P-value was not given, and all-cause death risk was not reported. A higher target reportedly did not increase hospitalization rates, but did significantly improve the 'physical function' domain of quality of life. Comparing the 1996 Food and Drug Administration (FDA)-filed clinical trial report to the 1998 publication, however, found several discrepancies. Among these, the 1998 article reported interim trial results with only the adjusted CI but did not state that the unadjusted CIs were 99.912th percentile, and despite being a secondary end point, reported only the association of achieved Hgb with higher quality of life score. Randomization to the higher target had actually increased the risk for the primary end point (risk ratio 1.28, 95% CI=1.06-1.56; P=0.0112; 99.92% CI=0.92-1.78), the risk of death (risk ratio 1.27, 95% CI=1.04-1.54), non-access thrombotic events (P=0.041), and hospitalization rate (P=0.04), while 'physical function' did not improve (P=0.88). Hence, disclosure of these results in the 1998 publication or access to the FDA-filed report on the NHT in the late 1990s would likely have led to earlier concerns about epoetin safety and greater doubts about its benefits.

  13. Patient safety is not enough: targeting quality improvements to optimize the health of the population.

    Science.gov (United States)

    Woolf, Steven H

    2004-01-06

    Ensuring patient safety is essential for better health care, but preoccupation with niches of medicine, such as patient safety, can inadvertently compromise outcomes if it distracts from other problems that pose a greater threat to health. The greatest benefit for the population comes from a comprehensive view of population needs and making improvements in proportion with th